
On Black-Box Complexity of Universally Composable Security
in the CRS model∗

Carmit Hazay† Muthuramakrishnan Venkitasubramaniam‡

Abstract

In this work, we study the intrinsic complexity of black-box Universally Composable (UC) secure
computation based on general assumptions. We present a thorough study in various corruption mod-
elings while focusing on achieving security in the common reference string (CRS) model. Our results
involve the following:

• Static UC secure computation. Designing the first static UC oblivious transfer protocol based
on public-key encryption and stand-alone semi-honest oblivious transfer. As a corollary we obtain
the first black-box constructions of UC secure computation assuming only two-round semi-honest
oblivious transfer.

• One-sided UC secure computation. Designing adaptive UC two-party computation with single
corruptions assuming public-key encryption with oblivious ciphertext generation.

• Adaptive UC secure computation. Designing adaptively secure UC commitment scheme assum-
ing only public-key encryption with oblivious ciphertext generation. As a corollary we obtain the
first black-box constructions of adaptive UC secure computation assuming only (trapdoor) simu-
latable public-key encryption (as well as a variety of concrete assumptions).
We remark that such a result was not known even under non-black-box constructions.

Keywords: UC Secure Computation, Black-Box Constructions, Oblivious Transfer, UC Commitments

∗An extended abstract of this paper appeared in the proceedings of ASIACRYPT 2015.
†Faculty of Engineering, Bar-Ilan University, Israel. Email: carmit.hazay@biu.ac.il. Research partially supported by

a grant from the Israel Ministry of Science and Technology (grant No. 3-10883).
‡University of Rochester, Rochester, NY 14611, NY. Email: muthuv@cs.rochester.edu.

1 Introduction

Secure multi-party computation enables a set parties to mutually run a protocol that computes some function
f on their private inputs, while preserving a number of security properties. Two of the most important
properties are privacy and correctness. The former implies data confidentiality, namely, nothing leaks by
the protocol execution but the computed output. The later requirement implies that no corrupted party or
parties can cause the output to deviate from the specified function. It is by now well known how to securely
compute any efficient functionality [Yao86,GMW87,MR91,Bea91,Can01] in various models and under the
stringent simulation-based definitions (following the ideal/real paradigm). Security is typically proven with
respect to two adversarial models: the semi-honest model (where the adversary follows the instructions of
the protocol but tries to learn more than it should from the protocol transcript), and the malicious model
(where the adversary follows an arbitrary polynomial-time strategy), and feasibility results are known in
the presence of both types of attacks. The initial model considered for secure computation was of a static
adversary where the adversary controls a fixed subset of the parties (who are called corrupted) before the
protocol begins. In a stronger corruption model the adversary is allowed to choose which parties to corrupt
throughout the protocol execution, and as a function of its view; such an adversary is called adaptive.

These feasibility results apply in most cases on stand-alone security, where a single set of parties
run a single execution of the protocol. Moreover, the security of most cryptographic protocols proven
in the stand-alone setting does not remain intact if many instances of the protocol are executed concur-
rently [Lin03]. The strongest (but also the most realistic) setting for concurrent security is known by
Universally Composable (UC) [Can01]. This setting considers the execution of an unbounded number
of concurrent protocols in an arbitrary and adversarially controlled network environment. Unfortunately,
stand-alone secure protocols typically fail to remain secure in the UC setting. In fact, without assum-
ing some trusted setup, UC is impossible to achieve for most tasks [CF01, CKL06, Lin03]. Consequently,
UC protocols have been constructed under various trusted setup assumptions in a long series of works;
see [CLOS02, BCNP04, CDPW07, KLP07, CPS07, LPV09, DMRV13] for few examples.

In this work, we are interested in understanding the intrinsic complexity of UC secure computation.
Identifying the general assumptions required for a particular cryptographic task provides an abstraction of
the functionality and the specific hardness that is exploited to obtain a secure realization of the task. The
expressive nature of general assumptions allows the use of a large number of concrete assumptions of our
choice, even one that may not have been considered at the time of designing the protocols. Constructions
that are based on general assumptions are proven in two flavors:

Black-box usage: A construction is black-box if it refers only to the input/output behavior of the underlying
primitives.

Non-black-box usage: A construction is non-black box if it uses the code computing the functionality of
the underlying primitives.

Typically, non-black-box constructions have been employed to demonstrate feasibility and derive the
minimal assumptions required to achieve cryptographic tasks. Specifically, Lin, Pass and Venkitasubrama-
niam [LPV09] provided a unified framework and minimal conditions under which UC security is feasible in
a general setup. Moreover, the work of Damgard, Nielsen and Orlandi [DNO10] focused on identifying the
necessary and sufficient assumptions for UC secure computation, both in terms of setup and computational
assumptions. The former work identified the weakest assumptions in any setup known thus far, whereas the
latter work identified tight upper and lower bounds on the hardness assumptions for the concrete Common
Reference String and Key Registration models. Nevertheless, since both these works rely on non-black-box
techniques, an important theoretical question is whether or not non-black-box usage of the underlying prim-
itives is necessary. Besides its theoretical importance, obtaining black-box constructions is related to the

1

efficiency of the protocol as an undesirable effect of non-black-box constructions is that they are typically
inefficient and unlikely to be implemented in practice.

Fortunately, in a line of works [IKLP06,Hai08,PW09,GLOV12] the gap between what is achievable via
non-black-box and black-box constructions under minimal assumptions has narrowed. More relevant to our
context, the work of Ishai, Prabhakaran and Sahai [IPS08] that provided the first black-box constructions of
UC protocols in the static and adaptive settings assuming only one-way functions, in a model where all par-
ties have access to an ideal oblivious transfer (OT) functionality. Whereas in the adaptive setting, the work
of Choi et al. [CDMW09b] provided a transformation from adaptively secure semi-honest oblivious transfer
to one that is secure in the stronger UC setting against malicious adaptive adversaries while assuming that
all parties have access to an ideal commitment functionality. These works make progress towards identify-
ing the necessary minimal general computational assumptions in both the static and adaptive UC settings.
In particular, it follows that, to answer the motivating question of identifying these minimal assumptions,
it suffices to identify the minimal assumptions to realize the ideal oblivious transfer in the static setting as
specified in [IPS08] and the ideal commitment in the adaptive setting as specified in [CDMW09b].

Static setting. In the stand-alone (i.e. not UC) static setting, assuming only the existence of semi-honest
oblivious transfer it has been shown in [IKLP06, Hai08, HIK+11] how to construct secure multi-party com-
putation protocols while relying on the underlying primitives in a black-box manner. In the UC setting,
Canetti, Lindell, Ostrovsky and Sahai [CLOS02] presented the first non-black-box constructions of static
UC protocols assuming enhanced trapdoor permutations. In a later work, Choi et al. [CDMW09b] (cf.
Proposition 1) provided black-box constructions that are secure against static adversaries, where all parties
have access to an ideal commitment functionality. This construction achieves a stronger security notion of
straight-line simulation, however falls short of achieving static UC security (see more details in Section 3).

UC OT was studied in the influential paper by Peikert et al. [PVW08], who presented a black-box
framework in the local1 common reference string (CRS) model for an oblivious transfer, based on dual-mode
public-key encryption (PKE) schemes. Such PKE schemes can be concretely instantiated under the Discrete
Diffie-Hellman (DDH), quadratic residuosity (QR) and Learning with Errors (LWE) hardness assumptions.
In a followup work Choi et al. [CKWZ13] present UC OT constructions in the global CRS model assuming
DDH, N -residuosity and the Decision Linear Assumption (DLIN).

It is worth noting that while the works of Peikert et al. [PVW08] and Choi et al. [CKWZ13] provide
abstractions of their assumptions, the assumptions themselves are not general enough to help understand the
minimal assumptions required to achieve static UC security.

Adaptive Setting. The only work that considered a single general assumption that implies adaptive UC
security using non-black-box techniques is the result due to Dachman-Soled et al. [DMRV13], that shows
how to obtain adaptive UC commitments assuming simulatable PKE in the global CRS model.2 Moreover,
the best known general assumptions required to achieve black-box UC security are adaptive semi-honest
oblivious transfer and UC commitments [DN02, CDMW09b]. Known minimal general assumptions that
are required to construct these primitives are (trapdoor) simulatable PKE for adaptive semi-honest oblivious
transfer [CDMW09a] and mixed commitments for UC commitments [DN02] in the local CRS model. Fi-
nally, we remark that the commitment scheme of Damgard and Groth [DG03] based on Strong RSA is, in
fact, an adaptive UC commitment in the global CRS model.

As such prior works leave the following important question open:

What are the minimal (general) assumptions required to construct UC protocols, given only
black-box access to the underlying primitives?

1Namely, a distinct common reference string (CRS) per party.
2Where simulatable PKE is a public key encryption scheme with additional properties that allow oblivious sampling of public

keys and ciphertexts.

2

We note that this question is already well understood in the static setting when relaxing the black-box
requirement. Namely, in [DNO10] Damgård, Nielsen and Orlandi showed how to construct UC commit-
ments assuming only semi-honest oblivious transfer in the global CRS model, while additionally assuming
a pre-processing phase where the parties participate in a round-robin manner.3 More recently, Lin, Pass and
Venkitasubramaniam [LPV12] improved this result by removing any restricted pre-processing phase. In the
same work the authors showed how to achieve UC security in the global CRS model assuming only the
existence of semi-honest oblivious transfer. In particular, this construction shows that static UC security can
be achieved without assuming UC commitments when relying on non-black-box techniques.

1.1 Our Results

In this paper we present a thorough study of black-box UC secure computation in the CRS model for
different attack models; details follow. We note that our first and third results hold for the multi-party case,
while the second result is for the two-party setting.

1.1.1 Static UC Secure Computation

Our first result is given in the static setting, where we demonstrate the feasibility of UC secure computation
based on semi-honest oblivious transfer and extractable commitments. More concretely, we prove how
to transform any statically semi-honest secure oblivious transfer into one that is secure in the presence
of malicious adversaries, giving only black-box access to the underlying semi-honest oblivious transfer
protocol. Our approach is inspired by the protocols from [HIK+11] and [LP12], where we observe that it
is not required to use the full power of static UC commitments. Instead, we employ a weaker primitive
that only requires straight-line input extractability. This weaker notion of security, denoted by extractable
commitments [MPR10], can be realized based on any CPA secure PKE. More precisely, we prove the
following theorem.

Theorem 1.1. (Informal) Assuming the existence of PKE and semi-honest oblivious transfer, then any func-
tionality can be realized in the CRS model with static UC security, where the underlying primitives are
accessed in a black-box manner.

We remark here that this theorem makes a significant progress towards reducing the general assumptions
required to construct UC protocols. Previously, the only general assumptions based on which we knew how
to construct UC protocols were mixed-commitments [DN00] and dual-mode PKE [PVW08] both of which
were tailor-made for the particular application. Towards understanding the required minimal assumptions,
we recall the work Damgård and Groth in [DG03] who showed that the existence of UC commitments in the
CRS model implies a stand-alone key agreement protocol. Moreover, under black-box constructions, the
seminal work of Impagliazzo and Rudich [IR88] implies that key agreement cannot be based on one-way
functions. Thus, there is reasonable evidence to believe that some public-key primitive is required for UC
commitments. In that sense, our assumption regarding PKE is close to being optimal. Nevertheless, it is
unknown whether plain model (i.e. without setup) semi-honest oblivious transfer assumption is required.

Our result is shown in two phases. At first we compile the semi-honest oblivious transfer protocol into
a new protocol with intermediate security properties in the presence of malicious adversaries. This transfor-
mation is an extension of the transformation from [HIK+11] that is only proven for bit oblivious transfer,
whereas our proof works for string oblivious transfer. Next, we use the transformed oblivious transfer pro-
tocol in order to construct a fully secure (malicious) oblivious transfer. By combining our oblivious transfer
protocol with the protocol from [IPS08] we obtain a statically generic UC secure computation.

3In such a pre-processing phase, it is assumed that at most one party is allowed to transmit messages in any round.

3

Reference Assumption Functionality Setup Black-Box
[CLOS02] Enhanced TDP UC OT Local CRS No
[PVW08] Dual PKE UC OT Local CRS Yes

[CKWZ13] DDH/N-resid./DLIN UC OT Global CRS Yes
[LPV09, LPV12] SH-OT UC OT Global CRS No

This Work PKE + SH-OT UC OT Local CRS Yes
Follow-Up [KLV17] PKE + SH-OT UC OT Global CRS Yes

Table 1: Comparison with prior work on UC oblivious transfer in the CRS model against static corruptions.

An important corollary is deduced from the work by Gertner et al. [GKM+00], who provided a black-
box construction of PKE based on any two-round semi-honest oblivious transfer protocol. Specifically, the
combination of their result with ours implies the following corollary, which demonstrates that two-round
semi-honest oblivious transfer is sufficient in the CRS model to achieve black-box constructions of UC
protocols. Namely,

Corollary 1.2. (Informal) Assuming the existence of two-round semi-honest oblivious transfer, then any
functionality can be UC realized in the CRS model, where the oblivious transfer is accessed in a black-box
manner.

The work of [CDMW09b] shows how starting from a semi-honest oblivious transfer it is possible to
obtain a black-box construction of an OT protocol that is secure against stand-alone static adversaries in
the FCOM-hybrid model. Moreover, FCOM can be directly realized in the FEXTCOM-hybrid using the notion
of extractable trapdoor commitments [PW09, DS13].4 We do not pursue this approach and instead directly
realize OT in the FEXTCOM-hybrid because the main goal in this work is to identify the minimal assumptions
required to construct UC OT. We remark that although the main result in [CDMW09b] demonstrates UC
security against adaptive corruptions, the same analysis fails to extend to the static setting. More concretely,
while their protocol might be secure in the static setting (if we replace the underlying primitives with their
analogues in the static setting), its security analysis is not sufficient. This is because Choi et al. modularly
compose a weaker building block (adaptive semi-honest OT) to construct a UC OT. Furthermore, in the
simulation of the final protocol, the simulator invokes the adaptive simulator of the weaker primitive on-the-
fly. Such a simulation cannot be used in the static setting when the building blocks are instantiated with their
analogues in the static setting.5 We finally remark that the previous works of [CDMW09b] and [HIK+11]
require a three-step transformation, whereas, our transformation is simpler with a single step transformation.

Implications. In what follows, we make a sequence of interesting observations that are implied by our result
in the static UC setting which are summarized in Table 1.

• The important result by Canetti et al. [CLOS02], that assumes enhanced trapdoor permutations, can
be extended assuming only PKE with oblivious ciphertext generation (which is PKE with the special
property that a ciphertext can be obliviously sampled without the knowledge of the plaintext, and can
be further realized using enhanced trapdoor permutation). In that sense, our result, assuming PKE
with oblivious ciphertext generation, can be viewed as an improvement of Canetti et al. [CLOS02]
when relying on this primitive in a black-box manner.

4Where the starting point of the latter work is a statistically-hiding and statistically-binding straight-line extractable commitment
scheme which requires a physical assumption, and is therefore not applicable in the CRS model.

5This fact was confirmed with the authors of [CDMW09b].

4

• The pair of works by Damgard, Nielsen and Orlandi [DNO10] and Lin, Pass and Venkitasubramaniam
[LPV12] demonstrate that non-black-box constructions of UC commitments, and more generally static
UC secure computation, can be achieved in the CRS model assuming only semi-honest oblivious
transfer. In comparison, our result shows that two-round semi-honest oblivious transfer protocols
are sufficient for obtaining black-box UC secure computation in the CRS model. We note here that
many semi-honest oblivious transfer protocols indeed involve only two-round of communication, e.g.,
[EGL85, HK12].

• In [LPV09, LPV12], Lin, Pass and Venkitasubramaniam provided a unified framework for construct-
ing UC protocols in any “trusted-setup” model. Their result is achieved by capturing the minimal
requirement that implies UC secure computation in the setup model. More precisely, they introduced
the notion of a UC puzzle and showed that any setup model that admits a UC puzzle can be used
to securely realize any functionality in the UC setting, while additionally assuming the existence of
semi-honest oblivious transfer. Moreover, they showed how to easily construct such puzzles in most
models. We remark that our approach can be viewed as providing a framework to construct black-box
UC protocols in other UC models. More precisely, we show that any setup model that admits the
extractable commitment functionality can be used to securely realize any functionality assuming the
existence of semi-honest oblivious transfer. In fact, our result easily extends to the chosen key reg-
istration authority (KRA) model [BCNP04], where it is assumed the existence of a trusted authority
that samples public key, secret key pairs for each party, and broadcasts the public key to all parties.
We leave it for future work to instantiate our framework in other setup models.

• The fact that our construction only requires PKE and semi-honest oblivious transfer allows an easy
translation of static UC security to various efficient implementations under a wide range of concrete
assumptions. Specifically, both PKE and (two-round) semi-honest oblivious transfer can be realized
under RSA, factoring Blum integers, LWE, DDH,N -residuosity, p-subgroup and coding assumptions.
This is compared to prior results that could be based on the later five assumptions [PVW08,CKWZ13,
DDN14, DNM12].

• Recently, Maji, Prabhakaran, and Rosulek [MPR10] initiated the study of the cryptographic com-
plexity of secure computation tasks, while characterizing the relative complexity of a task in the UC
setting. Specifically, they established a zero-one law that states that any task is either trivial (i.e., it
can be reduced to any other task), or complete (i.e., to which any task can be reduced to), where a
functionality F is said to reduce to another functionality G, if there is a UC protocol for F using
ideal access to G. More precisely, they showed that assuming the existence of semi-honest oblivious
transfer, every finite two-party functionality is either trivial or complete. While their main theorem
relies on the minimal assumption of semi-honest oblivious transfer, their use of the assumption is
non-black-box and they leave it as an open problem to achieve the same while relying on oblivious
transfer in a black-box manner. Our result makes progress towards establishing this.

In more details, their high-level approach is to identify complete functionalities using four categories,
namely, (1) FXOR that abstracts a XOR-type functionality, (2) FCC that abstracts a simple cut-and-
choose functionality, (3)FOT the oblivious transfer functionality, and (4)FCOM the commitment func-
tionality. They then show that each category can be used to securely realize any computational task.6

Among these reductions, functionalities FXOR and FCC rely on oblivious transfer in a non-black-box
way. In this work we improve the reduction of functionality FCC. That is, we obtain this improvement
by showing that the extractable commitment functionality FEXTCOM and semi-honest oblivious trans-
fer can be used in a black-box way to realize functionality FOT, and combine this with a reduction

6Where it suffices to realize the FOT functionality as it is known to be complete [Kil88].

5

presented in [MPR10] that reduces FCC to the FEXTCOM functionality in a black-box way.

