
Probabilistic Signature Based Framework for Differential Fault
Analysis of Stream Ciphers

Santanu Sarkar1, Prakash Dey2,
Avishek Adhikari2 and Subhamoy Maitra3

1 Indian Institute of Technology Madras, Sardar Patel Road, Chennai-600036, India.
2 Department of Pure Mathematics, University of Calcutta, Kolkata-700019, India.

3 Indian Statistical Institute, 203 B. T. Road, Kolkata- 700108, India.
sarkar.santanu.bir@gmail.com, pdprakashdey@gmail.com,

avishek.adh@gmail.com, subho@isical.ac.in

Abstract. Differential Fault Attack (DFA) has received serious attention in cryptographic literature
and very recently such attacks have been mounted against several popular stream ciphers for example
Grain v1, MICKEY 2.0 and Trivium, that are parts of the eStream hardware profile. The basic idea
of the fault attacks consider injection of faults and the most general set-up should consider faults at
random location and random time. Then one should identify the exact location and the exact timing of
the fault (as well as multi bit faults) with the help of fault signatures. In this paper we consider this most
general set-up and solve the problem of fault attack under a general framework, where probabilistic
signatures are exploited. Our ideas subsume all the existing DFAs against the Grain family, MICKEY
2.0 and Trivium. In the process we provide improved fault attacks for all the versions of Grain family
and also for MICKEY 2.0 (the attacks against Trivium are already quite optimal and thus there is not
much scope to improve). Our generalized method can also take care of the cases where certain parts
of the keystream bits are missing for authentication purpose. In particular, we show that the unsolved
problem of identifying the faults in random time for Grain 128a can be solved in this manner. Our
techniques can easily be applied to mount fault attack on any stream cipher of similar kind.

Keywords: Differential Attack, Fault Attack, Grain Family, MICKEY 2.0, Probabilistic Signatures, Stream
ciphers.

1 Introduction

Differential Fault Attack on stream ciphers is an interesting area of research that is evident from many
publications in this area. Given that the design of the stream ciphers are becoming more matured over the
years, it is natural that it would be quite challenging to find the weaknesses of such designs unless certain
assumptions are made. The assumptions should be realistic so that it is meaningful to study those models
and there should be experimental verification for such efforts. A stream cipher state is initially populated by
a secret key, some public variables such as Initialization Vector (IV), Nonce or Counter and some constant
padding. This may be referred as Key Loading Algorithm (KLA). Then the cipher is run a number of rounds
without producing any keystream bits, rather those bits are fed into the system to achieve randomness (by
randomness, in this paper we will usually refer to pseudo-randomness). This part is known as Key Scheduling
Algorithm (KSA). After that it is expected that the cipher will land into a random state. Then that state
is evolved further to generate the random looking keystream, which is known as Pseudo Random Generator
Algorithm (PRGA).

A popular model of cryptanalysis against such stream ciphers are as follows. As if the attacker does not
know the key, but she may try out different public variables (we will now on refer this as IV only) to obtain
different keystreams and from those keystreams, some kind of non-randomness may be explored. Further, it
will be a stronger attack if the secret key can be obtained with a complexity less than the exhaustive key
search. Given that designers are quite experienced, they generally run the cipher a large number of rounds in
KSA, so that the initial difference in IVs cannot be exploited at the PRGA (that is after the completion of
KSA). To provide more ammunition to the attacker, the differential fault attack is considered as an accepted
model in this scenario. This model says that one can inject a fault in the state to generate a differential

2 Sarkar, Dey, Adhikari & Maitra

during the PRGA. With this, the attacker obtains different keystreams and that may be studied to obtain
the secret key. To be very precise about this model, let us enumerate the following points.

– The attacker can run the cipher with the same key and IV several times.
– For each run, the attacker can inject fault during the PRGA, but she will not be able to control
• where: the exact bit location in the state and
• when: the exact round of the PRGA, i.e., the timing information

regarding the fault that has been injected.
– It may happen very well that the fault may toggle a few neighbouring bits in the state instead of a single

location.
– Lesser the number of faults injected, the better it is for the cryptanalysis. This improves the attack, as

well as it tampers the circuit less in case of actually mounting the attack.

While the fault attack is indeed optimistic and actually exploits a less secure model of the cipher, there are
enough evidences that such an attack is possible to realize with proper hardware set-up.

The way a DFA is built up is as follows.

– Online Phase:
• The cipher is run in fault-free condition and the keystream is preserved.
• Then the cipher is run a few times with the same key and IV, but the faults are injected during the

PRGA. The corresponding keystreams are also stored.
– Offline Phase:
• The cipher is studied beforehand to generate certain signatures.
• Once the fault-free and faulty keystreams are available, the signatures are used to locate the posi-

tion(s) of the faults [at which state bit(s) the difference(s) had been incorporated] and the timing of
the fault(s) [at which round(s) of the PRGA the fault(s) have been injected].

• When these information are available, a lot of equations are formed with the unknown state bits as
the variables and those equations are solved to obtain the state information.

• If the PRGA and KSA are reversible, then one can easily obtain the key and IV. Otherwise, the
attacker may use the state information for suitable purposes.

As we have already discussed, this is nothing but a differential attack. Cryptanalysts are well aware that
differences in IVs during initial key/IV loading may not identify any weakness from the keystream during the
PRGA if the KSA is sufficiently complicated. Similarly, if each PRGA round is substantially complicated then
it would be quite hard to mount DFA on the cipher. For example, consider that the next state is obtained
from the previous state by using a well designed hash function. In such a case, mounting such DFA may not
be possible on a tamper-resilient stream cipher [11, Section 6]. Since the stream cipher designs are required
to be very fast and need to be managed in a small hardware size (specially for hardware stream ciphers),
during the PRGA it is not practical to put a lot of effort so that the states in two consecutive rounds will
become un-correlated. Thus the ideal situation presented in [11, Section 6] may not be achievable in practice
given speed and area constraints together. For practical stream ciphers, this situation is equivalent to the
scenario when the keystream bits are available only at distant locations after quite a few rounds so that
the states corresponding to those distant rounds become un-correlated. However, the situation has merit in
case of authenticated encryption. Quite a few designs in this direction use stream ciphers as basic building
blocks and they use some portion of the keystream bits for authentication, while rest of the bits are used
for encryption. In this model, for DFA, the attacker will not have all the consecutive keystream bits and the
generation of the signatures will be more challenging.

Contribution: With the background explained, the contribution of this paper are as follows.

– We simplify the existing complicated descriptions of the signatures in many recent papers such as [4–7,
10, 18]. Apart from that we introduce a new signature evolved from the probability value related to
equality of each pair of fault-free and faulty keystream bits. We show that this new signature provides
much improved results than what obtained in existing literature for the Grain family and MICKEY 2.0.

– Given the simplified description of the signatures, it becomes easier to study the combinatorial structures
of the signatures, that in turn help in identifying the location and timing of the faults in an improved
manner.

Probabilistic Signature Based DFA 3

– Further the signatures can be defined when certain keystream bits are not available. This may be the
situation when stream ciphers are used as building blocks in authenticated encryption, where some
amount of keystream bits are used for authentication purposes. One such example cipher is Grain 128a.
It has been noted in [18] that due to the unavailability of certain keystream bits, the timing information of
the faults are required to mount the fault attack. However, with our generalized framework for signatures,
we could show that it is indeed possible to mount fault attack on Grain 128a without knowing at what
time instant the fault has been injected.

Grain v1 Grain 128 Grain 128a,
authen-
tication
mandatory

Grain 128a,
authen-
tication
forbidden

MICKEY
2.0

Trivium

[18] Fault must
be injected
at t = 0 or
t ∈ [0, 9]

Fault must
be injected
at t = 0 or
t ∈ [0, 14]

Fault must
be injected
at t = 0

- - -

[6] - - - - Fault must
be injected
at t = 0

-

Control
over
Fault
Timing

[14] - - - - - Any t but
t must be
known

[9] - - - - - Any t and t
could be un-
known

TW Any t and t
could be un-
known

Any t and t
could be un-
known

Any t and t
could be un-
known

Any t and t
could be un-
known

Any t and t
could be un-
known

No scope
for improve-
ment

[18] 0.99 when
t = 0 and
0.91 when
t ∈ [0, 9]

1.0 when
t = 0 and
0.92 when
t ∈ [0, 14]

0.81 when
t = 0

- - -

Prob.
of Fault
Loca-
tion
Identifi-
cation

[6] - - - - Only two
locations
with prob-
ability 1
when round
is known

-

TW 1.0 when
t = 0,
0.94 when
t ∈ [0, 5],
0.86 when
t ∈ [0, 30]

0.89 when
t ∈ [0, 5],
0.66 when
t ∈ [0, 30]

0.99 when
t = 0,
0.76 when
t ∈ [0, 5],
0.53 when
t ∈ [0, 30]

1.0 when
t = 0,
0.86 when
t ∈ [0, 5],
0.61 when
t ∈ [0, 30]

0.33 or 0.28
according as
fault affects
register R
or S in all
other posi-
tions when
t = 0

-

Table 1: Single bit fault location identification: Survey on Contributions. [t denotes the fault injection round, TW denotes this work.]

Organization of the paper: The rest of the paper is organised in the following way. In Section 2 we study
the combinatorial properties of fault signatures and describe the fault location identification procedure. In
Section 3 we introduce probabilistic signature on stream ciphers and illustrate the same for eStream finalists
in the hardware portfolio. In Section 4 we propose internal state recovery of the Grain family of ciphers
with fault at random rounds. Finally Section 5 concludes the paper. Some Illustrations are provided in the
Appendices A to C.

