Multilinear Maps Using Random Matrix

Gu Chunsheng
School of Computer Engineering, Jiangsu University of Technology, Changzhou 213001, China
E-mail: chunsheng_gu@163.com
May 20, 2015

Abstract. Garg, Gentry and Halevi (GGH) described the first candidate multilinear maps using ideal lattices. However, Hu and Jia presented an efficient attack on GGH map, which breaks the GGH-based applications of multipartite key exchange (MPKE) and witness encryption (WE) based on the hardness of 3-exact cover problem. We describe a new construction of multilinear map using random matrix, which supports the applications for public tools of encoding in the origin GGH, such as MPKE and WE. The security of our construction depends upon new hardness assumption. Furthermore, our construction removes the special structure of the ring element in the principal ideal lattice problem, and avoids potential attacks generated by algorithm of solving short principal ideal lattice generator.

Keywords. Multilinear maps, Ideal lattices, Multipartite Diffie-Hellman key exchange, Witness encryption, Zeroizing attack

1 Introduction

Constructing cryptographic multilinear map is a long-standing open problem [BS03]. It has many applications, such as witness encryption [GGS+13], general program obfuscation [GGH+13b, Zim15], function encryption [GGH+13b], and other applications [GGH+13a, BZ14]. Garg, Gentry, and Halevi (GGH) proposed the first candidate construction of multilinear maps from ideal lattices [GGH13]. GGHLite [LSS14] is an efficient improvement version of GGH map. Using same framework of the GGH map, Coron, Lepoint, and Tibouchi [CLT13] (CLT) presented a construction over the integers. Gentry, Gorbunov and Halevi [GGH15] constructed graph-induced multilinear maps from lattices.

The attacks for CLT and GGH demonstrate that the security of current constructions requires further deep cryptanalysis. On the one hand, Cheon, Han, Lee, Ryu, and Stehle recently broke the CLT construction using zeroizing attack introduced by Garg, Gentry, and Halevi. To fix the CLT construction, Garg, Gentry, Halevi and Zhandry [GGH+14], and Boneh, Wu and Zimmerman [BWZ14] presented two candidate fixes of multilinear maps over the integers. However, Coron, Lepoint, and Tibouchi showed that two candidate fixes of CLT can also be defeated using extensions of the Cheon et al.’s Attack [CHL+14]. By modifying zero-testing parameter, Coron, Lepoint and Tibouchi [CLT15] proposed a new construction of multilinear map over the integers. On the other hand, Hu and Jia [HJ15a] very recently presented an efficient attack on the GGH map, which breaks the GGH-based applications on multipartite key exchange (MPKE) and witness encryption (WE) based on the hardness of 3-exact cover problem. The Cheon and Lee [CL15] proposed an attack for the GGH map by computing a basis of secret ideal lattice.

Gu (Gu map-1) [Gu15] presented a construction of multilinear maps without encodings of zero, which is an improvement of GGH map. Since no encodings of zero are given in the public parameters, MPKE based on Gu map-1 [HJ15c] successfully avoids the attack in [HJ15a]. However, Gu map-1 cannot be used for the instance of witness encryption based on the hardness of 3-exact cover problem [HJ15b]. This is because there is no randomizer in Gu map-1. But the instance of WE based on the hardness of 3-exact cover problem is a strong application of multilinear map. Thus, there is a strong demand to construct scheme with randomizer.

Our results. Our main contribution is to construct a new multilinear map using random matrix. Our construction improves the GGH map in three aspects.

(1) We modify the zero-testing parameter of GGH from \(p_{zr} = \left\lfloor \frac{z^*h}{g} \right\rfloor \) to
\[p_{zr} = \left\lfloor TRot(z^*hg)S \right\rfloor \]
by using random matrix \(T, S \in \mathbb{Z}^{n \times n}_q \), where \(Rot(r) \) is the anti-cycle
matrix of r. We switch level-1 encodings $y_i = [(a_i g + e_i) / z]_q$ to $Y_i = [TRot(y_i)T^{-1}]_q$, and level-0 encodings $x_i = b_i g + e_i$ to $X_i = [S^{-1}Rot(x_i)S]_q$. In this case, if $e_i = 0$, then Y_i is level-1 encoding of zero. Since the level-1 encodings and level-0 encodings are multiplied by different matrices, they cannot be directly multiplied, and must use zero-testing matrix P_ε as intermediate element to multiply them together. As a result of using random matrix, our construction thwarts the revelation of the secret parameters.