1.1.2 One-Sided UC Secure Computation

In this stronger attack model, where at most one of the parties is adaptively corrupted [KO04, HP14], we
prove that one-sided adaptive UC security is implied by PKE with oblivious ciphertext generation, which
implies semi-honest OT. Here we combine two observations: (1) In our malicious static oblivious transfer
from the previous result, the actions of the parties depend on their real inputs only in the last phase of the
protocol, and (2) we do not need a full fledge NCE, rather only need one-sided non-committing encryption
(NCE), which we know can be designed based on PKE with oblivious ciphertext generation [CFGN96,
DN00]. In particular, NCE allows secure communication in the presence of adaptive attacks, which implies
that the communication can be equivocated once the real message is handed to the simulator. Then, by
encrypting part of our statically secure protocol using NCE, we obtain a generic protocol for any two-party
functionality under the assumption specified above.7 Namely,

Theorem 1.3. (Informal) Assuming the existence of PKE with oblivious ciphertext generation, then any
two-party functionality can be realized in the CRS model with one-sided adaptive UC security and black-
box access to the PKE.

1.1.3 Adaptive UC Secure Computation

Our last result is in the strongest corruption setting, where any number of parties can be adaptively cor-
rupted. Here we design a new adaptively secure UC commitment scheme under the assumption of PKE with
oblivious ciphertext generation, which is the first construction that achieves the stronger notion of adaptive
security based on this hardness assumption. Our construction makes a novel usage of such a PKE together
with Reed-Solomon codes, where the polynomial shares are encrypted using the PKE with oblivious ci-
phertext generation. Plugging-in our UC commitment protocol into the transformation of [CDMW09b] that
generates adaptive malicious oblivious transfer given adaptive semi-honest oblivious transfer and UC com-
mitments, implies an adaptively UC oblivious transfer protocol with malicious security based on semi-honest
adaptive oblivious transfer and PKE with oblivious ciphertext generation, using only black-box access to the
semi-honest oblivious transfer and the PKE. That is,

Theorem 1.4. (Informal) Assuming the existence of PKE with oblivious ciphertext generation and adaptive
semi-honest oblivious transfer, then any functionality can be realized in the CRS model with adaptive UC
security, where the underlying primitives are accessed in a black-box manner.

We further recall the work of Choi et al. [CDMW09a] that shows that the weakest general known as-
sumption that is required to construct adaptively secure semi-honest oblivious transfer is trapdoor simulat-
able PKE.8 Now, since such an encryption scheme admits PKE with oblivious ciphertext generation, we
obtain the following corollary that unifies the two assumptions required to achieve adaptive UC security.

Corollary 1.5. Assuming the existence of (trapdoor) simulatable PKE, then any functionality can be realized
in the CRS model with adaptive UC security and black-box access to the PKE.

An additional interesting observation that is implied by our work is that our UC commitment scheme
implies a construction that is secure in the adaptive setting when erasures are allowed, and under the weaker

7We note that while in the plain model any statically secure protocol can be compiled into one-sided secure protocol by encrypt-
ing its entire communication using one-sided NCE, such a transformation cannot be applied generically in the UC setting as the
trusted setup (eg, CRS) might depend on the identity of the corrupted party.

8Trapdoor simulatable PKE is a simulatable PKE that requires a trapdoor to obliviously sample a public-key or a ciphertext.

6

Reference Assumption Functionality Setup Black-Box
[DN00] Mixed-Com UC Com Local CRS Yes
[DG03] Strong RSA UC Com Global CRS Yes

[DMRV13] Sim PKE UC Com Global CRS No
[CDMW09b] Trapdoor Sim. PKE UC OT UC Com Yes

This Work PKE w/ OCG UC Com Local CRS Yes

Table 2: Comparison with prior work on UC commitments and UC oblivious transfer in the CRS model
against adaptive corruptions.

assumption of PKE. Specifically, instead of obliviously sampling ciphertexts in the commitment phase, the
committer encrypts arbitrary plaintexts and then erases the plaintexts and randomness used for these com-
putations. Our proof follows easily for this case as well. Combining our UC commitment scheme together
with the semi-honest with erasures OT from [Lin09] and the transformation of Choi et al. [CDMW09b], we
obtain the following result

Theorem 1.6. (Informal) Assuming the existence of PKE and semi-honest oblivious transfer secure against
an adaptive adversary assuming erasures, then any functionality can be realized in the CRS model with
adaptive UC security assuming erasures, where the underlying primitives are accessed in a black-box man-
ner.

Noting that OT secure against adaptive adversaries assuming erasures can be realized under assump-
tions sufficient for achieving the same with respect to the weaker static adversaries, this theorem shows
that achieving UC security against adaptive adversaries in the presence of erasures does not require any
additional assumption beyond what is required to secure against static adversaries.

Implications. Next, we specify a sequence of interesting observations that are implied by our result in the
adaptive UC setting which are summarized in Table 2.

• Previously, Dachman-Soled et al. [DMRV13], showed that adaptively secure UC protocols can be
constructed in the CRS model assuming the existence of simulatable PKE. Our result improves this
result in terms of complexity assumptions by showing that simulatable PKE is sufficient, and provides
new constructions based on concrete assumptions that were not known before. Nevertheless, we
should point out that while the work of Dachman-Soled et al. is constructed in the global CRS model
using a non-black-box construction, our result provides a black-box construction in a CRS model
where the length of the reference string is linear in the number of parties.

• Analogous to our result on static UC security, it is possible to extend this result to the chosen key-
registration authority (KRA) model, where we assume the existence of a trusted-party that samples
public keys and secret keys for each party, and broadcasts the public key to all parties.

• It is important to note that this result provides the first evidence that adaptively secure UC commitment
is theoretically easier to construct than stand-alone adaptively secure semi-honest oblivious transfer.
Namely, on the one hand, enhanced trapdoor-permutations are sufficient to construct PKE with obliv-
ious ciphertext generation which in turn are sufficient to realize adaptive UC commitment in the CRS
model by Theorem 1.4. On the other hand, a result due to Lindell and Zarosim [LZ09] (regarding
static vs. adaptive oblivious transfer) separates adaptively secure oblivious transfer from enhanced
trapdoor permutation under black-box reductions.

7

• Regarding concrete assumptions, previously, adaptive UC commitments without erasures were con-
structed based onN -residuosity and p-subgroup hardness assumptions [DN02] and Strong RSA [DG03].
On the other hand, our result demonstrates the feasibility of this primitive under DDH, LWE, factoring
Blum integers and RSA assumptions. When considering adaptive corruption with erasures, the work
of Blazy, et al. [BCPV13], extending the work of Lindell [Lin11], shows how to construct highly
efficient UC commitments based on the DDH assumption. On the other hand, assuming erasures, we
are able to construct an adaptive UC commitment scheme based on any CPA-secure PKE.

1.2 Subsequent Work

In subsequent work, Kiyoshima et al. [KLV17] improve the results in the work for the static setting in the
CRS model where they show that assuming PKE and semi-honest OT, UC is feasible in the global CRS
model where there is a single CRS string chosen for all sessions.

2 Preliminaries

Basic notations. We denote the security parameter by n. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large n it holds that µ(n) < 1

p(n) . We use the ab-
breviation PPT to denote probabilistic polynomial-time. We further denote by a← A the random sampling
of a from a distribution A, and by [n] the set of elements {1, . . . , n}. We specify next the definition of
computationally indistinguishable.

Definition 2.1. Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c
≈ Y , if for every PPT

machine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently large n:∣∣Pr [D(X(a, n), 1n) = 1]− Pr [D(Y (a, n), 1n) = 1]
∣∣ < 1

p(n)
.

2.1 Public-Key Encryption Schemes

We specify the definitions of public-key encryption, IND-CPA and public-key encryption with oblivious
ciphertext generation.

Definition 2.2 (PKE). We say that Π = (Gen,Enc,Dec) is a public-key encryption scheme if Gen,Enc,Dec
are polynomial-time algorithms specified as follows:

• Gen, given a security parameter n (in unary), outputs keys (PK, SK), where PK is a public-key and
SK is a secret key. We denote this by (PK, SK)← Gen(1n).

• Enc, given the public-key PK and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← EncPK(m); and when emphasizing the randomness r used for encryption, we
denote this by c← EncPK(m; r).

• Dec, given the public-key PK, secret key SK and a ciphertext c, outputs a plaintext message m s.t.
there exists randomness r for which c = EncPK(m; r) (or ⊥ if no such message exists). We denote
this by m← DecPK,SK(c).

8

For a public-key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform adversary A = (A1,A2),
we consider the following indistinguishability game:

(PK, SK)← Gen(1n).

(m0,m1, history)← A1(PK), s.t. |m0| = |m1|.
c← EncPK(mb), where b←R {0, 1}.
b′ ← A2(c, history).

A wins if b′ = b.

Denote by ADVΠ,A(n) the probability that A wins the IND-CPA game.

Definition 2.3 (IND-CPA). A public-key encryption scheme Π = (Gen,Enc,Dec) is IND-CPA secure, if
for every non-uniform adversary A = (A1,A2) there exists a negligible function µ(·) such that for all
sufficiently large n’s, ADVΠ,A(n) ≤ 1

2 + µ(n).

A public-key encryption with the property of oblivious ciphertext generation implies additional two
algorithms: (1) oblivious ciphertext generator Ẽnc and (2) a corresponding ciphertext faking algorithm
Ẽnc

−1
. Intuitively, the ciphertext faking algorithm is used to explain a legitimately generated ciphertext as

an obliviously generated one. Formally,

Definition 2.4 (PKE with oblivious ciphertext generation [DN00]). A PKE Π with oblivious sampling gen-

eration is defined by the tuple (Gen,Enc,Dec, Ẽnc, Ẽnc
−1

) and has the following additional property,

• Indistinguishability of oblivious and real ciphertexts. For any message m in the appropriate
domain, consider the experiment (PK, SK) ← Gen(1n), c1 ← ẼncPK(r1), c2 ← EncPK(m; r2),

r′2 ← Ẽnc
−1

PK(c2). Then, (PK, r1, c1,m)
c
≈ (PK, r′2, c2,m).

To this end, we only employ encryption schemes with perfect decryption. This merely simplifies the
analysis and can be relaxed by using PKE with a negligible decryption error instead.

2.2 Secret-Sharing

A secret-sharing scheme allows distribution of a secret among a group of n players, each of whom in a
sharing phase receive a share (or piece) of the secret. In its simplest form, the goal of secret-sharing is to
allow only subsets of players of size at least t+ 1 to reconstruct the secret. More formally a t+ 1-out-of-n
secret sharing scheme comes with a sharing algorithm that on input a secret s outputs n shares s1, . . . , sn
and a reconstruction algorithm that takes as input (si)i∈S , S where |S| > t and outputs either a secret s′ or
⊥. In this work, we will use the Shamir’s secret sharing scheme [Sha79] with secrets in F = GF (2n). We
present the sharing and reconstruction algorithms below:

Sharing algorithm: For any input s ∈ F, pick a random polynomial f(·) of degree t in the polynomial-field
F[x] with the condition that f(0) = s and output f(1), . . . , f(n).

Reconstruction algorithm: For any input (s′i)i∈S where none of the s′i are ⊥ and |S| > t, compute a
polynomial g(x) such that g(i) = s′i for every i ∈ S. This is possible using Lagrange interpolation
where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j
i− j

.

Finally the reconstruction algorithm outputs g(0).

9

Functionality FOT

Functionality FOT communicates with with sender Sen and receiver Rec, and adversary S.

1. Upon receiving input (sender, sid, v0, v1) from Sen where v0, v1 ∈ {0, 1}t, record (sid, v0, v1).

2. Upon receiving (receiver, sid, u) from Rec, where a tuple (sid, v0, v1) is recorded and u ∈ {0, 1},
send (sid, vu) to Rec and sid to S. Otherwise, abort.

Figure 1: The oblivious transfer functionality.

Reed-Solomon code: For integers t, n and field F, satisfying 0 < t ≤ n < |F|, and a set of n distinct
elements I = {x1, . . . , xn} ⊂ F, the Reed-Solomon codeWn,t is defined by{

q(x1), . . . , q(xn) | q(·) is a degree t polynomial in F[x]
}
.

The Reed-Solomon code has minimum distance relative distance 1− t
n where a corrupted codeword with

up to dn−t2 e errors can be corrected using the Berlekamp-Welch algorithm. It follows easily that Shamir’s
secret sharing on F as described above results in a sequence of shares in the Reed-Solomon codeWn,t.

2.3 Oblivious Transfer

1-out-of-2 oblivious transfer (OT) is an important functionality in the context of secure computation that is
engaged between a sender Sen and a receiver Rec; see Figure 1 for the description of functionality FOT. In
this paper we are interested in reducing the hardness assumptions for general UC secure computation when
using only black-box access to the underlying cryptographic primitives, such as the semi-honest OT. We use
semi-honest OT as a building block for designing UC protocols in both static and adaptive settings. In the
static setting, we refer to the two-round protocol of [EGL85] that is based on PKE with oblivious ciphertext
generation (or enhanced trapdoor permutation). In the adaptive setting, we refer to the two-round protocol
of [CLOS02] that is based on augmented non-committing encryption scheme.

We briefly recall that any two-round semi-honest OT implies PKE. This is demonstrated in two phases,
starting with the claim that semi-honest OT implies a key agreement (KA) protocol. This statement has been
proven in [GKM+00] in the static setting, and holds for any number of rounds as well as in the presence of
adaptive adversaries. Next, a well established fact shows that in the static setting a two-round key agreement
implies PKE (in fact, these primitives are equivalent).

2.3.1 Receiver Private Oblivious Transfer

Receiver privacy is a weaker notion than malicious security and only requires that the receiver’s input be
hidden even against a malicious sender. It is weaker than malicious security in that it does not require a
simulation of the malicious sender that extracts the sender’s inputs. In particular, we will only require that a
malicious sender cannot distinguish the cases where the receiver’s input is 0 or 1. Formally stated,

Definition 2.5 (Receiver private OT). Let π be a two-party protocol that is engaged between a sender Sen
and a receiver Rec. We say that π is a receiver private oblivious transfer protocol, if for every PPT adversary
A that corrupts Sen, the following ensembles are computationally indistinguishable:

• {ViewA,π[A(1n),Rec(1n, 0)]}n∈N

• {ViewA,π[A(1n),Rec(1n, 1)]}n∈N

10

where ViewA,π[A(1n),Rec(1n, b)] denotes A’s view within π whenever the receiver Rec inputs the bit b.

We point out that receiver privacy protects the receiver against a malicious sender and should be read as
privacy against a malicious sender.

2.3.2 Defensibly Private Oblivious Transfer

The notion of defensible privacy was introduced by Haitner in [Hai08, HIK+11]. A defense in a two-party
protocol π = (P1, P2) execution is an input and random tape provided by the adversary after the execution
concludes. A defense for a party controlled by the adversary is said to be good if, whenever this party
participated honestly in the protocol using this input and random tape, then it would have resulted in the
exact same messages that were sent by the adversary. In essence, this defense serves as a proof of honest
behavior. Defensible privacy ensures that a protocol is private in the presence of defensible adversaries if
the adversary learns nothing more than its prescribed output when it provides a good defense.

We begin with informally describing the notion of good defense for a protocol π; we refer to [HIK+11]
for the formal definition. Let trans = (q1, a1, . . . , q`, a`) be the transcript of an execution of a protocol
π that is engaged between P1 and P2 and let A denote an adversary that controls P1, where qi is the ith
message from P1 and ai is the ith message from P2 (that is, ai is the response for qi). Then we say that
(x, r) constitutes a good defense of A relative to trans if the transcript generated by running the honest
algorithm for P1 with input x and random tape r against P2’s messages a1, . . . , a` results exactly in trans.

At a high-level, an OT protocol is defensibly private with respect to a corrupted sender if no adversary
interacting with an honest receiver with input b should be able to learn b, if at the end of the execution the
adversary produces any good defense. Similarly, an OT protocol that is defensibly private with respect to a
corrupted receiver requires that any adversary interacting with an honest sender with input (s0, s1) should
not be able to learn s1−b, if at the end of the execution the adversary produces a good defense with input
b. Below we present a variant of the definition presented in [HIK+11]. We stress that while the [HIK+11]
definition only considers bit OT (i.e. sender’s inputs are bits) we consider string OT.

Definition 2.6 (Defensible-private string OT). Let π be a two-party protocol that is engaged between a
sender Sen and a receiver Rec. We say that π is a defensibly-private string oblivious transfer protocol, if
for every PPT adversary A the following holds,

1. {Γ(ViewA[A(1n),Rec(1n, U)], U)}
c
≈ {Γ(ViewA[A(1n),Rec(1n, U)], U ′)} where Γ(v, ∗) is set to

(v, ∗) if following the execution A outputs a good defense for π, and ⊥ otherwise, and U and U ′

are independent random variables uniformly distributed over {0, 1}. This property is referred to as
defensibly private with respect to a corrupted sender.

2. {Γ(ViewA[Sen(1n, (Un0 , U
n
1)),A(1n)], Un1−b)}

c
≈ {Γ(ViewA[Sen(1n, (Un0 , U

n
1)),A(1n)], Ūn)}where

Γ(v, ∗) is set to (v, ∗) if following the execution A outputs a good defense for π, and ⊥ otherwise, b
is the Rec’s input in this defense and Un0 , U

n
1 , Ū

n are independent random variables uniformly dis-
tributed over {0, 1}n. This property is referred to as defensibly private with respect to a corrupted
receiver.

In our construction from Section 3, we will rely on an OT protocol that is receiver private and defensibly
private with respect to a corrupted receiver. In [HIK+11], Haitner et al. showed how to transform any semi-
honest bit OT to one that is defensibly private with respect to a corrupted receiver and malicious secure with
respect to a corrupted sender. More formally, the following Lemma is implicit in the work of [HIK+11].

Lemma 2.1 (Implicit in Theorem 4.1 and Corollary 5.3 [HIK+11]). Assume the existence of a semi-honest
oblivious transfer protocol π. Then there exists an oblivious transfer protocol π̂ that is defensible-private

11

with respect to the receiver and receiver private that relies on the underlying primitive in a black-box
manner.

Now, since receiver privacy is implied by malicious security with respect to a corrupted sender, this
transformation yields a bit OT protocol with the required security guarantees. Nevertheless, our protocol
crucially relies on the fact that the underlying OT is a string OT protocol. We therefore show in Appendix A
how to transform any bit OT to a string OT protocol while preserving both defensible private with respect to
a maliciously corrupted receiver and receiver privacy.

2.4 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself to a value while
keeping it secret from the receiver (this property is called hiding). Furthermore, in a later stage when the
commitment is opened, it is guaranteed that the “opening” can yield only a single value determined in the
committing phase (this property is called binding). In this work, we consider commitment schemes that
are statistically-binding, namely while the hiding property only holds against computationally bounded
(non-uniform) adversaries, the binding property is required to hold against unbounded adversaries. More
precisely, a pair of PPT machines Com is said to be a commitment scheme if the following two properties
hold.