2 Fault Location Identification

This section deals with the fault location identification procedure for general setup. In the offline stage of
this process, the attacker identifies, corresponding to each fault (possible in the underlying fault model) a
deterministic or a highly probable pattern in the bitwise XOR difference stream of the fault free and faulty
keystreams. These patterns are independent of the key-IV pair and are termed as signatures which are stored
in the database. In this section, we first formally define few signatures of a fault for any stream cipher. Then

4 Sarkar, Dey, Adhikari & Maitra

we study fault signature generation procedure and describe the generalized fault location identification in
the online phase. Next we make an analysis when two faults can be differentiated deterministically. Finally
we study some combinatorial aspects of fault signatures for the Grain family of ciphers that in turn help
in identifying the location and timing of the faults in an improved manner. One should note that different
stream ciphers might crucially affect the capabilities and the complexities of the attack strategy.

Let us develop our theories for general setup. Let C be a stream cipher with state size η. We assume that
the algorithm of the stream cipher C is public. The cipher C could be such that certain keystream bits are
not available. This may be the situation when keystream bits are used as building blocks in authenticated
encryption. But since the design of cipher is known we can simulate the case as if keystream bits are available
at each PRGA round of the cipher. We find patterns in case when all keystream bits were available and later
these can simply be used to deduce patterns in case keystream bits are being suppressed. Therefore without
loss of generality we assume that all keystream bits are available for the stream cipher C.

Let Si denote the internal state of C at the i-th PRGA round and zi be the keystream bit produced at
that point. We label the PRGA round from where the output keystream bit generation starts as 0. We abuse
the “ + ” notation for Boolean XOR, i.e., GF (2) addition as well as standard arithmetic addition. Later
we use the symbol + for extended XOR and the sum of a set and an integer and that would be clear from
the context. With this background, we now provide some of the definitions that would be required in the
development of the theory for signatures.

Definition 1. (Fault Position and Fault Location) A fault position is a non-empty subset φ of {0, . . . , η−
1}. A fault at fault position φ in round t, flips exactly the register bits given by φ. The pair (φ, t) is called a
fault location or simply a fault when no ambiguity arises.

(φ, t) represents a single bit fault or multi-bit fault at round t according as φ is singleton or not. When
no ambiguity arises, if φ is singleton i.e., φ = {e}, we simply denote φ by e. Also when t = 0, we simply
denote the fault (φ, t) by φ.

Definition 2. (The XOR differential keystream) If a fault (φ, t) is injected to the cipher at PRGA round
t, we denote by z(φ,t)

i the faulty keystream bit produced by the cipher at PRGA round i. Let δz(φ,t)
i = zi+z(φ,t)

i

be the XOR difference of the fault-free and faulty keystream bit at PRGA round i. Then
1. δz(φ,t) = (δz(φ,t)

0 , δz
(φ,t)
1 , . . .) will be called the XOR differential keystream.

2. δz(φ,t,`) = (δz(φ,t)
t , . . . , δz

(φ,t)
t+`−1) will be called the XOR differential keystream of length ` from the point

where the fault has been introduced.

Remark 1. It is evident that before the fault is injected, both the faulty and fault-free keystreams are exactly
the same and thus, δz(φ,t)

i = zi + z
(φ,t)
i = 0, for i < t and hence if a fault is injected at round t, then the

previous rounds 0, . . . , t− 1 will hold no clue for the fault. Thus we have to try to find key-IV independent
patterns onwards the fault injection round t. But it is also not possible to test the entire XOR differential
keystream onwards round t and so we restrict ourselves and try to find key-IV independent patterns in the
XOR differential keystream at rounds t, . . . , t+ `− 1 for some suitably chosen ` i.e., in the XOR differential
keystream δz(φ,t,`) = (δz(φ,t)

t , . . . , δz
(φ,t)
t+`−1).

Definition 3. (Ψ , E, N and X signatures of a fault)
1. We denote the Ψ -signature of the fault (φ, t) simply by Ψ(φ, t, `) and express it as a string s0 · · · s`−1 ∈
{0, 1, .}` of length `, where si = b indicates that P [δz(φ,t)

i+t = 1] = b, b ∈ {0, 1} and si = . indicates that
0 < P [δz(φ,t)

i+t = 1] < 1, i ∈ {0, . . . , ` − 1}. This signature of a fault represents the probabilistic pattern of
occurrence of 1 in the XOR differential keystream δz(φ,t,`) = (δz(φ,t)

t , . . . , δz
(φ,t)
t+`−1).

2. We denote the E-signature of the fault (φ, t) simply by E(φ, t, `) and express it as a collection of sets of
the form {i, j} of distinct rounds i, j ∈ {t, . . . , t+ `− 1} at which the XOR differential keystream bits must
be deterministically equal, independent of the key and IV i.e., P [δz(φ,t)

i + δz
(φ,t)
j = 0] = 1 but P [δz(φ,t)

i =
0], P [δz(φ,t)

j = 0] /∈ {0, 1}.
3. We denote the N -signature of the fault (φ, t) simply by N(φ, t, `) and express it as a collection of sets
of the form {i, j} of distinct rounds i, j ∈ {t, . . . , t + ` − 1} at which the XOR differential keystream bits

Probabilistic Signature Based DFA 5

must be deterministically different, independent of the key and IV i.e., P [δz(φ,t)
i + δz

(φ,t)
j = 1] = 1 but

P [δz(φ,t)
i = 0], P [δz(φ,t)

j = 0] /∈ {0, 1}.
4. First we define p to be the round ∈ {t, . . . , t+ `− 1} that corresponds the first occurrence of 1, if it exists
in the Ψ -signature of the fault (φ, t) i.e., p is such that P [δz(φ,t)

t+p = 1] = 1 but P [δz(φ,t)
t = 1], . . . , P [δz(φ,t)

t+p−1 =
1] 6= 1. In case no such round exists we define p = ` − 1. We denote the X-signature of the fault (φ, t)
simply by X(φ, t, `) and express it as a set of rounds at which the first 1 could occur in the XOR differential
keystream i.e., X(φ, t, `) =

{
j ∈ {t, . . . , t+ p} : P [δz(φ,t)

j = 0] 6= 1
}

.

2.1 Signature Generation

Let us now explain how one can generate the signatures of a fault. One may note that zi and z
(φ,t)
i (i ≥ t)

are both functions (call it fi) of the state bits (i.e., function of St) at the round t when the fault had been
injected.
Let δz(φ,t)

i = zi+z
(φ,t)
i = fi(St)+fi(S(φ,t)

t) = g
(φ,t)
i (St), say where S(φ,t)

t represents the faulty state at round
t due to the fault (φ, t). Then if g(φ,t)

i (St) can be written explicitly and it becomes a constant function, then
for the all zero function P [δz(φ,t)

i = 1] = 0, and for the all one function P [δz(φ,t)
i = 1] = 1. Otherwise, for

non-constant g(φ,t)
i (St), we will have the si = . that indicates that 0 < P [δz(φ,t)

i = 1] < 1.
The case when we cannot write the expressions of the functions explicitly, we may have to perform a

large number of experiments to estimate P [δz(φ,t)
i = 1]. Appendix B presents the 160 Ψ -signatures (80 for

the single-bit faults in the LFSR and the other 80 for the single-bit faults in the NFSR) for Grain v1 with
faults at round 0 and the length of the signature is ` = 130. In the existing literature, the signatures have
never been visualized in this way and thus such nice combinatorial patterns in the signatures could not be
explored. For the data in Appendix A for Grain v1, we made 216 experiments for each fault. Other signatures
(such as E, N and X) could also be obtained in that way.

2.2 Combinatorial Aspects of Signatures

In this section we study the combinatorial properties of the signatures. This study not only simplifies the
existing complicated descriptions of the signatures in many recent papers such as [4–7, 10, 18] but also helps
us in identifying the location and timing of the faults in an improved manner as mentioned in Section 2.3.
To develop the theories, let us start with the following definitions.

Definition 4. Consider two strings u, v ∈ {0, 1, .}`. Let us extend the definition of XOR to ‘extended XOR’
(⊕̂) as follows. For two inputs ui, vi ∈ {0, 1, .}, ui⊕̂vi = ui + vi, when ui, vi ∈ {0, 1}, otherwise, ui⊕̂vi = .
is defined. We will abuse the notation + such that it can operate on two strings u = u0 · · ·u`−1 and v =
v0 · · · v`−1 as the string u+ v = (u0⊕̂v0) · · · (u`−1⊕̂v`−1). Later we simply denote ⊕̂ by + when no ambiguity
arises.

Definition 5. Let u = Ψ(α1, t, `) and v = Ψ(α2, t, `). If the string u + v has the property that there exists
at least one i such that ui + vi is 1, then we will call Ψ(α1, t, `) and Ψ(α2, t, `) as non-matching patterns.
Otherwise we will call Ψ(α1, t, `) and Ψ(α2, t, `) are matching patterns.

In the online phase, given a fault (α, t) at an unknown location α, the string w = δz
(α,t)
t · · · δz(α,t)

t+`−1 will be
a binary string. Now we need to find out the signature(s) Ψ(φj , t, `) that will match with w.

Definition 6. We say that a binary pattern w of length ` matches with a signature Ψ(φj , t, `), if w and
Ψ(φj , t, `) match.

In this regard, we have the following technical result.

Proposition 1. If w matches with both Ψ(α1, t, `) and Ψ(α2, t, `), then Ψ(α1, t, `) and Ψ(α2, t, `) will match
with each other.

6 Sarkar, Dey, Adhikari & Maitra

It should be noted that the relation of matching between two signatures is reflexive and symmetric but
not transitive. That is, it may very well happen that the pair Ψ(α1, t, `) and Ψ(α2, t, `) matches, and also
the pair Ψ(α2, t, `) and Ψ(α3, t, `) matches, but the pair Ψ(α1, t, `) and Ψ(α3, t, `) does not match.

One may have a look at Appendix B for the faults that generate matching signatures in case of Grain
v1. Naturally, for such cases, there exist possibilities, that given a string w, one may get confused in certain
cases to identify the fault location exactly. As there are 160 state bits in Grain v1, we will have

(160
2
)

pairs
of single faults and we note that out of them there are 537 pairs that match.

