Cryptology ePrint Archive: Report 2015/534
Problems, solutions and experience of the first international student's Olympiad in cryptography
Sergey Agievich and Anastasiya Gorodilova and Nikolay Kolomeec and Svetla Nikova and Bart Preneel and Vincent Rijmen and George Shushuev and Natalia Tokareva and Valeria Vitkup
Abstract: A detailed overview of the problems, solutions and experience of the
first international student's Olympiad in cryptography,
NSUCRYPTO'2014, is given. We start with rules of participation and
description of rounds. All 15 problems of the Olympiad and their
solutions are considered in detail. There are discussed solutions of
the mathematical problems related to cipher constructing such as
studying of differential characteristics of S-boxes, S-box masking,
determining of relations between cyclic rotation and additions
modulo $2$ and $2^n$, constructing of special linear subspaces in
$\mathbb{F}_2^n$; problems about the number of solutions of the
equation $F(x)+F(x+a)=b$ over the finite field $\mathbb{F}_{2^n}$
and APN functions. Some unsolved problems in symmetric cryptography
are also considered.
Category / Keywords: secret-key cryptography / cryptography, block ciphers, boolean functions, AES, Olympiad, NSUCRYPTO
Original Publication (in the same form): Prikl. Diskr. Mat. (Applied Discrete Mathematics), 2015, to appear.
Date: received 2 Jun 2015
Contact author: tokareva at math nsc ru
Available format(s): PDF | BibTeX Citation
Version: 20150608:093215 (All versions of this report)
Short URL: ia.cr/2015/534
Discussion forum: Show discussion | Start new discussion
[ Cryptology ePrint archive ]