Computational hiding: For every (expected) PPT machine R∗, it holds that, the following ensembles are
computationally indistinguishable over n ∈ N .

• {viewR∗

Com(v1, z)}n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

• {viewR∗

Com(v2, z)}n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

where viewR∗

Com(v, z) denotes the random variable describing the output of R∗ after receiving a com-
mitment to v using Com.

Statistical binding: Informally, the statistical-binding property asserts that, with overwhelming probability
over the coin-tosses of the receiver R, the transcript of the interaction fully determines the value
committed to by the sender.

We say that a commitment is valid if there exists a unique committed value that a (potentially malicious)
committer can open to successfully. We refer the reader to [Gol01] for more details.

2.5 UC Commitment Schemes

The notion of UC commitments was introduced by Canetti and Fischlin in [CF01]. The formal description
of functionality FCOM is depicted in Figure 2.

2.6 Extractable Commitments

Our result in the static setting requires the notion of (static) extractable UC commitments, which is a weaker
security property than UC commitments in the sense that it does not require equivocality. Namely, the
simulator is not required to commit to one message and then later convince the receiver that it commit-
ted to a different value. It is a real challenge to define this notion since it is hard to capture the notion
of extractability in the ideal setting. In what follows, we recall the definition for the ideal functionality
FEXTCOM from [MPR10]. To the best of our knowledge, this is the only definition that captures straight-
line extractability, statistically binding and computationally (stand-alone) hiding. Towards introducing this
definition, Maji et al. introduced some notions first. More concretely,

12

Functionality FCOM

Functionality FCOM communicates with with sender Sen and receiver Rec, and adversary S.

1. Upon receiving input (commit, sid,m) from Sen where m ∈ {0, 1}t, internally record (sid,m)
and send message (sid, Sen,Rec) to the adversary. Upon receiving approve from the adversary
send sid, to Rec. Ignore subsequent (commit, ., ., .) messages.

2. Upon receiving (reveal, sid) from Sen, where a tuple (sid,m) is recorded, send message m to
adversary S and Rec. Otherwise, ignore.

Figure 2: The string commitment functionality.

Definition 2.7. A protocol is a syntactic commitment protocol if:

• It is a two phase protocol between a sender and a receiver (using only plain communication channels).

• At the end of the first phase (commitment phase), the sender and the receiver output a transcript trans.
Furthermore, the sender receives an output (which will be used for opening the commitment).

• In the decommitment phase the sender sends a message γ to the receiver, who extracts an output value
opening(trans, γ) ∈ {0, 1}n ∪ {⊥}.

Definition 2.8. Two syntactic commitment protocols (ωL, ωR) form a pair of complementary statistically
binding commitment protocols if the following hold:

• ωR is a statistically binding commitment scheme (with stand-alone security).

• In ωL, at the end of the commitment phase the receiver outputs a string z ∈ {0, 1}n. If the receiver is
honest, it is only with negligible probability that there exists γ such that opening(trans, γ) 6= ⊥ and
opening(trans, γ) 6= z.

As noted in [MPR10], ωL by itself is not an interesting cryptographic goal, as the sender can simply send
the committed string in the clear during the commitment phase. Nevertheless, in defining FEXTCOM below,
there exists a single protocol that satisfies both the security guarantees. We are now ready to introduce the
notion of extractable commitments in Figure 3 that is parameterized by (ωL, ωR). We additionally include
a function pp that will be used as an initialization phase to set up the public-parameters for ωL and ωR.

In Appendix 2.6.1 we show how to realize FEXTCOM based on IND-CPA secure PKE.

2.6.1 Extractable Commitments from PKE in the CRS model

We briefly discuss how to realize theFEXTCOM functionality in the CRS model. At a high-level, we obtain an
extractable commitment using a IND-CPA PKE. Loosely speaking, the common reference string contains a
public-key that is sampled using the key-generation algorithm. Moreover, the trapdoor for the CRS is the
corresponding secret-key. In the real world, no adversary knows that secret-key and hence it does not know
the corresponding CRS trapdoor. In order to implement extractable commitments, our protocol requires
from the commitment sender to simply encrypt its message m using the public-key that is placed in the
CRS. Decommitment is carried out by asking the sender to provide the randomness used to encrypt m.

13

Functionality FEXTCOM parameterized by (pp, ωL, ωR)

FEXTCOM is running with parties P1, . . . , Pn and an adversary S: Upon receiving a
message (init− commit, sid, ssid, Pi, Pj) from Pi, it first checks if there is a tuple
(public− params, sid, Pi, (pp, sp)). If yes, it sends (init− commit, sid, ssid, Pi, Pj) to Pj . If
not, it runs (pp, sp) ← pp(1n) and sends (init− commit, sid, Pi, pp) to Pi, Pj and S. It stores
(public− params, sid, Pi, (pp, sp)). We denote Pi by the sender and Pj by the receiver in this interaction.
Next, the functionality behaves as follows, depending on which party is corrupted.

• Pi IS HONEST AND Pj IS HONEST.

Commit Phase: Upon receiving (commit, sid, ssid, Pi, Pj ,m) from Pi, it internally simulates a ses-
sion of ωR (simulating both the sender and receiver in ωR), with the sender’s input fixed to m.
It gives (transcript, sid, ssid, trans, γ) to Pi and (receipt, sid, ssid, Pi, Pj , trans) to Pj and S.

Reveal Phase: Upon receiving (decommit, sid, ssid, ·) from the sender, it sends
(decommit, sid, ssid, Pi, Pj , z) to Pj and S.

• Pi IS CORRUPTED AND Pj IS HONEST.

Commit Phase: It runs the commitment ωL with the sender, playing the part of the receiver in ωL,
to obtain (sid, ssid, trans, z). It sends (receipt, sid, ssid, Pi, Pj , trans) to Pj and S.

Reveal Phase: Upon receiving (decommit, sid, ssid, γ) from the sender, if opening(trans, γ) = z,
it sends (decommit, sid, ssid, Pi, Pj , z) to Pj and S. Otherwise ignore.

• Pi IS HONEST AND Pj IS CORRUPT.

Commit Phase: Upon receiving (commit, sid, ssid, Pi, Pj ,m) from Pi, it runs the commitment
phase of ωR with Pj , playing the sender’s role in ωR with m as input. It obtains the output
(trans, γ) at the end of this phase, and sends (transcript, sid, ssid, trans, γ) to Pi.

Reveal Phase: Upon receiving (decommit, sid, ssid) from the sender it sends
(decommit, sid, ssid, Pi, Pj , (γ, z)) to Pj and S.

The functionality does not do anything when both the sender and the receiver are corrupted.

Figure 3: Extractable commitment functionality.

3 Static UC Secure Computation

In this section we prove the feasibility of UC secure computation based on semi-honest OT and extractable
commitments, where the latter can be constructed based on two-round semi-honest OT (see Sections 2.3
and 2.6 for more details). More concretely, we prove how to transform any statically semi-honest secure OT
into one that is secure in the presence of malicious adversaries, giving only black-box access to the underly-
ing semi-honest OT protocol. Our protocol is a variant of the protocol by Lin and Pass from [LP12] (which
in turn is a variant of the protocol of [HIK+11]). In particular, in [LP12], the authors rely on a strong variant
of a commitment scheme known as a CCA-secure commitment in order to achieve extraction. We observe
that it is not required to use the full power of such commitments, or for that matter UC commitments. Specif-
ically, using a weaker primitive that only implies straight-line input extractability enables to solely rely on

14

semi-honest OT. An important weakening in our commitment scheme compared to CCA-secure commit-
ments from [LP12] is that we allow invalid commitments to be made by the adversary. Our construction
obtains a statically UC protocol for any well-formed functionality (see definition in [CLOS02]). Namely,

Theorem 3.1. Assume the existence of static semi-honest oblivious transfer. Then for any multi-party well-
formed functionality F , there exists a protocol that UC realizes F in the presence of static, malicious
adversaries in the FEXTCOM-hybrid model using black-box access to the oblivious transfer protocol.

The proof of Theorem 3.1 follows from combining our UC OT protocol with the [IPS08] protocol. It
seems possible to generalize our theorem to multi-session functionalities. Analogous to [CF01], this will
allow us to extend our corollaries to the Global CRS model by additionally assuming CCA encryption
scheme; we leave this as future work.

3.1 Static UC Oblivious Transfer

In the following, we discuss a secure implementation of the oblivious transfer functionality (see Figure 1)
with static, malicious security in theFEXTCOM-hybrid model (whereFEXTCOM is stated formally in Figure 3).
Our goal in this section is to show that the security of malicious UC OT can be based on UC semi-honest
OT, denoted by πSH

OT, and extractable commitments. Our result is shown in two phases. At first we com-
pile the semi-honest OT protocol πSH

OT into a new protocol with the security properties that are specified in
Section 2.3.2, extending the [HIK+11] transformation into string OT; denote the compiled OT protocol by
π̂OT. This transformation in specified Appendix A. In what follows, we use π̂OT in order to construct a new
protocol πML

OT that is secure in the presence of malicious adversaries.
Our protocol is a variant of first step of the compilation in [CDMW09b] which in turn is based on

the work of [HIK+11]. On a high-level, the compilation in [CDMW09b, HIK+11] shows how to amplify
the security of an oblivious transfer protocol against receiver corruption from semi-honest to malicious.
In comparison, our protocol amplifies the security of an OT protocol that is defensibly private against the
sender and receiver to full security.

Loosely speaking, the parties first run a coin tossing protocol in order to generate the input and ran-
domness for both the receiver and the sender. Using cut-and-choose, which requires to repeat this process
multiple times, we are able to extract these values in the simulation. The parties then run a sequence of
random oblivious transfers using the values generated in the coin tossing phase. Finally, the sender applies
a combiner on the remaining random OT inputs (namely, for the positions that were not opened during the
cut-and-choose opening phase), in order to transfer its real inputs. Details follow,

Protocol 1 (Protocol πML
OT with static security).

Input: The sender Sen has input (v0, v1) where v0, v1 ∈ {0, 1}n and the receiver Rec has input u ∈ {0, 1}.
The protocol:

1. Coin tossing:

• Receiver’s random tape generation: The parties use a coin tossing protocol in order to generate the inputs
and random tapes for the receiver.

– The receiver commits to 20n strings of appropriate length, denoted by a1
Rec, . . . , a

20n
Rec, by sending

FEXTCOM the message (commit, sid, s̃sidi, a
i
Rec) for all i ∈ [n].

– The sender responds with 20n random strings of appropriate length b1Rec, . . . , b
20n
Rec.

– The receiver computes riRec = aiRec ⊕ biRec and then interprets riRec = ci||τ iRec where ci determines
the receiver’s input for the ith OT protocol, whereas τ iRec determines the receiver’s random tape
used for this execution.

15

• Sender’s random tape generation: The parties use a coin tossing protocol in order to generate the inputs
and random tapes for the sender.

– The sender commits to 20n strings of appropriate length, denoted by a1
Sen, . . . , a

20n
Sen , by sending

FEXTCOM the message (commit, sid, s̃sid′i, a
i
Sen) for all i ∈ [n].

– The receiver responds with 20n random strings of appropriate length b1Sen, . . . , b
20n
Sen .

– The sender computes riSen = aiSen ⊕ biSen and then interprets riSen = s0
i ||s1

i ||τ iSen where (s0
i , s

1
i)

determine the sender’s input for the ith OT protocol, whereas τ iSen determines the sender’s random
tape used for this execution.

2. Oblivious transfer:

• The parties participate in 20n executions of the OT protocol π̂OT with the corresponding inputs and
random tapes obtained from Stage 2. Let the output of the receiver in the ith execution be s̃i.

3. Cut-and-choose:

• Sen chooses a random subset qSen = (q1
Sen, . . . , q

n
Sen) ∈ {1, . . . , 20}n and sends it to Rec. The string

qSen is used to define a set of indices ΓSen ⊂ {1, . . . , 20n} of size n by grouping the indices into blocks
of 20 and choosing element qiSen index in the ith block. More formally, ΓSen = {20i − qiSen}i∈[n]. The
receiver then opens the commitments from Stage 1 that correspond to the indices within ΓSen, namely, the
receiver decommits aiRec for all i ∈ ΓSen. Sen checks that the decommitted values are consistent with the
inputs and randomness used for the OTs in Stage 2 by the receiver, and aborts in case of a mismatch.

• Rec chooses a random subset qRec = (q1
Rec, . . . , q

n
Rec) ∈ {1, . . . , 20}n and sends it to Sen. The string

qRec is used to define a set of indices ΓRec ⊂ {1, . . . , 20n} of size n in the following way: ΓRec =
{20i − qiRec}i∈[n]. The sender then opens the commitments from Stage 1 that correspond to the indices
within ΓRec, namely, the sender decommits aiSen for all i ∈ ΓRec. Rec checks that the decommitted values
are consistent with the inputs and randomness used for the OTs in Stage 2 by the sender, and aborts in
case of a mismatch.

• Rec commits to another subset Γ ⊂ [20n] denoted by (Γ1, . . . ,Γn), by sending FEXTCOM the message
(commit, sid, ssid′i,Γ

i) for all i ∈ [n]. (The sender will reveal its inputs and randomness that are used
in Stage 2 that correspond to the indices in Γ later in Stage 5.)

4. Combiner:

• Let ∆ = [20n]− ΓRec − ΓSen. Then for every i ∈ ∆, the receiver computes αi = u⊕ ci and sends it to
the sender.

• The sender computes a 10n-out-of-18n secret sharing of v0, denote the shares by {ρ0
i }i∈∆. Analogously,

it computes a 10n-out-of-18n secret sharing of v1, denote the shares by {ρ1
i }i∈∆. The sender computes

βbi = ρbi ⊕ s
b⊕αi
i for all b ∈ {0, 1} and i ∈ ∆, and sends the outcome to the receiver.

• The receiver computes ρ̃i = βui ⊕ s̃i for all i ∈ ∆. Denote by ρ these concatenated bits.

5. Final cut-and-choose:

• The receiver decommits Γ and the sender sends the inputs and randomness it used in Stage 2 for the
coordinates that correspond to ∆ ∩ Γ. (Note that the sender needs only reveal the indices that were
not decommitted in Stage 3). Rec checks that the sender’s values are consistent with the inputs and
randomness used for the OTs in Stage 2 and the combiner computation in Stage 4 made by the sender,
and aborts in case of a mismatch.

• The receiver checks whether (ρ̃i)i∈∆ agrees with some codeword w ∈ W18n,10n on 17n locations (where
the codeW18n,10n is induced by the secret sharing construction that we use in Stage 4; see Definition 2.2
for more details). Recall that the minimum distance of the codeW18n,10n is at least 18n − 10n > 8n,
which implies that there will be at most one such codeword w. Furthermore, since we can correct up to
18n−10n

2 = 4n errors, any code that is 17n close to a codeword can be efficiently recovered using the
Berlekamp-Welch algorithm. The receiver outputs that w as its output in the OT protocol. If no such w
exists, the receiver returns a default value.

16

We next prove the following theorem.

Theorem 3.2. Assume that that the compiled π̂OT is defensible-private (cf. Definition 2.6). Then Protocol 1
UC realizes FOT in the presence of static malicious adversaries in the FEXTCOM-hybrid model using black-
box access to the oblivious transfer protocol.

We recall Lemma 2.1 and Appendix A that demonstrate the transformation from semi-honest OT to
defensible private string OT. Specifically, our protocol relies on the existence of semi-honest OT and ex-
tractable commitments, where the later can be constructed based on any two-round semi-honest OT, e.g.,
[EGL85], which implies PKE (see Sections 2.3 and 2.6 for more details). Therefore, an immediate corollary
from Theorem 3.2 implies that,

Corollary 3.3. Assume the existence of two-round static semi-honest oblivious transfer. Then there exists a
protocol that securely realizes FOT in the presence of static malicious adversaries in the CRS model using
black-box access to the oblivious transfer protocol.

A high level proof. We first provide an overview of the security proof; the complete proof is found in
Section 3.2. Loosely speaking, in case the receiver is corrupted the simulator plays the role of the honest
sender in Stages 1-3 and extracts the receiver’s input u. Specifically, the simulator extracts all the committed
values of the receiver within Stage 1 (relying on the fact that the commitment scheme is extractable), and
then uses these values in order to obtain the inputs for the OT executions in Stage 2. Upon completing
Stage 2, the simulator records the coordinates for which the receiver deviates from the prescribed input and
random tape chosen in the coin tossing phase. Denoting these set of coordinates by Φ, we recall that a
malicious receiver may obtain both of the sender’s inputs with respect to the OT executions that correspond
to the coordinates within Φ and Γ. On the other hand, it obtains only one of the two inputs with respect to the
rest of the OT executions that correspond to the coordinates within ∆−Φ−Γ. Consequently, the simulator
checks how many shares of v0 and v1 are obtained by the receiver and completes Stage 4 accordingly. In
more details,

• If the receiver obtains more than 10n shares of both inputs then the simulator halts and outputs fail
(we prove in Section 3.2 that this event only occurs with negligible probability).

• If the receiver obtains less than 10n shares of both inputs then the simulator picks two random values
for v0 and v1 of the appropriate length and completes the interaction, playing the role of the honest
sender on these values. Note that in this case the simulator does not need to call the ideal functionality.

• Finally, if the receiver obtains more than 10n shares for only one input u ∈ {0, 1}, then the simulator
sends u to the ideal functionality FOT and obtains vu. The simulator then sets v1−u as a random string
of the appropriate length and completes the interaction by playing the role of the honest sender on
these values.

Recall that the only difference between the simulation and the real execution is in the way the messages in
Stage 4 are generated. Specifically, in the simulation a value u is extracted from the malicious receiver and
then fed to the FOT functionality. The simulation is then completed based on the output returned from the
functionality. Intuitively, the cut-and-choose mechanism ensures that the receiver cannot deviate from the
honest strategy in Stage 2 in more than nOT sessions without getting caught with overwhelming probability.
Moreover, the defensible privacy of the OT protocol implies that the receiver can learn at most one of the
two inputs of the sender relative to the OT executions in Stage 2 for which the receiver proceeded honestly.

In case the sender is corrupted, the simulator’s strategy is to play the role of the honest receiver with a
fixed input 0 until Stage 5 where the simulator extracts the sender’s inputs. More specifically, the simulator

17

first extracts the sender’s input for the OT executions in Stage 1 (relying on the fact that the commitment
scheme is extractable). Next, the simulator extracts the shares {ρ0

i }i∈∆ and {ρ1
i }i∈∆ that correspond to

inputs v0 and v1. To obtain the actual values the simulator checks if these shares agree with some codeword
relative to 16n locations. That is,

• Let w0 and w1 denote the corresponding codewords (if there are no such codewords that agree with
with v0 and v1 on 16n locations then the simulator uses a default codeword instead). Next, the simu-
lator checks w0 and w1 against the final cut-and-choose. If any of the shares from wb are inconsistent
with the opened shares that are opened by the sender in the final cut-and-choose, then vb is set to a
default value, otherwise vb is the value corresponding to the shared secret.