(2) We transform the final result into a non-square matrix to damage the structure of ring elements between random matrices and further avoid the principal ideal lattice problem. Although one merely can get the final result of the form $V = [TRot(rg^k)S]_q$ with $0 \leq k < \kappa$, the structure and some secret information of g still remain in V. To remove this weakness, we choose another two matrices $T_1 \leftarrow D_{x_1 \oplus \sigma}$, $S_1 \leftarrow D_{x_2 \oplus \sigma}$ with $k_1 k_2 < n$ and set $T' = T_1 T^{-1}$, $S' = S^{-1} S_1$. Now, we must multiply T' and S' in both sides of V to obtain the non-reduced matrix over modulus q. That is, we get the matrix $V_1 = T_1 Rot(rg^k)S_1$. Notably, V_1 is an $k_1 \times k_2$-matrix, and does not have the structure of the ring element rg^k. For this reason, we can give encodings of zero in the public parameters. Thus, our construction supports the applications using GGH as public tools of encoding, and removes the weakness of the principal ideal lattices problem in GGH.

(3) By using composite-order ideal lattice, our construction can have more applications than GGH [GGH13]. Owing to destroying the structure of ring element, we conjecture that the membership group problem (SubM) and the decisional linear (DLIN) problem are hard in our construction. Thus, we can use composite-order ideal lattice in our construction to support the applications based on the SubM problem and the DLIN problem. However, in the GGH map, one can compute non-reduced ring elements over modulus q and basis of some secret ring elements. As a result, the SubM problem and the DLIN problem are easy in the GGH map.

Our second contribution is to describe the applications of MPKE and WE using our multilinear map. Since these applications are attacked by [HJ15a], fix for them is urgently required. The constructions of MPKE and WE based on our new map are same as ones using GGH. However, different from GGH, the security of our construction depends on new hard assumption.

Organization. We first recall some background in Section 2. Then we describe symmetric construction in Section 3, commutative variant and asymmetric variant in Section 4. Finally, we present two applications of MPKE and WE using our construction in Section 5, and draw conclusion in Section 6.

2 Preliminaries

2.1 Notations

We denote $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ the ring of integers, the field of rational numbers, and the field of real numbers. We take n as a positive integer and a power of 2. Notation $\lceil n \rceil$ denotes the set $\{1,2,\cdots,n\}$, and $[a]_q$ the absolute minimum residual system $[a]_q = a \mod q \in (-q/2, q/2]$. Vectors and matrices are denoted in bold, such as $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{A}, \mathbf{B}, \mathbf{C}$. Let \mathbf{I} be the identity matrix. The j-th entry of \mathbf{a} is denoted as a_j, the element of the i-th row and j-th column of \mathbf{A} is denoted as $A_{i,j}$ (or $A[i,j]$). Notation $\|\mathbf{a}\|_\infty$ ($\|\mathbf{a}\|$ for short) denotes the infinity norm of \mathbf{a}. The polynomial ring $\mathbb{Z}[X]/<x^n+1>$ is denoted by R, and $\mathbb{Z}_q[X]/<x^n+1>$ by R_q.

The elements in R and R_q are denoted in bold as well. Similarly, notation $[a]_q$ denotes each entry (or each coefficient) $a_i \in (-p/2, p/2]$ of a.

2.2 Lattices and Ideal Lattices

An n-dimension full-rank lattice $L \subset \mathbb{R}^n$ is the set of all integer linear combinations $\sum_{i=1}^n x_i b_i$ of n linearly independent vectors $b_i \in \mathbb{R}^n$. If we arrange the vectors b_i as the columns of matrix $B \in \mathbb{R}^{n \times n}$, then $L = \{Bz : z \in \mathbb{Z}^n\}$. We say that B spans L if B is a basis for L. Given a basis B of L, we define $P(B) = \{Bz \in \mathbb{R}^n, \forall i : -1/2 \leq z_i < 1/2\}$ as the parallelization corresponding to B. Let $\det(B)$ denote the determinant of B.

