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Abstract

We describe a zero-knowledge proof system in which a prover holds a large dataset M and can
repeatedly prove NP relations about that dataset. That is, for any (public) relation R and x, the
prover can prove that ∃w : R(M,x,w) = 1. After an initial setup phase (which depends only on
M), each proof requires only a constant number of rounds and has communication/computation
cost proportional to that of a random-access machine (RAM) implementation of R, up to poly-
logarithmic factors. In particular, the cost per proof in many applications is sublinear in |M |.
Additionally, the storage requirement between proofs for the verifier is constant.

1 Introduction

Zero-knowledge (ZK) proofs are a fundamental concept in cryptography and are used as a building
block in numerous applications. ZK proofs allow a prover with the knowledge of a witness w to
prove statements of the form ∃w : R(x,w) = 1 to a verifier V , for a public NP statement R and a
public input x. The soundness of such a proof guarantees that a malicious prover cannot prove a
false statement to a verifier, and the zero-knowledge property guarantees that a malicious verifier
cannot learn any information about the witness except for validity of the proved statement.

Since the conception of zero-knowledge proofs [GMR89], a large body of work has focused on
design of efficient constructions that are practical enough for use in practice. But until recently,
all such constructions were practical only for proving statements about certain algebraic structures
such as proving knowledge of and relations for discrete logarithms, RSA public keys, and bilinear
equations [Sch90, CDS94, CM99, GS08].

The recent work of [JKO13] proposes a new approach based on garbled circuits (GC) that
is suitable for general-purpose statements represented as boolean circuits. This is particularly
powerful for proving non-algebraic statements, e.g., proving knowledge of x such that y = Sha256(x)
for a public value y. The construction is very efficient, only requiring a constant number of rounds
and communication/computation cost that is similar to that of semi-honest 2PC based on garbled
circuits (i.e., Yao’s protocol). Given the recent advances in design & implementation of circuit
garbling techniques, these ZK proofs are scalable to statements with billions of gates.
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Need for ZK Proof of RAM Programs. But the GC-based approach falls short when the
statement being proven involves access to a large dataset committed by the prover. For instance,
recall the problem solved by zero-knowledge sets [MRK03]: a prover commits to a set S in an initial
phase and is later able to prove membership and non-membership statements (x ∈ S, x /∈ S) for
any input x without revealing additional information.

A natural extension is to prove membership for a (possibly private) value x that satisfies a
predicate p without leaking any additional information about x or the set S. For instance, the
prover may need to prove knowledge of an x ∈ S where Sha256(x) = y for a public y in order
to prove inclusion of a password in a password-file. Furthermore, to improve on storage cost, the
prover may want to store his set S in a Bloom filter [Blo70]. This would lead to major storage
improvement, especially when considering the inevitable overhead caused by crypto for every bit of
memory stored. Now, the prover needs to prove knowledge of an x where Sha256(x) = y and where
the Bloom filter stores a bit 1 at each of the locations H1(x), . . . ,Hk(x) (the Hi’s are the hash
functions associated with the Bloom filter and can be public). Such a statement involves several
hash evaluations and memory lookups. More generally, the prover may want to store its data in a
data-structure of its own choice and still have efficient tools for proving statements about it.

In all of these scenarios, the statements being proven are naturally expressed as RAM programs
whose running time is sublinear in the size of the large dataset. By comparison, directly applying
a circuit-based approach (i.e., [JKO13]) would involve garbled circuits that are at least linear in
the size of the large dataset.

Existing Solutions for RAM-ZK. One can combine the GC-based proof system of [JKO13]
with the recent garbled RAM constructions [LO13, GHL+14] that directly garble RAM programs
as opposed to circuits. But the existing constructions for garbled RAM are not efficient enough
for practical use. In particular, one needs to perform cryptographic operations inside the garbled
circuits for every step of RAM computation, which is a major bottleneck.

Finally, given that ZK proofs are a special case of secure two-party computation against mali-
cious adversaries (i.e., a malicious 2PC where one party, the verifier, has no input), we can obtain a
solution by employing an efficient malicious 2PC for RAM programs [AHMR15] and not assigning
one party any input. But for statistical security 2−s, such a proof would be a factor of s more
expensive than the semi-honest 2PC for the same RAM program, and the number of rounds would
also be proportional to the running time of the RAM program.

1.1 Our Contribution

We propose a new solution for zero-knowledge proof of statements of the form ∃w : R(M,x,w) = 1
where R is a RAM program and M is its (large) memory. Here, M is committed upfront by the
prover and can in general remain private from the verifier. Our construction is constant-round,
and incurs online computation and communication cost that is linear in the running time of the
RAM program (upto a polylogarithmic factor), competitive with the best semi-honest 2PC for RAM
programs ([GKK+12]), and hence sublinear in |M | for many applications of interest. Sublinear-time
2PC is not possible in general when expressing the NP relation as a boolean circuit. Furthermore,
in our protocol the verifier maintains only constant storage space between multiple proofs.