Finally, the simulator sends (v0, v1) to the ideal functionality for FOT. Security in this case is reduced to
the privacy of the OT receiver. In addition, the difference between the simulation’s strategy and the honest
receiver’s strategy is that the simulator extracts the sender’s both inputs in all i ∈ ∆ − Φ and then finds
codewords that are 16n-close to the extracted values, whereas the honest receiver finds a codeword that is
17n-close based on the inputs it received in the Stages 2 and 5, and returns it. We thus prove that the value
u extracted by the simulator is identical the to the reconstructed output of the honest receiver relying on the
properties of the secret sharing scheme.

3.2 Proof of Theorem 3.2

LetA be a malicious probabilistic polynomial-time real adversary running protocol 1 in theFEXTCOM-hybrid
model. We construct an ideal model adversary S with access to FOT which simulates a real execution of
protocol πML

OT with A such that no environment Z can distinguish the ideal process with S and FOT from a
real execution of πML

OT withA. S starts by invoking a copy ofA and running a simulated interaction ofAwith
environment Z , emulating the honest party. We separately describe the actions of S for every corruption
case.

Simulating the communication with Z: Every message that S receives from Z it internally feeds to A
and every output written by A is relayed back to Z .

Simulating the corrupted receiver: In this case S proceeds as follows:

1. S emulates functionality FEXTCOM in Stage 1 and invokes 20n times the commitment scheme ωL with
A (that plays the role of the committer), obtaining ((t̃rans1, a

1
Rec), . . . , (˜trans20n, a

20n
Rec)). It internally

records a1
Rec, . . . , a

20n
Rec and further picks 20n random strings b1Rec, . . . , b

20n
Rec, forwarding them to the

adversary. The simulator also computes riRec = aiRec ⊕ biRec and then views riRec = ci||τ iRec where
ci is the input an honest receiver must use in the ith OT protocol execution in Stage 2, together with
randomness τ iRec.

Next, the simulator picks 20n random strings a1
Sen, . . . , a

20n
Sen and emulates the ideal functionality

FEXTCOM by invoking 20n times the commitment phase of ωR with inputs a1
Sen, . . . , a

20n
Sen , against

A that plays the role of receiver for the commitment scheme. At the end of this phase S obtains
the output ((t̃rans′1, γ1), . . . , (˜trans′20n, γ20n)) and receives from the adversary 20n random strings
b1Sen, . . . , b

20n
Sen .

2. In Stage 2 the simulator participates with the adversary in 20n executions of the OT protocol π̂OT,
while playing the role of the honest sender. Note that due to the fact that the simulator knows the
values of the input and randomness that the honest receiver must use in each of the OT executions,
the simulator can identify the coordinates of which the receiver deviates, in which case the receiver
learns both the inputs of the sender. We denote this set of coordinates by the set Φ.

18

3. In Stage 3 the simulator picks n random numbers (q1
Sen, . . . , q

n
Sen) from {1, . . . , 20}n and sends them

to the receiver. Upon receiving the decommitments from the receiver, the simulator verifies the de-
commitments as would the honest sender do with respect to ΓSen and halts in case of a mismatch,
outputting the simulated transcript thus far. Next, it receives (q1

Rec, . . . , q
n
Rec) from the receiver

and decommits the subset of values that corresponds to the coordinates in ΓRec as determined by
(q1

Rec, . . . , q
n
Rec), playing the role of the sender. Finally, it emulates functionality FEXTCOM and in-

vokes the commitment scheme ωL with A (that plays the role of the committer) n times, obtaining
((trans′1,Γ1), . . . , (trans′20n,Γ20n)). Let ∆ = [20n]− ΓRec − ΓSen.

4. In Stage 4 the simulator proceeds as follows. Observe first that Φ and ΓSen are disjoint, since otherwise
the simulator would have halted in the previous stage. We consider three cases here:

(a) Φ ≥ n: In this case the simulator halts and outputs fail.

(b) Φ < n: This implies that ∆−Φ−Γ > 16n where by definition, the malicious receiver proceeds
according to the honest OT receiver’s strategy with respect to every coordinate in ∆ − Φ − Γ.
Note that in this case the adversary learns at most ∆+2Φ+2Γ < 20n distinct shares of both the
sender’s inputs and the simulator knows precisely which share is learned for every coordinate
relative to the set ∆− Φ− Γ. We consider two subcases:

i. There exists a bit u ∈ {0, 1} for which the adversary learns 10n shares of vu. We recall that
the adversary might learn both shares for the OT executions that correspond to the coordi-
nates within the set Φ∪Γ, and exactly one share for every OT execution that corresponds to
the coordinates within ∆− Φ− Γ. Now, since the simulator knows which share is learned
for every coordinate within ∆−Φ−Γ, it can also compute an upper bound on the number of
vu shares that are obtained by the receiver. In this case the simulator forwards u to the ideal
functionality FOT and receives back vu. The simulator then sets v1−u as a random string of
the appropriate length and completes the interaction by playing the role of the honest sender
on these inputs.

ii. There does not exist a bit u ∈ {0, 1} for which the adversary learns 10n shares of vu. In
this case the simulator picks two random values for v0 and v1 of the appropriate length and
completes the interaction, playing the role of the honest sender on these values. Note that
in this case the simulator does not call the ideal functionality FOT.

5. The simulator completes the simulation in Stage 5 similarly to Stage 3.

Note that the only difference between the simulation and the real execution is in the way the messages
in Stage 4 are generated. In the simulation, a value u is extracted from the malicious receiver and then fed to
theFOT functionality, where the simulation is completed based on the output returned from the functionality.
Furthermore, we recall that in Stage 5 the receiver learns both of the sender’s inputs in all sessions i ∈ Γ,
then it holds that the receiver learns one such input for every session it behaved honestly and two inputs for
all sessions it deviates or included in Γ. Proving that the adversary deviates in more than n OT executions
only happens with negligible probability, implies that it learns less than 20n shares in total. Therefore, at
least one of the shared secrets is completely hidden due to the 10n-out-of-18n secret sharing scheme. To
complete the simulation, the simulator identifies which of the two values v0 and v1 is learnt by the receiver
(by identifying how many shares are obtained by that party) and fixes that to be the receiver’s input. Finally,
indistinguishability follows from the defensible privacy with respect to the receiver of the OT protocol.

More formally, we begin with a proof that the probability that the simulator returns fail is negligible and
then neglect this event. Namely, we prove that the simulated and real views are computationally indistin-
guishable conditioned on the even that the simulator did not output fail.

19

Claim 3.1. The probability S return fail is negligible.

Proof: Note first that the only place where the simulator fails is in Step 4a, when φ ≥ n. We now show that
this event occurs with negligible probability. In other words, we need to show that the probability that the
corrupted receiver deviates from the honest receiver’s strategy in at least n-out-of-18n OT executions while
not getting caught by the sender is negligible. Formally, let Bad denote the event for which the corrupted
receiver deviates in at least n coordinates. Note first that the simulator can easily identify when event Bad
occurs since it knows the random tapes and the inputs the receiver must use in all executions, and can
therefore identify the coordinates for which the receiver deviates. Next, we show that conditioned on event
Bad occurring, the probability that ΓSen does not contain one of the n deviated coordinates is negligible.
This implies that the probability that S returns fail is negligible.

Denote by Φ the set of n coordinates in which the receiver deviates and define the binsAj = {20(j−1)+
1, . . . , 20j} for all j ∈ [n]. By the pigeon-hole principle it holds that at least bn/20c bins intersect with Φ. In
addition, we recall that ΓSen is chosen by the simulator by picking one element from each bin independently
of Φ and uniformly at random. Then the probability that ΓSen ∩ Φ = ∅ is at most (19/20)bn/20c which is
negligible in n. This concludes the proof of the Claim. �

Next, we prove that the receiver’s view for both executions is computationally indistinguishable assum-
ing that the simulator did not abort the execution. More formally, denoting the simulated execution by
πIDEAL, then we prove the following statement,

Claim 3.2. The following two distribution ensembles are computationally indistinguishable,{
ViewFEXTCOM

πML
OT ,A,Z

(n)
}
n∈N

c
≈
{

ViewFOT
πIDEAL,S,Z(n)

}
n∈N.

Proof: The security argument proceeds in a sequence of hybrids games starting from the simulated execu-
tion towards the real execution. We denote by πHYBRIDi the receiver’s view in the ith hybrid game.

Hybrid 1: In this game we define a simulator S1 that is identical to S except for the way the sender’s
message is generated in Stage 4. More precisely, the simulator modifies the way β1⊕u

i is computed
for all i ∈ ∆− Γ− Φ. Recall first that S sets

β1⊕u
i = ρ1⊕u

i ⊕ s(1⊕u)⊕αi

i = ρ1⊕u
i ⊕ s1⊕ci

i .

Instead, S1 will choose β1⊕u
i at random, which can be viewed as using a masking element that is

independent of s1⊕ci
i . Intuitively, we claim that the simulated view and the view generated in hybrid

1 are computationally indistinguishable because for every i ∈ ∆ − Γ − Φ the receiver generates the
OT messages in session i of Stage 2 honestly (i.e. using the input ci and random tape τ iRec), where by
the defensible privacy of the receiver it cannot distinguish the input s1⊕ci

i from a random input.

Proof Intuition. THe goal in this hybrid is the remove the real input from the receiver. The idea is
that in all parallel OT executions where the sender does not cheat, by the defensible privacy, the sender
should not be able to identify the receiver’s input. The specific executions can be identified by the set
∆−Γ−Φ. In order to carry of the security reduction we need to reduce a cheating sender to a sender
that violates the defensible privacy of the underlying OT protocol. In the main sequence of hybrids
H1

1 , H
2
1 , . . .we change the inputs of the receiver in the executions corresponding to ∆−Γ−Φ one at a

time. To argue indistinguishability between the ith and i+1st hybrids, we need to do two things. First
need to decouple the receiver’s actions in these execution (that are simulated) from the coin-tossing
stage. We can rely on the hiding of the commitment for this, however, to carry out this reduction we
need to guess which is the ith index in ∆ − Γ − Φ. Towards this we consider a variant of the hybrid
H̄ i
e and H̄ i+1

e where we make a guess and isolate the indistinguishability on the guessed coordinate.

20

Next, we consider a nested hybrid H̃ i
1 and H̃ i+1

1 where we rely on the hiding of the commitment
scheme by setting the receivers commitments to 0 in the coin tossing stage. Formally, we prove this
in the following claim.

Claim 3.3. The following two distribution ensembles are computationally indistinguishable,{
ViewFOT

πIDEAL,S,Z(n)
}
n∈N ≡

{
ViewFOT

πHYBRID1
,S1,Z(n)

}
n∈N.

Proof: Towards proving this claim, we introduce a sequence of intermediate hybrid experiments He
1

for e = 0, . . . , 18n, where in hybridHe
1 we consider a simulator Se1 that proceeds identically to S with

the exception that it follows S1’s strategy for the first e indices in ∆−Γ−Φ regarding the generation
of β1⊕u

i (i.e. for the first e sessions where the receiver proceeded honestly). By definition we have that
experiment H0

1 proceeds identically to the ideal simulation and H18n
1 proceeds identically to hybrid

1. Denote the view output in hybrid He
1 by hybe(n) and assume by contradiction that there exist an

adversaryA (controlled by Z), a distinguisherD, a polynomial p(·) and infinitely many n’s such that,∣∣∣Pr[D(ViewFOT
πIDEAL,S,Z(n)) = 1]− Pr[D(ViewFOT

πHYBRID1
,S,Z(n)) = 1]

∣∣∣ ≥ 1

p(n)
.

Using a standard hybrid argument it follows that there exists an e ∈ [18n] such that,∣∣∣Pr[D(hybe(n)) = 1]− Pr[D(hybe−1(n)) = 1]
∣∣∣ ≥ 1

18np(n)
.

Next, we plan to exploit the above observation in order to construct a defensible adversary A′ that
violates the receiver’s defensible privacy relative to π̂OT in the sense of Definition 2.6. At a high-level
A′ picks a random j ∈ [20n] and externally forwards A’s messages within the jth execution of the
OT protocol, where j serves as the guess for the eth execution in ∆ − Γ − Φ. A′ then emulates the
rest of the OT executions, playing the role of the sender. In order to simplify the analysis and allow
A′ carry out the reduction properly (where the generated randomness within the coin-tossing phase is
disassociated from the OT executions) we consider the following additional hybrid executions.

First, we consider a slight variation of He−1
i (resp., He

i) denoted by He−1 (resp., He), and a random
variable J that denotes a randomly chosen index from [20n] which is picked at the onset of the
hybrid execution. Moreover, the experiment is aborted if chosen index does not correspond to the eth

execution in ∆− Γ− Φ. We say that index J is Bad if the experiment aborts. Note that experiments
He−1 and He proceed identically to He−1 and He, respectively, conditioned on J not being Bad.
This is due to the fact that J is chosen independently of the experiments. Moreover, relying on the
fact that the eth execution can take at most 20n values we have that,

Pr[J is not Bad] =
1

20n
.

Therefore, if hybe−1(n) and hybe(n) respectively correspond to A’s views in He−1 and He, then

Pr[D(hybe(n)) = 1] = Pr[D(hybe(n)) = 1 ∧ J not Bad] + Pr[D(hybe(n)) = 1 ∧ J is Bad]

=

(
1

20n

)
Pr[D(hybe(n)) = 1 | J not Bad] +

(
1− 1

20n

)
Pr[D(hybe(n)) = 1 | J is Bad]

=

(
1

20n

)
Pr[D(hybe(n)) = 1] +

(
1− 1

20n

)
Pr[D(⊥) = 1].

21

Similarly,

Pr[D(hybe−1(n)) = 1] =

(
1

20n

)
Pr[D(hybe−1(n)) = 1] +

(
1− 1

20n

)
Pr[D(⊥) = 1].

Therefore,∣∣∣Pr[D(hybe(n)) = 1]− Pr[D(hybe−1(n)) = 1]
∣∣∣

=

(
1

20n

) ∣∣∣Pr[D(hybe(n)) = 1]− Pr[D(hybe−1(n)) = 1]
∣∣∣

≥
(

1

20n

)
1

18np(n)
. (1)

Before we provide the description of A′, we consider our second modification and define hybrids
H̃e−1 and H̃e as follows. Namely, in these new experiments we slightly modify the sender’s messages
in the coin-tossing phase and ask the sender to commit to the all zeros string of appropriate length
instead of committing to a uniform string ajSen. Recalling that ajSen and bjSen determine the sender’s
input in the jth execution of the OT protocol, we instruct the sender to commit to 0 so that A′ can
forward the jth’s execution messages to an external OT sender in the reduction described next. More
precisely, H̃e−1 (resp., H̃e) follows exactly asHe−1 (resp.,He) with the exception that we modify the
honest sender’s message in the coin-tossing stage, where it commits to the all zeros string instead of
aJSen. Observe that this change does not affect the cut-and-choose phase where the sender is required
to reveal randomness for indices in ΓRec because if J ∈ ΓRec ∧ Γ then the experiment is aborted by
definition. Denote by the random variables h̃ybe(n) and h̃ybe−1(n) the views of adversaryA in H̃e−1

and H̃e, respectively. Then from the computational hiding property of ωL the commitment scheme
used in the coin-tossing stage it follows that there exists a negligible function ν(·) such that for all
sufficiently large n’s,9 ∣∣∣Pr[D(hybe(n)) = 1]− Pr[D(h̃ybe(n)) = 1]

∣∣∣ ≤ ν(n) (2)∣∣∣Pr[D(hybe−1(n)) = 1]− Pr[D(h̃ybe−1(n)) = 1]
∣∣∣ ≤ ν(n) . (3)

Using Equation 1 we obtain that for all sufficiently large n’s,∣∣∣Pr[D(h̃ybe(n)) = 1]− Pr[D(h̃ybe−1(n)) = 1]
∣∣∣ ≥ 1

(18n)20np(n)
− 2ν(n) ≥ 1

q(n)
(4)

where q(·) is the polynomial 2 × 18(20n)np(n). Fix an n such that this happens. We now show
how to define A′ and distinguisher D′ that violate the defensible private with respect to a corrupted
receiver in πML

OT . More specifically,A′ internally emulates experiment H̃e−1
1 by running the simulation

strategy of Se−1
1 with the malicious receiver A. Let (cJ , τ

J
Rec) denote the input and randomness that

the honest receiver is supposed to use in the internal J th execution. Recall that this is determined by
aJRec ⊕ bJRec and is known to the simulator, as it extracts the adversary’s commitments. Next A′ plays
the role of the sender in the executions of π̂OT with the exception that it externally relays the messages
of the adversary (acting as the receiver) in the J th execution of the oblivious transfer protocol from
Stage 2. Following the oblivious transfer executions,A′ continues the internal emulation until the end

9We remark here that we rely on the security of the commitment scheme ωL against receivers with auxiliary input as in Sec-
tion 2.4.

22

of Stage 3. If the experiment aborts in the internal emulation (where this happens if J is Bad) then
A′ aborts. Otherwise, there is a good defense for the receiver in the J th execution, namely (cJ , τ

J
Rec).

Let STATE be the complete view of experiment H̃e−1 which includes the input and random tape of
A and the simulator (playing the sender), as well as the partial transcript of the messages exchanged
with A until Stage 3. A′ outputs (cJ , τ

J
Rec) as its defense and STATE as its output.

Upon receiving (view, s), where view is A′’s view and s is a string (as specified in Definition 2.6),
distinguisher D′ proceeds as follows. It first extracts state STATE from the view and then completes
the internal emulation of the experiment by playing the role of the sender in Stages 4 and 5. We
note that D′ has all the information it needs as part of STATE to complete the execution, except for
the sender’s inputs (s0

J , s
1
J) that are required to compute β0

J and β1
J in Stage 4. Note also that the

distinguisher can use A′’s valid defense (cJ , τ
J
Rec) to compute one of the two sender’s inputs, namely

scJJ . For the other input, D′ uses s, i.e. it sets s1⊕cJ
J = s and completes the experiment using these

inputs. Finally, D′ invokes D on A’s view and outputs whatever D outputs. It follows from the
construction that the view on which D is invoked is distributed identically to A’s view in h̃ybe−1(n)

if s is the sender’s other input, namely, s1⊕cJ
J . On the other hand, if s is a random string then the view

is distributed identically to h̃ybe(n).