Given $g \in R$, let $I = \langle g \rangle$ be the principal ideal in R generated by g, whose \mathbb{Z}-basis is $\text{Rot}(g) = (g, x \cdot g, \ldots, x^{n-1} \cdot g)$.

Given $c \in \mathbb{R}^n, \sigma > 0$, the Gaussian distribution of a lattice L is defined as $\forall x \in L$, $D_{L,\sigma} = \rho_{\sigma,\sigma}(x)/\rho_{\sigma,\sigma}(L)$, where $\rho_{\sigma,\sigma}(x) = \exp(-\pi ||x-c||^2/\sigma^2)$, $\rho_{\sigma,\sigma}(L) = \sum_{x \in L} \rho_{\sigma,\sigma}(x)$. In the following, we will write $D_{L,\sigma}$ as $D_{L,\sigma,0}$. We denote a Gaussian sample as $x \leftarrow D_{L,\sigma}$ (or $d \leftarrow D_{L,\sigma}$) over the lattice L (or ideal lattice I).

2.3 Multilinear Maps

Definition 2.1 (Multilinear Map [BS03]). For $\kappa + 1$ cyclic groups G_1, \ldots, G_κ, G_T of the same order q, a κ-multilinear map $e : G_1 \times \cdots \times G_\kappa \to G_T$ has the following properties:

1. Elements $\{g_j \in G_j\}_{j=1,\ldots,\kappa}$, index $j \in [\kappa]$, and integer $a \in \mathbb{Z}_q$ hold that $e(g_1, \ldots, a \cdot g_j, \ldots, g_\kappa) = a \cdot e(g_1, \ldots, g_\kappa)$.

2. Map e is non-degenerate in the following sense: if elements $\{g_j \in G_j\}_{j=1,\ldots,\kappa}$ are generators of their respective groups, then $e(g_1, \ldots, g_\kappa)$ is a generator of G_T.

Definition 2.2 (κ-Graded Encoding System [GGH13]). A κ-graded encoding system over R is a set system of $S = \{S_j^{(\alpha)} : \alpha \in R, j \in [\kappa]\}$ with the following properties:

1. For every index $j \in [\kappa]$, the sets $\{S_j^{(\alpha)} : \alpha \in R\}$ are disjoint.

2. Binary operations $'$ and $'$ exist, such that every α_1, α_2, every index $j \in [\kappa]$, and every $u_1 \in S_j^{(\alpha_1)}$ and $u_2 \in S_j^{(\alpha_2)}$ hold that $u_1 + u_2 \in S_j^{(\alpha_1 + \alpha_2)}$ and $u_1 - u_2 \in S_j^{(\alpha_1 - \alpha_2)}$, where $\alpha_1 + \alpha_2$ and $\alpha_1 - \alpha_2$ are the addition and subtraction operations in R respectively.

3. Binary operation \times' exists, such that every α_1, α_2, every index $j_1, j_2 \in [\kappa]$ with $j_1 + j_2 \leq \kappa$, and every $u_1 \in S_{j_1}^{(\alpha_1)}$ and $u_2 \in S_{j_2}^{(\alpha_2)}$ hold that $u_1 \times u_2 \in S_{j_1 + j_2}^{(\alpha_1 \times \alpha_2)}$, where $\alpha_1 \times \alpha_2$ is the multiplication operation in R and $j_1 + j_2$ is the integer addition.
3 Construction using random matrix

Setting the parameters. Let λ be the security parameter, κ the multilinearity level, n the dimension of elements of R. Concrete parameters are set as $\sigma = \sqrt{\lambda n}$, $\sigma' = \lambda^{1.5}$, $\sigma^* = 2\lambda$, $q \geq 2^{16\kappa^2}n^{O(k)}$, $m = 2$, $n > \widetilde{O}(\kappa^2)$, $\tau = O(n^2)$, $\rho = O(n)$, $k_1 = O(\log n)$, $k_2 = O(\log n)$ such that $k_1k_2 \leq n - O(\lambda)$.