Our construction combines an Oblivious RAM [GO96] and garbled circuits, but it avoids the
use of cryptographic operations inside the garbled circuits as in current garbled-RAM construc-
tions. Unlike previous 2PC constructions based on RAM computation [GKK+12, AHMR15], our
construction requires only a constant number of rounds of interaction. We discuss the construction
in more detail next.
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2 Overview of the Protocol

The JKO protocol. Our starting point is the garbled-circuit-based ZK protocol of [JKO13],
which we summarize here. To prove a statement ∃w : R(x,w) = 1 (for public R and x), the
protocol proceeds as follows:

1. The verifier generates a garbled circuit computing R(x, ·). Using a committing oblivious
transfer, the prover obtains the wire labels corresponding to his private input w. Then the
verifier sends the garbled circuit to the prover.

2. The prover evaluates the garbled circuit, obtaining a single garbled output (wire label). He
commits to this garbled output.

3. The verifier opens his inputs to the committing oblivious transfer, giving the prover all garbled
inputs. From this, the prover can check whether the garbled circuit was generated correctly.
If so, the prover opens his commitment to the garbled output; if not, the prover aborts.

4. The verifier accepts the proof if the prover’s commitment holds the output wire label corre-
sponding to true.

Security against a cheating prover follows from the properties of the circuit garbling scheme.
Namely, the prover commits to the output wire label before the circuit is opened, so the authenticity
property of the garbling scheme ensures that he cannot predict the true output wire label unless
he knows a w with R(x,w) = true. Security against a cheating verifier follows from correctness of
the garbling scheme. The garbled output of a correctly generated garbled circuit reveals only the
output of the (plain) circuit, and this garbled output is not revealed until the garbled circuit was
shown to be correctly generated.

Note that in this protocol, the prover evaluates the garbled circuit on an input which is com-
pletely known to him. This is the main reason that the garbled circuit used for evaluation can
also be later opened and checked for correctness, unlike in the setting of cut-and-choose for general
2PC. Along the same lines, it was further pointed out in [FNO15] that the circuit garbling scheme
need not satisfy the privacy requirement of [BHR12], only the authenticity requirement. Removing
the privacy requirement from the garbling scheme leads to a non-trivial reduction in garbled circuit
size.

Adapting to the ORAM setting, using constant rounds. We follow roughly the RAM-
2PC paradigm of [GKK+12, AHMR15], with some important differences. Let Π be an Oblivious

RAM program with memory M̂ , that implements R(M,x, ·).1 We assume a trusted setup phase

in which Π’s memory M̂ and state st are initialized from M . The prover learns M̂ , st, as well
as a garbled encoding of these values (i.e., one wire label for each bit of memory & state); the
verifier specifies the garbled encoding to be used (i.e., both wire labels for each bit). If we follow
[GKK+12, AHMR15] strictly, we would have both parties repeatedly evaluate the next-memory-

access circuit of Π, updating memory M̂ , until it halts. However, this would result in a protocol
with one round of interaction for each memory access of Π.

To see how to achieve the same effect in a constant number of rounds, imagine that when
executing an ORAM program, the memory access pattern I is known in advance. Then it is
possible to express the entire computation in a single circuit. The circuit includes many copies of
the RAM program’s next-memory-access circuit, but is wired together under the assumption that

1We use M to refer to the logical RAM memory, and M̂ to refer to the physical ORAM memory.
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the memory accesses will be I. For example, if I says that Π writes to some memory block at
time 2, and later reads from the same memory block at time 10, then the memory-output wires of
subcircuit copy #2 will be connected to the memory-input wires of subcircuit copy #10, and so
on.

We can leverage this optimization in our setting because the prover knows all (plaintext) inputs
to Π, including the contents of memory and the ORAM state. Hence, the prover can execute Π
locally to determine the complete memory access pattern I. Since Π is an oblivious RAM, its access
pattern I leaks no information about the inputs/memory/state, so the prover can safely send I
to the verifier. Using I, the verifier constructs a single garbled circuit Cx,I as described above.
To prevent the prover from lying about the access pattern I, the circuit recomputes the memory
access pattern of Π and compares it to (hard-coded) I.

Hence, this setting admits a constant-round solution based on ORAM, but avoiding tools like
garbled RAM [LO13, GHL+14] which incorporate expensive additional crypto circuitry into the
garbled circuits.

Reusing M to perform many proofs. We follow the approach of [AHMR15], where the prover
stores the ORAM memory and ORAM state encoded as wire labels from the various garbled circuits.
The idea is that these wire labels can be reused directly as inputs to subsequent circuits, avoiding
oblivious transfers for garbled circuit input. However, some modifications are required to adapt
this idea to our setting.

After evaluating a garbled circuit, the prover holds a garbled output encoding of ORAM state
& memory. The authenticity property of the garbling scheme guarantees that the prover knows
at most one valid label per wire. As soon as the garbled circuit is opened, however, the prover
learns both labels for each wire and authenticity is lost. The output wire labels are no longer useful
for input to subsequent circuits, as the prover can now feed arbitrary garbled state/memory into
subsequent garbled circuits. We need a mechanism to restore authenticity on all wire labels that
may be later used (this includes the ORAM internal state as well as all memory locations that are
read or written by the garbled circuit).

Say the two wire labels on some output wire are y0 and y1, and that the prover knows only
yb. Let us call y0 and y1 the temporary wire labels, since they will soon be discarded. The verifier
chooses a random function h from a strongly universal hash family. Just before the garbled circuit
is opened (clobbering wire-label authenticity), the parties perform a private function evaluation
(PFE), where the prover gives yb, the verifier gives h, and the prover learns h(yb). After the PFE,
the garbled circuit can be opened, revealing y0 and y1.