We now consider other signatures. We shall use the following notations [9]:
(a) For any integer i, ∅+ i = ∅ (∅ being the empty set).
(b) For any set S of integers and for any integer i, S + i = {s+ i : s ∈ S}.
(c) For any set S if s ∈ S implies that s is a set of integers then for any integer i, S + i = {s+ i : s ∈ S}.

Theorem 1. If all the PRGA rounds are identical in algorithm, then for any fault (φ, t),
A. Ψ(φ, t, `) = Ψ(φ, 0, `).
B. E(φ, t, `) = E(φ, 0, `) + t.
C. N(φ, t, `) = N(φ, 0, `) + t.

We now define the notion of ‘possible fault’ to simplify the online process when pre-computed signatures
will be used to identify the possible fault locations. The notation (≈) will be used in the fault location
detection algorithms.
Definition 7. (Possible Fault) Let at the online stage a fault (α, T) is injected. Then the XOR differential
keystream δz(α,T,`) = (δz(α,T)

T , . . ., δz(α,T)
T+`−1) is a binary sequence and is available to the attacker. Also let

the attacker has pre-computed the Ψ , E and N signatures corresponding to a fault, say (φ, t). Now we shall
say that ‘(φ, t) is a possible fault’ if
A. The Ψ -signature Ψ(φ, t, `) matches with the binary string δz(α,T)

T · · · δz(α,T)
T+`−1.

B. For the E-signature E(φ, t, `), either E(φ, t, `) = ∅ or {e, f} ∈ E(φ, t, `) implies that δz(α,T)
e +δz

(α,T)
f = 0.

C. For the N -signature N(φ, t, `), either N(φ, t, `) = ∅ or {e, f} ∈ N(φ, t, `) implies that δz(α,T)
e +δz(α,T)

f = 1.
If (φ, t) is a possible fault corresponding to the XOR differential keystream δz(α,T,`) = (δz(α,T)

t , . . .,
δz

(α,T)
T+`−1), we simply write (φ, t) ≈ δz(α,T,`).

Remark 2. One should note that, for any fault (α, T), it is immediate that (α, T) ≈ δz(α,T,`).

2.3 The Online Phase

In the online stage, let a fault (α, T) be injected, where the fault position α and the fault injection round T
are both unknown to the attacker. The attacker has the XOR differential keystream δz(α,T) and wishes to
identify the injected fault.

In order to identify the fault location, the attacker will use Algorithm 1 or Algorithm 2. But the choice
will depend on the cipher and information available to the attacker. For example if the attacker knows that
T ∈ [tmin, tmax] she will use Algorithm 1, otherwise she will use Algorithm 2.

Algorithm 1:
1 P = ∅
2 for t = tmin to tmax do
3 for each fault position φ do
4 if (φ, t) ≈ δz(α,T,`) then
5 P = P

⋃
{(φ, t)}

6 return P

Algorithm 2:
1 Compute the position p at which

the first 1 occurs in the XOR
differential keystream

2 P = ∅
3 for each fault position φ do
4 for each i ∈ X(φ, 0, `) do
5 if p ≥ i then
6 t = p− i
7 if (φ, t) ≈ δz(α,T,`)

then
8 P = P

⋃
{(φ, t)}

9 return P

Probabilistic Signature Based DFA 7

Algorithm 1 is self-explanatory. We now explain Algorithm 2 for Grain v1. Let us consider the LFSR bit
position 0. The signature of the fault ({0}, 0) is:
0000000000000000..0000001000000000..0.000.10..00010.....0...

Clearly the first one occurs at the position 25 and for the LFSR bit position 0, X({0}, 0, 130) =
{17, 18, 25}. In this case, the fault ({0}, 0) occurs at round 0 and so the first 1 in the XOR differential
stream can occur in the positions given by X({0}, 0, 130). Therefore in the online stage, for the fault ({0}, t)
at PRGA round t, the first 1 in the XOR differential stream can occur at the positions t+ 17, t+ 18 or t+ 25
i.e., positions given by p = t+ j where j ∈ X({0}, 0, 130). Thus if the first 1 actually occurs at the round p,
then t = p− j must hold for some j, where j ∈ X({0}, 0, 130).

Previously approach of [18] for Grain 128a to identify faults at random rounds fails as mentioned in [18,
Page 14]. However, now that could be done.

2.4 Deterministic Fault Identification

Following the above discussion, the next questions appear immediately: Whether the fault location identifica-
tion can be done deterministically? In this section we make an analysis when it is possible to deterministically
identify faults. For that it is absolutely necessary to deterministically differentiate between the occurrence
of two faults.

Two faults (α1, t1) and (α2, t2) can be deterministically differentiated if their Ψ signatures do not match.
One should also note that, it may happen very well that the Ψ -signatures u = Ψ(α1, t, `), v = Ψ(α2, t, `)

match, but it is still possible to obtain the exact fault location from w. Let wi = b ∈ {0, 1} and one of ui, vi
be 1− b, say ui = 1− b. Then one may note that the fault cannot occur for α1, but for α2.

Now as stated earlier for Grain v1, experiments show that out of
(160

2
)

possible pairs of single faults there
are 537 pairs that match and thus cannot be identified deterministically. Also each and every single bit fault
possible for Grain 128a, when authentication is forbidden, can be uniquely identified with certainty.

2.5 Some Combinatorial Properties of Signatures for Grain Family

This section deals with the combinatorial properties of the signatures for single bit faults on Grain family.
The notion of equivalent faults, introduced in this section, helps us in reducing the number of signature
generation by considering the faults only at the tap positions.

Given a state of size η, we will have η many single-bit faults at a particular round but closer analysis
shows that in the offline stage we need to compute signatures for few faults for Grain family of ciphers.

A cipher in the Grain family (Appendix A) consists of an n-bit NFSR and an n-bit LFSR. For Grain
v1 the value of n is 80, while for both Grain 128 and Grain 128a the value of n is 128. The number of
possible single bit faults is η = 2n. As stated earlier we shall first analyze the Grain family of ciphers when
all keystream bits are produced as output and later that can be used to consider the cases of keystream bit
suppression. In the online phase, a single bit fault may occur at any one of the η positions. Each fault has
its own signature. In this section, we study relationships among the signatures of the single bit faults and
show that in the offline phase we only need to compute signatures for q many faults at round 0, where q is
the number of taps (both update and output) for the cipher. We first illustrate the fact using Grain v1 and
later we shall build it up formally for the Grain family of ciphers.

We shall also use the following convention: For a single bit fault position {α}, {α} ⊂ {0, . . . , n− 1} shall
mean that the fault is at the NFSR bit α, whereas {α} ⊂ {n, . . . , 2n−1} mean that the fault is at the LFSR
bit α− n.

Let us consider the NFSR bits 4, 5, 6, 7, 8 of Grain v1. The Ψ -signature (with length ` = 130) of the
corresponding faults ({4}, 0), ({5}, 0), ({6}, 0), ({7}, 0), ({8}, 0) are:
({4}, 0): 101100000000000000000.0000001000000000..0.000.10..00010.....0..
({5}, 0): 0101100000000000000000.0000001000000000..0.000.10..00010.....0...
({6}, 0): 00101100000000000000000.0000001000000000..0.000.10..00010.....0..
({7}, 0): 000101100000000000000000.0000001000000000..0.000.10..00010.....0...
({8}, 0): 0000101100000000000000000.0000001000000000..0.000.10..00010.....0..

One should note that, the Ψ -signatures of the faults ({5}, 0), ({6}, 0), ({7}, 0), ({8}, 0) are right shifts of the
Ψ -signature of the fault ({4}, 0) with pre-appended zeros, i.e.,
Ψ({5}, 0, 130) = 0||Ψ({4}, 0, 129),
Ψ({6}, 0, 130) = 00||Ψ({4}, 0, 128),

8 Sarkar, Dey, Adhikari & Maitra

Ψ({7}, 0, 130) = 000||Ψ({4}, 0, 127) and
Ψ({8}, 0, 130) = 0000||Ψ({4}, 0, 126), || being the string concatenation operator.

First we investigate why this happens. The NFSR bits 4, 5, 6, 7, 8 are such that 4 is a tap position but
5, 6, 7, 8 are not. When a single bit fault occurs at the NFSR position {8} at round 0, it has no immediate
effect on the keystream until it reaches the tap {4} (due to bit shifting in the registers) at round 4 (See Fig.
5 in Appendix). Thus the keystream bit produced at the rounds 0, 1, 2, 3 are not faulty at all. Hence the
XOR difference of the normal and faulty keystream bit produced at rounds 0, 1, 2, 3 due to fault at {0} at
round 0 must be certainly 0. Hence the Ψ -signature of the fault ({8}, 0) must have 4 leading zeros. At round
4 the faulty bit arrives at the NFSR tap {4}. Thus the effect of the fault ({8}, 0) is identical with that of the
faults ({7}, 1),({6}, 2), ({5}, 3) and ({4}, 4). But the Ψ -signature of the fault ({4}, 4) is identical with the
Ψ -signature of the fault ({4}, 0) due to the fact that each PRGA round is identical. Therefore the Ψ -signature
of the fault ({4}, 0) is enough to compute the Ψ -signatures of the fault ({8}, 0). Similar comments hold for
the faults ({5}, 0), ({6}, 0), ({7}, 0). We now present it formally for the Grain family of ciphers.