3.1 Construction

Instance generation: $(par) \leftarrow \text{InstGen}(1^\lambda, 1^\kappa)$.

1. Choose a prime $q \geq 2^{16\kappa^2}n^{O(k)}$;
2. Choose $g_j \leftarrow D_{\mathbb{Z}_q^{m^2}}$, $h_j \leftarrow D_{\mathbb{Z}_q^{m^2}}$, $j \in [m]$ in R, and set $g = \prod_{j=1}^m g_j$ so that g_j, $j \in [m]$ are pairwise relatively prime and $\|g_j\| \leq n$;
3. Choose elements $a_i, b_i, e_i \leftarrow D_{\mathbb{Z}_q^{m^2}}$, $i \in [\tau]$ in R;
4. Choose a random element $z \leftarrow R_q$ so that $z \in R_q$;
5. Choose randomly matrices $T, S \in \mathbb{Z}_q^{m\times m}$ so that $T^\top, S^{-1} \in \mathbb{Z}_q^{m\times m}$;
6. Choose randomly matrices $T_i \leftarrow D_{\mathbb{Z}_q^{m\times m}}$, $S_i \leftarrow D_{\mathbb{Z}_q^{m\times m}}$, and set $T^* = T_1T_i^{-1}$, $S^* = S^{-1}S_1$;
7. For $i \in [\tau]$, set $Y_i = \begin{bmatrix} T \text{Rot}(a_ig_j + e_j)T^{-1} \\ z \end{bmatrix}$ and $X_i = \begin{bmatrix} S_i \text{Rot}(b_ig_j + e_j)S_i^{-1} \\ z \end{bmatrix}$;
8. For $\delta \in \rho$, choose $q_\delta \leftarrow D_{\mathbb{Z}_q^{m^2}}$ in R, and set $Q_\delta = \begin{bmatrix} T \text{Rot}(q_\delta g_j)T^{-1} \\ z \end{bmatrix}$;
9. Set $P_\delta = \begin{bmatrix} T \text{Rot}(z\sum_{j=1}^m h_j g_j^{-1})S_i \\ z \end{bmatrix}$;
10. Output the public parameters $par = \{q_i, \{Y_i, X_i\}_{i \in [\tau]}, \{Q_\delta\}_{\delta \in \rho}, P_\delta, T^*, S^*\}$.

Generating level-t encoding: $U \leftarrow \text{enc}(par, t, d, r)$.

Given $d \leftarrow D_{\mathbb{Z}_q^{m^2}}$ and $r \leftarrow D_{\mathbb{Z}_q^{m^2}}$, then $U = \begin{bmatrix} \sum_{i=1}^t d_i \cdot (Y_i) \\ \sum_{\delta \in \rho} r_\delta \cdot (Q_\delta) \\ z \end{bmatrix}$ is a level-t encoding of level-0 encoding $E = \begin{bmatrix} \sum_{i=1}^t d_i \cdot (X_i) \\ z \end{bmatrix}$.

Adding encodings: $U \leftarrow \text{add}(par, t, U_1, \cdots, U_k)$.

Given k level-t encodings U_j, their sum $U = \begin{bmatrix} \sum_{i=1}^k U_{i_j} \\ z \end{bmatrix}$ is a level-t encoding.

Multiplying encodings: $U \leftarrow \text{mul}(par, 1, U_1, \cdots, U_k)$.

Given k level-1 encodings U_j, their product $U = \prod_{i=1}^k U_{i_j}$ is a level-k encoding.

Zero testing: $\text{isZero}(par, U, R)$.

