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Abstract. Verifiable computation allows a client to outsource computa-
tions to a worker with a cryptographic proof of correctness of the result
that can be verified faster than performing the computation. Recently,
the Pinocchio system achieved faster verification than computation in
practice for the first time. Unfortunately, Pinocchio and other efficient
verifiable computation systems require the client to disclose the inputs
to the worker, which is undesirable for sensitive inputs. To solve this
problem, we propose Trinocchio: a system that distributes Pinocchio to
three (or more) workers, that each individually do not learn which in-
puts they are computing on. We fully exploit the almost linear structure
of Pinochhio proofs, letting each worker essentially perform the work
for a single Pinocchio proof; verification by the client remains the same.
Moreover, we extend Trinocchio to enable joint computation with mul-
tiple mutually distrusting inputters and outputters and still very fast
verification. We show the feasibility of our approach by analysing the
performance of an implementation in a case study.

This is the full version (with security proof) of the ACNS’16 paper [31]
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1 Introduction

Recent cryptographic advances are starting to make verifiable computation more
and more practical. The goal of verifiable computation is to allow a client to out-
source a computation to a worker and cryptographically verify the result with less
effort than performing the computation itself. Based on recent ground-breaking
ideas [22, 18], Pinocchio [27] was the first implemented system to achieve this for
some realistic computations. Recent works have improved the state-of-the-art in
verifiable computation, e.g., by considering better ways to specify computations
[5], or adding access control [1].

However, one feature not yet available in practical verifiable computation is
privacy, meaning that the worker should not learn the inputs that it is computing
on. This feature would enable a client to save time by outsourcing computations,
even if the inputs of those computations are so sensitive that it does not want



to disclose them to the worker. Also, it would allow verifiable computation to
be used in settings where multiple clients do not trust the worker or each other,
but still want to perform a joint computation over their respective inputs and
be sure of the correctness of the result.

While privacy was already defined in the first paper to formalize verifiable
computation [17], it has not been shown so far how it is efficiently achieved, with
existing constructions relying on efficient cryptographic primitives. By outsourc-
ing a computation to multiple workers, it is possible to guarantee privacy (if not
all workers are corrupted) and correctness, but existing constructions from the
multiparty literature lose the most appealing feature of verifiable computation:
namely, that computations can be verified very quickly, even in time indepen-
dent from the computation size. This leads to the central question of this paper:
can we perform verifiable computation with the correctness and performance
guarantees of [27], but while also getting privacy against corrupted workers?

1.1 Our Contributions

In this paper, we introduce Trinocchio to show that indeed, it is possible to
outsource a computation in a privacy-preserving way to multiple workers, while
retaining the fast verification offered by verifiable computation. Trinocchio uses
state-of-the-art [27]-style proofs, but distributes the computation of these proofs
to, e.g., three workers such that no single worker learns anything about the in-
puts. The client essentially gets a normal Pinocchio proof, so we keep Pinocchio’s
correctness guarantees and fast verification. The critical observation is that the
almost linear structure of Pinocchio proofs (supporting verification based on bi-
linear maps) allows us to distribute the computation of Pinocchio proofs such
that individual workers perform essentially the same work as a normal Pinocchio
prover in the non-distributed setting. Specifically, our contributions are:

– We show how to distribute the production of Pinocchio proofs in a privacy-
preserving way to multiple workers, thereby achieving privacy-preserving
verifiable computation in the setting with one client

– We extend our system to settings with multiple distrusting input and result
parties

– We provide a precise security model capturing the security guarantees of our
protocols: privacy, correctness, but also input independence

– We demonstrate the practical feasibility of our approach by implementing
a case study: we demonstrate Trinocchio’s low overhead by repeating the
multivariate polynomial evaluation case study of [27]’s.

While our Trinocchio protocol ensures correct function evaluation, it only
fully protects privacy against semi-honest workers. This is a realistic attacker
model; in particular, it means that side channel attacks on individual workers are
ineffective because each individual worker’s communication and computation are
completely independent from the sensitive inputs. However, even if an adversary
should be able to obtain sensitive information, they are unable to manipulate
the result thanks to the use of verifiable computation. In this way, our protocol
hedges against the risk of more powerful adversaries.
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1.2 Related Work

Privacy-preserving outsourcing to single workers has been considered in the lit-
erature, but constructions in this setting rely on inefficient cryptographic prim-
itives like fully homomorphic encryption [17, 11, 16], functional encryption [20],
and multi-input attribute-based encryption [21]. (This is not surprising: indeed,
even without guaranteeing correctness, letting a single worker perform a compu-
tation on inputs it does not know would intuitively seem to require some form of
fully homomorphic encryption.) Some of these works also consider a multi-client
setting [11, 21].

A large body of works considers multiparty computation for privacy-preserving
outsourcing (see, e.g., [24, 28, 9, 23]). These works do not consider verifiability
and achieve correctness at best in the case that all-but-one workers are corrupt
(due to inherent limitations of the underlying protocols). We stress that this is
rather unsatisfactory for the outsourcing scenario, where one naturally wishes
to cover the case that all workers are corrupt—dispensing of the need to trust
any particular worker.

Concerning outsourcing to multiple workers, [2] presents a verifiable com-
putation protocol combining privacy and correctness; but unfortunately, they
guarantee neither privacy nor correctness if all workers are corrupted and may
collude; and it places a much higher burden on the workers than, e.g., [27]. Al-
ternatively, recent works [3, ?,30], like us, guarantee correctness independent of
worker corruption, but privacy only under some conditions. Our work offers a
substantial performance improvement over these works by fully exploiting a set-
up that needs to be trusted both for guaranteeing privacy and for guaranteeing
correctness.

We should mention that the notion of verifiability exists in various forms
and the field has a richer background than presented here, however, we focus
entirely on the notion of verifiable computation first formalized by [17], because
it is tailored to the outsourcing scenario.

1.3 Outline

We first briefly define the security model for privacy-preserving outsourced com-
putation in Section 2. In Section 3, we show how Trinocchio distributes the proof
computation of Pinocchio in the single-client scenario, and prove security of the
construction. We generalise Trinocchio to the setting with multiple, mutually
distrusting inputters and outputters in Section 4. Finally, we demonstrate the
feasibility of Trinocchio in Section 5 by analysing its performance in a case study,
computing a multivariate polynomial evaluation. We finish with a discussion and
conclusions in Section 6.

For convenience, we also provide a brief overview of the Pinocchio proto-
col [27] for verifiable computation based on quadratic arithmetic programs in
Appendix A.
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Secure function evaluation:

– Honest parties send inputs xi to
trusted party

– Adversary sends inputs xi of cor-
rupted parties to trusted party (ac-
tive adversary may modify them)

– Trusted party computes func-
tion (y1, . . . , ym) = f(x1, . . . , xm)
(where y1 = . . . = ⊥ if any xi = ⊥)

– Trusted party provides outputs yi
for corrupted parties to adversary

– Trusted party provides outputs yi
to honest parties

– Honest parties output received
value; corrupted parties output ⊥;
adversary chooses own output

Correct function evaluation:

– Honest parties send inputs xi to
trusted party

– Adversary sends inputs xi of cor-
rupted parties to trusted party (ac-
tive adversary may modify them)

– Trusted party computes func-
tion (y1, . . . , ym) = f(x1, . . . , xm)
(where y1 = . . . = ⊥ if any xi = ⊥)

– Trusted party provides all inputs
xi to adversary

– Adversary gives subset of honest
parties to trusted party (passive
adversary gives all honest parties)

– Trusted party sends outputs yi to
given honest parties, ⊥ to others

– Honest parties output received
value; corrupted parties output ⊥;
adversary chooses own output

Fig. 1. Ideal-world executions of secure (left) and correct (right) function evaluation.
The highlighted text indicates where the two differ.

2 Security Model for Privacy-Preserving Outsourcing

In this section, we define security for privacy-preserving outsourcing. Because
we have interactive protocols between multiple parties (as opposed to a cryp-
tographic scheme, like verifiable computation above), we define security using
the ideal/real-paradigm [6]. In our setting, the parties are several result parties
that wish to obtain the result of a computation on inputs held by several input
parties, who are willing to enable the computation, but not to divulge their pri-
vate input values to anybody else. Therefore, they outsource the computation
to several workers. (Input and result parties may overlap.) The simplest case is
the “single-client scenario” in which one party is the single input/result party.

We consider protocols operating in three phases: an input phase involving the
input parties and workers; a computation phase involving only the workers; and
a result phase involving the workers and result parties. The work of the input
parties and output parties should depend only on the number of other parties
and the size of their own in/outputs.

To define security, we will re-use the existing definition framework for se-
cure function evaluation [6]. These definitions not specific to the outsourcing
setting; but the outsourcing setting will become apparent when we claim that a
protocol, e.g., implements secure function evaluation if at most X workers are
corrupted. Secure function evaluation is the problem to evaluate (y1, . . . , ym) =
f(x1, . . . , xm) with m parties such that the ith party inputs xi and obtains yi,
and no party learns anything else. (In outsourcing, result parties have non-empty
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output, input parties have non-empty inputs, and workers have empty in- and
outputs.) A protocol π securely evaluates function f if the outputs of the parties
and adversary A in a real-world execution of the protocol can be emulated by the
outputs of the parties and an adversary SA in an idealised execution, where f
is computed by a trusted party that acts as shown in Figure 1. Security is guar-
anteed because the trusted party correctly computes the function. Privacy is
guaranteed because the adversary in the idealised execution does not learn any-
thing it should not. Secure evaluation also implies input independence, meaning
that an input party cannot let its input depend on that of another, e.g., by copy-
ing the input of another party; this is guaranteed because the adversary needs to
provide the inputs of corrupted parties without seeing the honest inputs. Typi-
cally, protocols achieve secure function evaluation for a given, restricted class of
adversaries, e.g., adversaries that are passive and only corrupt a certain number
of workers. Protocols can require set-up assumptions; these are captured by giv-
ing protocol participants access to a set of functions g1, . . . , gk that are always
evaluated correctly. In this case, we say that the protocol securely evaluates the
function in the (g1, . . . , gk)-hybrid model. For details, see [6].

We only achieve secure function evaluation if not too many workers are cor-
rupted; we still need to formalise that in all other cases, we still guarantee that
the function was evaluated correctly. This weaker security guarantee, which we
call correct function evaluation, captures security and input independence, as
above, but not privacy. It is formalised by modifying the ideal-world execution
as shown in Figure 1. Namely, after evaluating f , the trusted party provides all
inputs to the adversary (modelling that the computation may leak the inputs),
who, based on these inputs, can decide which honest parties are allowed to see
their outputs. Hence, we guarantee that, if an honest party gets a result, then it
gets the correct result of the computation on independently chosen inputs, but
not that the inputs remain hidden, or that it gets a result at all. Note that, in
this definition, the adversary has complete control over which result parties see
an output and which ones do not.