The NFSR and LFSR tap positions (both update and output taps) are provided in Appendix C, Table 8.
The tap positions are written in the increasing order of the indices.
For a particular version of Grain, let the NFSR and LFSR taps are respectively given by α0, . . . , αk−1 and
β0, . . . , βr−1 (with αi < αi+1 and βj < βj+1). We set αk = βr = n which are originally neither a NFSR nor
LFSR tap position but we now consider them as fake taps. Our objective is to partition the 2n-bit state of
the cipher into k + r non-overlapping blocks in such a way that the number of pre-computed signatures of
faults could be minimized.
We define k NFSR blocks as [αi, αi+1 − 1], i ∈ {0, . . . , k − 1}. Similarly we define r LFSR blocks as [βi +
n, βi+1 +n− 1], i ∈ {0, . . . , r− 1}. Clearly this is a k+ r non-overlapping partition of the 2n-bit state of the
cipher. We call them register blocks. Our first objective is to show that when the injected faults are of single
bit in nature, pre-computing the signatures of the k + r faults ({α0}, 0), . . . ,({αk−1}, 0), ({β0 + n}, 0), . . .,
({βr−1 +n}, 0) is enough. To develop the theory, let us consider the following definition of equivalent faults.

Definition 8. (Equivalent Faults) Two faults (α1, t1) and (α2, t2) are said to be equivalent if they produce
the same faulty keystream bits at all the PRGA rounds for each and every key-IV pair (both faults are injected
on states generated by the same key-IV pair), i.e., z(α1,t1)

i = z
(α2,t2)
i , ∀i ≥ 0 and for any key-IV pair.

Theorem 2. If [a, b] is a block in the state of the cipher, then for any t ≥ 0, the b− a+ 1 single bit faults
({b}, t), ({b− 1}, t+ 1), . . ., ({a+ 1}, t+ b− a− 1), ({a}, t+ b− a) are all equivalent.

Corollary 1. For a particular version of Grain, if the NFSR and LFSR taps are respectively given by
α0, . . . , αk−1 and β0, . . . , βr−1 (with αi < αi+1 and βj < βj+1), then without loss of generality it may be
assumed that the single bit faults are injected at the tap positions at some round.

Theorem 3. If [a, b] is a register block, then for any c with a ≤ c ≤ b, the Ψ -signature of the fault ({c}, 0)
(when all the keystream bits are available) is given by Ψ({c}, 0, `) = 0 · · · 0︸ ︷︷ ︸

c−a

||Ψ({a}, 0, `− c+ a).

Theorem 4. If [a, b] is a register block, then for any c with a ≤ c ≤ b, the E-signature and N -signature of
the fault ({c}, 0) (when all the keystream bits are available) are respectively given by

A. E({c}, 0, `) = E({a}, 0, `− c+ a) + c− a and
B. N({c}, 0, `) = N({a}, 0, `− c+ a) + c− a.

3 Probabilistic Signatures on Stream Ciphers

The description of signatures as in the literature of DFAs on Grain family or MICKEY are not optimal in the
sense that they consider only partial information in the online stage. For example the Ψ , E and N signatures
correspond to the cases that occur with probability 1 in XOR differential keystreams. In this section we
propose new signatures P1(φ, t, `) and P2(φ, t, `) for a fault that consider events that might occur with high
probability. We call these as ‘probabilistic signatures of a fault’. These are fixed length vectors consisting of
probabilities of pre-fixed events and may be considered as a generalisation of the Ψ , E and N signatures.

Probabilistic Signature Based DFA 9

It has been reported in [18] that using the Ψ , E and N signatures, one can identify the fault location
(faults are injected at round 0) for Grain 128a (when authentication is mandatory) with probability 0.81. In
this section we consider the fault location identification problem from coding theoretic point of view. Using
Maximum Likelihood Approach (MLA) and the probabilistic signatures, we show that one can improve
the fault identification probability up to 0.99 for Grain 128a (when authentication is mandatory). Also for
MICKEY 2.0 the probabilistic signatures provide significant improvement in fault identification probability.

For simplicity of explanation, we first assume that faults are injected at the known round t = 0 i.e., we
consider faults of the form (φ, 0). Later we relax this assumption. Recall that δz(φ,0,`) = (δz(φ,0)

0 , . . . , δz
(φ,0)
`−1)

is the XOR differential keystream of length ` from the point where the fault has been introduced.
We define P1(φ, 0, `) = (P [δz(φ,0)

0 = 1], . . . , P [δz(φ,0)
`−1 = 1]) i.e., the sequence of probabilities of occurrence

of 1 in the XOR differential keystream.
While P1(φ, 0, `) is a ` length real vector, we define P2(φ, 0, `) as the l(l−1)

2 length real vector (P [δz(φ,0)
0 +

δz
(φ,0)
1 = 1], . . . , P [δz(φ,0)

0 + δz
(φ,0)
`−1 = 1], P [δz(φ,0)

1 + δz
(φ,0)
2 = 1], . . . , P [δz(φ,0)

1 + δz
(φ,1)
`−1 = 1], . . . , P [δz(φ,0)

`−1 +
δz

(φ,0)
`−2 = 1]).
One should note that these are similar probabilities as considered in Section 2.4 for deterministic fault

location identification. Similar to the Ψ , E and N signatures, these signatures can be computed using
simulation. Let µ be the number of fault positions. For single bit faults µ = η. In the online phase the
attacker starts with (1) 2µ pre-computed signatures P1(φj , 0, `), P2(φj , 0, `) where j ∈ [0, µ − 1] and (2)
the binary XOR differential keystream δz(α,0,`) = (δz(α,0)

0 , . . . , δz
(α,0)
`−1) corresponding to an unknown fault

position α. Adversary now wants to identify α on the basis of the probabilistic signatures.
In order to use the probabilistic signature P1(φj , 0, `), we first define a distance function on a binary

vector B = (b0, . . . , b`−1) and a real vector A = (a0, . . . , a`−1) as d(B,A) = −
∑`−1
i=0

(
log(1 − ai) · Ibi=0 +

log ai · Ibi=1

)
, where Ibi=b is a indicator function which is 1 if bi = b else 0, b ∈ {0, 1}. Function d(B,A)

measures the distance between B and A. Note that if for any i ∈ [0, ` − 1], ai = b but bi = 1 − b, distance
function d(B,A) =∞ assuming log(0) = −∞.

Now in the pruning, using MLA one should minimize

min0≤j≤µ−1 d

(
δz(α,0,`), P1(φj , 0, `)

)
.

Let us now explain the rationality behind the definition of the function d(B,A). Suppose δz(α,0,`) =
(b0, . . . , b`−1) and P1(φj , 0, `) = (a0, . . . , a`−1). Let i-th coordinate of the vector δz(α,0,`) be bi = 0. On the
other hand ai = P [δz(φj ,0)

i = 1]. Thus the quantity 1−ai contributes the possibility that δz(α,0,`) is generated
due to fault at φj-th location. Similarly when bi = 1, ai contributes the possibility that δz(α,0,`) is generated
due to fault at φj-th location.

Thus using Maximum Likelihood Approach (MLA), we want to maximize M =
∏`−1
i=0

(
(1− ai) · Ibi=0 +

ai · Ibi=1

)
. This problem is same as to minimize the quantity −

∑`−1
i=0

(
log(1− ai) · Ibi=0 + log ai · Ibi=1

)
.

That is we want to minimize min0≤j≤µ−1 d

(
δz(α,0,`), P1(φj , 0, `)

)
.

Note that if ai = 1 and bi = 0 or ai = 0 and bi = 1, M will be zero. And in that case, our distance
function becomes ∞. Thus the distance function captures the pruning of the Ψ -signature automatically.

To use P2(φj , 0, `), we define another binary vector U = (w0,1, . . . , wl−2,l−1) of length l(l−1)
2 , where

wi,j = bi+bj = δz
(α,0)
i +δz

(α,0)
j . In our pruning we want to minimize min0≤j≤µ−1

(
d
(
δz(α,0,`), P1(φj , 0, `)

)
+

d
(
U,P2(φj , 0, `)

))
.

Our approach is presented in Algorithm 3.
We now consider the fault (α, T) where both α and T are unknown. Now suppose T ∈ [tmin, tmax]. This

is actually no assumption since the first occurrence of 1 in the XOR differential keystream provides an upper
bound of the fault injection round. Next for each t, we consider δz(α,t,`) = (δz(α,t)

t , . . . , δz
(α,t)
t+`−1).

10 Sarkar, Dey, Adhikari & Maitra

We define P1(φ, t, `) = (P [δz(φ,t)
t = 1], . . . , P [δz(φ,t)

t+`−1 = 1]) i.e., the sequence of probabilities of occur-
rence of 1 in the XOR differential keystream δz(α,t,`), and define P2(φ, t, `) as the l(l−1)

2 length real vector
(P [δz(φ,t)

t + δz
(φ,t)
t+1 = 1], . . . , P [δz(φ,t)

t + δz
(φ,t)
t+`−1 = 1], P [δz(φ,t)

t+1 + δz
(φ,t)
t+2 = 1], . . . , P [δz(φ,t)

t+1 + δz
(φ,t)
t+`−1 = 1], . . .

, P [δz(φ,t)
t+`−1 + δz

(φ,t)
t+`−2 = 1]).

We also define Ut = (wt,t+1, . . . , wt+l−2,t+l−1) of length l(l−1)
2 , where wt+i,t+j = δz

(α,t)
t+i + δz

(α,t)
t+j .

Now we find (α, T) by minimizing the quantity

mintmin≤t≤tmax,0≤j≤µ−1

(
d
(
δz(α,t,`), P1(φj , t, `)

)
+ d
(
Ut, P2(φj , t, `)

))
.

Algorithm 3: Probabilistic Prunning Algorithm
Input: P1(φi, 0, `) = (ai,0, . . . , ai,`−1),

P2(φi, 0, `) = (bi,0,1, . . . , bi,`−2,`−1)
∀i ∈ [0, µ− 1]

Output: Fault position α // Fault injection Round: 0.