Define y′0 = h(y0) and y′1 = h(y1) to be the permanent wire labels for this wire. At the time of
the PFE, the prover could not have guessed y1−b, and so learned the output of h on some point
that was not y1−b. From strong universality of h, even if y1−b is later revealed, y′1−b = h(y1−b) is
still random from the prover’s point of view. Hence the PFE “transfers” the authenticity guarantee
from the temporary wire labels y0, y1 to the permanent ones y′0, y

′
1, preserving authenticity even

after both of y0, y1 are revealed. Hence, y′0, y
′
1 are safe to use as input wire labels to a subsequent

garbled circuit. We emphasize that all wire labels are used only in a single garbled circuit — we
use the term “permanent” since these wire labels will be the long-term representation of the RAM
program’s memory between proof instances. (It may be many proof instances before a particular
block of memory is next accessed.)

For technical reasons, the PFE needs to be committing with respect to the input h (so that
the verifier can later “open” the h that was used). We suggest two efficient instantiations of
committing-PFE for strongly universal families: one based on oblivious linear function evaluation
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(OLFE) [WW06] and one based on the string-select variant of OT presented in [KK12].
Note that all the PFE instances can be run in parallel hence, maintaining the constant round

complexity of the overall protocol.

Eliminating the verifier’s storage requirement. As described so far, the verifier is required
to keep track of two wire labels for each bit of M̂ , at all times. We can decrease this burden
somewhat by letting the verifier derive these wire labels from a PRF. Let s be a seed to a PRF. For
simplicity, suppose a wire label encoding truth value b on the jth bit of the ith memory block, last
accessed at time t, is chosen as PRF(s, i‖j‖t‖b). In the actual protocol, the choice of wire labels is
slightly more complicated.

Using this choice of wire labels, the verifier need only remember the last-access time of each
block of M̂ . However, this is still storage proportional to |M̂ |. To reduce the storage even further,
we “outsource” the maintenance of these last-access times to the prover. Let T [i] denote the last-
access time of block i. We let the prover store the array T authenticated by a Merkle tree for which
the verifier remembers only the root node.2

Whenever the verifier is about to garble a circuit, he must be reminded of T [i] for each memory
block i to be read by the RAM in its computation. We make the prover report each such T [i] to
the verifier, authenticating each value via the Merkle tree. The ORAM circuit performs some reads
& writes in M̂ , so T and the Merkle tree are updated accordingly, for each memory block that was
accessed. Note that all accesses to the Merkle tree are done at the same time (in parallel), and
similarly for the updates at the end of the execution.

Overall, accessing/updating the authenticated array T adds polylogarithmic (in |M̂ |) communi-
cation/computation overhead and only a small constant number of rounds to the protocol. Instead

of remembering two wire labels for each bit of M̂ , the verifier need now remember only a PRF seed
and the root of a Merkle tree.

3 Preliminaries

Throughout the paper, we let k ∈ N be the security parameter. We say a function ε : N → [0, 1]
is negligible if for any polynomial p, there exists a large enough k′ such that for all k > k′,
ε(k) < 1/p(k). Also, for a integer n, we define [n] = {1, 2, . . . , n}.

3.1 ZK Proofs & Other Standard Functionalities

Here we define the variant of ZK proofs that we achieve, as well as other standard ideal function-
alities used in our protocol.

Zero-knowledge proofs: Roughly speaking, a zero-knowledge proof is an interactive protocol in
which a party P (the prover) can prove to another party V (the verifier) that some NP statement
x is true by using a valid witness w, leaking no information about w (except that the statement x
is true).

More precisely, for any language L ∈ NP with some binary relation RL, for all valid instances
x ∈ L, there exists a string w such that RL(x,w) = 1. Otherwise, if x /∈ L, then for all string w
we have RL(x,w) = 0.

The ideal functionality FRZK is defined in figure 1, which allows for many proofs to reference a
common (secret) value M .

2More generally, T can be stored in any authenticated data structure that provides small storage for the verifier.
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FRZK is parametrized by a relation R. It involves two parties: a prover P and a verifier V .

• Setup: On input (init,M) from P , if no previous init command has been given, then FRZK
stores M internally.

• Proof: On input (prove, sid, x, w) from P , if R(M,x,w) = 1, output (accept, sid, x) to
V .

Figure 1: Ideal functionality FRZK for zero-knowledge proofs of NP-relation R

Let M denote the space of valid messages. Fcom receives input from party P and sends output
message to party V . It consists of two phases: Commit and Open.

• Commit: On input (commit,m) from P with m ∈M, if there is no value m already stored
in memory, then Fcom stores m internally and outputs committed to party V .

• Open: On input open from P , if value m exists in memory, then Fcom outputs (opened,m)
to party V .

Figure 2: Ideal functionality Fcom for commitment

• Initialization: Fotc takes private input E (an m × 2 array) from party V and the private
input σ ∈ {0, 1}m from party P , then stores (E, σ) internally and output committed.

• Transfer: On command transfer from V , Fotc sends (transferred, E|σ) to P .

• Open: On command open from V , Fotc sends (opened, E) to P .

Figure 3: Ideal functionality Fotc for committing oblivious transfer. Notation E|σ is defined in
Section 3.4.