3 Distributing the Prover Computation

In this section, we present the single-client version of our Trinocchio protocol for
privacy-preserving outsourcing. In Trinocchio, a client distributes computation
of a function x2 = f(x1) to n workers (we consider here single-valued input and
output, but the generalisation is straightforward). Trinocchio guarantees correct
function evaluation (regardless of corruptions) and secure function evaluation
(if at most θ workers are passively corrupted, where n = 2θ + 1). Trinocchio in
effect distributes the proof computation of Pinocchio; the number of workers to
obtain privacy against one semi-honest worker is three, hence its name.

3.1 Multiparty Computation using Shamir Secret Sharing

To distribute the Pinocchio computation, Trinocchio employs multiparty com-
putation techniques based on Shamir secret sharing [4]. Recall that in (θ, n)

5



Shamir secret sharing, a party shares a secret s among n parties so that θ + 1
parties are needed to reconstruct s. It does this by taking a random degree-≤ θ
polynomial p(x) = αθx

θ+ . . .+αx+s with s as constant term and giving p(i) to
party i. Since p(x) is of degree at most θ, p(0) is completely independent from
any θ shares but can be easily computed from any θ + 1 shares by Lagrange in-
terpolation. We denote such a sharing as JsK. Note that Shamir-sharing can also
be done “in the exponent”, e.g., J〈a〉1K denotes a Shamir sharing of 〈a〉1 ∈ G1

from which 〈a〉1 can be computed using Lagrange interpolation in G1.
Shamir secret sharing is linear, i.e., Ja+ bK = JaK + JbK and JαaK = αJaK can

be computed locally. When computing the product of JaK and JbK, each party
i can locally multiply its points pa(i) and pb(i) on the random polynomials pa
and pb. Because the product polynomial has degree at most 2θ, this is a (2θ, n)
sharing, which we write as [a · b] (note that reconstructing the secret requires
n = 2θ + 1 parties). Moreover, the distribution of the shares of [a · b] is not
independent from the values of a and b, so when revealed, these shares reveal
information about a and b. Hence, in multiparty computation, [a · b] is typically
converted back into a random (θ, n) sharing Ja · bK using an interactive protocol
due to [19]. Interactive protocols for many other tasks such as comparing two
shared value also exist (see, e.g., [15]).

3.2 The Trinocchio protocol

We now present the Trinocchio protocol. Trinocchio assumes that Pinocchio’s
KeyGen has been correctly performed: formally, Trinocchio works in the KeyGen-
hybrid model. Furthermore, Trinocchio assumes pairwise private, synchronous
communication channels. To obtain x2 = f(x1), a client proceeds in four steps:

– The client obtains the verification key, and the workers obtain the evaluation
key, using hybrid calls to KeyGen.

– The client secret shares Jx1K of its input to the workers.
– The workers use multiparty computation to compute secret-shares Jx2K of

the output and J〈Vmid〉1K, J〈αvVmid〉1K, J〈Wmid〉2K, J〈αwWmid〉1K, J〈Ymid〉1K,
J〈αyYmid〉1K, J〈Z〉1K, [〈H〉1] of the Pinocchio proof, as we explain next; and
sends these shares to the client.

– The client recombines the shares into 〈Vmid〉1, 〈αvVmid〉1, 〈Wmid〉2, 〈αwWmid〉1,
〈Ymid〉1, 〈αyYmid〉1, 〈Z〉1, 〈H〉1 by Lagrange interpolation, and accepts x2 as
computation result if Pinocchio’s Verify returns success.

Algorithm 1 shows in detail how the secret-shares of the function output
and Pinocchio proof are computed. The first step is to compute function out-
put x2 = f(x1) and values (x3, . . . , xk) such that (x1, . . . , xk) is a solution of the
QAP (line 4). This is done using normal multiparty computation protocols based
on secret sharing. If function f is represented by an arithmetic circuit, then it
is evaluated using local addition and scalar multiplication, and the multiplica-
tion protocol from [19]. If f is represented by a circuit using more complicated
gates, then specific protocols may be used: e.g., the split gate discussed in Ap-
pendix A.1 can be evaluated using multiparty bit decomposition protocols [13,
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Algorithm 1 Trinocchio’s Compute protocol

1: . S = {α1, . . . , αd} denotes the list of roots of the target polynomial of the QAP
2: . T = {β1, . . . , βd} denotes a list of distinct points different from S
3: function Compute(EKf = {〈rvvi〉1}i, . . . , {〈sj〉1}j ; Jx1K)
4: (Jx2K, . . . , JxkK)← f(Jx1K)
5: JvK← {

∑
i vi(αj) · JxiK}j ; JV K← FFT−1

S (JvK); Jv′K← FFTT (JV K)
6: JwK← {

∑
i wi(αj) · JxiK}j ; JW K← FFT−1

S (JwK); Jw′K← FFTT (JW K)
7: JyK← {

∑
i yi(αj) · JxiK}j ; JY K← FFT−1

S (JyK); Jy′K← FFTT (JY K)
8: [h′]← {(Jv′jK · Jw′jK− Jy′jK)/t(βj)}j ; [H]← FFT−1

T ([h′])
9: J〈Vmid〉1K←

∑
i〈rvvi〉1 · JxiK

10: J〈αvVmid〉1K←
∑

i〈rvαvvi〉1 · JxiK
11: J〈Wmid〉2K←

∑
i〈rwwi〉2 · JxiK

12: J〈αwWmid〉1K
∑

i〈rwαwwi〉1 · JxiK
13: J〈Ymid〉1K←

∑
i〈ryyi〉1 · JxiK

14: J〈αyYmid〉1K←
∑

i〈ryαyyi〉1 · JxiK
15: J〈Z〉1K←

∑
i〈rvβvi + rwβwi + ryβyi〉1 · JxiK

16: [〈H〉1] =
∑

j〈s
j〉1 · [Hj ]

17: return (Jx2K; J〈Vmid〉1K, J〈αvVmid〉1K, J〈Wmid〉2K, J〈αwWmid〉1K,
18: J〈Ymid〉1K, J〈αyYmid〉1K, J〈Z〉1K, [〈H〉1])

29]. Any protocol can be used as long as it guarantees privacy, i.e., the view
of any θ workers is statistically independent from the values represented by the
shares.

The next task is to compute, in secret-shared form, the coefficients of the
polynomial h = ((

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi))/t ∈ F[x] that we need for

proof element 〈H〉1. In theory, this computation could be performed by first
computing shares of the coefficients of (

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi), and

then dividing by t, which can be done locally using traditional polynomial long
division. However, this scales quadratically in the degree of the QAP and hence
leads to unacceptable performance. Hence, we take the approach based on fast
Fourier transforms (FFTs) from [5], and adapt it to the distributed setting. Given
a list S = {ω1, . . . , ωd} of distinct points in F, we denote by P = FFTS(p) the
transformation from coefficients p of a polynomial p of degree at most d− 1 to
evaluations p(ω1), . . . , p(ωd) in the points in S. We denote by p = FFT−1S (P ) the
inverse transformation, i.e., from evaluations to coefficients. Deferring specifics
to later, we mention now that the FFT is a linear transformation that, for some
S, can be performed locally on secret shares in O(d · log d).

With FFTs available, we can compute the coefficients of h by evaluating h
in d distinct points and applying FFT−1. Note that we can efficiently compute
evaluations v of v = (

∑
i xivi), w of w = (

∑
i xiwi), and y of y = (

∑
i xiyi)

in the zeros {ω1, . . . , ωd} of the target polynomial. Namely, the values vk(ωi),
wk(ωi), yk(ωi) are simply the coefficients of the quadratic equations represented
by the QAP, most of which are zero, so these sums have much fewer than k
elements (if this were not the case, then evaluating v, w, and y would take an
unacceptable O(d·k)). Unfortunately, we cannot use these evaluations directly to
obtain evaluations of h, because this requires division by the target polynomial,
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which is zero in exactly these points ωi. Hence, after determining v, w, and y,
we first use the inverse FFT to determine the coefficients V , W , and Y of v,
w, and y, and then again the FFT to compute the evaluations v′, w′, and y′ of
v, w, and y in another set of points T = {Ω1, . . . , Ωk} (lines 5–7). Now, we can
compute evaluations h′ of h in T using h(Ωi) = (v(Ωi) · w(Ωi)− y(Ωi))/t(Ωi).
This requires a multiplication of (θ, n)-secret shares of v(Ωi) and w(Ωi), hence
the result is a (2θ, n)-sharing. Finally, the inverse FFT gives us a (2θ, n)-sharing
of the coefficients H of h (line 8).

Given secret shares of the values of xi and coefficients of h, it is straightfor-
ward to compute secret shares of the Pinocchio proof. Indeed, 〈Vmid〉1, . . . , 〈H〉1
are all computed as linear combinations of elements in the evaluation key, so
shares of these proof elements can be computed locally (lines 9–16), and finally
returned by the respective workers (lines 17–18).

Note that, compared to Pinocchio, our client needs to carry out slightly
more work. Namely, our client needs to produce secret shares of the inputs and
recombine secret shares of the outputs; and it needs to recombine the Pinoc-
chio proof. However, according to the micro-benchmarks from [27], this over-
head is small. For each input and output, Verify includes three exponentiations,
whereas Combine involves four additions and two multiplications; when using
[27]’s techniques, this adds at most a 3% overhead. Recombining the Pinocchio
proof involves 15 exponentiations at around half the cost of a single pairing.
Alternatively, it is possible to let one of the workers perform the Pinocchio
recombining step by using the distributed zero-knowledge variant of Pinocchio
(Appendix A.3) and the techniques from Section 4. In this case, the only overhead
for the client is the secret-sharing of the inputs and zero-knowledge randomness,
and recombining the outputs.

Parameters for Efficient FFTs To obtain efficient FFTs, we use the approach
of [5]. There, it is noted that the operation P = FFTS(p) and its inverse can be
efficiently implemented if S = {ω, ω2, . . . , ωd = 1} is a set of powers of a primitive
dth root of unity, where d is a power of two. (We can always demand that QAPs
have degree d = 2k for some k by adding dummy equations.) Moreover, [5]
presents a pair of groups G1,G2 of order q such that Fq has a primitive 230th
root of unity (and hence also primitive 2kth roots of unity for any k < 30) as
well as an efficiently computable pairing e : G1 ×G2 → G3. Finally, [5] remarks
that for T = {ηω, ηω2, . . . , ηωd = η}, operations FFT−1T and FFT−1T can easily
be reduced to FFTS and FFT−1S , respectively. In our implementation, we use
exactly these suggested parameters.