1 min0 =∞
2 for i = 0 to µ− 1 do
3 min = 0
4 for j = 0 to `− 1 do
5 if δz(φi.0)

j = 0 then
6 min = min− log(1− ai,j)
7 else
8 min = min− log(ai,j)
9 for k = j + 1 to `− 1 do

10 if δz
(φi.0)
j + δz

(φi.0)
k = 0 then

11 min = min− log(1− bi,j,k)
12 else
13 min = min− log(bi,j,k)
14 if min < min0 then
15 min0 = min
16 α = φi

3.1 Impact on the Grain Family

Our MLA gives much better success probability than combinatorial approach. The reason is that there are
i, φ, such that P [δz(φ,0)

i = 0] = ε, where ε 6= 0, 1 is significantly different from 1
2 . For an example in Grain

128a (when authentication is mandatory), P [δz({128},0)
34 = 1] = 3

4 . This information (not used earlier) can be
used to improve the success probability.

For Grain v1, Fig 1 provides the distributions of P [δz({φ},t)
i = 1] for the faults ({0}, 0) and ({80}, 0).

Note that the Ψ -signature of these faults matches.
Experiment with 10000 random key-IV shows that we can identify the correct fault location for Grain

128a when authentication is mandatory with success probability 0.99.
For Grain v1 success probability now becomes 1.0 for the first time. In [18], success probability of Grain

v1 was reported as 0.99.
Experimental results for all versions of Grain are presented in Table 2. From the Table 2, it is clear we

can find the round together with fault location easily when tmax ≤ 30. Approach of [18] for Grain 128a,
when authentication is mandatory, fails as mentioned in [18, Page 14]. However, for this cipher we obtain
significant success (Table 2).

We also report that, for Grain 128a, when authentication is mandatory and fault injection round is 0,
2-bit and 3-bit faults can be identified with probabilities 1.0 and 0.99 respectively.

Probabilistic Signature Based DFA 11

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

` (scaled down to 1/10) →

P
[δ
z

({
φ
},

0)
i

=
1]
→

P [δz({80},0)
i = 1]

P [δz({0},0)
i = 1]

Fig. 1: Grain v1: Distributions of P [δz({0},0)
i

= 1], P [δz({80},0)
i

= 1], 0 ≤ i ≤ 200.

C tmin tmax Existing Results Prob. of Identification
0 0 0.99 [18] 1.0

Grain v1 0 5 - 0.94
0 30 - 0.86
0 0 1.0 [18] 1.0

Grain 128 0 5 - 0.89
0 30 - 0.66
0 0 - 1.0

Grain 128a∗ 0 5 - 0.86
0 30 - 0.61
0 0 0.81 [18] 0.99

Grain 128a∗∗ 0 5 - 0.76
0 30 - 0.53

Table 2: Single bit fault location identification probability using Algorithm 3. ∗ and ∗∗ respectively means
the versions of Grain 128 when authentication is forbidden and mandatory.

3.2 Impact on MICKEY 2.0

The stream cipher MICKEY 2.0 [3], designed by Steve Babbage and Matthew Dodd, has been selected as
a part of eStream’s final hardware portfolio. Like Grain v1, MICKEY is also a synchronous, bit-oriented
stream cipher. After a TMD tradeoff attack [15] against the initial version of MICKEY (version 1), the
designers proposed a new variant which is known as MICKEY 2.0. Detailed description of MICKEY 2.0 is
available in [3].

Differential Fault Attacks on MICKEY were presented in [6, 16]. Later [7] provided an improvement on
[6]. One of the main bottleneck in MICKEY is to identify the fault location (when fault injection affects a
single round only).

Experimentally we observe that P [δz({e},0)
i + δz

({e},0)
j = 1] is approximately 0.5, 0 ≤ i < j ≤ `, where

the fault position {e} corresponds to the register R and ` = 60. So we can not use pairwise keystreams for
pruning,

Using our probabilistic signature approach, we observe experimentally that if fault (single bit) injection
round is known, one can identify the fault location with success probability 0.33 when the fault occurs in R
register and 0.28 when the fault occurs in S register. These probabilities are much higher than the random
guess 1

100 = 0.01. Experimental results are presented in Table 3.

Impact on Trivium Our kind of analysis naturally works efficiently on Trivium [8]. In [14], it has already
been shown that single bit fault locations can be determined with certainty for this cipher. This is because

12 Sarkar, Dey, Adhikari & Maitra

Register tmin tmax Prob. of Identification
0 0 0.33

R 0 5 0.07
0 30 0.01
0 0 0.28

S 0 5 0.07
0 30 0.02

Table 3: Fault Location (single bit) identification probability using Algorithm 3 on MICKEY.

structure of Trivium is very simple. This is the reason, there is not much scope of improvement against
Trivium given the fault attacks are already more or less optimal.

4 Internal State Recovery of the Grain Family of Ciphers with Fault at
Random Rounds

After identifying the fault locations (Section 2, Section3), we initiate the process of recovering the state of
the cipher. Now for Grain v1, Grain 128 and Grain 128a when authentication is forbidden, all the normal and
faulty keystream bits are available to the attacker, but for Grain 128a when authentication is mandatory,
keystream bits are available to the attacker only at the even rounds i ∈ {0, 2, 4, . . .}. One should also note
that if (α0, t0), . . . , (αm−1, tm−1) are m faults injected to the cipher and if 0 ≤ t0 ≤ · · · ≤ tm−1 holds, then
information prior to the cipher round t0 simply could be discarded. Thus we assume that, in the internal
state recovery stage the adversary starts with the following information:

(A) m fault locations, given by (α0, t0), . . . , (αm−1, tm−1), where 0 ≤ t0 ≤ · · · ≤ tm−1. (B) normal (fault
free) keystream z = (z0, . . . , zr−1) of length r. (C) m faulty keystreams z0, . . . , zm−1 each of length r. (D)
the faulty keystream zj = (zj0, . . . , z

j
r−1) occurred due to the fault (αj , tj). (E) For Grain v1, Grain 128 and

Grain 128a when authentication is forbidden, normal and faulty keystream bits at all the rounds are known
to the attacker. But for Grain 128a when authentication is mandatory, the normal keystream bits z1, z3, . . .
and the faulty keystream bits zj1, z

j
3, . . . are not available.

The internal state will be recovered at the PRGA base round t0. For that we shall consider the l rounds
given by {t0, . . . , r − 1} i.e., {t0, . . . , t0 + l − 1} where l = r − t0.

4.1 Generating Polynomial Equations

Let the fault free internal state at the round i (≥ t0) be Si = (Xi, Yi) where Xi = (xi, . . ., xi+n−1) and
Yi = (yi, . . . , yi+n−1), the internal state at round i = t0 being St0 = (xt0 , . . ., xt0+n−1, yt0 , . . . , yt0+n−1). We
treat each xi and yi as variables. Corresponding to each normal pre-output bit zi, we introduce two new inner
state variables xi+n, yi+n and obtain the following two equations: yi+n = f(Yi), xi+n = yi + g(Xi). Further
if zi is a keystream bit available, we consider the additional equation zt =

∑n−1
i=0 biyt+i +

∑n−1
j=0 ajxi+j +

h(Si). In this case we are considering the 2n + 2l variables xt0 , . . . , xt0+n−1, xt0+n, . . . , xt0+n+l−1, yt0 , . . .,
yt0+n−1, yt0+n, . . . , yt0+n+l−1.
Let us now consider a fault (α, t) ∈ {(α0, t0), . . . , (αm−1, tm−1)}. Since the cipher device is re-keyed with the
same key-IV, before each fault injection, due to the fault injection, if the faulty internal state at round i be
S(α,t)
i then, S(α,t)

t (e) = St(e) + 1, ∀e ∈ α and S(α,t)
t (e) = St(e), ∀e ∈ [0, n − 1] \ α whereas S(α,t)

i = Si for
all i ∈ [0, t− 1].

Again corresponding to each pre-output bit zi, we introduce two new (faulty) inner state variables xα,ti+n,
yα,ti+n (i ≥ t) respectively for the NFSR and the LFSR and obtain more equations as above. For each
fault (α, t), in this case we introduce 2(t0 − t + l) new faulty inner state variables xα,tt+n, . . . , x

α,t
t0+n+l−1,

yα,tt+n, . . . , y
α,t
t0+n+l−1.

Now the system of polynomial equations thus obtained are simply passed on to the SAT solver Cryp-
tominisat 2.9.6 in SAGE 6.9.3 for extracting solution for the inner state variables xt0 , . . ., xt0+n−1, yt0 , . . .,
yt0+n−1 at round i = t0. The hardware platform is an HP Z800 workstation with 3 GHz Intel(R) Xeon(R)
CPU.

Probabilistic Signature Based DFA 13

4.2 Experimental Results on SAT Solving

Let C denotes any one of the ciphers Grain v1, Grain 128 and Grain 128a. For each SAT solving trial (with
cutting number 4) we first generated an inner state at PRGA round 0 by choosing key-IV randomly. Then
we simulated m random bit faults at random rounds between 0 to τ − 1. For example, we generated single
bit faults ({e}, t) uniformly and independently by choosing e ∈ {0, . . . , η − 1} and t ∈ {0, . . . , τ − 1}.

Single Bit Faults Time in Seconds
C m τ l NOE MinTime MaxTime AvgTime

Grain v1 11 30 200 250 17.01 5643.01 317.14
12 30 200 250 21.28 6406.76 277.21

Grain 128 4 30 300 250 22.10 6207.65 486.36
5 30 300 250 9.72 954.06 46.42

Grain 128a∗ 5 30 300 250 20.55 6991.16 387.87
6 30 300 250 17.37 1288.31 79.93

Grain 128a∗∗ 10 30 300 250 22.53 6758.41 22.53
11 30 300 250 1648.72 22.16 182.85

Table 4: SAT Experiment Data for single bit faults. NOE: Number of Experiments performed.

Grain 128a Time in Seconds
m τ l NOE MinTime MaxTime AvgTime
10 30 300 1000 16.57 6820.56 353.52
11 30 300 1000 18.56 2498.04 163.05

Table 5: SAT solving results for Grain 128a when authentication is mandatory with 3-neighbourhood bit faults.