Given a level-κ encoding $U = \begin{bmatrix} T \text{Rot}(r_\delta g_j + e_j)T^{-1} \\ z \end{bmatrix}$ and a level-0 encoding
Given a level- κ encoding U and a level-0 encoding $R = \left[\sum_{i=1}^{t} r_i X_i \right]_q$, we compute $V = \left[T^* U P_{z^t} R S^* \right]_q$, and collect $(\log q) / 4 - \lambda$ most-significant bits of each of the $k_1 \times k_2$-matrix V:

$$\text{ext}(par, U, R) = \text{Extract}(\text{msb}(\left[T^* U P_{z^t} R S^* \right]_q)).$$

Remark 3.1

(1) To generate a level-l encoding of given plaintext, one can provide the level-l encoding and level-0 encoding in the public parameters for plaintext x^j, $j = 0, \ldots, n-1$ as follows:

$$Y_j = \left[T\text{Rot}(\frac{a^j + x^j}{z}) T^{-1} \right]_q \quad \text{and} \quad X_j = \left[S^{-1} \text{Rot}(b^j g + x^j) S \right]_q.$$

Given $d \leftarrow D_{\mathbb{Z}_q^{\times}, \sigma^*}$, we can generate its level-1 encoding $U = \left[\sum_{j=1}^{n} d_j Y_j + \sum_{\delta \neq 1} r_{\delta} (Q_{\delta}) \right]_q$, where $r_{\delta} \leftarrow D_{\mathbb{Z}_q^{\times}, \sigma^*}$, and its level-0 encoding $D = \left[\sum_{j=1}^{n} d_j X_j \right]_q$.

(2) Although we randomly choose the matrices $T, S \in \mathbb{Z}_q^{\times n}$, we still use the element z to control the level number of encoding.

(3) The composite-order element g is to support the applications based on the SubM problem and the DLIN problem.

(4) Using R in the zero-testing and the extraction algorithm is to describe the security of our construction and present the MPKE protocol.

(5) The level-1 encodings of zero in the public parameters are to construct an instance of witness encryption.

(6) We set $k = k_1 \times k_2 \leq n - O(\lambda)$. Notably, k_1, k_2 may be set 1. Because n is the dimension of ring element, our aim is to compress n free variables of the ring element to k variables, and breakdown the structure of the ring element in the principal ideal lattice problem.

(7) One can sample $h_j \leftarrow D_{\mathbb{Z}_q^{\times}, \sigma^*}$ instead of $h_j \leftarrow D_{\mathbb{Z}_q^{\times}, \sqrt{q}}$ since P_{z^t} cannot be squared.

(8) The number τ of level-1 encodings of non-zero in the public parameters can be set to $O(\lambda n)$ according to the result in [HJ15c].

3.2 Correctness

Lemma 3.2 The algorithm $\text{InstGen}(1^k, 1^\kappa)$ runs in polynomial time.

Lemma 3.3 The encoding $U \leftarrow \text{enc}(par, t, d, r)$ is a level-t encoding.

Proof. Since $\left(Y_j \right)^t = \left[T\text{Rot}(\frac{a^j + e^j}{z}) T^{-1} \right]_q$ and $\left(Q_{\delta} \right)^t = \left[T\text{Rot}(\frac{q_{\delta} g}{z}) T^{-1} \right]_q$, we have
\[
U = \left[\sum_{i=1}^{\tau} d_i \cdot (X_i)' + \sum_{\delta=1}^{\tau} r_\delta \cdot (Q_\delta)' \right]_{q}
\]
\[
= \left[T\text{Rot}\left(\sum_{i=1}^{\tau} d_i a_i g + \sum_{\delta=1}^{\tau} r_\delta q_\delta g + \sum_{i=1}^{\tau} d_i (e_i)' \right) \right]_{q} Z',
\]
\[
= \left[T\text{Rot}\left(\frac{a g + e}{z'} \right)^{-1} \right]_{q}
\]
where \(a_i' = (a g + e)' \), \(q_\delta' = (q_\delta g)' \), \(a = \sum_{i=1}^{\tau} d_i \cdot a_i' + \sum_{\delta=1}^{\tau} r_\delta q_\delta' \), and \(e = \sum_{i=1}^{\tau} d_i \cdot (e_i)' \).