3.3 Security of Trinocchio

Theorem 1. Let f be a function. Let n = 2θ+1 be the number of workers used.
Let d be the degree of the QAP computing f used in the Trinocchio protocol.
Assuming the d-PKE, (4d+ 4)-PDH, and (8d+ 8)-SDH assumptions:

– Trinocchio correctly evaluates f in the KeyGen-hybrid model.
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– Whenever at most θ workers are passively corrupted, Trinocchio securely
evaluates f in the KeyGen-hybrid model.

The proof of this theorem is easily derived as a special case of the proof for
the multi-client Trinocchio protocol later. Here, we present a short sketch.

Proof (Sketch). To prove correct function evaluation, we need to show that for
every real-world adversary A interacting with Trinocchio, there is an ideal-world
simulator SA that interacts with the trusted party for correct function evaluation
such that the two executions give indistinguishable results. The only interesting
case is when the client is honest and some of the workers are not. In this case,
the simulator receives the input of the honest party, and needs to choose whether
to provide the output. To this end, the simulator simply simulates a run of the
actual protocol with A, until it has finally obtained function output x2 and the
accompanying Trinocchio proof. If the proof verifies, it tells the trusted party
to provide the output to the client; otherwise, it tells the trusted party not to.
Finally, the simulator outputs whatever A outputs. Because Trinocchio is secure,
except with negligible probability a verifying proof implies that the real-world
output of the client (as given by the adversary) matches the ideal-world output of
the client (as computed by the trusted party); and by construction, the outputs
of A and SA are distributed identically. This proves correct function evaluation.

For secure function evaluation, again the only interesting case is if the client
is honest and some of the workers are passively corrupted. In this case, because
corruption is only passive, correctness of the multiparty protocol used to compute
f and correctness of the Pinocchio proof system used to compute the proof
together imply that real-world executions (like ideal-world executions) result in
the correct function result and a verifying proof. Hence, we only need to worry
about how SA can simulate the view of A on the Trinocchio protocol without
knowing the client’s input. However, note that the workers only use a multiparty
computation to compute f (which we assume can be simulated without knowing
the inputs), after which they no longer receive any messages. Hence simulating
the multiparty computation for f and receiving any messages that A sends is
sufficient to simulate A. This proves secure function evaluation. ut

Privacy against Active Attacks We remark that actually, Trinocchio in some
cases provides privacy against corrupted workers as well. Namely, suppose that
the protocol used to compute f does not leak any information to corrupted work-
ers in the event of an active attack (even though in this case it may not guarantee
correctness). For instance, this is the case for the protocol from [19]: the attacker
can manipulate the shares that it sends, which makes the computation return
incorrect results; but since the attacker always learns only θ many shares of any
value, it does not learn any information. Because the attacker learns no addi-
tional information from producing the Pinocchio proof, the overall protocol still
leaks no information to the adversary. (And security of Pinocchio ensures the
client notices the attacker’s manipulation.)

This crucially relies on the workers not learning whether the client accepts the
proof: if the workers would learn whether the client obtained a validating proof,
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Algorithm 2 ProofBlock

1: function ProofBlock(BK;x; δv, δw, δy)
2: 〈V 〉1 ← 〈rvt〉1δv +

∑
i〈rvvi〉1xi; 〈V

′〉1 ← 〈rvαvt〉1δv +
∑

i〈rvαvvi〉1xi
3: 〈W 〉2 ← 〈rwt〉2δw +

∑
i〈rwwi〉2xi; 〈W ′〉1 ← 〈rwαwt〉1δw +

∑
i〈rwαwwi〉1xi

4: 〈Y 〉1 ← 〈ryt〉1δy +
∑

i〈ryyi〉1xi; 〈Y
′〉1 ← 〈ryαyt〉1δy +

∑
i〈ryαyyi〉1xi

5: 〈Z〉1 ← 〈rvβt〉1δv + 〈rwβt〉1δw + 〈ryβt〉1δy +
∑

i〈rvβvi + rwβwi + ryβyi〉1xj
6: return (〈V 〉1, 〈V ′〉1, 〈W 〉2, 〈W ′〉1, 〈Y 〉1, 〈Y ′〉1, 〈Z〉1)

then, by manipulating proof construction, they could learn whether a modified
version of the tuple (x1, . . . , xk) is a solution of the QAP used, so corrupted
workers could learn one chosen bit of information about the inputs (cf. [26]).

4 Handling Mutually Distrusting In- and Outputters

We now consider the scenario where there are multiple (possibly overlapping)
input and result parties. There are some significant changes between this scenario
and the single-client scenario. In particular, we need to extend Pinocchio to allow
verification not based on the actual input/output values (indeed, no party sees all
of them) but on some kind of representation that does not reveal them. Moreover,
we need to use the zero-knowledge variant of Pinocchio (Appendix A.3), and we
need to make sure that input parties choose their inputs independently from
each other.

4.1 Multi-Client Proofs and Keys

Our multi-client Trinocchio proofs are a generalisation of the zero-knowledge
variant of Pinocchio (Appendix A.3) with modified evaluation and verification
keys. Recall that in Pinocchio, the proof terms 〈Vmid〉1, 〈αvVmid〉1, 〈Wmid〉2,
〈αwWmid〉1, 〈Ymid〉1, 〈αyYmid〉1, and 〈Z〉1 encode circuit values xl+m+1, . . . , xk;
in the zero-knowledge variant, these terms are randomised so that they do not
reveal any information about xl+m+1, . . . , xk. In the multi-client case, addition-
ally, the inputs of all input parties and the outputs of all result parties need to
be encoded such that no other party learns any information about them. There-
fore, we extend the proof with blocks of the above seven terms for each input
and result party, which are constructed in the same way as the seven proof terms
above. Although some result parties could share a block of output values, for
simplicity we assign each result party its own block in the protocol.

To produce a block containing values x, a party first samples three random
field values δv, δw, and δy and then executes ProofBlock, cf. Algorithm 2. The BK
argument to this algorithm is the block key ; the subset of the evaluation key terms
specific to a single proof block. Because each input party should only provide its
own input values and should not affect the values contributed by other parties,
each proof block must be restricted to a subset of the wires. This is achieved by
modifying Pinocchio’s key generation such that, instead of a sampling a single
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Algorithm 3 CheckBlock

1: function CheckBlock(BV ; 〈V 〉1, 〈V ′〉1, 〈W 〉2, 〈W ′〉1, 〈Y 〉1, 〈Y ′〉1, 〈Z〉1)
2: if e(〈V 〉1, 〈αv〉2) = e(〈V ′〉1, 〈1〉2)
3: ∧e(〈αw〉1, 〈W 〉2) = e(〈W ′〉1, 〈1〉2)
4: ∧e(〈Y 〉1, 〈αy〉2) = e(〈Y ′〉1, 〈1〉2)
5: ∧e(〈Z〉1, 〈1〉2) = e(〈V 〉1 + 〈Y 〉1, 〈β〉2)e(〈β〉1, 〈W 〉2) then
6: return >
7: else
8: return ⊥

value β, one such value, βj , is sampled for each proof block j and the terms
〈rvβjvi + rwβjwi + ryβjyi〉1 are only included for wires indices i belonging to
block j. That is, the jth block key is

BKj = {〈rvvi〉1, 〈rvαvvi〉1, 〈rwwi〉2, 〈rwαwwi〉1, 〈ryyi〉1, 〈ryαyyi〉1,
〈rvβjvi + rwβjwi + ryβjyi〉1, 〈rvβjt〉1, 〈rwβjt〉1, 〈ryβjt〉1},

with i ranging over the indices of wires in the block. Note that ProofBlock only
performs linear operations on its x, δv, δw and δy inputs. Therefore this algorithm
does not have to be modified to compute on secret shares.

A Trinocchio proof in the multi-client setting now consists of one block
Qi = (〈Vi〉1, . . . , 〈Zi〉1) for each input and result party, one block Qmid =
(〈Vmid〉1, . . . , 〈Zmid〉1) of internal wire values, and Pinocchio’s 〈H〉1 element.
Verification of such a proof consists of checking correctness of each block, and
checking correctness of 〈H〉1. The validity of a proof block can be verified using
CheckBlock, cf. Algorithm 3. Compared to the Pinocchio verification key, our
verification key contains “block verification keys” BVi (i.e., elements 〈βj〉1 and
〈βj〉2) for each block instead of just 〈β〉1 and 〈β〉2. Apart from the relations in-
spected by CheckBlock, one other relation is needed to verify a Pinocchio proof:
the divisibility check of Equation (4) (Appendix A.2). In the protocol, the algo-
rithm that verifies this relation will be called CheckDiv. We denote the modified
setup of the evaluation and verification keys by hybrid call MKeyGen.

4.2 Protocol Overview

We will proceed with a protocol overview. Pseudocode and a more detailed
description of the protocol are given in Appendix B. The multi-client variant of
our Trinicchio protocol makes use of private channels, just as the single-client
variant, to privately communicate in- and output values, and to let the workers
carry out the computation. We need some additional communication to ensure
input independence and fix the input parties’ values. For this we use a bulletin
board. To achieve input independence, we first have the input parties commit
to a representation of their input and then reveal these, which requires the use
of a commitment scheme.

Apart from key set-up there are three phases to the multi-client Trinocchio
protocol.
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– In the input phase, the input parties provide representations of their input on
the bulletin board. These representations are later used as part of the proof
to verify the computation results. They also serve to ensure that each input
party provides its value independent of the other input values. The input
parties then secret share their input values to the workers. The workers verify
that the secret shared input values are consistent with their representations
on the bulletin board, to prevent malicious input parties from providing a
different value.

– The computation phase is very similar to the single-client variant of Trinoc-
chio. In this phase the workers perform multi-party computation to carry out
the actual computation and obtain secret shares of intermediate and result
wire values. They then use these secret shared wire values to construct shares
of the proof elements. These are then posted on the bulletin board, instead
of being communicated directly to the result parties to ensure that all result
parties receive a consistent result. In order to prevent these proof elements
from revealing any information about the wire values, the zero-knowledge
variant of the proof is used (Appendix A.3).

– In the result phase the workers privately send the shares of the result values
to the result parties. The result parties recombine the proof shares from the
bulletin board and check whether the proof verifies. The result parties further
check whether the recombined shares of the result are consistent with the
information on the bulletin board. The result parties only accept the result
received from the workers if both checks are satisfied.

4.3 Security of the Trinocchio Protocol

Analogously to the single-client case, we obtain the following result:

Theorem 2. Let f be a function. Let n = 2θ+1 be the number of workers used.
Let d be the degree of the QAP computing f used in the multi-client Trinocchio
protocol. Assuming the d-PKE, (4d+ 4)-PDH, and (8d+ 8)-SDH assumptions:

– Trinocchio correctly evaluates f in the (ComGen,MKeyGen)-hybrid model.
– Whenever at most θ workers are passively corrupted, Trinocchio securely

evaluates f in the (ComGen,MKeyGen)-hybrid model.