D′(Γ(ViewA[Sen(1n, (Un0 , U
n
1)),A(1n)], Un1−b)) = D(h̃ybe−1(n))

and
D′(Γ(ViewA[Sen(1n, (Un0 , U

n
1)),A(1n)], Ūn)) = D(h̃ybe(n))

where Γ(v, ∗) = (v, ∗) if v contains a valid defense for A′. From Equation 4, it follows that the
difference is non-negligible and thatA′ and D′ contradict the defensible privacy of protocol π̂OT with
respect to a corrupted receiver. This concludes the proof of the claim. �

Hybrid 2: In this hybrid game there is no trusted party that computes functionality FOT. Instead, we define
a simulator S2 that is given the sender’s real inputs v0 and v1. Furthermore, S2 uses these inputs in
Stage 5 of the execution. Then we claim that the receiver’s view in Hybrids 1 and 2 is statistically
close because the probability that the receiver learns more than 10n shares for both u = 0 and u = 1
is negligible. More formally,

Claim 3.4. The following two distribution ensembles are statistically indistinguishable,{
ViewFOT

πHYBRID1
,S1,Z(n)

}
n∈N

s
≈
{

ViewFEXTCOM
πHYBRID2

,S2,Z(n)
}
n∈N.

Proof: This follows from the facts that |∆| = 18n, |Γ| = n and |Φ| ≤ n with overwhelming
probability (relying on the proof of Claim 3.2), and that the masking values that are used in Stage 5
are independent of the input to the OT executions in Stage 4. Specifically, the overall number of shares
that the receiver learns is bounded by |∆− Γ−Φ|+ 2|Γ|+ 2|Φ| ≤ 20n, where the rest of the shares
are perfectly hidden (as their masking strings are not used elsewhere in the protocol). �

Hybrid 3: In this game we define a simulator S3 that is identical to S2 except for the way the sender’s
message is generated in Stage 4. More precisely, for all i ∈ ∆ − Γ − Φ it modifies the way β1⊕u

i is
computed. Recalling that S2 sets it to be random, then S3 will instead set

β1⊕u
i = ρ1⊕u

i ⊕ s1⊕ci
i .

Indistinguishability of hybrids 2 and 3 follows using the same proof as in Claim 3.3. Therefore, we
have that the following ensembles are computationally indistinguishable.{

ViewFOT
πHYBRID2

,S2,Z(n)
}
n∈N

c
≈
{

ViewFEXTCOM
πHYBRID3

,S3,Z(n)
}
n∈N.

23

Observe that hybrid 3 is identical to the real execution. This concludes the proof of Claim 3.2. �

Simulating the corrupted sender: In this case S proceeds as follows:

1. S picks 20n random strings a1
Rec, . . . , a

20n
Rec and emulates the ideal functionality FEXTCOM by in-

voking 20n times the commitment phase of ωR with inputs a1
Rec, . . . , a

20n
Rec, against A that plays

the role of receiver for the commitment scheme. At the end of this phase S obtains the output
((t̃rans1, γ1), . . . , (˜trans20n, γ20n)) and receives from the adversary 20n random strings b1Rec, . . . , b

20n
Rec.

Next, S emulates functionality FEXTCOM in Stage 1 and invokes 20n times the commitment scheme
ωL with A (that plays the role of the committer), obtaining ((t̃rans′1, a

1
Sen), . . . , (˜trans′20n, a

20n
Sen)).

It internally records a1
Sen, . . . , a

20n
Sen and further picks 20n random strings b1Sen, . . . , b

20n
Sen , forwarding

them to the adversary. The simulator also computes riSen = aiSen ⊕ biSen and then views riSen =
s0
i ||s1

i ||τ iSen (s0
i , s

1
i) is the input an honest sender must use in the ith OT protocol execution in Stage 3,

together with randomness τ iSen.

2. In Stage 2 the simulator participates with the adversary in 20n executions of the OT protocol π̂OT,
while playing the role of the honest receiver. Note that due to the fact that the simulator knows the
values of the input and randomness that the honest sender must use in each of the OT executions, the
simulator can identify the coordinates of which the sender deviates. We denote this set of coordinates
by the set Φ.

3. In Stage 3 S receives (q1
Sen, . . . , q

n
Sen) from the sender and decommits the subset of values that corre-

sponds to the coordinates in ΓSen as determined by (q1
Sen, . . . , q

n
Sen), playing the role of the receiver.

Next, the simulator picks n random numbers (q1
Rec, . . . , q

n
Rec) from {1, . . . , 20}n and sends them to

the sender. Upon receiving the decommitments from the sender, the simulator verifies the decom-
mitments as would the honest receiver do with respect to (q1

Rec, . . . , q
n
Rec) and halts in case of a

mismatch, outputting the simulated transcript thus far. Finally, it samples a subset Γ from [20n] of
size n and emulates functionality FEXTCOM by invoking the commitment scheme ωR with A (that
plays the role of the receiver) n times on input Γ, obtaining ((trans′1, γ1), . . . , (trans′20n, γ20n)). Let
∆ = [20n]− ΓRec − ΓSen − Φ.

4. In Stage 4 the simulator proceeds as the honest receiver would do with input u = 0 and extracts the
sender’s inputs v0, v1. Specifically, the simulator knows all the inputs {(s0

i , s
1
i)}i∈∆ of the sender to

the OT executions in Stage 2 and extracts the two sets of shares {ρ0
i }i∈∆ and {ρ1

i }i∈∆.

5. In Stage 5 the simulator plays the role of the honest receiver and checks whether the inputs and
randomness revealed by the sender are consistent with the OT session that correspond to ∆ ∩ Γ. In
case of a mismatch the simulator halts, outputting the simulated transcript thus far. Next, the simulator
checks that ρ̃0 and ρ̃1 agree with some respective codewords w0 and w1 on 16n locations. In case of
a non-agreement the simulator records a default value, else it records the codewords w0 and w1. It
then runs a second consistency check to verify whether these codewords agree with βuj ⊕s

u⊕αj

j for all
coordinates j ∈ Γ. If not, it records a default value. Finally, the simulator sends the recorded values
to FOT.

We next prove the following,

Claim 3.5. The following two distribution ensembles are computationally indistinguishable,{
ViewFEXTCOM

πML
OT ,A,Z

(n)
}
n∈N

c
≈
{

ViewFOT
πIDEAL,S,Z(n)

}
n∈N.

24

Proof: The security argument proceeds in a sequence of hybrid games starting from the simulated execution
towards the real execution. We denote by πHYBRIDi the receiver’s view in the ith hybrid game.

Hybrid 1: In this hybrid game there is no trusted party that computes functionality FOT. Instead, we define
a simulator S1 that is given the receiver’s real input u and proceeds identically as S except for the way
it generates the receiver’s message in Stage 4. More precisely, S1 uses the real input u instead of 0 in
order to compute αi for all i ∈ ∆− Φ. Indistinguishability of the simulation from the view in hybrid
1 follows from the receiver privacy of the OT protocol.

We follow an approach similar to the proof of Claim 3.3 where we consider a sequence of hybrids
H1

1 , H
2
1 , . . . where we replace the sender’s input in the executions in the parallel OT executions where

the receiver proceeded honestly. Then we decouple actions of the sender from the coin-tossing stage
by considering nested hybrids. Finally, we need an additional step where after replacing the sender’s
input from the executions in ∆− Φ we rely on the secret sharing scheme to conclude that one of the
two sender’s inputs has been removed.

More formally, we prove the following claim.

Claim 3.6. The following two distribution ensembles are computationally indistinguishable,{
ViewFOT

πIDEAL,S,Z(n)
}
n∈N

c
≈
{

ViewFOT
πHYBRID1

,S1,Z(n)
}
n∈N.

Proof: Recall that the only difference between hybrid 1 and the simulated view is in the way that
the messages in Stage 4 are generated. Specifically, in the simulated view S uses u = 0 in all
sessions to compute αi. On the other hand, in game hybrid 1 the receiver uses the real u. Clearly, if
the real input equals 0 then the views are identical and the proof of the claim follows immediately.
Therefore, it suffices to consider the case u = 1. Towards proving this claim, we introduce a sequence
of intermediate hybrid experiments He

1 for e = 0, . . . , 20n. Namely, in hybrid He
1 we consider a

simulator Se that proceeds identically to S with the exception that it uses u = 1 in the first e sessions
in ∆ in order to compute αi. By construction we have that the experiment H0

1 proceeds identically
to the ideal simulation and H20n

1 proceeds identically to hybrid 1. Denote the view output in hybrid
He

1 by hybe(n) and assume by contradiction that there exist a distinguisher D, a polynomial p(·) and
infinitely many n’s such that

|Pr[D(ViewFOT
πIDEAL,S,Z(n)) = 1]− Pr[D(ViewFOT

πHYBRID1
,S1,Z(n)) = 1]| ≥ 1

p(n)
.

Using a standard hybrid argument, it follows that there exists an e ∈ {1, . . . , 20n} such that

|Pr[D(hybe(n)) = 1]− Pr[D(hybe−1(n)) = 1]| ≥ 1

20np(n)
.

As in the proof of Claim 3.3, we consider experiments He−1 and He where the simulator samples
a random J ∈ [3n + 1] and aborts if J is not the eth session in ∆. Next, we consider modified
hybrids H̃e−1 and H̃e, where we slightly modify the receiver’s messages in the coin-tossing phase
and ask the receiver to commit to the all zeros string of appropriate length instead of committing to a
uniform string aJRec. Recalling that aJRec and bJRec determine the receiver’s input in the J th execution
of the OT protocol, we instruct the receiver to commit to 0 so that in the reduction we explain next
we can forward the J th’s execution messages to an external OT receiver in the reduction described
next. More precisely, H̃e−1 (resp., H̃e) follows exactly as He−1 (resp., He) with the exception that,
we modify the honest receiver’s message in the coin-tossing stage, where it commits to the all zeros

25

string instead of ajRec. Denote by the random variables h̃ybe(n) and h̃ybe−1(n) the views of adversary
A in H̃e−1 and H̃e, respectively. Then following the same proof as in Claim 3.3, we can conclude that
there exists a polynomial q(·) such that∣∣∣Pr[D(h̃ybe(n)) = 1]− Pr[D(h̃ybe−1(n)) = 1]

∣∣∣ ≥ 1

q(n)
(5)

Without loss of generality, assume that

Pr[D(h̃ybe(n)) = 1]− Pr[D(h̃ybe−1(n)) = 1] ≥ 1

q(n)
.

We use the above to construct a malicious sender A′ that violates the privacy of the receiver relative
to the oblivious transfer protocol π̂OT. Specifically, A′ internally emulates the experiment H̃e−1

1

by running the simulation strategy of Se−1
1 with the malicious sender A, except for the following

difference. A′ relays the messages of the sender in the J th execution of the oblivious transfer protocol
from Stage 2 to an external receiver with input c. Following the oblivious transfer executions, it
continues the internal emulation until Stage 4. If J is not the eth session in ∆ then A′ follows hybrid
H̃e−1

1 and sets the view as ⊥. Otherwise, sets αJ to be a random bit and continues the internal
emulation to completion. It then invokes the distinguisherD onA’s internally generated view; denote
by b the bit output by D. Then, A′ outputs αj ⊕ b.
We proceed by analyzing the probability that A′ correctly guesses c. Conditioned on not outputting
fail and αj 6= c, the experiment emulated internally byA is identical to H̃e

1 . Analogously, conditioned
on not outputting fail and αj = c, the experiment emulated internally byA is identical to H̃e−1

1 , where
the probability that αj = c (and αj 6= c) is 1

2 . Therefore,

Pr[A′ guesses c correctly]

=
1

2
Pr[D(h̃ybe(n))⊕ αj = c | αj 6= c]

+
1

2
Pr[D(h̃ybe−1(n))⊕ αj = c | αj = c]

=
1

2
Pr[D(h̃ybe(n)) = 1] +

1

2
Pr[D(h̃ybe−1(n)) = 0]

=
1

2
+

1

2

(
Pr[D(h̃ybe(n)) = 1]− Pr[D(h̃ybe−1(n)) = 1]

)
≥ 1

2
+

1

2

(
1

q(n)

)
.

Thus, we arrive at a contradiction. �

Note that the only difference between the real execution and hybrid 1 is in the way that the receiver
outputs vu. Specifically, in hybrid 1 simulator S1 extracts v0, v1 and then outputs vu, while in the real
execution the receiver outputs the value that corresponds to its strategy in Stage 5. We now prove that
the receiver’s output in both experiments is statistically close. In more details, the difference between
the simulation’s strategy and the honest receiver’s strategy is that the simulator extracts the sender’s
both inputs in all i ∈ ∆ − Φ and then finds codewords that are 16n-close to the extracted values,
whereas the honest receiver finds a codeword that is 17n-close based on the inputs it received in the
Stages 2 and 5, and returns it.

Observe that the sender’s views in hybrid 1 and the real execution are identical. It is therefore suffices
to show that the value u extracted by the simulator and fed to FOT is identical the to the reconstructed

26

output of the honest receiver. Let v denote the value the honest receiver outputs and vu denote the
value extracted by the simulator. These values are obtained in two steps:

• The honest receiver obtains shares of v by computing ρ̃i = βui ⊕ s̃i for i ∈ ∆ where s̃i are
its output from the OT sessions in Stage 2. On the other hand, the simulator computes ρui =

βuj ⊕ s
u⊕αj

j where sbj’s are the inputs that the simulator extracted from Stage 1. (Note that these
were the inputs that the sender was supposed to use in the OT sessions).

• Next, the closest codeword is computed from the shares. The honest receiver picks that code
w̃ that is 17n-close to (ρ̃i)i∈∆. The simulator, on the other hand, picks a codeword wu that is
16n-close to (ρui)i∈∆.

We now show that v 6= vu only with negligible probability because of the final cut-and-choose stage.
We consider two cases:

Case 1: The honest receiver extracts a valid v from (ρ̃i)i∈∆: In this case, we know that there is a
codeword w that is 17n-close to (ρ̃i)i∈∆. Now, for every i ∈ ∆−Φ, we have that ρ̃i = ρi since
the sender proceeded honestly in those sessions. Following the same proof as in Claim 3.6, we
can show that |Φ| ≥ n only with negligible probability. Therefore, |∆ − Φ| ≥ 17n and ρ̃i and
ρui agree on at least 17n locations in ∆ − Φ. Now, since w is 17n-close to (ρ̃i)i∈∆, this means
that w is 16n-close to (ρui)i∈[20n] (because |∆| = 18n). Therefore the simulator would have
recovered the same codeword and extracted the same value.

Case 2: The honest receiver does not extract a valid v from (ρ̃i)i∈∆: This happens when (ρ̃i)i∈∆ is
not 17n-close to any codeword. In this case, the receiver uses a default value for v. We need to
show that in this case, even the simulation sets ṽu to a default value. Suppose that, there exists w
that is 16n-close to (ρui)i∈[20n]. We will argue that the simulator still sets vu to a default value.
Let ψ be the locations where w and (ρ̃i)i∈∆ differ. By our hypothesis that (ρ̃i)i∈∆ is not 17n-
close to any codeword, we have that |ψ| > n. Nevertheless, since Γ is a randomly chosen subset
of size n and based on the proof of Claim 3.6, we can show that ψ∩Γ 6= ∅ except with negligible
probability. In this case, there exists an index j ∈ ψ ∩ Γ such that the sender must reveal values
s0
j , s

1
j that are consistent with the OT protocol in session i in Stage 2. Therefore, for such a

j ∈ ψ ∩ Γ it holds that
ρ̃j = βuj ⊕ s̃i = βuj ⊕ s

u⊕αj

j 6= wj .

This implies that the simulator would have noted that βuj ⊕ s
u⊕αj

j 6= wj . In this case the sender
fails the second consistency check and the simulator should report that ṽu as the default value.

This concludes the proof of the claim. �

4 One-Sided Adaptive UC Secure Computation

In the two-party one-sided adaptive setting, at most one of the parties is adaptively corrupted [KO04,HP14].
In this section we provide a simple transformation of our static UC protocol from Section 3 to a two-party
UC protocol that is secure against one-sided adaptive corruption. Our first observation is that in Protocol 1
the parties use their real inputs to the OT protocol only in Phase 4. Therefore simulation of the first three
phases can be easily carried out by simply following the honest strategy. On the other hand, simulating the
messages in Phase 4 requires some form of equivocation since if corruption takes place after this phase is
concluded then the simulator needs to explain this message with respect to the real input of the corrupted
party. It is important to note that while in the plain model any statically secure protocol can be compiled

27

into one-sided secure protocol by encrypting its entire communication using non-committing encryption
(NCE) [CFGN96, DN00, CDMW09a], the same transformation does not hold in the UC setting due to the
additional setup e.g., a CRS, that may depend on the identity of the corrupted party. Nevertheless, in Phase 4
the parties only run a combiner for which the computation does not involve any usage of the CRS (which is
induced by the extractable commitment). Therefore, the proof follows directly.

Our second observation is that in the context of one-sided adaptive security, it is sufficient to rely on a
weaker variant of NCE, namely, one that is secure against only a single adaptive corruption [KO04, HP14].
In particular, we take advantage of a construction presented in [CFGN96] and later refined in [DN00], that
achieves equivocation with respect to only one party under the assumption of semi-honest OT with receiver
equivocation (namely, such OT implies that the receiver’s messages can be explained with respect to both
potential inputs u = 0 and u = 1 and some random string). We will briefly describe it now. Recall
that in the fully adaptive case, the high-level idea is for the sender and receiver to mutually agree on a
random bit. This process requires simulatable PKE schemes which implies the ability to both obliviously
sample a public-key without the knowledge of the secret key, as well as the ability to obliviously sample a
ciphertext without the knowledge of the corresponding plaintext. In the simpler one-sided scenario, Canetti
et al. [CFGN96] observed that an oblivious transfer protocol can replace the oblivious generation of the
public-key. Specifically, the NCE receiver sends two public keys to the sender, and then the parties invoke
an OT protocol where the NCE receiver plays the role of the OT sender and enters the corresponding secret
keys. To allow equivocation for the NCE sender, the OT must enable equivocation with respect to the OT
receiver. The [EGL85] OT protocol is an example for such a protocol. Here the OT receiver can pick the
two ciphertexts so that it knows both plaintexts. Then equivocation is carried out by declaring that the
corresponding ciphertext is obliviously sampled.

The advantage of this approach is that it removes the requirement of generating the public key obliv-
iously, as now the randomness for its generation is split between the parties, where anyway only one of
them is corrupted. This implies that the simulator can equivocate the outcome of the protocol execution
without letting the adversary the ability to verify it. To conclude, it is possible to strengthen the security of
Protocol 1 into the one-sided setting by simply encrypting the communication within the combiner phase
using one-sided NCE which in turn can be constructed based on PKE with oblivious ciphertext generation.
This implies the following theorem which further implies black-box one-sided UC secure computation from
enhanced trapdoor permutation.