• Initialization: On input (init, N) from party V , FAut initialize an array T of size N . For
each T [i], i ∈ {1, . . . , N}, set T [i] = 0.

• Update: On input (update, id, data) from party V , set T [id] = data and output
(updated, id, data) to both parties.

• Open: On input (access, id) from party V , where id ∈ {1, . . . , N}, send
(accessed, id, T [id]) to V .

Figure 4: Ideal functionality FAut for authenticated array access.

Commitment: The commitment functionality Fcom is described in Figure 2. It allows a party
to commit to a secret value at one time and reveal that value at a later time.

Committing Oblivious Transfer: The definition of committing oblivious transfer was first
given by Kiraz and Schoenmakers [KS06]. In the general OT protocol, party V inputs a description
of wire labels E and party P has input σ. After running oblivious transfer, P receives a garbled
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Fcpfe is parametrized by a class of functions H, with each h ∈ H having a common domain A.

• Evaluation: On input h ∈ H from party V and input x ∈ A from party P , give output h(x)
to party P . Remember h internally.

• Open: On input open from party V , give output h to party P .

Figure 5: Ideal functionality Fcpfe for committing private function evaluation.

encoding of σ under the encoding E. See Section 3.4 for more details about the wire-label syntax
used in the figure. The “committing” aspect of committing OT allows party V to reveal E at a
later time. The ideal functionality Fotc is defined in Figure 3.

Authenticated Array: The functionality FAut in Figure 4 simply provides storage of an array,
in which the party V has control over modifications. Such a functionality becomes interesting in
our setting when it is realized by a protocol with minimal (constant) storage for party V . A simple
approach is to use an authenticated Merkle-tree, with V storing only the root of the tree.

3.2 Committing Private Function Evaluation (of a Strongly Universal Family)

Private function evaluation (PFE) takes input h (a function) from a sender, input x from a receiver,
and gives output h(x) to the receiver. We define and use a committing variant of PFE in which
the sender can later reveal the h that was used. The formal description is given in Figure 5.

In our final protocol, we require committing PFE supporting a strongly universal class H of
functions. Suppose each function h in H is of the form h : A→ B. Then H is strongly universal if
for all distinct a, a′ ∈ A and all (possibly equal) b, b′ ∈ B,

Pr
h←H

[h(a) = b | h(a′) = b′] = 1/|B|

Below we suggest several efficient choices for PFE of strongly universal families:

Using 1-out-of-2 OT: Let X be an n× 2 matrix of length-m strings. For such an X, define the
function hX : {0, 1}n → {0, 1}m via:

hX(z) =

n⊕
i=1

Xi,zi

Then the class H = {hX | X ∈ ({0, 1}m)n×2} is strongly universal.
A simple protocol for private function evaluation ofH uses standard 1-out-of-2 oblivious transfer

(of strings) in the following way: For i = 1 to n, the sender gives input Xi,0 and Xi,1 as input to
an instance of OT. The receiver gives input zi and obtains ri = Xi,zi . Finally the receiver outputs
r1 ⊕ · · · ⊕ rn.

Technically, this protocol is not a secure PFE for the family H, because the receiver learns more
than hX(z). In particular, the receiver learns various Xi,zi values. However, the protocol suffices
for our needs, by considering slightly relaxed definitions. Let H be a family of pairs of functions.
We write (h, ĥ) ∈ H, where h : A→ B and ĥ : A→ B̂. Then we say that H is modified strongly
universal if for all distinct a, a′ ∈ A and all (possibly equal) b ∈ B, b̂′ ∈ B̂:

Pr
(h,ĥ)←H

[h(a) = b | ĥ(a′) = b̂′] = 1/|B|
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The familyH = {hX} we described above satisfies this definition, taking ĥX(z) = (X1,z1 , . . . , Xn,zn).

That is, the value of hX(z′) is distributed uniformly even after fixing the output of ĥX(z) for z 6= z′.
Then the protocol just described is secure for a variant of Figure 5 in which an adversarial

receiver obtains not h(x) but ĥ(x). It should be clear that such a modified functionality suffices
for our eventual usage of Fcpfe when the family H is modified strongly universal. For simplicity we
write our eventual ZK protocol in terms of the simpler Fcpfe defined in Figure 5.

Furthermore, when the underlying OT protocol is a committing OT, then the PFE protocol is
also committing in a natural way (with the sender revealing all committed-OT inputs). We note
that this protocol is essentially the “string-select oblivious transfer” protocol of [KK12] but without
the final verification step which is not needed here.

Using OLFE: In a finite field F, the class of functions of the form x 7→ ax + b is strongly
universal (with a, b ∈ F). A private function evaluation for this class therefore accepts a, b ∈ F from
the sender, x ∈ F from the receiver, and gives output ax + b to the receiver. Such a functionality
is already known by the name of oblivious linear function evaluation (OLFE or OLE) [WW06].

The state of the art for malicious-secure OLFE is due to the general protocol of Ishai, Prab-
hakaran, and Sahai [IPS09] for evaluating arithmetic circuits in the OT-hybrid model. Since OLFE
can be represented by an arithmetic circuit with just 2 gates, their construction yields an OLFE
protocol with (amortized) constant number of field elements communicated per OLFE and compu-
tation roughly O(log k) field operations per OLFE.