We stress that “at most θ workers are passively corrupted” includes both the
case when the adversary is passively corrupted, and corrupts at most θ workers
(as well as arbitrarily many input and result parties); and the case when the
adversary is actively corrupted, and corrupts no workers (but arbitrarily many
input and result parties)

We give a proof of this theorem in Appendix B. To prove secure function
evaluation, we obtain privacy by simulating the multiparty computation of the
proof with respect to the adversary without using honest inputs. To prove correct
function evaluation, we run the protocol together with the adversary: if this gives
a fake Pinocchio proof, then one of the underlying problems can be broken.
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In the single-client case, we remarked that Trinocchio actually provides se-
curity against up to θ actively corrupted workers. Namely, although θ actively
corrupted workers may manipulate the computation of the function and proof,
they do not learn any information from this because they do not see the re-
sulting proof that the client gets. In our multi-client protocol, it is less natural
to assume that the workers cannot see the resulting proof; and in fact, in our
protocol, corrupted workers do see the full proof as it is posted on the bulletin
board. It should be possible to obtain some privacy guarantees against actively
malicious workers (who do not collude with any result parties) by letting the
result parties provide proof contributions directly to the result parties instead
of posting them on the bulletin board. We leave an analysis for future work.

5 Performance

In this section, we show that our approach indeed adds privacy to verifiable
computation with little overhead. We demonstrate this in a case study: we take
the “MultiVar Poly” application from [27], and show that using Trinocchio, this
computation can be outsourced in a private and correct way at essentially the
same cost as letting three workers each perform the Pinocchio computation.

In our experiments, one client outsources the computation to three work-
ers. In particular, we use multiparty computation based on (1, 3) Shamir secret
sharing. As discussed in Sections 3.3 and 4.3, this guarantees privacy against
one passively corrupted worker (or, in the single-client case against θ actively
corrupted workers when the multiparty computation protocol does not leak any
information). We did not implement the multiple client scenario; this would add
small overhead for the workers, with verification effort growing linearly in he
number of input and result parties but remaining small and independent from
the computation size. To simulate a realistic outsourcing scenario, we distribute
computations between three Amazon EC2 “m3.medium” instances3 around the
world: one in Oregon, United States; one in Ireland; and one in Tokyo, Japan.
Multiparty computation requires secure and private channels: these are imple-
mented using SSL.

5.1 Case Study: Multivariate Polynomial Evaluation

In [27], Pinocchio performance numbers are presented showing that, for some
applications, Pinocchio verification is faster than native execution. One of these
applications, “MultiVar Poly”, is the evaluation of a constant multivariate poly-
nomial on five inputs of degree 8 (“medium”) or 10 (“large”). In this case study,
we use Trinocchio to add privacy to this outsourcing scenario.

We have made an implementation4 of Trinocchio’s Compute algorithm (Al-
gorithm 1) that is split into two parts. The first part performs the evaluation of

3 Running Intel Xeon E5-2670 v2 Ivy Bridge with 4 GB SSD and 3.75 GiB RAM
4 Implementation available at http://meilof.home.fmf.nl/
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# mult Pinoc. Dist f Dist π Trinoc. Verif.
MultiVar Poly, Medium 203428 2102 96 2092 2187 0.04
MultiVar Poly, Large 571046 6458 275 6427 6702 0.05

Table 1. Performance of multivariate polynomial evaluation with Trinocchio: number
of multiplications in f ; time for single-worker proof; time per party for computing f
and proof, and total; and verification time (all times in seconds)

the function f (line 4), given as an arithmetic circuit, using the secret sharing
implementation of VIFF. (We use the arithmetic circuit produced by the Pinoc-
chio compiler, hence f is exactly the same as in [27].) Note that, because f is
an arithmetic circuit, this step does not leak any information against actively
corrupted workers. Hence, in the single-client outsourcing scenario of Section 3,
we achieve privacy against one actively corrupted worker. The second part is
a completely new implementation of the remainder of Trinocchio using [25]’s
implementation of the discrete logarithm groups and pairings from [5].

Table 1 shows the performance numbers of running this application in the
cloud with Trinocchio. Significantly, evaluating the function f using passively
secure multiparty computation (i.e., line 4 of Compute) is more than twenty
times cheaper than computing the Pinocchio proof (i.e., lines 5–16 of Comp).
Moreover, we see that computing the Pinocchio proof in the distributed setting
takes around the same time (per party) as in the non-distributed setting. Indeed,
this is what we expect because the computation that takes place is exactly the
same as in the non-distributed setting, except that it happens to take place on
shares rather than the actual values itself. Hence, according to these numbers,
the cost of privacy is essentially that the computation is outsourced to three
different workers, that each have to perform the same work as one worker in the
non-private setting. Finally, as expected, verification time completely vanishes
compared to computation time.

Our performance numbers should be interpreted as estimates. Our Pinocchio
performance is around 8–9 times worse than in [27]; but on the other hand, we
could not use their proprietary elliptic curve and pairing implementations; and
we did not spend much time optimising performance. Note that, as expected, our
Pinocchio and Trinocchio implementations have approximately the same running
time. If Trinocchio would be based on Pinocchio’s code base, we would expect
the same. Moreover, apart from combining the proofs from different workers,
the verification routines of Pinocchio and Trinocchio are exactly the same, so
achieving faster verification than native computation as in [27] should be possible
with Trinocchio as well. We also note that VIFF is not known for its speed,
so replacing VIFF with a different multiparty computation framework should
considerably speed up the computation of f .
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6 Discussion and Conclusion

In this paper, we have presented Trinocchio, a system that adds privacy to the
Pinocchio verifiable computation scheme essentially at the cost of replicating
the Pinocchio proof production algorithm at three (or more) servers. Trinocchio
has the same correctness and security guarantees as Pinocchio; distributing the
computation between 2θ + 1 workers gives privacy if at most θ of them are
corrupted. We have shown in a case study that the overhead is indeed small.

As far as we are aware, our work is the first to deliver efficient verifiable
computation (i.e., with cryptographic guarantees of correctness and practical
verification times independent of the computation size) with privacy guarantees.
Although privacy is only guaranteed if not too many of the workers are corrupt,
the use of verifiable computation ensures that the outcome of the protocol cannot
be manipulated by the workers. This allows us to hedge against an adversary
being more powerful than anticipated in a real world scenario.

As discussed, existing verifiable computation constructions in the single-
worker setting [17, 20, 16] use very expensive cryptography, while multiple-worker
efforts to provide privacy [2] do not guarantee correctness if all workers are cor-
rupted. In contrast, existing works from the area of multiparty computation [3,
30, ?] deliver privacy and correctness guarantees, but have much less efficient
verification.

A major limitation of Pinocchio-based approaches is that they assume trusted
set-up of the (function-dependent) evaluation and verification keys. In the single-
client setting, the client could perform this set-up itself, but in the multiple-client
setting, it is less clear who should do this. In particular, whoever has generated
the evaluation and verification keys can use the values used during key generation
as a trapdoor to generate proofs of false statements. Even though key generation
can likely be distributed using the same techniques we use to distribute proof
production, it remains the case that all generating parties together know this
trapdoor. Unfortunately, this seems inherent to the Pinocchio approach.

Our work is a first step towards privacy-preserving verifiable computation,
and we see many promising directions for future work. Recent work in verifiable
computation has extended the Pinocchio approach by making it easier to spec-
ify computations [5], and by adding access control functionality [1]. In future
work, it would be interesting to see how these kind of techniques can be used
in the Trinocchio setting. Also, recent work has focused on applying verifiable
computation on large amounts of data held by the server (and possibly signed
by a third party) [10]; assessing the impact of distributing the computation (in
particular when aggregating information from databases from several parties) in
this scenario is also an important future direction. It would also be interesting to
base Trinocchio on the (much faster) Pinocchio codebase [27] and more efficient
multiparty computation implementations, and see what kind of performance im-
provements can be achieved. Another interesting direction is to investigate the
possibility of practical universally composable [7, 8] distributed verifiable compu-
tation; or to use the universal composability framework to obtain a more generic
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framework for combining multiparty computation with verifiable computation
(even with only standalone guarantees).
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A Verifiable Computation from QAPs

In this section, we discuss the protocol for verifiable computation based on
quadratic arithmetic programs from [18, 27].

A.1 Modelling Computations as Quadratic Arithmetic Programs

A quadratic arithmetic program, or QAP, is a way of encoding arithmetic cir-
cuits, and some more general computations, over a field F of prime order q. It is
given by a collection of polynomials over F.

Definition 1 ([27]). A quadratic arithmetic program Q over a field F is a
tuple Q = ({vi}ki=0, {wi}ki=0, {yi}ki=0, t), with vi, wi, yi, t ∈ F[x] polynomials of
degree deg vi,degwi,deg yi < deg t = d. The polynomial t is called the target
polynomial. The size of the QAP is k; the degree is the degree d of t.

In the remainder, for ease of notation, we adopt the convention that x0 = 1.

Definition 2. Let Q = ({vi}, {wi}, {yi}, t) be a QAP. A tuple (x1, . . . , xk) is a

solution of Q if t divides (
∑k
i=0 xivi) · (

∑k
i=0 xiwi)− (

∑k
i=0 xiyi) ∈ F[x].

In case t splits, i.e., t = (x−α1)·. . .·(x−αn), a QAP can be seen as a collection
of rank-1 quadratic equations for (x1, . . . , xk); that is, equations v · w − y with
v, w, y ∈ F[x1, . . . , xk] of degree at most one. Namely, (x1, . . . , xk) is a solution
of Q if t divides (

∑
i xivi) · (

∑
i xiwi)− (

∑
i xiyi), which means exactly that, for

every αj , (
∑
i xivi(αj))·(

∑
i xiwi(αj))−(

∑
i xiyi(αj)) = 0: that is, each αj gives

a rank-1 quadratic equation in variables (x1, . . . , xk). Conversely, a collection of
d such equations (recall x0 ≡ 1)

(vj0 · x0 + . . .+ vjk · xk) · (wj0 · x0 + . . .+ wjk · xk)− (yj0 · x0 + . . .+ yjk · xk)

can be turned into a QAP by selecting d distinct elements α1, . . . , αd in F, setting
target polynomial t = (x− α1) · . . . · (x− αd), and defining v0 to be the unique
polynomial of degree smaller than d for which v0(αj) = vj0, etcetera.