5 Conclusion

In this paper, we consider Differential Fault Attack (DFA) on Stream cipher. In DFA, attacker first needs
to find the location as well as the round of the fault. After that, a system of equations are generated and
we solve them using SAT solvers. In the SAT solver phase, getting the solutions is generally an automated
approach. However, obtaining the locations and the timing information regarding the faults seem to be
the most challenging task in the DFA type of attacks. In this paper, we concentrate on this problem. Our
generalized frame work for probabilistic signature schemes provide improve results in success probability
over the existing efforts and further we could identify the fault locations and timing in certain cases (for
example Grain 128a, MICKEY 2.0), that had not been possible earlier. Our method can be used even in the
scenario where certain portion of keystream bits may not be available. This scenario may happen when a
stream cipher is used in authenticated encryption schemes. Thus such schemes in second round of CAESAR
competition may be analyzed against differential fault attack using our approaches.

References

1. M. Ågren, M. Hell, T. Johansson and W. Meier. A New Version of Grain 128 with Authentication. Symmetric
Key Encryption Workshop 2011, 2011.

2. M. Ågren, M. Hell, T. Johansson and W. Meier. Grain 128a: A New Version of Grain 128 with Optional Authen-
tication. International Journal of Wireless and Mobile Computing, 5(1):48–59, 2011. This is the journal version of
[1].

3. S. Babbage and M. Dodd. The stream cipher MICKEY 2.0. ECRYPT Stream Cipher Project Report. Available
at http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf.

4. S. Banik, S. Maitra and S. Sarkar. A Differential Fault Attack on the Grain Family of Stream Ciphers. CHES
2012, LNCS Vol. 7428, pp. 122–139, 2012.

5. S. Banik, S. Maitra and S. Sarkar. A Differential Fault Attack on the Grain Family under Reasonable Assumptions.
INDOCRYPT 2012, LNCS, Vol. 7668, pp. 191–208, 2012.

6. S. Banik and S. Maitra. A Differential Fault Attack on MICKEY 2.0. CHES 2013, LNCS, Vol. 8086, pp. 215–232,
2013.

7. S. Banik, S. Maitra and S. Sarkar. Improved Differential Fault Attack on MICKEY 2.0. Journal of Cryptographic
Engineering. http://link.springer.com/article/10.1007%2Fs13389-014-0083-9, 2014

8. C. De Cannière and B. Preneel. TRIVIUM - a stream cipher construction inspired by block cipher design principles.
eSTREAM, ECRYPT Stream Cipher Project.

14 Sarkar, Dey, Adhikari & Maitra

9. P. Dey and A. Adhikari. Improved Multi-Bit Differential Fault Analysis of Trivium. INDOCRYPT 2014, LNCS,
Vol. 8885, pp. 37–52, 2014.

10. P. Dey, A. Chakraborty, A. Adhikari and D. Mukhopadhyay. Multi-Bit Differential Fault Analysis of Grain 128
with Very Weak Assumptions. DATE 2015. Cryptology ePrint Archive, Report 2014/654, 2014.

11. S. Faust, P. Mukherjee, D. Venturi and D. Wichs. Efficient Non-Malleable Codes and Key-Derivation for Poly-Size
Tampering Circuits. Cryptology ePrint Archive: Report 2013/702, http://eprint.iacr.org/2013/702, EURO-
CRYPT 2014, LNCS, Vol. 8441, pp. 111–128, 2014.

12. M. Hell, T. Johansson, A. Maximov and W. Meier. A Stream Cipher Proposal: Grain 128. http://www.ecrypt.
eu.org/stream/p3ciphers/grain/Grain128_p3.pdf, 2005.

13. M. Hell, T. Johansson and W. Meier. Grain - A Stream Cipher for Constrained Environments. ECRYPT Stream
Cipher Project Report 2005/001, 2005. Available at http://www.ecrypt.eu.org/stream.

14. M. Hojśık and B. Rudolf. Differential Fault Analysis of Trivium. FSE 2008, LNCS, Vol. 5086, pp. 158–172, 2008.
15. J. Hong and W. Kim. TMD-Tradeoff and State Entropy Loss Considerations of stream cipher MICKEY. IN-

DOCRYPT 2005, LNCS, Vol. 3797, pp. 169–182, 2005.
16. S. Karmakar and D. Roy Chowdhury. Differential Fault Analysis of MICKEY Family of Stream Ciphers. Cryp-

tology ePrint Archive, Report 2014/262, 2014.
17. SAGE: Open Source Mathematics Software. Available at http://www.sagemath.org/.
18. S. Sarkar, S. Banik and S. Maitra. Differential Fault Attack against Grain family with very few faults and minimal

assumptions. IEEE Transactions on Computers, 99(PrePrints):1, 2014.

Probabilistic Signature Based DFA 15

Appendix A: Description of the Grain Family of Ciphers and MICKEY 2.0

Algebraic Description of the Grain Family

Consider ai, bi, ci ∈ {0, 1} for i ∈ {0, . . . , n − 1}. Any cipher in the Grain family consists of an n-bit
LFSR and an n-bit NFSR (see Figure 2). The update function of the LFSR is given by the equation
yt+n = f(Yt) =

∑n−1
i=0 ciyt+i, where Yt = (yt, . . . , yt+n−1) is an n-bit vector that denotes the LFSR state at

the tth clock interval and f is a linear function on the LFSR state bits obtained from a primitive polynomial
in GF (2) of degree n.

The NFSR state is updated as xt+n = yt + g(Xt) = yt + g(xt, . . . , xt+n−1). Here, Xt = (xt, . . . , xt+n−1)
is an n-bit vector that denotes the NFSR state at the tth clock interval and g is a non-linear function of the
NFSR state bits. It may happen very well that g is degenerate on some of its variables, i.e., all the NFSR
bits may not contribute in the function g.

At the tth clock interval the η-bit state (η = 2n) of the cipher is denoted by St = (Xt, Yt) i.e., St =
(xt, . . . , xt+n−1, yt, . . . , yt+n−1). Thus for any j ∈ {0, . . . , η− 1}, by the jth state bit, we mean the jth NFSR
bit if j ∈ {0, . . . , n− 1} and mean the (j − n)th LFSR bit if j ∈ {n, . . . , 2n− 1}.

The key-stream is produced by combining the LFSR and NFSR bits as zt =
∑n−1
i=0 biyt+i+

∑n−1
i=0 aixt+i+

h(St), where h is a non-linear Boolean function, and may be degenerate on some of the variables.

NFSR LFSR

g(Xt) f(Yt)

h(Xt, Yt)/
/

zt

⊕

⊕

Fig. 2: Structure of Stream Cipher in Grain Family

Grain v1 Grain 128 Grain 128a
n 80 128 128
m 64 96 96
Pad FFFF FFFFFFFF FFFFFFFE
f(·) yt+62 ⊕ yt+51 ⊕ yt+38 yt+96 ⊕ yt+81 ⊕ yt+70 yt+96 ⊕ yt+81 ⊕ yt+70

⊕yt+23 ⊕ yt+13 ⊕ yt ⊕yt+38 ⊕ yt+7 ⊕ yt ⊕yt+38 ⊕ yt+7 ⊕ yt
xt+62 ⊕ xt+60 ⊕ xt+52
⊕xt+45 ⊕ xt+37 ⊕ xt+33
xt+28 ⊕ xt+21 ⊕ xt+14 yt ⊕ xt ⊕ xt+26⊕ yt ⊕ xt ⊕ xt+26⊕
xt+9 ⊕ xt ⊕ xt+63xt+60⊕ xt+56 ⊕ xt+91 ⊕ xt+96⊕ xt+56 ⊕ xt+91 ⊕ xt+96⊕
xt+37xt+33 ⊕ xt+15xt+9 xt+3xt+67 ⊕ xt+11xt+13 xt+3xt+67 ⊕ xt+11xt+13

g(·) xt+60xt+52xt+45 ⊕ xt+33 ⊕xt+17xt+18 ⊕ xt+27xt+59 ⊕xt+17xt+18 ⊕ xt+27xt+59
xt+28xt+21 ⊕ xt+63xt+60 ⊕xt+40xt+48 ⊕ xt+61 ⊕xt+40xt+48 ⊕ xt+61
xt+21xt+15 ⊕ xt+63xt+60 xt+65 ⊕ xt+68xt+84 xt+65 ⊕ xt+68xt+84
xt+52xt+45xt+37 ⊕ xt+33 ⊕xt+88xt+92xt+93xt+95
xt+28xt+21xt+15xt+9⊕ ⊕xt+22xt+24xt+25⊕
xt+52xt+45xt+37xt+33 xt+70xt+78xt+82
xt+28xt+21
yt+3yt+25yt+46 ⊕ yt+3
yt+46yt+64 ⊕ yt+3yt+46 xt+12xt+95yt+95 ⊕ xt+12 xt+12xt+95yt+94 ⊕ xt+12

h(·) xt+63 ⊕ yt+25yt+46xt+63⊕ yt+8 ⊕ yt+13yt+20 ⊕ xt+95 yt+8 ⊕ yt+13yt+20 ⊕ xt+95
yt+46yt+64xt+63 ⊕ yt+3 yt+42 ⊕ yt+60yt+79 yt+42 ⊕ yt+60yt+79
yt+64 ⊕ yt+46yt+64 ⊕ yt+64
xt+63 ⊕ yt+25 ⊕ xt+63
xt+1 ⊕ xt+2 ⊕ xt+4⊕ xt+2 ⊕ xt+15 ⊕ xt+36⊕ xt+2 ⊕ xt+15 ⊕ xt+36⊕

zt xt+10 ⊕ xt+31 ⊕ xt+43 xt+45 ⊕ xt+64 ⊕ xt+73 xt+45 ⊕ xt+64 ⊕ xt+73
xt+56 ⊕ h ⊕xt+89 ⊕ yt+93 ⊕ h ⊕xt+89 ⊕ yt+93 ⊕ h

Table 6: Exact description of the three ciphers following [1, 12].