The general construction of [IPS09] combines an outer MPC protocol among imaginary parties
and an inner 2PC protocol between the real parties. It is easy to see that if the inner protocol is
committing, so is the overall protocol.

3.3 Oblivious RAM program

Oblivious RAM (ORAM) programs were first introduced by Goldreich & Ostrosvsky [GO96].
ORAM allows a client to hide its access pattern and data to the server. In this work we freely
identify a RAM program Π with its deterministic next-instruction circuit. We use M to represent
the logical memory of a RAM program and M̂ to indicate the physical memory array in Oblivious
RAM program. We consider all memory to be split into blocks, where M [i] denotes the ith block
of M .

Without loss of generality, we assume that the RAM program is deterministic. Although con-
structions of oblivious RAM require randomness, we can allow the prover to provide that random-
ness as part of the witness w. Thus, we think of w as w = wreal‖r, where wreal is the actual witness
to the statement and r is randomness used by the ORAM. An honest prover will choose r uniformly
so that the ORAM memory access sequence hides private information. Allowing a corrupt prover
to choose r does not compromise soundness in practical ORAM constructions (e.g., [SvDS+13]) —
it only affects the probability of an overflow error event (in which case we can have the ORAM
circuit output false).

Let the next-instruction circuit Π have syntax:

(inst, st, block)← Π(st,Σ, block)

where Σ is external input, st is the ORAM state, block is the memory blocks and inst represents a
RAM memory access instruction, which must have one of the following forms: (read, i), (write, i),
or (halt, z), where i is the index of a memory block.

The execution of an ORAM program Π on input (x,w) using memory M̂ is as follows:
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RAMEval(Π, M̂ , (x,w), st)

I := ∅
(inst, st, block) := Π(st, (x,w),⊥)
do until inst has the form (halt,true):

block := [if inst = (read, id) then M̂ [id] else ⊥]
(inst, st, block) := Π(st,⊥, block)

if inst = (write, id) then M̂ [id] := block
I := I‖inst

output I

Note that we have RAMEval output the access sequence I. We say I is an accepting access
sequence if the last instruction in I is (halt,true).

We assume a function Initialize with syntax:

(M̂, st)← Initialize(1k,M)

This function returns the initial value of st and also the initialized physical memory array M̂
encoding the logical memory M .

The security definition of an oblivious RAM program Π requires that the memory access se-
quence I does not leak information about the data set M or witness wreal. More formally:

Definition 1. We say that Π is a secure ORAM if there exists an efficent S such that, for all
M , all (M̂, st) ← Initialize(1k,M), all (x,wreal) such that R(M,x,wreal) = 1 and for all PPT A,
the following difference:∣∣∣Pr[A(S(1k, |M̂ |, x) = 1]− Pr

r
[A(RAMEval(Π, M̂ , (x,wreal‖r), st)) = 1]

∣∣∣
is negligible in k.

Any RAM program can be converted into an oblivious one satisfying our definitions, using
standard constructions [SvDS+13, CP13]. Note that I (the output of RAMEval) contains only
the memory locations and not the contents of memory. Hence, we do not require the ORAM
construction to encrypt/decrypt memory contents.

3.4 Garbling Scheme

We assume some familiarity with standard constructions of garbled circuits. We employ the ab-
straction of garbling scheme [BHR12] introduced by Bellare et al. , but we use a slightly different
syntax for our needs.

We represent a set of wire labels onm wires via am×2 arrayW . For each wire i, W [i, 0] ∈ {0, 1}k
and W [i, 1] ∈ {0, 1}k are two wire labels that encode false and true, respectively. For a truth
value x, the corresponding wire labels are defined as W |x = (W [1, x1], . . . ,W [m,xm]).

Our protocol adopts the idea of [MGFB14, AHMR15] of re-using wire labels between different
garbled circuits. We require somewhat different syntax for the garbling scheme in order to facilitate
this reuse.

For our purposes, a garbling scheme consists of the following algorithms:

• Gb(1k, f, E,D)→ F . Takes as input a boolean circuit f , descriptions of input wire labels E
and output wire labels D, and outputs a garbled circuit F .
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• En(E, x) → X = E|x. Takes as input description of input wire labels E, a plaintext input x
and outputs a garbled input X. In our schemes, encoding is always done via E|x.

• Ev(F,X) → Y . Takes as input a garbled circuit F and a garbled input X and returns a
garbled output Y .

• Chk(f, F,E) → D or ⊥. Takes as input a boolean circuit, a (purported) garbled circuit F
and input wire label desription E and outputs either D or an error indicator ⊥.

The correctness and security condition of garbling scheme we require here is slightly different
from those given in [BHR12], but any garbling scheme that meet the requirements in [BHR12] also
works well for our definitions.

Definition 2. A garbling scheme satisfies correctness if:

1. For all circuits f , circuit-inputs x, and valid wire label descriptions E,D,

Chk(f, F,E) = D whenever F ← Gb(1k, f, E,D)

2. For all circuits f , (possibly malicious) garbled circuits F and wire-label descriptions E,

Ev(F,E|x) = D|f(x) whenever Chk(f, F,E) = D 6= ⊥

Definition 3. Let W denote the uniform distribution of m × 2 matrices as described above. A
garbling scheme has authenticity if for every circuit f , circuit-input x, and PPT algorithm A,
the following probability:

Pr[∃y 6= f(x), D̃ = D|y : E ←W, F ← Gb(1k, f, E,D), D̃ = A(F,E|x)]

is negligible in k.