A QAP is said to compute a function (xl+1, . . . , xl+m) = f(x1, . . . , xl) if the
remaining xi give a solution exactly if the function is correctly evaluated.

Definition 3 ([27]). Let Q = ({vi}, {wi}, {yi}, t) be a QAP, and let f : Fl →
Fm be a function. We say that Q computes f if (xl+1, . . . , xl+m) = f(x1, . . . , xl)
⇔ ∃ (xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q.

For any function f given by an arithmetic circuit, we can easily construct
a QAP that computes the function f . Indeed, we can describe an arithmetic
circuit as a series of rank-1 quadratic equations by letting each multiplication
gate become one equation. Apart from circuits containing just addition and
multiplication gates, we can also express circuits with some other kinds of gates
directly as QAPs. For instance, [27] defines a “split gate” that converts a number
a into its k-bit decomposition a1, . . . , ak with equations a = a1 + 2 · a2 + . . . +
2k−1 · ak, a1 · (1− a1) = 0, . . ., ak · (1− ak) = 0.
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A.2 Proving Correctness of Computations

If QAP Q = ({vi}, {wi}, {yi}, t) computes a function f , then a prover can
prove that (xl+1, . . . , xl+m) = f(x1, . . . , xl) by proving knowledge of values
(xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q, i.e., t divides (

∑
i xivi)·

(
∑
i xiwi)− (

∑
i xiyi). [27] gives a construction of a proof system which does ex-

actly this. The proof system assumes discrete logarithm groups G1,G2,G3 with
a pairing e : G1×G2 → G3 for which the (4d+4)-PDH, d-PKE and (8d+8)-SDH
assumptions [27] hold, with d the degree of the QAP. Moreover, the proof is in
the common reference string (CRS) model: the CRS consists of an evaluation
key used to produce the proof, and a verification key used to verify it. Both are
public, i.e., provers can know the verification key and vice versa.

To prove that t divides p = (
∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi), the prover

computes quotient polynomial h = p/t and basically provides evaluations “in
the exponent” of h, (

∑
i xivi), (

∑
i xiwi), and (

∑
i xiyi) in an unknown point s

that can be verified using the pairing. More precisely, given generators g1 of G1

and g2 of G2 (written additively) and polynomial f ∈ F[x], let us write 〈f〉1 for
g1 · f(s) and 〈f〉2 for g2 · f(s). The evaluation key in the CRS, generated using
random s, αv, αw, αy, β, rv, rw, ry = rv · rw ∈ F, is:

〈rvvi〉1, 〈rvαvvi〉1, 〈rwwi〉2, 〈rwαwwi〉1, 〈ryyi〉1, 〈ryαyyi〉1,
〈rvβvi + rwβwi + ryβyi〉1, 〈sj〉1.

where i ranges over l +m+ 1, l +m+ 2, . . . , k and j runs from 0 to the degree
of t. The proof contains the following elements:

〈Vmid〉1 =
∑
i〈rvvi〉1 · xi, 〈αvVmid〉1 =

∑
i〈rvαvvi〉1 · xi,

〈Wmid〉2 =
∑
i〈rwwi〉2 · xi, 〈αwWmid〉1 =

∑
i〈rwαwwi〉1 · xi,

〈Ymid〉1 =
∑
i〈ryyi〉1 · xi, 〈αyYmid〉1 =

∑
i〈ryαyyi〉1 · xi,

〈Z〉1 =
∑
i〈rvβvi + rwβwi + ryβyi〉1 · xi, 〈H〉1 =

∑
j〈sj〉1 · hj ,

(1)

where i ranges over l + m + 1, l + m + 2, . . . , k, and hj are the coefficients of
polynomial h = p/t.

To verify that t divides (
∑
i xivi) ·(

∑
i xiwi)−(

∑
i xiyi) and hence (xl+1, . . . ,

xl+m) = f(x1, . . . , xl), a verifier uses the following verification key from the CRS:

〈αv〉2, 〈αw〉2, 〈αy〉2, 〈β〉1, 〈β〉2, 〈rvvi〉1, 〈rwwi〉2, 〈ryyi〉1, 〈ryt〉2,

where i ranges over 0, 1, 2, . . . , l + m5. Given the verification key, a proof, and
values x1, . . . , xl+m, the verifier proceeds as follows. First, it checks that

e(〈Vmid〉1, 〈αv〉2) = e(〈αvVmid〉1, 〈1〉2);

e(〈αw〉1, 〈Wmid〉2) = e(〈αwWmid〉1, 〈1〉2);

e(〈Ymid〉1, 〈αy〉2) = e(〈αyYmid〉1, 〈1〉2) :

(2)

5 In [27], several terms of the verification key includes a value γ; however, a careful
look at [27]’s proof reveals that γ is actually not needed. We remove it because it
simplifies notation, especially for our multi-client protocols.
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intuitively, under the d-PKE assumption, these checks guarantee that the prover
must have constructed 〈Vmid〉1, 〈Wmid〉2, and 〈Ymid〉1 using the elements from
the evaluation key. It then checks that

e(〈Vmid〉1 + 〈Ymid〉1, 〈β〉2) · e(〈β〉1, 〈Wmid〉2) = e(〈Z〉1, 〈1〉2) : (3)

under the PDH assumption, this guarantees that the same coefficients xi were
used in 〈Vmid〉1, 〈Wmid〉2, and 〈Ymid〉1. Finally, the verifier computes evaluations

〈V 〉1 of
∑k
i=0 xivi as 〈Vmid〉1+

∑l+m
i=0 〈rvvi〉1 ·xi; 〈W 〉2 of

∑k
i=0 xiwi as 〈Wmid〉2+∑l+m

i=0 〈rwwi〉2·xi; and 〈Y 〉1 of
∑k
i=0 xiyi as 〈Ymid〉1+

∑l+m
i=0 〈ryyi〉1·xi, and verifies

that
e(〈V 〉1, 〈W 〉2) · e(〈Y 〉1, 〈1〉2)−1 = e(〈H〉1, 〈ryt〉2) : (4)

under the (8d+ 8)-SDH assumption, this guarantees that, for the polynomial h
encoded by 〈H〉1, t · h = (

∑
i xivi) · (

∑
i xiwi)− (

∑
i xiyi) holds.6

Theorem 3 ([18], informal). Given QAP Q = ({vi}, {wi}, {yi}, t) and values
x1, . . . , xl+m, the above is a non-interactive argument of knowledge of (xl+m+1, . . . , xk)
such that (x1, . . . , xk) is a solution of Q.

A.3 Making the Proof Zero-Knowledge

The above proof can be turned into a zero-knowledge proof, that reveals noth-
ing about the values of (xl+m+1, . . . , xk) other than that t divides (

∑
i xivi) ·

(
∑
i xiwi) − (

∑
i xiyi) for some h, by performing randomisation. Namely, in-

stead of proving that t · h = (
∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi), we prove that

t · h̃ = (
∑
i xivi + δv · t) · (

∑
i xiwi + δw · t)− (

∑
i xiyi + δy · t) with δv, δw, δy ran-

dom from F. Precisely, the evaluation key needs to contain additional elements:

〈rvt〉1, 〈rvαvt〉1, 〈rwt〉2, 〈rwαwt〉1, 〈ryt〉1, 〈ryαyt〉1, 〈rvβt〉1, 〈rwβt〉1, 〈ryβt〉1, 〈t〉1.

Compared to the original proof, we let

〈V ′mid〉1 = 〈Vmid〉1 + 〈rvt〉1 · δv, 〈αvV ′mid〉1 = 〈αvV ′mid〉1 + 〈rvαvt〉1 · δv,
〈W ′mid〉2 = 〈Wmid〉2 + 〈rwt〉2 · δw, 〈αwW ′mid〉1 = 〈αwWmid〉1 + 〈rwαwt〉1 · δw,
〈Y ′mid〉1 = 〈Ymid〉1 + 〈ryt〉1 · δy, 〈αyY ′mid〉1 = 〈αyYmid〉1 + 〈ryαyt〉1 · δy,

〈Z ′〉1 = 〈Z〉1 + 〈rvβt〉1 · δv + 〈rwβt〉1 · δw + 〈ryβt〉1 · δy, 〈H ′〉1 =
∑
j〈sj〉1 · h̃j ,

with h̃j the coefficients of h+δvw0+
∑
i δvxi ·wi+δwv0+

∑
i δwxi ·vi+δvδw ·t−δy.

Verification remains exactly the same.

Theorem 4 ([18], informal). Given QAP Q = ({vi}, {wi}, {yi}, t) and values
x1, . . . , xl+m, the above is a non-interactive zero-knowledge argument of knowl-
edge of (xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q.

6 We remark that, as shown in [27], a verifier who has generated the evaluation and
verification keys, can use the randomness from the generation process to save several
of the above pairing checks. We do not consider this optimisation here.
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A.4 From Arguments of Knowledge to Verifiable Computation

In [27], the above argument of knowledge is used to construct a public verifiable
computation scheme. In such a scheme, a client outsources the computation of
a function f to a worker, obtaining cryptographic guarantees that the result it
gets from the worker is correct. It is defined as follows:

Definition 4 ([27]). A public verifiable computation scheme VC consists of
three polynomial-time algorithms (KeyGen,Compute,Verify):

– (EKf ; VKf ) ← KeyGen(f, 1λ): a probabilistic key generation algorithm that
takes as argument a function f : Fl → Fm and a security parameter λ,
outputting a public evaluation key EKf and a public verification key VKf

– (y;π)← Compute(EKf ;x): a probabilistic worker algorithm that takes input
x ∈ Fl and outputs y = f(x) ∈ Fk and a proof π of its correctness

– {0, 1} ← Verify(VKf ;x;y;π): a deterministic verification algorithm that
outputs 1 if y = f(x), 0 otherwise.

To outsource the computation of f , a client runs KeyGen and provides EKf to
the worker. When it needs f(x), it provides x to the worker, who runs Compute
and provides the result y = f(x) and proof π to the client. The client accepts y
if Verify succeeds. We require that worker cannot provide incorrect proofs even
if it knows VKf , which makes this verifiable computation scheme “public”. In
fact, a trusted party could for once and for all perform KeyGen and publish
(EKf ,VKf ); any client who trusts this party can then use the published VKf

to verify computations. (Trusting this party is needed: the random values used
in KeyGen are a trapdoor with which the generator of the keys can produce false
proofs.) A public verifiable computation scheme should satisfy correctness and
security. Correctness means that honest workers produce accepting proofs:

Definition 5 ([27]). A public verifiable computation scheme VC is called cor-
rect if, for all f : Fl → Fm and x ∈ F:

if (EKf ; VKf )← KeyGen(f, 1λ); (y;π)← Compute(EKf ;x),

then Verify(VKf ;x;y;π) = 1.