Again since \((X_i)' = \left[S^{-1} \text{Rot}(b g + e) S \right]_{q} \), we have
\[
E = \left[\sum_{i=1}^{\tau} d_i \cdot (X_i)' \right]_{q}
\]
\[
= \left[S^{-1} \text{Rot}\left(\sum_{i=1}^{\tau} d_i b_i g + \sum_{i=1}^{\tau} d_i (e_i)' \right) S \right]_{q}
\]
\[
= \left[S^{-1} \text{Rot}(b g + e) S \right]_{q}
\]
where \(b_i' = (b_i g + e)' \), \(b = \sum_{i=1}^{\tau} d_i \cdot b_i' \), and \(e = \sum_{i=1}^{\tau} d_i \cdot (e_i)' \).

Thus, \(U \) is a level-\(t \) encoding of the level-0 encoding \(E \). □

Lemma 3.4 Given \(k \) level-\(t \) encodings \(U_1, \cdots, U_k \), their sum \(U = \left[\sum_{i=1}^{m} U_i \right]_{q} \) is a level-\(t \) encoding.

Proof. Since the level-\(t \) encoding \(U_i \) has the form \(U_i = \left[T\text{Rot}\left(\frac{r \cdot g + e}{z'} \right) T^{-1} \right]_{q} \), their sum
\[
U = \left[\sum_{i=1}^{m} U_i \right]_{q} = \left[T\text{Rot}\left(\sum_{i=1}^{m} \frac{r_i g + e_i}{z'} \right) T^{-1} \right]_{q} = \left[T\text{Rot}\left(\frac{r g + e}{z'} \right) T^{-1} \right]_{q}
\]
is a level- \(t \) encoding, where \(r = \sum_{i=1}^{m} r_i \) and \(e = \sum_{i=1}^{m} e_i \). □

Lemma 3.5 Given \(k \) level-1 encodings \(U_j \), their product \(U = \left[\prod_{i=1}^{k} U_i \right]_{q} \) is a level-\(k \) encoding.

Proof. Since the level-1 encoding \(U_j = \left[T\text{Rot}\left(\frac{r_i g + e_i}{z} \right) T^{-1} \right]_{q} \), the product of \(k \) level-1 encodings is:
where \(e = \prod_{j=1}^{k} e_j \), \(r = \left(\prod_{j=1}^{k} (r'_j g + e'_j) - e \right) / g \).

Lemma 3.6 The zero-testing isZero(par, U, R) correctly determines whether \(U \) is a level-\(\kappa \) encoding of zero.

Proof. Given a level-\(\kappa \) encoding \(U = \left[T \operatorname{Rot}(\frac{rg + e}{z^k}) \right]_q \) and a level-0 encoding \(R = \left[\sum_{t=1}^{\tau} r_t X_t \right]_q \), we compute \(V = \left[T^* \cdot U \cdot P_z \cdot R \cdot S^* \right]_q \) and check whether \(\|V\| \) is short:

\[
isZero(par, U, R) = \begin{cases} 1 & \text{if } \|V\| < q^{3/4} \\ 0 & \text{otherwise} \end{cases}
\]

If \(U \) is a level-\(\kappa \) encoding of zero, namely \(e = 0 \pmod{g_j} \). Since \(g_j \)'s are coprime, we obtain \(e = r'g \). Thus, \(V = \left[T^* \cdot U \cdot P_z \cdot R \cdot S^* \right]_q \)

\[
= \left[T_i \operatorname{Rot}(\frac{rg + r'g}{z^k}) \right]_q \cdot \operatorname{Rot}(z^k \sum_{j=1}^{m} h_j g_j^{-1}) \cdot \left(\sum_{t=1}^{\tau} r_t X_t \right) \cdot S^*_i \]

\[
= \left[T_i \operatorname{Rot}((rg + r'g)(\sum_{j=1}^{m} h_j g_j^{-1})(\sum_{t=1}^{\tau} r_t g + r e_j)) \right]_q S^*_i \]

\[
= \left[T_i \operatorname{Rot}((r + r')(\sum_{j=1}^{m} h_j \cdot g / g_j) (b'g + e')) \right]_q S^*_i
\]

For our choice of parameter, \(\|r + r'\| \leq q^{1/8} \), \(\|b'g + e'\| \leq n^{O(1)} \) and \(\|T_i\|_e \leq \sqrt{n}\sigma \).