The above definition says that when given F and E|x, there is no efficient adversary that can
forge valid output wire labels D̃ such that D̃ 6= D|f(x).

We emphasize that the garbling scheme we use here only requires only the authenticity property
and not any privacy property. Hence, the protocol may use a more efficient and simpler garbling
scheme (e.g., the “privacy-free” constructions of [FNO15, ZRE15]).

4 Zero-Knowledge by Oblivious RAM

4.1 Notation and Helper Routines

ORAM components: Let I be an ORAM memory access sequence. We define read(I) = {i |
(read, i) ∈ I}, write(I) = {i | (write, i) ∈ I}, and access(I) = read(I) ∪write(I); i.e., the indices
of blocks that are read/write/accessed in I. If S = {s1, . . . , sn} is a set of memory-block indices,
then we define M [S] = (M [s1], . . . ,M [sn]).

Let Π denote the next-instruction circuit of an ORAM. Given a zero-knowledge statement x
and ORAM access sequence I, we let circuit Cx,I denote the following circuit:
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Cx,I
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w
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st
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M̂ [access(I)]
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(garbled) output

“temporary” wire labels

︸ ︷︷ ︸
“permanent”
wire labels

Ev LabelXfer

Figure 6: Summary of variables and notation used in the protocol.

Cx,I(st, w, M̂ [read(I)]):

(inst, st, block) := Π(st, (x,w),⊥)
for i = 1 to |I| − 1:

if I[i] = (read, id) then:

(st, inst,⊥)← Π(st,⊥, M̂ [id])
if I[i] = (write, id) then:

(st, inst, block)← Π(st,⊥,⊥)

M̂ [id] = block
I ′ := I ′‖inst

z := [I ?
= I ′]

return (st, z, M̂ [access(I)])

As described in Section 2, Cx,I is the circuit that will be garbled in the protocol. Note that
both x and I are hard-coded into Cx,I . Also, the circuit verifies that I = I ′, and this entails
checking the correctness of the witness since the final element of I is (halt,true).

Garbling notation: The circuit Cx,I has 3 logical inputs and 3 logical outputs, and we must
distinguish among them. When garbling the circuit via F ← Gb(Cx,I , E,D, 1

k), we denote by E a
description of input wire labels (i.e., two labels per wire) and D a description of output wire labels.
We write E = Est‖Ewit‖Emem, denoting the corresponding input wire labels for state, witness, and
memory blocks, respectively. We define D = Dst‖Dz‖Dmem similarly. When referring to a specific
memory block i, we use notation Emem,i and Dmem,i.

We use X to denote the prover’s garbled input, and Y to denote the prover’s garbled output
(i.e., one label per wire). As above, we define Xst, Xwit, Xmem, Yst, Yz, Ymem. Finally, we have the
prover maintain an array Rmem at all times, containing the current wire labels for all of the ORAM
memory M̂ .

For an overview of the notation used in the protocol, see Figure 6.

Temporary & permanent wire labels. Recall from Section 2 that the output wire labels of
a circuit are “temporary” in the sense that their authenticity is lost when the garbled circuit is
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opened. We use PFE to transfer the authenticity property of these temporary wire labels to a
different set of “permanent” wire labels.

We transfer authenticity with the LabelXfer subprotocol, where Y is a list of “temporary” wire
labels (i.e., one label per wire), and h is a list of elements from a strongly universal hash family H.

prot LabelXfer(Y,h):

for i = 1 to |Y | (in parallel):
V sends Y [i] and P sends h[i] to an instance of Fcpfe

P receives output Z[i] := h[i](Y [i])
P outputs Z

Note that all instances of Fcpfe are run in parallel and hence the protocol remains constant-round
given that Fcpfe is itself constant-round.

Selecting wire labels. Now let’s consider how the verifier generates wire labels for the circuit.
Recall from Section 2 that the verifier uses a PRF to generate wire labels corresponding to the
ORAM memory, in order to reduce storage.

Since permanent wire labels are derived by applying strongly universal functions to temporary
wire labels, the verifier must also select strongly universal functions using the PRF to be able to
reconstruct the choice of functions later.

Let s be the seed to a PRF. The verifier derives the temporary wire labels for a set S of memory
block indices, last updated at time t, via the subroutine TempMemLabels. The verifier derives the
choice of strongly universal functions via the subroutine GenH.

Finally, the verifier derives the current, permanent wire labels for a set S of memory block indices
via the subprotocol PermMemLabels. Since each block may have been last accessed a different time,
the authenticated array FAut is referenced. For each block, the most recent temporary wire labels
and strongly universal functions are reconstructed to derive the permanent wire labels.

func TempMemLabels(S, t):

D := ∅
for i ∈ S:

for j ∈ {1, . . . , l}, b ∈ {0, 1}:
Di[j, b] = PRF(s, 0‖i‖j‖t‖b)

D := D‖Di

return D

func GenH(S, t):

h = ∅
for i ∈ S:

for j ∈ {1, . . . , l}:
hi[j] = PRF(s, 1‖i‖j‖t)

h := h‖hi
return h

prot PermMemLabels(S):

E := ∅
for all i in S (in parallel):

send (access, i) to FAut

receive ti := T [i]
Di := TempMemLabels({i}, ti)
hi := GenH({i}, ti)
Ei := hi(Di)
E := E‖Ei

return E

When h is an array of functions and D is a matrix of wire labels, the notation h(D) refers to
the matrix E whose entries are E[j, b] = h[j](D[j, b]).