Security means that corrupt workers cannot convince clients of wrong results:

Definition 6 ([27]). A public verifiable computation scheme VC is called secure
if, for any f : Fl → Fm and probabilistic polynomial time adversary A:

Pr[ (EKf ,VKf )← KeyGen(f, 1λ); (x;y;π)← A(EKf ; VKf ) :

y 6= f(x) ∧ Verify(VKf ;x;y;π) = 1 ] = negl(λ).

Given a QAP Q that computes a function f , the argument of knowledge
from Section A.2 directly gives a public verifiable computation scheme known as
Pinocchio [27]: KeyGen is the computation of the evaluation and verification keys
for Q; Compute computes (xl+1, . . . , xl+m) = f(x1, . . . , xl), (xl+m+1, . . . , xk)
such that (x1, . . . , xk) is a solution of Q, and proof (1); and Verify are the checks
(2–4) for this proof.
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Theorem 5 (Pinocchio [27], informal). Let QAP Q be of degree d. Then the
above construction is a secure and correct public verifiable computation scheme
under the d-PKE, (4d+ 4)-PDH, and (8d+ 8)-SDH assumptions.

B Multi-client Protocol and Security Proof

In this appendix we will give a more detailed description of the multi-client
protocol of Section 4 and the security proof.

B.1 The Protocol

We now present our multi-client Trinocchio protocol in more detail. As before,
we assume that each input party provides only a single input and each result
party receives only a single output; that is, each block from Section 4.1 consists
of only one wire. It should be clear from Section 4.1 how this can be generalised.

Communication Model and Notation We assume synchronous communi-
cation; pairwise secure channels between the input parties and workers; between
the workers themselves; and between the workers and result parties. To ensure
agreement between the parties about the inputs for the computation, we ad-
ditionally assume a bulletin board. Through this bulletin board, parties can
publish messages which can then be retrieved by any other party. Messages on
the bulletin board are authenticated. In our protocol, we denote a party posting
a message m as Post(m). For convenience, we don’t explicitly denote a party re-
trieving information from the bulletin board; instead, we take Post(m) to mean
that any party can now use the value for m.

Mixed Commitment Scheme We use a commitment scheme, which allows a
party to commit to a certain value, without revealing that value to other par-
ties, but, when at a later time this value is revealed, the other parties can be
certain that the revealed value is equal to the original committed to value. Each
party has its own public commitment key k and a commitment to a value v us-
ing randomness r is denoted Commitk(v; r). Because, given explicit randomness,
the commitment algorithm is deterministic, the commitment can be opened by
simply revealing (v, r). Then any party can verify the commitment by simply
recomputing it. To ensure input independence, the commitment scheme must be
non-malleable. Each input party will produce one commitment, so each commit-
ment key is used only once.

In particular, we use a so-called “mixed commitment scheme” [14]. In such a
scheme, commitment keys can be generated in two ways. First, they can be gen-
erated such that the scheme is perfectly binding and computationally hiding, and
a trapdoor exists with which the committed value can be extracted. Second, they
can be generated such that the scheme is perfectly hiding and computationally
binding, and a trapdoor exists with which commitments can be opened to any
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value. Moreover, the keys generated in the two ways should be computationally
indistinguishable. In our protocol, commitment keys of the first, i.e., perfectly
binding, kind are generated for all input parties by a trusted party (and the
trapdoor thrown away), which we model by a hybrid call k1, . . . , kl ← ComGen.
(In the simulator used for the security proof, commitment keys of the first kind
are generated for corrupted input parties and commitment keys of the second
kind are generated for honest input parties, with the trapdoors used when sim-
ulating the adversary.) Mixed commitments can be instantiated efficiently, e.g.,
using a cryptographic hash function in the random oracle model; or using Pail-
lier encryption [14]: in this latter case, perfectly binding commitment keys are
k = (1+N)rsN mod N2, perfectly hiding commitment keys are k = sN mod N2,
and commitments are kmuN mod N2.

Overview of the Protocol Our protocol is shown as Algorithm 4. The protocol
starts with hybrid calls to obtain the trusted commitment keys and Trinocchio
evaluation and verification keys (lines 2–3). The remainder of the protocol con-
sists of the input phase (lines 4–16), in which the input parties provide their
inputs to the workers; the computation phase, in which the workers compute
the function and Pinocchio proof (lines 17–31); and the result phase, in which
the result parties obtain the output from the workers and verify its correctness
(lines 32–41).

Input Phase In the input phase, each input party provides its input to the
workers. Compared to the single-client case, in which the input party simply
provided secret shares of its inputs, we need to take several additional steps.
Namely, we need each input party to provide a block for its inputs that other
parties can use to verify the proof; and we need to guarantee input independence,
namely, that input parties cannot choose their inputs depending on those of
others.

To achieve these goals, we proceed as follows. First, each input party com-
putes a block for its input (line 5). Having each input party post its block on
the bulletin board would break input independence (in effect, it binds the input
parties who provide the blocks first). We circumvent this by letting each input
party post a commitment to its block first (line 6). After all commitments have
been posted, the input parties post the openings to the commitments, i.e., the
blocks and commitment randomness (line 7). (This guarantees input indepen-
dence because in the security proof, the inputs of the honest parties can still be
changed after the corrupted parties provide their inputs.) After this, the valid-
ity of the commitments (line 9) and blocks (line 10) are checked; if any input
party provided incorrect information, the computation is aborted. Note that
ProofBlock used by the input parties could already be considered a commitment
scheme [12], however, because of the way the CRS is constructed and used in the
security proof for the protocol, we cannot make use of the trapdoor that would
make it equivocable.
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After the input blocks have been posted and checked, the inputs are provided
to the workers in the form of (2θ, n) shares (line 11). The shared information
is both input [xi] and block randomness [δv,i], [δw,i], [δy,i]: the workers need this
latter information to compute the proof’s 〈H〉1 element. Note that we use (2θ, n)
shares: because n = 2θ + 1, the shares of all workers recombine to a unique
value and we do not need to worry about input parties handing out inconsistent
shares. The workers check that the shares correspond to the broadcast block
by computing additive shares of the block, posting them, and checking if their
Shamir recombination (denoted by Combine) matches the value on the bulletin
board (lines 13–15). Finally, the (2θ, n)-shares are converted into (θ, n)-shares
(each worker (θ, n)-shares its share and applies recombination a la [19]) used for
the remainder of the computation (line 16).

Computation Phase In the computation phase, the workers compute function
f , and produce a Pinocchio proof that this computation was performed correctly.
The computation of f (line 17) and coefficients H ′ of the polynomial h = (v ·w−
y)/t (lines 18–21) are the same as in the single-client case. To generate the proof
block for the internal wires, the workers first generate shared random values
Jδv,midK, Jδw,midK, Jδy,midK (line 22): for instance, by letting each party share a
random value or using pseudo-random secret sharing. They then call ProofBlock
to produce the block using the shared wires and randomness (line 23). The
blocks for the result parties are generated in the same way (lines 24–26). The
coefficients of the randomised quotient polynomial H are computed from H ′

analogously to the zero-knowledge variant of Pinocchio (Appendix A.3); note
that this requires computing overall randomness δv, δw, δy that is the sum of
the randomness from all blocks in the proof. This gives (2θ, n) shares [〈H〉1] of
proof element 〈H〉1 (line 30)

Having computed shares of all proof elements, the workers now post these
shares on the bulletin board so that everybody can combine them to obtain the
full proof. Note that the shares of individual workers might statistically depend
on information that we do not want to reveal such as internal circuit wires. To
avoid any problems because of this, the workers first re-randomise their proof
elements by adding a new random sharing of zero; for instance, obtained by
letting each worker share zero or using pseudo-random zero sharing (line 31).

Result Phase In the result phase, the result parties obtain their computation
results, and verify them with respect to the information on the bulletin board.
First, the result parties obtain secret shares of their output values, and the
randomness used in their proof blocks (line 32). Then, they combine the values
from the bulletin board into a full multi-client Pinocchio proof (lines 34–36),
and verify this proof (lines 37–38). Finally, they recombine their output values
(line 39), check if the secret shares of their output values correspond to the
posted proof block (line 40), and output the computation result (line 41).

In this section we prove Theorem 2, i.e., we show that our multi-client
Trinocchio protocol (Algorithm 4) correctly (always) and securely (if at most
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Algorithm 4 Trinocchio: n-party verifiable computation

1: . Input parties I have xi, result parties R output (xl+1, . . . , xl+m) = f(x1, . . . , xl)
2: parties i ∈ I do (k1, . . . , kn)← ComGen()

3: parties i ∈ I∪W∪R do (EK = ({BKi}i, . . .), V K = ({BVi}i, . . .))← MKeyGen()

4: parties i ∈ I do . input phase
5: (δv,i, δw,i, δy,i) ∈R F3; Qi ← ProofBlock(BKi;xi; δv,i, δw,i, δy,i)
6: sample commitment randomness ρi; ci ← Commitki(Qi; ρi); Post(ci)
7: Post(Qi, ρi)
8: for all j ∈ I \ {i} do
9: if cj 6= Commitkj (Qj ; ρj) then abort the protocol

10: if CheckBlock(BVj ;Qj) = ⊥ then abort the protocol

11: create (2θ, n)-shares ([xi], [δv,i], [δw,i], [δy,i]) and distribute to the workers

12: parties W do
13: for all i ∈ I do
14: [Qi]← ProofBlock(BKi; [xi]; [δv,i], [δw,i], [δy,i]); Post([Qi])
15: if Combine([Qi]) 6= Qi then abort the protocol

16: convert (2θ, n) shares ([xi], [δv,i], [δw,i], [δy,i]) to (θ, n) shares (JxiK, . . .)