16 Sarkar, Dey, Adhikari & Maitra

Key Scheduling Algorithm (KSA). The Grain family uses an n-bit key K, and an m-bit initialization
vector IV , with m < n. The key is loaded in the NFSR and the IV is loaded in the 0th to the (m−1)th bits of
the LFSR. The remaining mth to (n− 1)th bits of the LFSR are loaded with some fixed pad P ∈ {0, 1}n−m.
Then, for the first 2n clocks, the key-stream bit zt is XOR-ed to both the LFSR and NFSR update functions.

Pseudo-Random key-stream Generation Algorithm (PRGA). After the KSA, zt is no longer XOR-
ed to the LFSR and the NFSR but it is used as the Pseudo-Random key-stream bit. Thus, during this phase,
the LFSR and NFSR are updated as yt+n = f(Yt), xt+n = yt + g(Xt).

Note 1. For simplicity of analysis, we label the PRGA round as 0, from where the output keystream bit
generation starts. Grain 128a supports two different modes of operation: with and without authentication
and that depends on the IV, say (v0, . . . , vm−1). Authentication is mandatory when v0 = 1, and forbidden
when v0 = 0. Output keystream bits are generated at rounds {0, 1, 2, . . .} for Grain v1, Grain 128 and Grain
128a when authentication is forbidden. For Grain 128a when authentication is mandatory, output keystream
bits are generated at rounds {0, 2, 4, . . .}.

MAC Generation Algorithm (MGA) in Grain 128a. When Authentication is mandatory, Grain
128a [1, 2] considers generation of MAC. Here we follow the description given in [2].

Accumulator

Shift register
z2t+1

/mt //

Fig. 3: Authentication

With v0 = 1, the cipher picks every second keystream bit as output of the cipher after skipping the
first 64 pre-output bits of PRGA rounds, i.e., in this case z0, z2, z4, . . . is the generated keystream and the
keystream bits z−64, z−63, . . . , z−1 and z1, z3, z5, . . . are suppressed and are used for MAC generation.

Assume that we have a message of length L defined by the bits m0, . . . ,mL−1. Set mL = 1 as padding. To
provide authentication, two registers, called accumulator and shift register of size 32 bits each, are used. The
content of accumulator and shift register at time t is denoted by a0

t , . . . , a
31
t and rt, . . . , rt+31 respectively.

The accumulator is initialized through aj0 = zj ,−64 ≤ j ≤ −33 and the shift register is initialized through
rj = zj ,−32 ≤ j ≤ −1. The shift register is updated as rt+32 = z2t+1. The accumulator is updated as
ajt+1 = ajt +mtrt+j for 0 ≤ j ≤ 31 and 0 ≤ t ≤ L. The final content of accumulator, a0

L+1, . . . , a
31
L+1 is used

for authentication.

Brief Description of MICKEY 2.0
MICKEY 2.0 uses an 80-bit key and a variable length IV, the length of which may be between 0 and 80 bits.
The physical structure of the cipher consists of two 100 bit registers R and S that exercise mutual control
over each other’s evolution. Let r0, r1, r2, . . . , r99 denote the contents of the register R and s0, s1, s2, . . . , s99
denote the contents of the register S. In order to describe the structure of the cipher and its working let us
first define the following routines. Note that the description given here is based on [3].

Clocking register R Let r0, r1, . . . , r99 be the state of the register R before clocking, and let r′0, r′1, . . . , r′99
be the state of the register R after clocking. Define the integer array RTAPS as follows

RTAPS = { 0, 1, 3, 4, 5, 6, 9, 12, 13, 16, 19, 20, 21, 22, 25, 28, 37, 38, 41, 42,
45, 46, 50, 52, 54, 56, 58, 60, 61, 63, 64, 65, 66, 67, 71, 72, 79, 80,
81, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97}

Now define an operation

CLOCK R(R, INPUT BIT R,CONTROL BIT R)

Probabilistic Signature Based DFA 17

Fig. 4: The variable clocking architecture of MICKEY, as drawn in [3].

1. Define FEEDBACK BIT = r99 + INPUT BIT R
2. For 1 ≤ i ≤ 99 : r′i = ri−1. r′0 = 0.
3. For 0 ≤ i ≤ 99 : if i ∈ RTAPS, r′i = r′i + FEEDBACK BIT .
4. If CONTROL BIT R = 1:

For 0 ≤ i ≤ 99 : r′i = r′i + ri

Clocking register S Let s0, s1, . . . , s99 be the state of the register S before clocking, and let s′0, s′1, . . . , s′99
be the state of the register S after clocking. Let ŝ0, ŝ1, . . . , ŝ99 be intermediate variables. Define the four
sequences COMP0i, 1 ≤ i ≤ 98; COMP1i, 1 ≤ i ≤ 98; FB0i, 0 ≤ i ≤ 99 and FB1i, 0 ≤ i ≤ 99 over
GF(2) as in Table 7: Now define an operation

Table 7: The sequences COMP0, COMP1, FB0, FB1

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

COMP 0i 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0
COMP 1i 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1

F B0i 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1
F B1i 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 0

i 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

COMP 0i 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1
COMP 1i 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1

F B0i 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1
F B1i 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0

i 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

COMP 0i 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1
COMP 1i 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1

F B0i 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
F B1i 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1

i 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

COMP 0i 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1
COMP 1i 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0

F B0i 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0
F B1i 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1

CLOCK S(S, INPUT BIT S,CONTROL BIT S)

1. Define FEEDBACK BIT = s99 + INPUT BIT S
2. For 1 ≤ i ≤ 98 : ŝi = si−1 +

(
(si + COMP0i) · (si+1 + COMP1i)

)
. ŝ0 = 0, ŝ99 = s98.

3. If CONTROL BIT S = 0:
For 0 ≤ i ≤ 99: s′i = ŝi + (FB0i · FEEDBACK BIT)

Else If CONTROL BIT S = 1:
For 0 ≤ i ≤ 99: s′i = ŝi + (FB1i · FEEDBACK BIT)

18 Sarkar, Dey, Adhikari & Maitra

The CLOCK KG routine We define another operation

CLOCK KG(R,S,MIXING, INPUT BIT)

1. CONTROL BIT R = s34 + r67, CONTROL BIT S = s67 + r33
2. If MIXING = 1 :

INPUT BIT R = INPUT BIT + s50
Else If MIXING = 0 :
INPUT BIT R = INPUT BIT

3. INPUT BIT S = INPUT BIT
4. CLOCK R(R, INPUT BIT R,CONTROL BIT R)
5. CLOCK S(S, INPUT BIT S,CONTROL BIT S)

Working of the Cipher We will now describe the algorithm governing the functioning of the cipher.
Let K = k0, k1, . . . , k79 be the 80 bit key used by the cipher. Let IV = iv0, iv1, . . . , ivv−1 be the v-bit IV
(0 ≤ v ≤ 80). Then the cipher operates in the 4 stages as described below.

STAGE 1. IV loading
Initialize both R and S to the all-zero state.
For 0 ≤ i ≤ v − 1 : CLOCK KG(R,S, 1, ivi)

STAGE 2. Key loading
For 0 ≤ i ≤ 79 : CLOCK KG(R,S, 1, ki)

STAGE 3. Preclock Stage
For 0 ≤ i ≤ 99 : CLOCK KG(R,S, 1, 0)

STAGE 4. PRGA(Pseudo-Random stream generation algorithm)
i← 0
While key-stream is required