12



4.2 Detailed protocol

Now we present the full protocol π. We refer to the prover as P and the verifier as V . The setup
phase uses the initialization functionality Finit defined in Figure 7.

• Initialize: On command (init,M) from P and (init, Dst, Dmem), where M is log-

ical ORAM memory, and Dst & Dmem are wire label descriptions, run (st, M̂) ←
Initialize(1k,M). Give output (st, M̂ ,Dst|st, Dmem|M̂ ) to P .

• Open: On command open from V , give output (Dst, Dmem) to P .

Figure 7: Ideal functionality Finit for initializing an ORAM program along with wire labels.

Setup: On input M for prover P , let N denote the number of blocks in the ORAM encoding of
M . Then both parties do the following:

1. V picks random wire label descriptions D0
st and computes D0

mem = TempMemLabels([N ], 0).
V also chooses a random PRF seed s← {0, 1}k.

2. P sends (init,M) to Finit; V sends (init, D0
st, D

0
mem) to Finit. P receives output (st, M̂ , Y 0

st =
D0

st|st, Y 0
mem = D0

mem|M̂ ).

3. [Transfer wire-label authenticity]:3

(a) V picks random vector h0
st of strongly universal functions and sets E1

st = h0
st(D

0
st). The

parties perform subprotocol LabelXfer(Y 0
st,h

0
st), with P obtaining output h0

st(Y
0
st) which

he stores as X1
st.

(b) V picks vector h0
mem = GenH([N ], 0) and the parties perform subprotocol LabelXfer(Y 0

memh
0
mem).

P receives output h0
mem(Y 0

mem) which he stores as Rmem.

(c) V sends open to Finit, and P receives output (D0
st, D

0
mem).

4. P sends (init, N) to FAut to initialize authenticated array T (with T [i] = 0 for all i).

Proofs: On input (x,w) for the prover, let this be the tth such proof. The parties do the following:

4. [ORAM Evaluation]: P runs I ← RAMEval(Π, M̂ , x, w, st), then sends (x, I) to V . V

aborts if I is not an accepting access sequence. Note that RAMEval modifies M̂ for the
prover.

5. [Garbling the circuit]: V generates a garbled circuit as follows:

(a) V chooses input wire labels to the circuit as follows: Etwit are chosen randomly. Etmem are
chosen as Etmem ← PermMemLabels(read(I)). Recall that Etst has been set previously.

(b) V chooses output wire labelsDt
z andDt

st randomly, and choosesDt
mem = TempMemLabels(access(I), t).

(c) V sets Et = Etst‖Etwit‖Etmem, sets Dt = Dt
st‖Dt

z‖Dt
mem, then invokes garbling algorithm

F t ← Gb(1k, Cx,I , E
t, Dt).

3This step could be easily incorporated into Finit, but is written separately so that the remainder of the protocol
has no edge-cases involving t = 0.
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6. [Evaluating garbled circuit]:

(a) The parties invoke Fotc with P giving input w and V giving input Etwit. P receives
Xt

wit = Etwit|w. Additionally, P finds Xt
st in its memory and sets Xt

mem = Rmem[read(I)].

(b) V sends F t to P , and P evaluates the garbled circuit Y t ← Ev(F t, Xt).

(c) P commits to Y t
z (a single wire label) under Fcom.

7. [Transfer wire-label authenticity]:

(a) V picks random vector htst of strongly universal functions and sets Et+1
st = htst(D

t
st). The

parties perform subprotocol LabelXfer(Y t
st,h

t
st), with P obtaining output htst(Y

t
st) which

he stores as Xt+1
st .

(b) V picks vector htmem = GenH(access(I), t) and the parties perform subprotocol LabelXfer(Y t
mem,h

t
mem).

P receives output htmem(Y t
mem) which he stores as Rmem[access(I)].

8. [Check garbled circuit]:

(a) V sends open to the Fotc-instance from time t, and P receives output Etwit.

(b) V sends open to the PFE-instances used for the state wire labels in time t − 1. The
prover thus obtains ht−1st and sets Etst = ht−1st (Dt−1

st ).

(c) For each i ∈ read(I), verifier sends open to the PFE-instances used for memory block i

in time T [i]. The prover thus obtains h
T [i]
mem,i and sets Etmem,i = h

T [i]
mem,i(D

T [i]
mem,i).

(d) The verifier sets Et = Etst‖Etwit‖Etmem and runs Dt = Chk(Cx,I , F
t, Et). If the result is

⊥, then V aborts. Otherwise, V opens his commitment to Y t
z .

9. [Check prover’s output]: V checks whether Y t
z = Dt

z|true. If not, then V aborts the
protocol. Otherwise, V outputs (accept, t, x).

10. [Update T ]: For all i ∈ access(I) (in parallel), V sends (update, i, t) to FAut.