17: compute (Jxl+1K, . . . , JxkK) using MPC . computation phase
18: JvK← {(

∑
i vi(ωj) · JxiK}j ; JV K← FFT−1

S (JvK); Jv′K← FFTT (JV K)
19: JwK← {(

∑
i wi(ωj) · JxiK}j ; JW K← FFT−1

S (JwK); Jw′K← FFTT (JW K)
20: JyK← {(

∑
i yi(ωj) · JxiK}j ; JY K← FFT−1

S (JyK); Jy′K← FFTT (JY K)
21: [h′]← {(Jv′jK · Jw′jK− Jy′jK)/t(Ωj)}j ; [H′]← FFT−1

T ([h′])
22: (Jδv,midK, Jδw,midK, Jδy,midK) ∈R F3

23: JQmidK← ProofBlock(BKmid; Jxl+m+1K, . . . , JxkK; Jδv,midK, Jδw,midK, Jδy,midK)
24: for all i ∈ R do
25: (Jδv,iK, Jδw,iK, Jδy,iK) ∈R F3

26: JQiK← ProofBlock(BKi; JxiK; Jδv,iK, Jδw,iK, Jδy,iK)

27: [δv]← [δv,mid] +
∑

i∈I∪R[δv,i]
28: [δw]← [δw,mid] +

∑
i∈I∪R[δw,i]

29: [δy]← [δy,mid] +
∑

i∈I∪R[δy,i]

30: [H]← [H′]+ JδvKJW K+ JδwKJV K+ JδvKJδwKT − JδyK; [〈H〉1]←
∑d

j=0〈s
j〉1[Hj ]

31: Post(JQmidK + J0K); Post([〈H〉1] + [0]); for all i ∈ R do Post(JQiK + J0K)
32: for all i ∈ R do send (JxiK, Jδv,iK, Jδw,iK, Jδy,iK) to res. party i . result phase

33: parties i ∈ R do
34: for all j ∈ R do Qj ← Combine([Qj ])

35: Q← Combine(JQmidK) +
∑

j∈I∪RQj

36: 〈H〉1 ← Combine([〈H〉1])
37: if CheckBlock(BVmid;Qmid) = ⊥ ∨ ∃j : CheckBlock(BVj ;Qj) = ⊥ ∨
38: CheckDiv(V K;Q; 〈H〉1) = ⊥ then output ⊥ and abort protocol

39: (xi, δv,i, δw,i, δy,i)← Combine(JxiK, Jδv,iK, Jδw,iK, Jδy,iK)
40: if Qi 6= ProofBlock(BKi;xi; δv,i, δw,i, δy,i) then output ⊥ and abort protocol

41: output xi
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θ workers are passively corrupted) evaluates function f . Theorem 2 directly fol-
lows from Lemmas 1 and 2 below.

B.2 Trinocchio Correctly Evaluates f

To prove that Trinocchio correctly evaluates f , we construct a simulator that
interacts with the trusted party for correct function evaluation shown in Figure 1.
The simulator Scorrect is given in Algorithm 5.

Lemma 1. For every probabilistic polynomial-time adversary A, Scorrect is prob-

abilistic polynomial time and the distribution ensembles Exec
(ComGen,MKeyGen)
Trinocchio,A

and CIdealf,Scorrect are computationally indistinguishable.

Proof. To prove this lemma, we will start from the Exec distribution ensemble
and introduce increasingly modified distribution ensembles YADi, each indistin-
guishable from the next, to finally show that ExecTrinocchio,A is computationally
indistinguishable from Idealf,Scorrect . The simulator operates by simulating the
protocol with respect to the given adversary A, and finally returning whatever
value the simulated adversary A returned. The lines in the simulator are labelled
to explain which parts of the simulator mimic the real protocol, which are needed
to interact with the ideal functionality, and which modifications are introduced
and explained by the various YAD distributions.

The real protocol is aborted at several places if certain conditions are met.
Note that this is always in response to checks on information on the bulletin
board that anybody can perform, hence all protocol parties agree on whether
the protocol is aborted. If the simulator follows the protocol and the protocol is
aborted, the simulator sends ⊥ to the ideal functionality on behalf of any corrupt
input party whose input had not been sent yet, and proceeds to send ∅ as set
of result parties to get the result, disregarding any messages it receives from the
ideal functionality. It also completes the simulation of A to obtain its output.
This ensures that the distribution Ideal is well-defined for aborted protocols.

At various points, the simulator is instructed to terminate the simulation.
This is not the same as aborting the simulated protocol. The simulation will be
terminated whenever the simulator fails at some computation which is not part
of the real protocol, but which is needed to achieve some security property, such
as mimicking the real protocol. To terminate the simulation will mean that the
output of the adversary in the ideal case will not be consistent with the output
in the real case, i.e., it will signal an adversary that it is in fact operating in
the ideal case. To show that the termination of the simulation does not enable
the distinction between Exec and Ideal, we will show below that each of the
conditions which lead to termination of the simulated protocol can only occur
with negligible probability.

We will now very briefly describe the purpose of each of the distributions
YADi. Each consecutive pair of distributions is indistinguishable.

We now present the increasingly modified distributions YADi, every time
showing indistinguishability between consecutive distributions.
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Algorithm 5 Simulator Scorrect(C, {xi}i∈C , z, λ) for correct function evaluation

1: . I: input parties, W: workers, R: result parties, C: corrupted parties
2: for all i ∈ I do
3: if i ∈ C then generate perfectly binding comm. key ki, keep trapdoor . YAD1

4: else generate perfectly hiding commitment key ki, keep trapdoor . YAD1

5: generate modified (EK = {{BKi}i, . . .}, V K = {{BVi}i, . . .}) as in YAD3 . YAD3

6: whenever the adversary queries ComGen, return (k1, . . . , kl)
7: whenever the adversary queries MKeyGen, return (EK,V K)
8: on behalf of honest parties i ∈ I do
9: sample commitment randomness ρ′i . YAD2

10: ci ← Commitki(0; ρ′i) . YAD2

11: Post(ci) . Exec

12: for all i ∈ I ∩ C do
13: extract Q̂i from ci using trapdoor . YAD2

14: if CheckBlock(BVi; Q̂i) = ⊥ then
15: xi ← ⊥ . YAD2

16: else
17: use the d-PKE extractor on Q̂i to obtain field elements δv,i, δw,i and δy,i

and polynomials Vi(x), Wi(x) and Yi(x) of degree at most d − 1; if the extractor
fails, terminate the simulation . YAD4

18: set xi such that Vi(x) = xivi(x), Wi(x) = xiwi(x) and Yi(x) = xiyi(x); if
this is not possible, terminate the simulation . YAD5

19: send xi to the ideal functionality on behalf of corrupt input party i . Ideal

20: receive x from the ideal functionality . Ideal
21: on behalf of honest parties i ∈ I do
22: (δv,i, δw,i, δy,i) ∈R F3 . Exec
23: Qi ← ProofBlock(BKi;xi; δv,i, δw,i, δy,i) . Exec
24: create ρi such that ci = Commitki(Qi; ρi) using trapdoor . YAD2

25: simulate lines 7 through 39 of the real protocol on behalf of honest parties . Exec
26: F ← ∅ . Ideal
27: for all i ∈ R \ C do
28: if Qi 6= ProofBlock(BKi;xi; δv,i, δw,i, δy,i) then
29: F ← F ∪ {i} . Ideal

30: for all Q′ ∈ {Qmid} ∪ {Qi}i∈R∩C ∪ {Qi}i∈F do
31: use the d-PKE extractor on Q′ to obtain field elements δ′v, δ′w and δ′y and

polynomials V ′(x), W ′(x) and Y ′(x) of degree at most d− 1; if the extractor fails,
terminate the simulation . YAD4

32: set the corresponding entries in x such that V ′(x) =
∑

i xivi(x), W ′(x) =∑
i xiwi(x) and Y ′(x) =

∑
i xiyi(x), where i ranges over the indices corresponding

to the block Q′ belongs to; if this is not possible, terminate simulation . YAD5

33: if t(x) - (
∑

i xivi(x))(
∑

i xiwi(x))−
∑

i xiyi(x) then terminate sim. . YAD6

34: Send R \ F to the ideal functionality . Ideal
35: Return the output of the simulated adversary

27



YAD1 The distribution ensemble YAD1 is the Exec distribution ensemble, where
the set-up of the protocol is modified such that the commitment keys for the
corrupt input parties are generated to be perfectly binding instead of perfectly
hiding, and the simulator keeps the trapdoors. This distribution ensemble is
computationally indistinguishable from ExecTrinocchio,A based on the property
of the mixed commitment scheme that the two kinds of commitment keys are
indistinguishable.

YAD2 For the distribution ensemble YAD2, the protocol is further modified by
producing commitments to 0 instead of the input proof blocks on behalf of the
honest input parties. When the commitments are opened later in the protocol,
the openings to correct proof blocks are created using the trapdoor information.
Additionally, the proof blocks produced by corrupt input parties are extracted
from their commitments, although the extracted blocks are not used any further
at this stage.

Indistinguishability between YAD2 and YAD1 follows directly from the indis-
tinguishability property of the commitment scheme. The commitment scheme
also guarantees that commitments produced by the adversary can only be opened
to the extracted proof block, i.e., that Q̂i = Qi for corrupt input parties i.

YAD3 For distribution ensemble YAD3, we will again modify the set-up of the
protocol, but this time of the evaluation and verification keys. This happens
analogously to [27]’s security proof. Instead of sampling s, αv, αw, αy, rv, rw,
βmid and the βi for 1 ≤ i ≤ l+m uniformly at random and generating the keys
from these values, the set-up proceeds as follows.

For a given QAP of degree d, set q ← 4d+ 4, then sample s ∈R F. Next, set

chal← {〈1〉1, 〈s〉1, 〈s2〉1, . . . , 〈sq〉1, 〈sq+2〉1, . . . , 〈s2q〉1
〈1〉2, 〈s〉2, 〈s2〉2, . . . , 〈sq〉2, 〈sq+2〉2, . . . , 〈s2q〉2}.

From this point onwards, the value s will not be used directly to compute the
keys. Instead, any key element derived from s will be generated from chal. This
restriction will be necessary to complete the security proof later.

Randomly draw αv, αw, αy, r′v and r′w. Also draw a random polynomial
χmid(x) of degree at most 3d+ 3 such that χmid(x) is of degree at most 3d+ 3
and χmid(x) · (r′vvi(x) + r′wx

d+1wi(x) + r′vr
′
wx

2d+2yi(x)) has a zero coefficient in
front of x3d+3 for all internal wire indices i, and χmid(x)t(x), χmid(x)xd+1t(x)
and χmid(x)x2d+2t(x) have a zero coefficient in front of x3d+3 as well. Such
polynomials exist by Lemma 10 of [18]. Similarly, for each input and output
wire 1 ≤ i ≤ l +m, draw random polynomial χi(x) such that χi(x) is of degree
at most 3d+3 and χi(x) · (r′vvk(x)+ r′wx

d+1wk(x)+ r′vr
′
wx

2d+2yk(x)), χi(x)t(x),
χi(x)xd+1t(x) and χi(x)x2d+2t(x) have a zero coefficient in front of x3d+3
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Now, we will generate the evaluation and verification keys as if we had used
the following

rv = r′vs
d+1

rw = r′ws
2d+2

ry = r′ys
3d+3

βmid = sχmid(s)

βi = sχi(s),

where i ranges from 1 to l + m. Because we are not allowed to inspect the
value of s directly, we cannot compute these values explicitly. However, we can
compute the evaluation and verification key elements from chal. Because rv,
rw and various β’s are still distributed uniformly, and ry = rv · rw still holds,
the distribution of the keys is statistically indistinguishable from keys generated
using the real key generation algorithm.