zi = r0 + s0
CLOCK KG(R,S, 0, 0)
i← i+ 1

Probabilistic Signature Based DFA 19

Appendix B: Single-bit faults in Grain v1

Signatures for single-bit faults in Grain v1

Faults in LFSR: Bits 0 to 79
00: 0000000000000000..0000001000000000..0.000.10..00010.....0...
01: 00000000000000000..0000001000000000..0.000.10..00010.....0..
02: 000000000000000000..0000001000000000..0.000.10..00010.....0...
03: .000000000000000000..0000001000000000..0.000.10..00010.....0..
04: 0.000000000000000000..0000001000000000..0.000.10..00010.....0...
05: 00.000000000000000000..0000001000000000..0.000.10..00010.....0..
06: 000.000000000000000000..0000001000000000..0.000.10..00010.....0...
07: 0000.000000000000000000..0000001000000000..0.000.10..00010.....0..
08: 00000.000000000000000000..0000001000000000..0.000.10..00010.....0...
09: 000000.000000000000000000..0000001000000000..0.000.10..00010.....0..
10: 0000000.000000000000000000..0000001000000000..0.000.10..00010.....0...
11: 00000000.000000000000000000..0000001000000000..0.000.10..00010.....0..
12: 000000000.000000000000000000..0000001000000000..0.000.10..00010.....0...
13: 0000000000.00000.000000000000..000.0010000000.0..0.0.0..0..0001......0..
14: 00000000000.00000.000000000000..000.0010000000.0..0.0.0..0..0001......0...
15: 000000000000.00000.000000000000..000.0010000000.0..0.0.0..0..0001......0..
16: 0000000000000.00000.000000000000..000.0010000000.0..0.0.0..0..0001......0...
17: 00000000000000.00000.000000000000..000.0010000000.0..0.0.0..0..0001......0..
18: 000000000000000.00000.000000000000..000.0010000000.0..0.0.0..0..0001......0...
19: 0000000000000000.00000.000000000000..000.0010000000.0..0.0.0..0..0001......0..
20: 00000000000000000.00000.000000000000..000.0010000000.0..0.0.0..0..0001......0...
21: 000000000000000000.00000.000000000000..000.0010000000.0..0.0.0..0..0001......0..
22: 0000000000000000000.00000.000000000000..000.0010000000.0..0.0.0..0..0001......0...
23: 0000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0..
24: 00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0...
25: .00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0..
26: 0.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0...
27: 00.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0..
28: 000.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0...
29: 0000.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0..
30: 00000.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0...
31: 000000.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0..
32: 0000000.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0...
33: 00000000.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0..
34: 000000000.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0.......................................
35: 0000000000.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0......................................
36: 00000000000.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0.....................................
37: 000000000000.00000000000000000.000.00000.0000000.0000..000..010000.00.0..0.0....0..0.01......0....................................
38: 0000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01..
39: 00000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01...
40: 000000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01..
41: 0000000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01.......................................
42: 00000000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01......................................
43: 000000000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01.....................................
44: 0000000000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01....................................
45: 00000000000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01...................................
46: .00000000000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01..................................
47: 0.00000000000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01.................................
48: 00.00000000000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01................................
49: 000.00000000000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01...............................
50: 0000.00000000000000000000.00.00000000000000.00..00000.000.000.00.0..00...01.000.00.0..............01..............................
51: 00000.0000000000.000000000.00.0000.000000000..0..000.0..000000..0.0..0.....10.00..0...........0...................................
52: 000000.0000000000.000000000.00.0000.000000000..0..000.0..000000..0.0..0.....10.00..0...........0..................................
53: 0000000.0000000000.000000000.00.0000.000000000..0..000.0..000000..0.0..0.....10.00..0...........0.................................
54: 00000000.0000000000.000000000.00.0000.000000000..0..000.0..000000..0.0..0.....10.00..0...........0................................
55: 000000000.0000000000.000000000.00.0000.000000000..0..000.0..000000..0.0..0.....10.00..0...........0...............................
56: 0000000000.0000000000.000000000.00.0000.000000000..0..000.0..000000..0.0..0.....10.00..0...........0..............................
57: 00000000000.0000000000.000000000.00.0000.000000000..0..000.0..000000..0.0..0.....10.00..0...........0.............................
58: 000000000000.0000000000.000000000.00.0000.000000000..0..000.0..000000..0.0..0.....10.00..0...........0............................
59: 0000000000000.0000000000.000000000.00.0000.000000000..0..000.0..000000..0.0..0.....10.00..0...........0...........................
60: 00000000000000.0000000000.000000000.00.0000.000000000..0..000.0..000000..0.0..0.....10.00..0...........0..........................
61: 000000000000000.0000000000.000000000.00.0000.000000000..0..000.0..000000..0.0..0.....10.00..0...........0.........................
62: 0000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0.................
63: 00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0................
64: .00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0...............
65: 0.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0..............
66: 00.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0.............
67: 000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0............
68: 0000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0...........
69: 00000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0..........
70: 000000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0.........
71: 0000000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0........
72: 00000000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0.......
73: 000000000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0......
74: 0000000000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0.....
75: 00000000000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0....
76: 000000000000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0...
77: 0000000000000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0..
78: 00000000000000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0.
79: 000000000000000.00000000000000000.0000000000.000000.00.00.0000.000000.00..0..000.0..000.00..0....0...0.10.00..0...0.......0....0.0

20 Sarkar, Dey, Adhikari & Maitra

Faults in NFSR: Bits 0 to 79

00: 00000000000000000.0000001000000000..0.000.10..00010.....0...
01: 100000000000000000.0000001000000000..0.000.10..00010.....0..
02: 1100000000000000000.0000001000000000..0.000.10..00010.....0...
03: 01100000000000000000.0000001000000000..0.000.10..00010.....0..
04: 101100000000000000000.0000001000000000..0.000.10..00010.....0...
05: 0101100000000000000000.0000001000000000..0.000.10..00010.....0..
06: 00101100000000000000000.0000001000000000..0.000.10..00010.....0...
07: 000101100000000000000000.0000001000000000..0.000.10..00010.....0..
08: 0000101100000000000000000.0000001000000000..0.000.10..00010.....0...
09: 00000101100000000.000000.0.0000001..0.000......00.......0...
10: 100000101100000000.000000.0.0000001..0.000......00.......0..
11: 0100000101100000000.000000.0.0000001..0.000......00.......0...
12: 00100000101100000000.000000.0.0000001..0.000......00.......0..
13: 000100000101100000000.000000.0.0000001..0.000......00.......0...
14: 00001000001011000.0000.010000.0.00..0.1....0..
15: 00000100000101100..0000..10000.0.0.....1..
16: 000000100000101100..0000..10000.0.0.....1...
17: 0000000100000101100..0000..10000.0.0.....1..
18: 00000000100000101100..0000..10000.0.0.....1...
19: 000000000100000101100..0000..10000.0.0.....1..
20: 0000000000100000101100..0000..10000.0.0.....1...
21: 00000000000100000.01100..0000..100.....0..
22: 000000000000100000.01100..0000..100.....0...
23: 0000000000000100000.01100..0000..100.....0..
24: 00000000000000100000.01100..0000..100.....0...
25: 000000000000000100000.01100..0000..100.....0..
26: 0000000000000000100000.01100..0000..100.....0...
27: 00000000000000000100000.01100..0000..100.....0..
28: 00000000000000000.100000.01100..00....100.....0...
29: 000000000000000000.100000.01100..00....100.....0..
30: 0000000000000000000.100000.01100..00....100.....0...
31: 10000000000000000000.100000.01100..00....100.....0..
32: 010000000000000000000.100000.01100..00....100.....0...
33: 00100000000000000.0000.1.0000.0110....0....1..
34: 000100000000000000.0000.1.0000.0110....0....1...
35: 0000100000000000000.0000.1.0000.0110....0....1..
36: 00000100000000000000.0000.1.0000.0110....0....1...
37: 00000010000000000.000.00.0.1.0000...1..........1..
38: 000000010000000000.000.00.0.1.0000...1..........1...
39: 0000000010000000000.000.00.0.1.0000...1..........1..
40: 00000000010000000000.000.00.0.1.0000...1..........1...
41: 000000000010000000000.000.00.0.1.0000...1..........1..
42: 0000000000010000000000.000.00.0.1.0000...1..........1...
43: 10000000000010000000000.000.00.0.1.0000...1..........1..
44: 010000000000010000000000.000.00.0.1.0000...1..........1...
45: 00100000000000100.000000..000.00.0....000...
46: 000100000000000100.000000..000.00.0....000..
47: 0000100000000000100.000000..000.00.0....000...
48: 00000100000000000100.000000..000.00.0....000..
49: 000000100000000000100.000000..000.00.0....000...
50: 0000000100000000000100.000000..000.00.0....000..
51: 00000000100000000000100.000000..000.00.0....000...
52: 00000000010000000.000100.000000..0....0.0.....00..
53: 000000000010000000.000100.000000..0....0.0.....00...
54: 0000000000010000000.000100.000000..0....0.0.....00..
55: 00000000000010000000.000100.000000..0....0.0.....00...
56: 100000000000010000000.000100.000000..0....0.0.....00..
57: 0100000000000010000000.000100.000000..0....0.0.....00...
58: 00100000000000010000000.000100.000000..0....0.0.....00..
59: 000100000000000010000000.000100.000000..0....0.0.....00...
60: 00001000000000000.000000..000100.0..0.0.......0.0...
61: 000001000000000000.000000..000100.0..0.0.......0.0..
62: 00000010000000000.0.000010..000100....0.0.......0.0...
63: .0000001000000000..0.000.10..00010.....0..
64: 0.0000001000000000..0.000.10..00010.....0...
65: 00.0000001000000000..0.000.10..00010.....0..
66: 000.0000001000000000..0.000.10..00010.....0...
67: 0000.0000001000000000..0.000.10..00010.....0..
68: 00000.0000001000000000..0.000.10..00010.....0...
69: 000000.0000001000000000..0.000.10..00010.....0..
70: 0000000.0000001000000000..0.000.10..00010.....0...
71: 00000000.0000001000000000..0.000.10..00010.....0..
72: 000000000.0000001000000000..0.000.10..00010.....0...
73: 0000000000.0000001000000000..0.000.10..00010.....0..
74: 00000000000.0000001000000000..0.000.10..00010.....0...
75: 000000000000.0000001000000000..0.000.10..00010.....0..
76: 0000000000000.0000001000000000..0.000.10..00010.....0...
77: 00000000000000.0000001000000000..0.000.10..00010.....0..
78: 000000000000000.0000001000000000..0.000.10..00010.....0...
79: 0000000000000000.0000001000000000..0.000.10..00010.....0..

Probabilistic Signature Based DFA 21

Appendix C: Illustrations

0

1

2

3

4

87654

({8}, 0)

({7}, 1)

({6}, 2)

({5}, 3)

({4}, 4)

NFSR bits

R
ounds

Fig. 5: Shifting of the faulty bit

Grain v1 Grain 128 Grain 128a
NFSR
tap bits

0, 1, 2, 4, 9, 10, 14,
15, 21, 28, 31, 33, 37,
43, 45, 52, 56, 60, 62,
63

0, 2, 3, 11, 12, 13, 15,
17, 18, 26, 27, 36, 40,
45, 48, 56, 59, 61, 64,
65, 67, 68, 73, 84, 89,
91, 95, 96

0, 2, 3, 11, 12, 13, 15,
17, 18, 22, 24, 25, 26,
27, 36, 40, 45, 48, 56,
59, 61, 64, 65, 67, 68,
70, 73, 78, 82, 84, 88,
89, 91, 92, 93, 95, 96

LFSR
tap bits

0, 3, 13, 23, 25, 38,
46, 51, 62, 64

0, 7, 8, 13, 20, 38, 42,
60, 70, 79, 81, 93, 95, 96

0, 7, 8, 13, 20, 38, 42,
60, 70, 79, 81, 93, 94, 96

Table 8: NFSR and LFSR update and output taps