Other discussion. Our protocol is written in a hybrid model with access to various setup func-
tionalities. In particular, Fcpfe is a reactive functionality, and our protocol involves many (O(|M̂ |))
instances of Fcpfe that remain “active” between ZK proofs. We have shown how the verifier’s inputs
to the Fcpfe instances can be derived from a PRF, eliminating the need to explicitly store them.
However, when these Fcpfe instances are realized by concrete protocols, both parties are required to
keep internal state between the PFE phase and opening phase. Hence, the verifier’s random coins
for the Fcpfe-protocols should also be derived from a PRF. In that way, the verifier’s entire view
can be reconstructed as needed when it is time to open each Fcpfe instance.

4.3 Security Proof

Theorem 4. The protocol π presented in Section 4.2 is a secure realization of the FRZK functionality.

Proof. We describe two simulators, depending on which party is corrupted.

Prover is corrupt: The primary role of the simulator in this case is to extract the witness from P .
We construct the simulator in a sequence of hybrid interactions:

H0: Simulator plays the role of an honest verifier V (who has no input) and all ideal functional-
ities. In particular, the simulator obtains all of P ’s inputs to the ideal functionalities. This
interaction is identical to the real interaction with π.
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H1: Same as H0 except that instead of using a PRF, the simulated verifier chooses output wire
labels Dt

mem and htmem functions uniformly (in TempMemLabels and GenH). We have H1 ≈
H0 by the security of the PRF.

H2: Same as H1 except that the simulator aborts in certain cases as follows. The simulator has
initially generated M̂ and st (while simulating Finit) and obtains w as P ’s input to Fotc in

each step (6a). Hence, each time in step 6, the simulator executes Cx,I(st, w, M̂ [read(I)])→
(st, z, M̂ [access(I)]), updating its internal st and M̂ .

In the LabelXfer subprotocols in steps (3) and (7), P is meant to provide his garbled output
Y t
mem and Y t

st to the Fcpfe functionalities. Similarly, in step (6c), the prover is expected to
commit to Y t

z |true. In H2, the simulator artificially aborts if P provides a valid encoding
Dt|y for y not equal to the simulated output of Cx,I at time t.

Now we claim that the simulator artificially aborts with only negligible probability (so H1 ≈
H2) and that the prover’s view of Et during step (7) in time t can be simulated given only
Etmem|M̂ [read(I)] and Etst|st. This follows essentially from the authenticity property of the

garbling scheme and the strong-universal hashing property of H.

Consider the LabelXfer subprotocol in step (3) (i.e., time t = 0). At this time, all wire labels
in D0 besides D0

mem|M̂ and D0
mem|st are independent of the adversary’s view by definition

of the Finit functionality. Hence, the simulator artificially aborts with negligible probability
during these steps. Conditioned on not aborting, the action of the strongly universal hash
functions on the “wrong” wire labels of D0 — and hence the value of the “wrong” input wire
labels in E1 — is distributed independently of P ’s view. Thus P ’s view in step (6) can be
simulated given only the claimed subset of E1.

Inductively, the prover’s view of Et at the time of the LabelXfer steps depends only on
the “expected” input wire labels. Hence, the simulator artificially aborts with negligible
probability, due to the authenticity property of the garbling scheme. As above, conditioned
on not aborting, the strong universal hashing property ensures that the prover’s view of Et+1

depends only on the claimed subset of Et+1.

H3: Same as H2 except that in step (2) the simulator sends P ’s input M to FRZK. In step (9),
if the simulated verifier does not abort, then the simulator sends (x,wreal) to FRZK (where w
was extracted from the prover in step (6a). We claim that the output of the ideal verifier
always matches that of the simulated verifier. The simulated verifier accepts the proof if
P has committed to Dt

z|true. Provided that the simulator has not artificially aborted, then
it must be that the simulated Cx,I has output z = true. By the correctness of the RAM
program, it must be that wreal is a valid witness for x.

Hence, the simulator implicit in H3 is our final simulator.

Verifier is corrupt: In this case, the primary role of the simulator is to simulate its view without
knowledge of the witness w. We note that the only information that needs to be simulated in each
proof is the memory access sequence I and the opened commitment to output wire label Y t

z . Again
we proceed in a sequence of hybrid interactions.

H0: Simulator plays the role of an honest prover P (including M and witnesses w as input)
and all ideal functionalities. Hence, the simulator obtains all of V ’s inputs to the ideal
functionalities. This interaction is identical to the real interaction with π.
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H1: Same as H0 except for the following changes. An honest prover computes Dt in step (8d)
when the verifier decommits to certain inputs to ideal functionalities. Here we have the
simulator perform the same computations, but as soon as possible given the ability to see
the verifier’s inputs to the functionalities. Hence, in step (6c), the simulator will know the
entire contents of Dt. Instead of evaluating the garbled circuit to obtain garbled output Y t

z ,
we have the simulator simply commit to Dt

z|true.

This commitment is only opened when the garbled circuit F t is shown to be correct. Hence,
H0 ≡ H1.

H2: Same asH1 except for the following changes. Note that inH1 the simulator uses secret values
M and w only to generate the memory access sequence I. All of the simulated prover’s other
inputs to ideal functionalities can be set to dummy values, as V gets no outputs. So in H2

we have the simulated prover generate I in step (4) using the ORAM simulator instead of
actually executing the RAM program itself. We have H1 ≈ H2 by the security of the ORAM.

The simulator implicit in H2 defines our final simulator, since it no longer requires the secret values
M and w to operate.

This completes the security proof of our protocol.
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