YAD4 Distribution ensemble YAD4 is produced in the same manner as YAD3,
except that the d-PKE extractor is run on the adversarially generated proof
blocks that satisfy the CheckBlock predicate. If the extractor fails then the simu-
lation is terminated. Because the d-PKE assumption states that the probability
of failure is negligible, YAD4 will be statistically indistinguishable from YAD3.
Therefore an adversary cannot cause the simulation to fail with better than neg-
ligible probability in an attempt to distinguish Exec from Ideal and the use of
the d-PKE extractor on lines 17 and 31 is justified.

YAD5 In addition to extracting the contents of all proof blocks, to produce
distribution ensemble YAD5 we will also attempt to retrieve the x values that
constitute the extracted V (x), W (x) and Y (x) polynomials. If no x exists such
that V (x) =

∑
i xivi(x), W (x) =

∑
i xiwi(x) and Y (x) =

∑
i xiyi(x), then the

simulation is terminated. We will show that an adversary that successfully causes
this failure, i.e., with higher than negligible probability, can break the q-PDH
assumption, as in the security proof of [27].

Suppose an adversary manages to produce a proof block Q, corresponding to
block verification key BK for which CheckBlock(V K;Q) holds and V (x), W (x)
and Y (x), as well as δv, δw and δy are successfully extracted, but no x exists
satisfying V (x) =

∑
i xivi(x), W (x) =

∑
i xiwi(x) and Y (x) =

∑
i xiyi(x). Let

〈Z〉1 be the final element of Q. Then we can write 〈Z〉1 as a polynomial
∑
i ξix

i
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evaluated at s “in the exponent”:

〈Z〉1−〈rvβt〉1δv + 〈rwβt〉1δw + 〈ryβt〉1δy
=

∑
j

〈rvβvj + rwβwj + ryβyj〉1xj

= 〈sχ(s) · (r′vsd+1V (s) + r′ws
2d+2W (s) + r′vr

′
ws

3d+3Y (s))〉1
= 〈

∑
i

ξix
i〉1.

By Lemma 10 of [18], the coefficient ξq+1 for xq+1 is non-zero with high proba-
bility. We can then compute

〈sq+1〉1 = ξ−1q+1 · (〈Z〉1 − 〈rvβt〉1δv + 〈rwβt〉1δw + 〈ryβt〉1δy −
∑
i

ξi〈si〉1)

using only information in the evaluation key.
Recall from YAD3 that the very first step in generating this distribution

ensemble is to create a q-PDH challenge for some secret value s and in the rest of
the process any information derived from s is computed based on this challenge.
If instead of generating the challenge ourselves, we consider it a given, then
the algorithm for generating YAD5 together with an adversary that successfully
causes failure can as a whole be viewed as an algorithm that breaks the q-PDH
assumption.

This justifies the extraction of all wire values from proof blocks on lines 18
and 32 of Scorrect.

YAD6 Distribution ensemble YAD6 is generated as YAD5, except that if the di-
visibility check CheckDiv succeeds, we use the wire values obtained in the normal
course of the protocol together with the wire values extracted in YAD5 to test
whether t(x) truly divides p(x) = (

∑k
i=0 xivi(x))(

∑k
i=0 xiwi(x))−

∑k
i=0 xiyi(x).

If this is not the case then the simulation is terminated. We will show that the
probability of an adversary forcing this failure is negligible, as an algorithm that
successfully manages to cause such a failure can be used to break the 2q-SDH
assumption, closely following the security proof of [27].

Let V (x) =
∑k
i=0 xivi(x), W (x) =

∑k
i=0 xiwi(x), and Y (x) =

∑k
i=0 xiyi(x).

Suppose that t(x) does not divide p(x) = V (x)W (x)− Y (x). Let r be a root of
t(x) but not of p(x) and let T (x) = t(x)/(x − r). Let d(x) = gcd(t(x), p(x))
and a(x) and b(x) be polynomials of degree at most 2d − 1 and d − 1 re-
spectively such that a(x)t(x) + b(x)p(x) = d(x). Set A(x) = a(x)T (x)/d(x)
and B(x) = b(x)T (x)/d(x). These polynomials have no denominator since d(x)
divides T (x). Then A(x)t(x) + B(x)p(x) = T (x). Dividing by t(x), we have
A(x) + B(x)p(x)/t(x) − 1/(x − r). Note that 〈H〉1 = 〈p/t〉1. We can now eval-
uate 〈A〉1 and 〈B〉2 using terms in the evaluation key. From these we can solve
e(〈A〉1, 〈1〉2)e(〈H〉1, 〈B〉2) = e(〈1〉1, 〈1〉2)1/(s−r).

Note that the q-PDH challenge can be considered an incomplete 2q-SDH
challenge. If, as with YAD5, we again do not generate the challenge ourselves, but
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consider it a given, the algorithm for generating YAD6, along with an adversary
that successfully causes failure can be viewed as an algorithm which break the
2q-SDH assumption.

Ideal The distribution ensembles YAD1 through YAD6 are indistinguishable
from each other and from Exec. Through the distribution ensembles YAD1 to
YAD6, we have argued that the distribution of the adversary’s interactions with
real protocol parties are indistinguishable from its simulation by YADi. At the
same time, the outputs of the honest result parties in each YADi are still ac-
cording to the protocol. Comparing YAD6 to Idealf,Scorrect , we see that the
adversary’s output is unchanged, but now honest result parties get the value
computed by the trusted party instead of the value from the simulated protocol.
However, note that if the simulation in YAD6 is not terminated, then the vec-
tor x is in fact a solution to the QAP corresponding to inputs supplied to the
trusted party. Hence, because the QAP computes f , the values from x that are
output as computation results in YAD6 are in fact the output of f on the inputs
supplied to the trusted party. Therefore, the outputs of the honest result parties
in YAD6 and Ideal are the same.

From Exec to Ideal Overall, the sequence of distribution ensembles shows
that the real- and ideal-world executions of the protocol are computationally
indistinguishable, hence the lemma follows. ut

B.3 Private Case

The simulator Sprivate for private function evaluation is given in Algorithm 6.
We show that it works in situations when privacy is guaranteed:

Lemma 2. For every probabilistic polynomial-time adversary A such that at
most θ workers are passively corrupted, Scorrect is probabilistic polynomial time

and the distribution ensembles Exec
(ComGen,MKeyGen)
Trinocchio,A and Idealf,Sprivate are com-

putationally indistinguishable.

Proof. The simulator mostly runs the actual protocol, using zero inputs on be-
half of honest parties. However, it needs to provide the inputs of the corrupted
input parties to the trusted party, and make sure that corrupted result parties
obtain the result from the trusted party. For the corrupted inputs, note that the
simulator simulates at least θ+ 1 honest workers, hence it knows enough shares
of the inputs of corrupted input parties to determine them and send them to
the trusted party (lines 6–8). In order to manipulate the corrupted results, the
simulator simulates normal Trinocchio key generation with respect to the ad-
versary, but keeps trapdoor s (line 3). It can then use s to make sure that the
proof block that was generated for the adversary during the protocol run indeed
opens to the output value for the result party that the simulator gets from the
trusted party (lines 11–18).
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Algorithm 6 Simulator Scorrect(C, {xi}i∈C , z, λ) for secure function evaluation

1: . I: input parties, W: workers, R: result parties, C: corrupted parties
2: Generate real commitment keys k1, . . . , kn as in the protocol; when A makes a

hybrid call to ComGen, return k1, . . . , kn
3: Generate evaluation key EK and verification key V K, keep trapdoor s; when A

makes a hybrid call to MKeyGen, return (EK,V K)
4: for all i ∈ I \ C do xi ← 0

5: Simulate lines 5 to 32 of the real protocol on behalf of honest input parties and
workers. If the protocol aborts, send⊥ to the ideal functionality on behalf of corrupt
input parties and abort the simulated protocol

6: for all i ∈ I ∩ C do
7: xi ← Combine(JxiK)
8: Send xi to the ideal functionality on behalf of corrupt input party i

9: for all i ∈ R ∩ C do
10: Receive result x̂i from the ideal functionality
11: δv,i ← Combine(Jδv,iK)
12: δw,i ← Combine(Jδw,iK)
13: δy,i ← Combine(Jδy,iK)

14: δ̂v,i ← δv,i + (xi − x̂i) vi(s)
t(s)

15: δ̂w,i ← δw,i + (xi − x̂i)wi(s)
t(s)

16: δ̂y,i ← δy,i + (xi − x̂i) yi(s)
t(s)

17: Create shares (Jx̂iK, Jδ̂v,iK, Jδ̂w,iK, Jδ̂y,iK) such that they are consistent with the
shares of (JxiK, Jδv,iK, Jδw,iK, Jδy,iK) held by corrupt computation parties

18: Send (Jx̂iK, Jδ̂v,iK, Jδ̂w,iK, Jδ̂y,iK) to result party i

19: Return the output of the simulated adversary

To see that the Exec and Ideal distributions are the same, first note that
because the workers are all semi-honest, the outputs of the result parties in
Exec are always correct, and hence the same as in Ideal. Hence, we only have
to worry about the observations made by the adversary.

Now, note that the simulator at no point uses, or even has access to, the
honest input parties’ private values. Since the simulator follows the real protocol
specification up to line 32, the adversary cannot detect any deviations from the
real protocol, other than might be caused by the fact that the input values for
the honest parties do not match the distribution of real input values. However,
the privacy properties of the underlying secure multiparty computation proto-
col imply that no data exchanged during the computation protocol reveals any
information about the input or intermediate wire values. Moreover, the commit-
ment scheme is used as in the protocol, so does not give the adversary chance of
distinguishing the real and ideal world.

The only other information that the adversary learns is what is opened during
the multiparty computation protocol, i.e., the shares of the proof blocks (Q) and
divisibility check term (〈H〉1). First, note that these shares reveal nothing more
than the proof blocks and divisibility check term themselves, as these shares are
freshly randomised using a zero sharing before they are revealed.
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Now consider what the adversary learns from the proof blocks and divisibility
check term. As observed in [18], the first, third and fifth elements of a proof
block, 〈V 〉1, 〈W 〉2, and 〈Y 〉1, are uniformly distributed if the δv, δw and δy
used to compute those are uniformly distributed as well. This holds regardless
of which value x is used. Furthermore, once these three elements are known,
the remaining four elements are fixed due to the verification relations. Because
all of the proof blocks generated in the protocol are produce using randomly
chosen values for δv, δw and δy, it holds that all proof blocks in the protocol are
distributed uniformly randomly and do not reveal any information about the
values they are composed from.

We conclude that the adversary sees no information that allows it to distin-
guish the real and ideal worlds, hence the lemma follows. ut
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