Theorem 4.1. Assume the existence of PKE with oblivious ciphertext generation. Then for any two-party
well-formed functionalityF , there exists a protocol that UC realizesF in the presence of one-sided adaptive,
malicious adversaries in the CRS model using black-box access to the PKE.

5 Adaptive UC Secure Computation

In this section we demonstrate the feasibility of UC commitment schemes based on PKE with oblivious
ciphertext generation (namely, where it is possible to obliviously sample the ciphertext without knowing
the plaintext). Our construction is secure even in the presence of adaptive corruptions and is the first to
achieve the stronger notion of adaptive security based on this hardness assumption. Plugging-in our UC
commitment protocol into the transformation of [CDMW09b] that generates adaptive malicious OT given
adaptive semi-honest OT and UC commitments, implies an adaptively UC oblivious transfer protocol with
malicious security based on semi-honest adaptive OT and PKE with oblivious ciphertext generation using
only black-box access to the semi-honest OT and the PKE. Stating formally,

Theorem 5.1. Assume the existence of adaptive semi-honest oblivious transfer and PKE with oblivious
ciphertext generation. Then for any multi-party well-formed functionality F , there exists a protocol that UC

28

realizes F in the presence of adaptive, malicious adversaries in the CRS model using black-box access to
the oblivious transfer protocol and the PKE.

Noting that simulatable PKE implies both semi-honest adaptive OT [CLOS02, CDMW09a] and PKE
with oblivious ciphertext generation, we derive the following corollary (where simulatable PKE implies
oblivious sampling of both public keys and ciphertexts),

Corollary 5.2. Assume the existence of simulatable PKE. Then for any multi-party well-formed functionality
F , there exists a protocol that UC realizes F in the presence of adaptive, malicious adversaries in the CRS
model using black-box access to the simulatable PKE.

This in particular improves the result from [DMRV13] that relies on simulatable PKE in a non-black-
box manner. Note also that our UC commitment can be constructed using a weaker notion than simulatable
PKE where the inverting algorithms can require a trapdoor. This notion is denoted by trapdoor simulatable
PKE [CDMW09a] and can be additionally realized based on the hardness assumption of factoring Blum
integers. This assumption, however, requires that we modify our commitment scheme so that the CRS
includes 3n + 1 public keys of the underlying PKE instead of just one, as otherwise the reduction to the
security of the PKE does not follow for multiple ciphertexts. Specifically, at the cost of linear blowup (in the
security parameter) of the CRS, we obtain adaptively secure UC commitments under a weaker assumption.
Now, since trapdoor simulatable PKE implies adaptive semi-honest OT [CDMW09a] it holds,

Corollary 5.3. Assume the existence of trapdoor simulatable PKE. Then for any multi-party well-formed
functionalityF , there exists a protocol that UC realizesF in the presence of adaptive, malicious adversaries
in the CRS model using black-box access to the trapdoor simulatable PKE.

Note that, since the best known general assumptions for realizing adaptive semi-honest OT is trapdoor
simulatable PKE, this corollary gives evidence that the assumptions for adaptive semi-honest OT are suffi-
cient for adaptive UC security and makes a step towards identifying the minimal assumptions for achieving
UC security in the adaptive setting. To conclude, we note that enhanced trapdoor permutations, which imply
PKE with oblivious ciphertext generation, imply the following corollary,

Theorem 5.4. Assume the existence of enhanced trapdoor permutation. Then FCOM (cf. Figure 2) can be
UC realized in the CRS model in the presence of adaptive malicious adversaries.

5.1 UC Commitments from PKE with Oblivious Ciphertext Generation

In this section we demonstrate the feasibility of adaptively secure UC commitments for the message space
m ∈ {0, 1} from any public-key encryption scheme Π = (Gen,Enc,Dec, Ẽnc, Ẽnc

−1
) with oblivious ci-

phertext generation (cf. Definition 2.4) in the common reference string (CRS) model.

Protocol Overview: On a high-level, the CRS contains two public-keys of the encryption scheme, one used
by the sender and the other by the receiver and proceeds in two phases: An input encoding phase, where
the sender encodes its input via a n-out-of-(2n + 1) Shamir secret sharing scheme and commits to them
in a specific way followed by a cut-and-choose phase where the receiver asks the sender to reveal n of the
shares. In slight more detail, in the input encoding phase, the sender encodes its message m via n-degree
polynomial p(·) such that p(0) = m and commits to p(1), . . . , p(2n + 1) as follows: For each i, it sends
two strings, one is a ciphertext containing an encryption of p(i) under the public-key in the CRS meant for
the sender and the other is a random string. Furthermore, the sender randomly decides which one of the two
strings is the encryption of p(i). In the cut-and-choose phase, the parties engage in a coin-toss where the
receiver first encrypts its share for the coin-tossing using the receiver public-key from the CRS, followed
by the sender providing its share of the coin-tossing. Then the receiver opens its share and the result of

29

the coin-tossing decided by the XOR of the shares determines a subset Γ of [2n + 1] of size n. The sender
reveals the p(i) for every i ∈ Γ and the randomness used for generating the ciphertext. In the decommitment
phase, the sender reveals the entire randomness used for the encoding phase.

Straight-line equivocation is achieved by considering encodings of both 0 and 1 and for each i, via
polynomials p(·) and q(·), such that they agree on n points randomly chosen from {1, . . . , 2n+ 1}, call this
set Γ∗. Then the simulator encodes by having one ciphertext with the value p(i) and the other q(i). Finally,
the simulator biases the coin-tossing outcome so that the outcome results is the set Γ∗. This can be achieved
in a straight-line manner as the simulator will possess the secret key corresponding to the receiver public-key
in the CRS. Since the receiver encrypts its share first in the coin-tossing, the simulator can extract the value
and send the sender’s share accordingly to the biased outcome. Finally, since p and q agree on this set Γ∗, in
the decommitment phase, the sender will be able to open either p(·) or q(·), depending on what the message
is. Furthermore, we require one of the two strings in each coordinate to be random and this can be faked as
the encryption scheme has pseudorandom ciphertexts.

Straight-line extraction on the other hand requires an information theoretic lemma which states that there
exists a unique set Γ∗ after the encoding phase that the sender needs as the outcome of the coin-tossing in
the cut-and-choose phases for it to equivocate. First, using the semantic-security of the receiver public-key
we show that the probability that the sender can bias the coin-tossing is negligible. Then we show that the
simulator can extract the message of the sender by using the secret key corresponding to the sender public-
key used by the sender in the encoding phase. This it will accomplish by using the n values that have been
revealed and finding a consistent polynomial for the remaining shares (See [HV15] for more details).

Finally, we remark that security against adaptive corruptions essentially follows from the pseudoran-
domness of the ciphertexts.

Our complete construction can be found in Figure 4. Next, we prove that

Theorem 5.5. Assume that Π = (Gen,Enc,Dec, Ẽnc, Ẽnc
−1

) is a PKE with oblivious ciphertext generation.
Then protocol πCOM (cf. Figure 4) UC realizesFCOM in the CRS model in the presence of adaptive malicious
adversaries.

Proof Overview. Intuitively, security requires proving both hiding and binding in the presence of static and
adaptive corruptions. The hiding property follows from the IND-CPA security of the encryption scheme
combined with the fact that the receiver only sees n shares in a (n+ 1)-out-of-(3n+ 1) secret-sharing of the
message in the commit phase. On the other hand, proving binding is much more challenging and reduces to
the fact that a corrupted sender cannot successfully predict exactly the n indices from {1, . . . , 3n+ 1} that
will be chosen in the coin-tossing protocol. In fact, if it can identify these n indices, then it would be possible
for the adversary to break binding. This is because it can create two different polynomials that intersect on
these n points, yet encode two different messages. An important information-theoretic argument that we
prove here is that for a fixed encoding phase, no adversary can equivocate on two continuations from the
encoding phase with different outcomes of the coin-tossing phase. Saying differently, for any given encoding
phase there is exactly one outcome for the coin-tossing phase that will allow equivocation. Given this claim,
binding now follows from the IND-CPA security of the encryption scheme used in the coin-tossing phase.

In addition, recall that in the UC setting the scheme must also support a simulation that allows straight-
line extraction and equivocation. At a high-level, the simulator sets the CRS to public-keys for which it
knows the corresponding secret-keys. This will allow the simulator to extract all the values encrypted by
the adversary. We observe that the simulator can fix the outcome of the coin-tossing phase to any n-indices
of its choice by extracting the random string σ0 encrypted by the receiver and choosing a random string σ1

so that σ0 ⊕ σ1 is a particular string. Next, the simulator generates secret-sharing for both 0 and 1 so that
they overlap in the particular n shares. To commit, the simulator encrypts the n common shares within the
n indices to be revealed (which it knows in advance), and for the rest of the indices it encrypts two shares,

30

Protocol πCOM.

CRS: Two independent keys PK, P̃K that are in the range of Gen(1n).

Sender’s Input: A message m ∈ {0, 1} and a security parameter 1n.

[Commitment phase:]

Encoding phase: The sender chooses a random n-degree polynomial p(·) over a field F[x] such that p(0) = m.
Namely, it randomly chooses ai ← F for all i ∈ [n] and sets a0 = m, and defines the polynomial p(x) =
a0 + a1x+ · · ·+ anx

n. The sender then creates a commitment to m as follows. For every i = [3n+ 1], it first
pick bi ← {0, 1} at random and then computes the following pairs:

If bi = 0 then
c0i = EncPK(p(i); ti)
c1i = ri

else, if bi = 1 then
c0i = ri
c1i = EncPK(p(i); ti)

where ti ← {0, 1}n and ri ← Ẽnc(·) is obliviously sampled. The sender sends (c00, c
1
0), . . . , (c03n+1, c

1
3n+1) to

the receiver.

Coin-tossing phase: The sender and receiver interact in a coin-tossing protocol that is carried out as follows.

1. The receiver sends c = EncP̃K(σ0; rσ0
) to the sender where σ0 ← {0, 1}N is chosen uniformly at random.

2. The sender picks σ1 ← {0, 1}N at random and sends it in the clear to the receiver

3. The receiver decrypts c by revealing σ0 and rσ0 .

Both the sender and the receiver compute σ = σ0 ⊕ σ1 and use σ as the random string to sample a random
subset S ⊂ [3n + 1] of size n. (Note that such sampling can be done in a simple way by partitioning the set
of coordinates into n sets of triples (where the last set includes 4 elements) and picking one element per set.
Notably, this technique does not imply that any potential subset of size n will be picked, rather it ensures that a
subset is picked with a negligible probability in n, specifically (1/3)n, which suffices for our proof.)

Cut-and-choose phase: The sender decrypts the set {cbii }i∈S by sending the sequence {bi, p(i), ti}i∈S . The
receiver verifies that all the decryptions are correct and aborts otherwise.

[Decommitment phase:] Let T = [3n + 1] − S. The sender reveals its input m and decrypts all the ciphertexts
in {cbii }i∈T . The receiver checks if all the decryptions are correct and aborts otherwise. Using the n polynomial
evaluations revealed relative to i ∈ S and any additional polynomial evaluation that was revealed relative to T , the
receiver reconstructs the polynomial p(·) (via polynomial interpolation of n + 1 points). Next, the receiver verifies
whether p(0) = m, and that for every i ∈ [3n+ 1] the point p(i) is the decrypted value within cmi

i .

Figure 4: UC adaptively secure commitment scheme.

one that corresponds to the sharing of 0 and the other that corresponds to the sharing of 1. Finally, in the
decommit phase, the simulator reveals that shares that correspond to the real message m, and exploits the
invertible sampling algorithm to prove that the other ciphertexts were obliviously generated.

5.2 Proof of Theorem 5.5

Let A be a malicious probabilistic polynomial-time real adversary running the above protocol in the FCRS-
hybrid model. We construct an ideal model adversary S with access to FCOM which simulates a real exe-
cution of protocol πCOM with A such that no environment Z can distinguish the ideal process with S and
FCOM from a real execution of πCOM with A. S starts by invoking a copy of A and running a simulated
interaction of A with environment Z , emulating the honest party. We separately describe the actions of S
for every corruption case.

31

Initialization: The common reference string (CRS) is chosen by S in the following way. It generates
(PK, SK) ← Gen(1n) and (P̃K, S̃K) ← Gen(1n), and places (PK, P̃K) in the CRS. The simulator
further records (SK, S̃K).

Simulating the communication with Z: Every message that S receives from Z it internally feeds to A
and every output written by A is relayed back to Z .

Simulating the commitment phase when the receiver is statically corrupted: In this case S proceeds as
follows:

1. Encoding phase: Upon receiving message (sid,Sen,Rec) from FCOM, the simulator picks a
random subset S∗ ⊂ [3n + 1] of size n and two random n-degree polynomials p0(·) and p1(·)
such that:

p0(i) = p1(i) ∀i ∈ S∗

p0(0) = 0 and p1(0) = 1.

Note that the simulator can define these polynomials via interpolation, where a unique n-degree
polynomial can be constructed given n+ 1 points. Let T ∗ = [3n+ 1]− S∗, then the simulator
defines the commitment as follows:

• For every i ∈ S∗ the simulator proceeds as the honest sender would with polynomial p0(·).
Namely, it first picks bi ← {0, 1} at random and then sets the following pairs,

If bi = 0 then
c0
i = EncPK(p0(i); ti)
c1
i = ri

else, if bi = 1 then
c0
i = ri
c1
i = EncPK(p0(i); ti)

where bi ← {0, 1}, ti ← {0, 1}n and ri ← ẼncPK(·) is obliviously sampled (we recall that
p0(i) = p1(i) for all i ∈ S∗).

• For every i ∈ T ∗ the simulator picks bi ← {0, 1} at random and then uses the points on
both polynomials p0(·) and p1(·) to calculate the following pairs,

If bi = 0 then
c0
i = EncPK(p0(i); ti)
c1
i = EncPK(p1(i); t̃i)

else, if bi = 1 then
c0
i = EncPK(p1(i); t̃i)
c1
i = EncPK(p0(i); ti)

where bi ← {0, 1} and ti, t̃i ← {0, 1}n are chosen uniformly at random.

Finally, the simulator sends the pairs (c0
0, c

1
0), . . . , (c0

3n+1, c
1
3n+1) to the receiver.

2. Coin-tossing phase: The simulator biases the coin-tossing result so that the set S that is chosen
in this phase is identical to S∗. More precisely, the simulator extracts σ0 from the receiver’s
ciphertext and then sets σ1 so that σ = σ0 ⊕ σ1 yields the set S∗.

3. Cut-and-choose phase: The simulator decrypts all the ciphertexts within {cbii }i∈S∗ .

Simulating the decommitment phase where the receiver is statically corrupted: Upon receiving a mes-
sage (reveal, sid,m) from FCOM, S generates a simulated decommitment message as follows. Recall
first that the simulator needs to reveal points on a polynomial p(·) and pairs {(bi, ti)}i∈[3n+1] such
that p(0) = m and cbii = EncPK(p(i); ti). Let b̂i = bi ⊕ m for all i ∈ T ∗, then S reveals pm(·),

{b̂i, tb̂ii , ri = Ẽnc
−1

PK(c1−b̂i
i)}i∈T ∗ .

32

Next, we prove that Z cannot distinguish an interaction of protocol πCOM with A, corrupting the receiver,
from an interaction of S with FCOM. Formally,

Claim 5.1. The following two distribution ensembles are computationally indistinguishable,{
ViewFCRS

πCOM,A,Z(n)
}
n∈N

c
≈
{

ViewFCOM
πIDEAL,S,Z(n)

}
n∈N.

Proof: We prove this claim using a sequence of hybrid games.

Hybrid 0: This is the real interaction of Z with A and Protocol πCOM.

Hybrid 1: In this experiment we define a simulator S1 that proceeds as follows. S1 uses S’s strategy in
the coin-tossing phase when simulating the corrupted receiver. Specifically, S1 emulates FCRS and
generates (PK, SK) and (P̃K, S̃K) as in the simulation. Next, it picks at the beginning of the commit
phase a random subset S∗ for which it wishes to bias the outcome of the coin-tossing phase. It then
extracts the value σ0 encrypted by the receiver in the coin-tossing phase using S̃K, and sets σ1 so
that σ0 ⊕ σ1 results in S∗. S1 next follows the honest’s sender role with input m for the rest of the
execution. We claim that the adversary’s view in this hybrid game is identically distributed to its view
in the prior hybrid. This is because S∗ is chosen independently of the hybrid game and uniformly
at random. Therefore, given any particular σ0 extracted from the adversary’s commitment in the
coin-tossing stage, σ1 will be uniformly random (which is exactly how it is distributed in hybrid 0).
Therefore, we have that the following distributions are identical,{

ViewFCRS
πCOM,A,Z(n)

}
n∈N ≡

{
ViewFCOM

πIDEAL,S1,Z(n)
}
n∈N.

Hybrid 2: In this experiment, we define a simulator S2 that is given the sender’s message m, yet it carries
out S’s strategy in the encoding phase instead of playing the role of the honest sender. More precisely,
S2 proceeds identically to S1 with the exception that in the encoding phase, it defines polynomials
pm(·) and p1−m(·) exactly as S does in the simulation using the set S∗. Observe first that the out-
come of the coin-tossing phase has already been fixed to S∗ in hybrid 1. Moreover, S2 executes the
decommitment phase exactly as the honest sender does by providing polynomial pm(·). Then the dif-
ferences between the receiver’s view in hybrids 1 and 2 are with respect to the non-opened ciphertexts.
Namely, the ciphertexts that are in positions 1 − bi’s, and denoted by {c1−bi

i }i∈[3n+1], which encode
the polynomial p1−m(·). These ciphertexts are obliviously picked in hybrid 1, yet computed using
algorithm Enc in hybrid 1. We now prove that the receiver’s views in these hybrids executions are
computational indistinguishability due to the indistinguishability of ciphertexts using Enc and Ẽnc.
More precisely, we show the following claim:

Claim 5.2. The following distributions are computationally indistinguishable.

{
ViewFCOM

πIDEAL,S1,Z(n)
}
n∈N

c
≈
{

ViewFCOM
πIDEAL,S2,Z(n)

}
n∈N.

Proof: Assume by contradiction that there exist a PPT adversaryA, distinguisher D and polynomial
p(·) such that D can distinguish the two distributions stated in the claim for infinitely many n’s with
probability 1

p(n) . Fix an n for which this happens. Then we use A we construct an adversary A′
that violates the indistinguishability of real and obliviously generated ciphertexts (cf. Definition 2.4).
Towards this, we consider a sequence of intermediate hybrid games H0

2 , . . . ,H
3n+1
2 where in hybrid

Hj
2 we define a simulator Sj2 that proceeds identically to S2 when generating {c1−bi

i }i∈[j], namely, it

33

picks a polynomial p1−m(·) and sets c1−bi
i by EncPK(p1−m(i)). Finally, {c1−bi

i }i>j are obliviously
generated as in the real sender’s strategy. Note that by our construction, H0

2 and H3n+1
2 proceed

identically to Hybrids 1 and 2, respectively. Denoting the output of the execution in hybrid Hj
2 by

hybj(n) and using a standard hybrid argument, it follows that there exists j such that,∣∣∣Pr[D(hybj(n)) = 1]− Pr[D(hybj−1(n)) = 1]
∣∣∣ ≥ 1

(3n+ 1)p(n)
. (6)

We now construct an adversary A′ that violates the indistinguishability of obliviously generated ci-
phertexts and real ciphertexts. Specifically, recall that A′ needs to distinguish (PK, r1, c1) from

(PK, r′1, c2) where c1 ← ẼncPK(r1) and c2 ← EncPK(m; r2), r′1 ← Ẽnc
−1

(c2). Upon receiving
(PK, r, c) A′ proceeds as follows. It first emulates the execution as in hybrid 1 by setting the CRS
to be (PK, P̃K) for (P̃K, S̃K) ← Gen(1n). It then emulates the internal execution by following the
strategy of Sj−1

1 with the exception that c1−bj
j is set to c. Later, when A′ needs to reveal c1−bj

j it
returns r as the randomness used to obliviously generate c. Finally, A′ invokes D on A’s view and
outputs whatever D outputs. We recall that the ciphertexts that correspond to the set {1− bi}i∈[3n+1]

are always revealed as obliviously generated ciphertexts regardless of the way they were generated.
It must also be noted that A′ does not need to know SK in order to complete the simulation of the
sender’s messages since it never extracts here. Nevertheless, A′ does need access to Ẽnc

−1
in order

to generate the randomness of the first j − 1 ciphertexts, which by the definition of the encryption
scheme requires only PK. To conclude, the internal emulation of A′ upon receiving (PK, r1, c1) so
that c1 ← ẼncPK(r1) is identically distributed to Hj , whereas when (PK, r′1, c2) are generated so

that c2 ← EncPK(m; r2), r′1 ← Ẽnc
−1

PK(c2) with m = p1−m(j), A’s view is distributed identically to
Hj−1. Therefore, it follows from Equation 6 that∣∣∣Pr[A′(PK, r1, c1) = 1]− Pr[A′(PK, r′1, c2) = 1]

∣∣∣ ≥ 1

(3n+ 1)p(n)
.

This implies a contradiction relative to the indistinguishability property of real and obliviously gener-
ated ciphertexts. �

Hybrid 3: This hybrid is the actual simulation with S. Namely, here S3 does not have the honest sender’s
actual input m and it computes two polynomials p0(·) and p1(·) as defined above. Furthermore, S3

reveals one of the polynomials p0(·) or p1(·) in the decommitment phase, depending on the value of
m. Observe that the distribution of the messages sent by S2 and S3 is identical in both hybrids. We
use the facts that at most n shares are revealed in the commitment phase and that p(·) is an n-degree
polynomial. Therefore, revealing these n shares keeps p1−m(0) completely hidden and we have that,{

ViewFCOM
πIDEAL,S2,Z(n)

}
n∈N ≡

{
ViewFCOM

πIDEAL,S3,Z(n)
}
n∈N.

�

Simulating the commit phase when the sender is statically corrupted: Simulating the sender involves ex-
tracting the committed value as follows:

1. Encoding phase: The simulator proceeds honestly following the honest receiver’s strategy, re-
ceiving pairs (c0

i , c
1
i) for all i ∈ [3n+ 1]. The simulator exploits the fact that it knows the secret

key SK and decrypts all ciphertexts. Let βbi = DecSK(cbi).

34

2. Coin-tossing phase: The simulator proceeds honestly following the honest receiver’s strategy.
Let S′ be the outcome of the coin-tossing phase.

3. Cut-and-choose phase: The simulator proceeds as the honest receiver and verifies if the open-
ings are consistent with the ciphertexts sent in the encoding phase. Note that none of the re-
vealed values should differ from what the simulator decrypted using SK due to the fact that
Pr[DecSK(EncPK(m)) = m] = 1.

4. Input extraction: Finally, the simulator extracts the sender’s input as follows. S chooses an
arbitrary index j ∈ [3n+ 1]− S′ and reconstructs two polynomials q(·) and q̃(·) such that

q(i) = q̃(i) = βbii ∀i ∈ S′

q(j) = β0
j and q̃(j) = β1

j and q(0), q̃(0) ∈ {0, 1}.

It then verifies whether for all i ∈ [3n+ 1], q(i) ∈ {β0
i , β

1
i } and q̃(i) ∈ {β0

i , β
1
i }. The following

cases arise:

Case 1: Both q(·) and q̃(·) satisfy the condition and q̃(0) 6= q(0). Then S halts returning fail.
Below we prove that the simulator outputs fail with negligible probability.

Case 2: At most one of q(·) and q̃(·) satisfy the condition or q̃(0) = q(0). S sends (commit, sid,
q(0)) to the FCOM functionality and stores the committed bit q(0). Otherwise, S sends a
default value.

Case 3: Neither q(·) or q̃(·) satisfy the condition. S sends a default value to the ideal function-
ality and need not store the committed bit since it will never be decommitted correctly.

Claim 5.3. Conditioned on case 1 not occurring, the sender can decommit to b if and only if S sends
b to FCOM.

Proof. By the assumption in the claim, either case 2 or 3 occur. We now show that if A decommits
successfully, then it must be either with polynomial q(·) or q̃(·) if both satisfy the conditions, or with
the single satisfying polynomial. That would imply that the adversary can only decommit to whatever
sent by the simulator to FCOM. We will demonstrate our argument for the case that both polynomials
satisfy the condition. The case of a single polynomial follows similarly. More formally, suppose that
q(·) and q̃(·) are as required by the above condition. Then polynomial q∗(·) that is revealed by A in
the decommitment phase must take the same value as q(·) and q̃(·) for all i ∈ S′. Focusing on the
jth index that is specified above, it holds that either q∗(j) = q(j) or q∗(j) = q̃(j) (because A can
decrypt ciphertexts c0

j and c1
j only to the plaintexts q(j) and q̃(j), respectively). This implies that

either q∗(·) and q(·) share n + 1 points or q∗(·) and q̃(·) share n + 1 points. Consequently, q∗(·)
becomes identically equal to either q(·) or q̃(·) since it is an n-degree polynomial, and A can only
decommit to q(0) or q̃(0).

Claim 5.4. The probability that S outputs fail in case 1 is negligible.

Proof. Assume for contradiction that there exists A that for infinitely many n’s generates ciphertexts
for the encoding phase such that S obtains valid q0(·) and q1(·) such that both satisfy the conditions at
the end of the commit phase with probability at least 1

p(n) . Observe that in such a case, the transcript
can be equivocated to both 0 and 1 using q0(·) and q1(·), respectively. We show how to construct A′
that violates the privacy of the underlying encryption scheme. At a high-level, we prove that A can
successfully equivocate only if it biases the coin-tossing outcome, and this can be achieved only by
breaking the privacy of the encryption scheme.

35

We consider first an alternative simulator S̃ that proceeds exactly as the real simulator S does, with the
exception that it receives as input PK∗ that it internally sets as P̃K in the CRS. Observe that S does not
use the S̃K in simulating the corrupted sender. Hence the view generated by S̃ is identical to S. This
implies that the transcript that is obtained in the simulated commit phase of S̃ can be equivocated with
probability 1

p(n) , i.e., there are valid decommitments to both 0 and 1 relative to polynomials q0(·) and
q1(·). Then, by applying a standard averaging argument it holds that the transcript from the commit
phase can be equivocated with probability 1

2p(n) over a random continuation of some fixed transcript
τ , where τ is a partial transcript of protocol πCOM that reaches right after the encoding phase and the
probability is taken over the adversary’s and honest receiver’s randomness. (Specifically, the proba-
bility that 1

2p(n) portion of the partial transcripts lead to a successful equivocation is 1
2p(n) .) Using this

observation we will construct an adversary B that wins the IND-CPA game for the scheme Π.

Our proof relies heavily of the following claim,

Claim 5.5. Let τ be a fixed partial transcript as above. Then there exist no transcripts trans1, trans2
that satisfy the following conditions:

1. trans1 and trans2 are complete and accepting transcripts of πCOM with τ being their prefix.

2. There exists two distinct sets S1, S2 such that S1 and S2 are the respective outcomes of the
coin-tossing phase within trans1 and trans2.

3. There are valid decommitments to values 0 and 1 in trans1 and trans2.

An important observation that follows from Claim 5.5 is that the sets chosen in the coin-tossing
phase must be identical for any two complete trans1, trans2 that are defined relative to a fixed partial
transcript τ , on which a transcript can be equivocated. Clearly, given that the receiver’s random
string σ0 in the coin-tossing phase is hidden from the sender, it must hold that the probability that
the same set is chosen in two coin-tossing executions is exponentially small. On the other hand, with
non-negligible probability over partial transcripts τ , there are decommitments to both 0 and 1, and
from the Claim 5.5 we know that a successful equivocation implies a fixed joint set S∗ of size n.
This intuitively means that the adversary violates the IND-CPA security of the encryption scheme Π.
Formally, we construct an adversary B that internally incorporatesA and proceeds as in the IND-CPA
game:

1. B externally receives a public-key PK∗. It follows S̃’s strategy and sets P̃K in the CRS as this
input.

2. B emulates an execution with A following S̃’s strategy until the completion of the encoding
phase. Denote the partial transcript obtained so far by τ .

3. B samples M1 = np(n) transcripts with prefix τ as follows. It invokes A, M1 times, each time
with independent randomness for S̃ (which specifically implies independent randomness in the
coin-tossing phase). For each such execution B checks whether there are two valid decommit-
ments for 0 and 1. If there exists one such transcript, B stores the outcome S∗ of the coin-tossing
phase on that transcript. If no such transcript is encountered, B outputs a random bit and halts.

4. B samples two random strings σ0
0 and σ1

0 independently at random from {0, 1}N and outputs
these strings. Upon receiving a ciphertext c from its oracle, B feeds c internally as the receiver’s
message in the coin-tossing phase within the partial transcript τ . It then invokes A on (τ, c)
and completes the execution as follows. If A aborts then B outputs a random bit and halts.
Otherwise, let σ be the string revealed by A in the coin-tossing phase. If σ ⊕ σb′0 does not result
in S∗ as the outcome of the coin-tossing for some b′ ∈ {0, 1}, then B outputs a random bit.

36

Otherwise B outputs b′ and halts. (Note that in any case B aborts the execution right before it
needs to decrypt c, since it cannot do that).

We will now prove that B successfully identifies whether c is an encryption of σ0
0 or σ1

0 with probabil-
ity non-negligibly greater than 1

2 . Towards proving that we consider the following events, conditioned
on c being an encryption of σb0:

E1: There are decommitments to 0 and 1 conditioned on transcript τ that is generated in Step 2. We
already argued above that the probability that E1 occurs is at least 1

2p(n) .

E2: Here we consider the event that B successfully computes S∗ in Step 3. Note first that the proba-
bility a transcript, generated in Step 3, fails to reveal S∗ is at most 1 − 1

2p(n) . This is due to the
fact that set S∗ can be efficiently extracted whenever there are two decommitments. Therefore,

Pr[E1 | E2] = 1−
(

1− 1

2p(n)

)np(n)

= 1− e−n/2.

E3: Finally, we consider the event that the coin-tossing phase results in S∗. Note that by Claim 5.5
whenever the transcript can be equivocated then it must be that the coin-tossing result is S∗, this
implies that

Pr[E3 | E2 ∧ E1] ≥ Pr[transcript with prefix τ can be equivocated | E2 ∧ E1]

≥ 1

2p(n)
.

From the definition of the events it follows that if E1 ∧ E2 ∧ E3 occurs, then B wins the IND-CPA
game with probability 1. Denote the joint events E1 ∧ E2 ∧ E3 by Comp and note that if Comp does
not occur then B’s guess is correct with probability 1

2 . Then from the calculation above it holds that,

Pr[Comp] = Pr[E3 ∧ E2 ∧ E1] = Pr[E3 | E2 ∧ E1] · Pr[E2 | E1] · Pr[E1]

≥ 1

2p(n)
× (1− e−n/2)× 1

2p(n)

≥ 1

8(p(n))2
.

Next, we compute the probability that B succeeds in its guess.

ADVΠ,B(n) = Pr[B succeeds |Comp] · Pr[Comp] + Pr[B succeeds |¬Comp] · Pr[¬Comp]

= 1 · Pr[Comp] +
1

2
Pr[¬Comp]

= 1 · Pr[Comp] +
1

2
(1− Pr[Comp])

=
1

2
+

1

2
Pr[Comp]

≥ 1

2
+

1

16(p(n))2
.

This concludes the proof of Claim 5.6. It remains to prove Claim 5.5.

Proof of Claim 5.5. Assume for contradiction there exists a partial transcript τ of the encoding phase,
complete transcripts trans1 and trans2 and sets S1 6= S2 as in Claim 5.5. Let PK be the public-key in
the CRS and SK be the corresponding secret-key. We define some notations first.

37

τ =

(
c0

1 c0
2 · · · c0

3n+1

c1
1 c1

2 · · · c1
3n+1

)

S1 S26=

Decommitment to 0

Decommitment to 1

Decommitment to 0

Decommitment to 1

• We denote by T1 = [3n+ 1]− S1 and T2 = [3n+ 1]− S2.
• Recall that transcripts trans1 and trans2 include valid decommitments to both 0 and 1. Moreover,

since we assume that the prefix τ is in common to both transcripts and the decryption is prefect,
then a ciphertext cbi that is decrypted in either trans1 or trans2 must be correctly revealed into
exactly one plaintext, which is determined by βbi = DecSK(cbi).
• By the assumption above, transcript trans1 induces two valid decommitments to both 0 and 1.

We denote the bi values within the decommitment to 0 by (b01, . . . , b
0
3n+1), and the values within

the decommitment to 1 by (b11, . . . , b
1
3n+1).

• Similarly, transcript trans2 induces two valid such decommitments. Then, let the bi values within
the decommitment to 0 be denoted by (̂b01, . . . , b̂

0
3n+1), and the values within the decommitment

to 1 denoted by (̂b11, . . . , b̂
1
3n+1).

Consider transcript trans1. Then the shares that correspond to the indices in S1 and are revealed
during the commitment phase imply that,

β0
i = β1

i ∀ i ∈ S1.

This further imply that,

b0i = b1i ∀ i ∈ S1. (7)

The rest of the shares are revealed in the decommitment phase. Now, since we use an (n + 1)-out-
of-(3n + 1) secret sharing scheme, these n shares that correspond to the indices in S1, together with
any additional revealed share i ∈ T1, constitute n + 1 shares from which a unique polynomial can
be reconstructed. Specifically, the reconstructed polynomials for decommitting to 0 and 1 have to be
different (since the secrets are different), so it must be that the revealed plaintexts are also different
for every i ∈ T1, i.e.

β0
i 6= β1

i ∀ i ∈ T1.

This means that, for i ∈ T1, {c0
i , c

1
i }must contain the plaintexts β0

i and β1
i . Hence (c0

i , c
1
i) must either

be the encryption of (β0
i , β

1
i) or (β1

i , β
0
i). In either case we have that

b0i = 1− b1i ∀ i ∈ T1. (8)

Next, we consider transcript trans2 and recall that it shares the same encoding phase with trans1.
It thus must be the case that for every i ∈ [3n + 1] the revealed shares for both transcripts must
correspond to either β0

i or β1
i . From Equation 8 we know that for every i ∈ T1, b0i 6= b11. Hence, for

every i ∈ T1, either b̂0i = b0i or b̂0i = b1i . Relying on the fact that |T1| = 2n + 1 and the pigeon-hole
principle, it must hold that there are n+ 1 indices in T1 for which either b̂0i = b0i for all these indices,
or b̂0i = b1i for all these indices. This implies two cases:

38

b̂0i = b0i on n+ 1 locations: In this case, the revealed shares for these n + 1 locations must be the
same for both trans1 and trans2 when decommitting to 0. Note that if n+1 shares are the identi-
cal then the polynomials revealed for both transcripts must be identical as well, and therefore the
revealed shares for every other index must be identical. We additionally know that the plaintext
shares β0

i 6= β1
i for any index i ∈ T1. Combining this with the fact that b̂0i must correspond to

the same share as the one corresponding to b0i , it follows that b̂0i = b0i for all i ∈ T1.

b̂0i = b1i on n+ 1 locations: In this case we conclude, analogously to the previous case, that the poly-
nomial revealed when decommitting to 0 in trans2 must be the same as when decommitting to 1
in trans1. However, such a decommitment on trans2 is invalid because the secret, which is the
value of this polynomial evaluated at 0 is 1.

Therefore, we can conclude that it must be first case, where the revealed polynomials are identical so
that b̂0i = b0i for all i ∈ T1 (and not just for the n+ 1 locations). Applying the same argument, we can
prove that b̂1i = b1i for all i ∈ T1. Now, since for every i ∈ T1 we have that b0i = 1 − b1i , it follows
that:

b̂0i = 1− b̂1i ∀i ∈ T1.

Next, we observe that T1 ∩ S2 is non-empty since S1 6= S2. We conclude with a contradiction by
considering i∗ ∈ T1 ∩ S2. Specifically, for any such i∗ we have from the preceding argument that the
fact that i∗ ∈ T1 implies that

b̂0i∗ = 1− b̂1i∗

On the other hand, i∗ ∈ S2 and the values for all the indices in S2 are already revealed in the commit-
ment phase of trans2, thus we have that

b̂0i∗ = b̂1i∗

which is a contradiction.

Simulating the decommit phase when the sender is statically corrupted: S first checks whether the de-
committed value is the value stored during the commit phase and whether the decommitment is valid.
If these two conditions are met then S sends (reveal, sid) toFCOM. Otherwise, S ignores the message.

Next, we prove that Z cannot distinguish an interaction of protocol πCOM with A, corrupting the
sender, from an interaction of S with FCOM. Formally,

Claim 5.6. The following two distribution ensembles are computationally indistinguishable,{
ViewFCRS

πCOM,A,Z(n)
}
n∈N

c
≈
{

ViewFCOM
πIDEAL,S,Z(n)

}
n∈N.

Proof: Here we need to argue that the simulator outputs fail with negligible probability and that the receiver
outputs the same message in both executions. Recall first the event for which the simulator fails occurs
when it computes the polynomials q0 and q1 and then finds out that both of them satisfy the condition in
case 1. In this case, A can equivocate the committed message in the decommit phase. We thus prove that
the probability that A can generate such polynomials is negligible, which implies that the probability that S
fails is negligible. More precisely, we prove in the following lemma that the probability that A can break
the binding property is negligible probability. A key point in our proof relies on the fact that a malicious
sender cannot bias the coin-tossing outcome (as opposed to the simulator). Formally, �

39

Simulating the commit phase when the sender is corrupted after the encoding phase: Upon corruption,
S receives the sender’s input m. It then reveals the sender’s randomness just as it would do when
simulating a decommitment for an uncorrupted sender. Computational indistinguishability follows
similarly to the case that the receiver is statically corrupted.

Simulating the commit phase when the receiver is corrupted anywhere during the commit phase: Recall
that S honestly simulates the receiver messages, and thus it can simply reveal the randomness of the
receiver.

References
[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols

with relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

[BCPV13] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Analysis and improvement
of lindell’s uc-secure commitment schemes. In ACNS, pages 534–551, 2013.

[Bea91] Donald Beaver. Foundations of secure interactive computing. In CRYPTO, pages 377–391, 1991.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145, 2001.

[CDMW09a] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved non-committing
encryption with applications to adaptively secure protocols. In ASIACRYPT, pages 287–302, 2009.

[CDMW09b] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-box construc-
tions of adaptively secure protocols. In TCC, pages 387–402, 2009.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with
global setup. In TCC, pages 61–85, 2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO, pages 19–40,
2001.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation.
In STOC, pages 639–648, 1996.

[CKL06] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable two-
party computation without set-up assumptions. J. Cryptology, 19(2):135–167, 2006.

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively secure,
and composable oblivious transfer with a single, global CRS. In PKC, pages 73–88, 2013.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In STOC, pages 494–503, 2002.

[CPS07] Ran Canetti, Rafael Pass, and Abhi Shelat. Cryptography from sunspots: How to use an imperfect
reference string. In FOCS, pages 249–259, 2007.

[DDN14] Bernardo David, Rafael Dowsley, and Anderson C. A. Nascimento. Universally composable oblivious
transfer based on a variant of LPN. In CANS, pages 143–158, 2014.

[DG03] Ivan Damgård and Jens Groth. Non-interactive and reusable non-malleable commitment schemes. In
STOC, pages 426–437, 2003.

[DMRV13] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Muthuramakrishnan Venkitasubramaniam.
Adaptive and concurrent secure computation from new adaptive, non-malleable commitments. In ASI-
ACRYPT, pages 316–336, 2013.

[DN00] Ivan Damgård and Jesper Buus Nielsen. Improved non-committing encryption schemes based on a
general complexity assumption. In CRYPTO, pages 432–450, 2000.

40

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally composable
commitment schemes with constant expansion factor. In CRYPTO, pages 581–596, 2002.

[DNM12] Bernardo Machado David, Anderson C. A. Nascimento, and Jörn Müller-Quade. Universally compos-
able oblivious transfer from lossy encryption and the mceliece assumptions. In ICITS, pages 80–99,
2012.

[DNO10] Ivan Damgård, Jesper Buus Nielsen, and Claudio Orlandi. On the necessary and sufficient assumptions
for UC computation. In TCC, pages 109–127, 2010.

[DS13] Ivan Damgård and Alessandra Scafuro. Unconditionally secure and universally composable commit-
ments from physical assumptions. In ASIACRYPT, pages 100–119, 2013.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, 1985.

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh Viswanathan. The relation-
ship between public key encryption and oblivious transfer. In FOCS, pages 325–335, 2000.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-malleable com-
mitments: A black-box approach. In FOCS, pages 51–60, 2012.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In TCC, pages 412–
426, 2008.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box construc-
tions of protocols for secure computation. SIAM J. Comput., 40(2):225–266, 2011.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. J.
Cryptology, 25(1):158–193, 2012.

[HP14] Carmit Hazay and Arpita Patra. One-sided adaptively secure two-party computation. In TCC, pages
368–393, 2014.

[HV15] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On black-box complexity of universally
composable security in the CRS model. IACR Cryptology ePrint Archive, 2015:488, 2015.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box constructions for secure
computation. In STOC, pages 99–108, 2006.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - effi-
ciently. In CRYPTO, pages 572–591, 2008.

[IR88] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permutations.
In CRYPTO, pages 8–26, 1988.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[KLP07] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent composition of secure proto-
cols in the timing model. J. Cryptology, 20(4):431–492, 2007.

[KLV17] Susumu Kiyoshima, Huijia Lin, and Muthuramakrishnan Venkitasubramaniam. A unified approach to
constructing black-box UC protocols in trusted setup models. In TCC, pages 776–809, 2017.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In CRYPTO, pages
335–354, 2004.

[Lin03] Yehuda Lindell. General composition and universal composability in secure multi-party computation.
In FOCS, pages 394–403, 2003.

41

[Lin09] Yehuda Lindell. Adaptively secure two-party computation with erasures. In CT-RSA, pages 117–132,
2009.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commitments based on the DDH assumption.
In EUROCRYPT, pages 446–466, 2011.

[LP12] Huijia Lin and Rafael Pass. Black-box constructions of composable protocols without set-up. In
CRYPTO, pages 461–478, 2012.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for con-
current security: universal composability from stand-alone non-malleability. In STOC, pages 179–188,
2009.

[LPV12] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for UC
from only OT. In ASIACRYPT, pages 699–717, 2012.

[LZ09] Yehuda Lindell and Hila Zarosim. Adaptive zero-knowledge proofs and adaptively secure oblivious
transfer. In TCC, pages 183–201, 2009.

[MPR10] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A zero-one law for cryptographic complex-
ity with respect to computational UC security. In CRYPTO, pages 595–612, 2010.

[MR91] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In CRYPTO, pages 392–404, 1991.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO, pages 554–571, 2008.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from one-way functions.
In TCC, pages 403–418, 2009.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FCOS, pages
162–167, 1986.

A From Bit OT to String OT

In this section, we demonstrate how to transform a bit OT protocol to a string OT protocol in a way that
preserves both defensible private with respect to a corrupted receiver and receiver private. At a high-level,
in order to obtain an n-bits OT we repeat the bit OT protocol in parallel n-times. Given two n-bits strings
(s0, s1), the sender enters the ith bit of s0 and s1 as the bit-inputs for the ith OT execution. In addition,
the receiver must use the same index for all executions. We next prove that the receiver privacy of the
transformed protocol follows easily using a simple hybrid argument. Defensible privacy, on the other hand,
holds since the receiver is required to produce a good defense for the n parallel executions simultaneously
and a good defense should show that the receiver supplied the same index in all the executions. We note
that our proof works for random OT, which is sufficient for our purposes, yet can be extended for the more
general case.

The definition of defensible privacy for n-bit OT is provided in Section 2.3. Below we present an equiv-
alent game-based security formulation for bit OT defensible privacy, inspired by [HIK+11]. More formally,
we consider the following experiment for a protocol π and a PPT adversary A:

Experiment Exptπ(A) :

1. Choose s0, s1 ∈ {0, 1} uniformly at random.

2. Let ρSen be a uniformly chosen random tape for the sender Sen, and let trans be a transcript of an
interaction between the adversary A and Sen((s0, s1), ρSen).

42

3. Let ((r, ρRec), s
∗) be the output of A(1n) on transcript trans where (r, ρRec) is a defense and s∗ is a

guess for s1−r.

4. Output 1 only if (r, ρRec) is a good defense for A in trans and s∗ = s1−r.

Definition A.1. An OT protocol is defensible private with respect to a corrupted receiver if for any PPT
adversary A there exists a negligible function µ(·) such that for all sufficiently large n’s,

Pr[Exptπ(A(1n)) = 1] ≤ 1

2
+ µ(n).

We now provide our transformation and prove correctness. Let πOT be a bit OT protocol. We construct a
string OT protocol πnOT using πOT as follows.

Protocol 2 (Protocol πnOT).

Input: The sender Sen has input (v0, v1) where v0, v1 ∈ {0, 1}n and the receiver Rec has input u ∈ {0, 1}.
The protocol:
The parties participate in n executions of the OT protocol πOT where the receiver uses u as its input in all executions
and the sender uses the ith bits of v0 and v1 as its input in execution i.

Lemma A.1. Assume that πOT is a bit OT protocol that is defensible private with respect to a corrupted
receiver and receiver private. Then πnOT is a string OT protocol that is defensible private with respect to a
corrupted receiver and receiver private.

Proof. We first prove receiver privacy of the string OT protocol.

Receiver privacy: Loosely speaking, receiver privacy requires that no malicious sender can distinguish the
case when the receiver’s input is 0 and 1, with non-negligible probability. Suppose for contradiction that
there exist a PPT adversaryA, distinguisher D and polynomial p(·) such that D distinguishes the following
distributions with probability at least 1

p(n) for infinitely many n’s,

• {ViewA,πn
OT

[A(1n),Rec(1n, 0)]}n∈N,

• {ViewA,πn
OT

[A(1n),Rec(1n, 1)]}n∈N.

Fix an n for which this happens. We construct A′ and distinguisher D′ using A and D that violates the
receiver privacy of πOT. We introduce a sequence of intermediate hybrid experiments H0, . . . ,Hn, where
in hybrid Hi we consider a receiver Reci that follows the honest receiver’s code in each of the n parallel
executions of πOT with the exception that it uses the input 1 in the first i executions and 0 in the remaining
executions. Let hybi(n) denote the view of the adversary in hybrid Hi. Then by construction we have that

hyb0(n) = ViewA,πn
OT

[A(1n),Rec(1n, 0)], and

hybn(n) = ViewA,πn
OT

[A(1n),Rec(1n, 1)]

Moreover, using a standard hybrid argument there exists i such that D distinguishes hybi−1(n) and hybi(n)
with probability at least 1

np(n) .
Then adversary A′ is defined as follows. It internally emulates the hybrid experiment hybi−1(n) by

playing the role of the honest rceeiver against A, with the exception that it forwards A’s messages in the
ith execution to an external receiver. Consider the function reconstruct that on input the view of A′ in
an interaction using πOT reconstructs the view of A in the internal emulation of A′. It follows from our

43

construction that if the receiver uses input 0 in the interaction withA′ this view ofA is identically distributed
to hybi−1(n). If the receiver uses input 1 the view is identically distributed to hybi(n). More precisely,

reconstruct(ViewA′,πOT
[A(1n),Rec(1n, 0)]) = hybi−1(n)

reconstruct(ViewA′,πOT
[A(1n),Rec(1n, 1)]) = hybi(n)

Next, we construct a distinguisher D′. On input a view of A′, runs the function reconstruct on the view
and runs D on the output of the function. Finally, D′ outputs what D outputs. It now follows that

Pr[D′(ViewA′,πOT
[A(1n),Rec(1n, 0)]) = 1] = Pr[D(hybi−1(n)) = 1]

Pr[D′(ViewA′,πOT
[A(1n),Rec(1n, 1)]) = 1] = Pr[D(hybi(n)) = 1]

which implies that D′ distinguishesA′’s view when the receiver’s input are 0 and 1 because D distinguishes
hybi−1(n) and hybi(n) with probability at least 1

np(n) , which contradicts the receiver privacy of πOT.

Defensible privacy with respect to a corrupted receiver: As mentioned before, we reduce the security
of defensible-privacy for string OT according to Definition 2.6 to the game-based formulation of defensible
privacy for bit OT (cf. Definition A.1). Assume by contradiction that there exists an adversaryA that violates
the defensible privacy of πnOT with respect to a corrupted receiver. More precisely, suppose there exist a
PPT adversary A, distinguisher D and polynomial p(·) such that for infinitely many n’s, D distinguishes
the following distributions with probability at least 1

p(n) ,

• {Γ(ViewA[Sen(1n, (Un0 , U
n
1)),A(1n)], Un1−b)}, and

• {Γ(ViewA[Sen(1n, (Un0 , U
n
1)),A(1n)], Ūn)}

where Γ(v, ∗) equals (v, ∗) if when following the execution A outputs a good defense for π, and ⊥ other-
wise, b is Rec’s input in this defense and Un0 , U

n
1 , Ū

n are independent random variables that are uniformly
distributed over {0, 1}n. Fix n for which this happens. Then we rewrite these distributions more explicitly:

{Γ(ViewA[Sen(1n, (Un0 , U
n
1)),A(1n)], Un1−b)}

= {s0 ← Un0 ; s1 ← Un1 , z ← Ūn; v ← ViewA[Sen(1n, (s0, s1)),A(1n)] : Γ(v, s1−b)}
{Γ(ViewA[Sen(1n, (Un0 , U

n
1)),A(1n)], Ūn)}

= {s0 ← Un0 ; s1 ← Un1 , z ← Ūn; v ← ViewA[Sen(1n, (s0, s1)),A(1n)] : Γ(v, z)}

Next, we use A to construct A′ that breaks the defensible privacy of πOT with respect to a corrupted
receiver. We use the experiment formulation of defensible privacy for the bit OT protocol. Towards this, we
consider the following sequence of distributions:

hybi(n) = {s0 ← Un0 ; s1 ← Un1 , z ← Ūn; v ← ViewA[Sen(1n, (s0, s1)),A(1n)] :

Γ(v, (z1, . . . , zi, si+1
1−b, . . . , s

n
1−b))}

where z = (z1, . . . , zn) and s0 = (s1
0, . . . , s

n
0) and s1 = (s1

1, . . . , s
n
1). Observe that

hyb0(n) = {Γ(ViewA[Sen(1n, (Un0 , U
n
1)),A(1n)], Un1−b)}

hybn(n) = {Γ(ViewA[Sen(1n, (Un0 , U
n
1)),A(1n)], Ūn)}.

Then using a standard hybrid argument we can conclude that there exists an index i such thatD distinguishes
hybi−1(n) and hybi(n) with probability at least 1

np(n) . More precisely,∣∣∣Pr[D(hybi(n)) = 1]− Pr[D(hybi−1(n)) = 1]
∣∣∣ > 1

p(n)
.

44

Without loss of generality, we assume that

Pr[D(hybi(n)) = 1]− Pr[D(hybi−1(n)) = 1] >
1

p(n)
. (9)

Now, consider a machine A′ that is interacting externally with a sender on input (s0, s1) in the protocol
πOT. A′ internally incorporates A and proceeds as follows. It starts by emulating an execution with A by
supplying the sender’s messages in πnOT which implies n parallel OT executions. Specifically, A′ supplies
random inputs for the sender in all but the ith execution, for which it forwards externally to the sender that
participates in πOT. Denote by (sj0, s

j
1) the sender’s selected inputs for every j 6= i. Upon completion, A′

receives a defense from A. If the defense is not good A′ aborts. Else, A′ computes w = (w1, . . . , wn) as
follows:

• wj = zj where zj is sampled at random from {0, 1} for j <= i.

• wj = sjuj for j > i, where uj is the receiver’s input in the jth execution which can be obtained from
the defense output by A.

Next, A′ invokes D on input (v, w) where v is A’s internally generated view. Let b be the output of D
on these inputs and (ui, ρR) be the defense of A in the ith interaction. Then A′ outputs a defense (ui, ρR)
and defined its guess for the external sender’s other input by b ⊕ wi. By construction, we have that (v, w)
are sampled in the internal emulation according to hybi(n). This means that A′ succeeds in the experiment
ExptπOT

when it is given
D(hybi(n))⊕ wi = s1−ui .

Observe that if wi = s1−ui then (v, w) in the internal emulation of A′ is distributed according to
hybi−1(n). This means that:

Pr[A′ wins ExptπOT
|wi = s1−ui] = Pr[D(hybi−1(n) = 0]. (10)

Next, we introduce a new distribution Ûnj that is identical to Ũnj with the exception that the (j + 1)st bit
in Ūnj is flipped. More precisely, for j ∈ [n],

ĥybj(n) = {s0 ← Un0 ; s1 ← Un1 , z ← Ūn; v ← ViewA[Sen(1n, (s0, s1)),A(1n)] :

Γ(v, (z1, . . . , zj , 1⊕ sj+1
1−b, . . . , s

n
1−b))}

where z = (z1, . . . , zn), s0 = (s1
0, . . . , s

n
0) and s1 = (s1

1, . . . , s
n
1). Now, since the bits in the ith position

are complement of each other in Ûni−1 and Ũni−1, and the ith bit is randomly distributed in Ũni we have that

Pr[D(hybi(n)) = 1] =
1

2
Pr[D(hybi−1(n)) = 1] +

1

2
Pr[D(ĥybi−1(n)) = 1]. (11)

Moreover, A′ succeeds if D(ĥybi−1(n)) = 1 when wi 6= s1−ui . More precisely

Pr[A′ wins ExptπOT
|wi 6= s1−ui] = Pr[D(ĥybi(n) = 1]. (12)

45

Now, since both s1−r and wi are chosen at random we have that:

Pr[A′ wins ExptπOT
]

= Pr[A′ wins ExptπOT
|wi 6= s1−ui] Pr[wi 6= s1−ui]

+ Pr[A′ wins ExptπOT
|wi = s1−r] Pr[wi = s1−ui]

=
1

2
Pr[D(ĥybi−1(n)) = 1] +

1

2
Pr[D(hybi−1(n)) = 0] (Using Equations 12 and 10)

=

(
Pr[D(hybi(n)) = 1]− 1

2
Pr[D(hybi−1(n)) = 1]

)
+

1

2
Pr[D(hybi−1(n)) = 0] (Using Equation 11)

=

(
Pr[D(hybi(n)) = 1]− 1

2
Pr[D(hybi−1(n)) = 1]

)
+

(
1

2
− 1

2
Pr[D(hybi−1(n)) = 1]

)
=

1

2
+
(
Pr[D(hybi(n)) = 1]− Pr[D(hybi−1(n)) = 1]

)
≥ 1

2
+

1

p(n)
(Using Equation 9).

This contradicts the defensible privacy against a corrupted receiver in protocol πOT.

46

	Introduction
	Our Results
	Static UC Secure Computation
	One-Sided UC Secure Computation
	Adaptive UC Secure Computation

	Subsequent Work

	Preliminaries
	Public-Key Encryption Schemes
	Secret-Sharing
	Oblivious Transfer
	Receiver Private Oblivious Transfer
	Defensibly Private Oblivious Transfer

	Commitment Schemes
	UC Commitment Schemes
	Extractable Commitments
	Extractable Commitments from PKE in the CRS model

	Static UC Secure Computation
	Static UC Oblivious Transfer
	Proof of Theorem 3.2

	One-Sided Adaptive UC Secure Computation
	Adaptive UC Secure Computation
	UC Commitments from PKE with Oblivious Ciphertext Generation
	Proof of Theorem 5.5

	From Bit OT to String OT