Moreover, \(V \) is not reduced modulo \(q \), that is \(\|V\|_q = V \). Hence,

\[
\|V\| = \left\| T_i \operatorname{Rot}((r + r')(\sum_{j=1}^{m} h_j \cdot g / g_j) (b'g + e')) \right\|_q S^*_i
\]

\[
\leq n^4 \cdot \|T_i\| \left\| \operatorname{Rot}((r + r')(\sum_{j=1}^{m} h_j \cdot g / g_j) \right\| \|\operatorname{Rot}(b'g + e')\| \|S\|_e
\]

\[
= n^{O(1)} \cdot \sqrt{n}\sigma \|\operatorname{Rot}(r + r')(\sum_{j=1}^{m} h_j \cdot g / g_j)\| \|R\|_e \cdot n^{O(1)} \cdot \sqrt{n}\sigma
\]

\[
= n^{O(1)} \cdot \sigma^2 \cdot q^{1/8} \cdot m \cdot \|\operatorname{Rot}(h_j \cdot g / g_j)\|
\]

\[
= n^{O(1)} \cdot \sigma^2 \cdot q^{1/8} \cdot \text{poly}(n) \cdot q^{1/2} \cdot \text{poly}(n)
\]

\[
< q^{3/4}
\]
If U is a level-κ encoding of non-zero element, namely $\exists j \in [m], e \neq 0 \mod g_j$. Thus,

$$V = \left\lfloor T^* \cdot U \cdot P_x \cdot R \cdot S^* \right\rfloor_q$$

$$= \left[T_1 \text{Rot}(rg + e) \cdot T \cdot \left(T \cdot \sum_{j=1}^m h \cdot g_j^{-1} \right) \cdot S \cdot \left(\sum_{i=1}^r \tau_i X_i \right) \cdot S^* \right\rfloor_q$$

$$= \left[T_1 \text{Rot}(rg + e) \cdot T \cdot \left(T \cdot \sum_{j=1}^m h \cdot g_j^{-1} \right) \cdot S \cdot \left(\sum_{i=1}^r \tau_i X_i \right) \cdot S^* \right\rfloor_q$$

$$= \left[T_1 \text{Rot}(rg(b'g + e') \cdot \sum_{j=1}^m h \cdot g_j^{-1}) \cdot S_1 + T_1 \text{Rot}(\sum_{j=1}^m h \cdot e(b'g + e')) \cdot S_1 \right\rfloor_q$$

By Lemma 4 in [GGH13], $\left\lfloor T_1 \text{Rot}(\sum_{j=1}^m h \cdot e(b'g + e')) \cdot S_1 \right\rfloor_q \approx q$, namely $\| V \| \approx q$. □

Lemma 3.7 Suppose that two level-κ encodings U_1, U_2 encode same plaintext, then $\text{ext}(\text{par}, U_1, R) = \text{ext}(\text{par}, U_2, R)$.

Proof. Assume that $U_i = \left[T_1 \text{Rot}(rg + e) \cdot T \cdot \left(T \cdot \sum_{j=1}^m h \cdot g_j^{-1} \right) \cdot S \cdot \left(\sum_{i=1}^r \tau_i X_i \right) \cdot S^* \right\rfloor_q, i \in [2]$, and $R = S^{-1} \cdot \text{Rot}(b'g + e')S$ such that $\| rg + e \| \leq q^{1/8}, \| b'g + e' \| \leq n^{O(1)}$. Thus

$$V_i = \left[T^* \cdot U_i \cdot P_x \cdot R \cdot S^* \right\rfloor_q$$

$$= \left[T_1 \text{Rot}(rg(b'g + e') \cdot \sum_{j=1}^m h \cdot g_j^{-1}) \cdot S_1 + T_1 \text{Rot}(\sum_{j=1}^m h \cdot e(b'g + e')) \cdot S_1 \right\rfloor_q$$

$$= \left[T_1 \text{Rot}(rg(b'g + e') \cdot \sum_{j=1}^m h \cdot g_j^{-1}) \cdot S_1 + T_1 \text{Rot}(\sum_{j=1}^m h \cdot e(b'g + e')) \cdot S_1 \right\rfloor_q$$

For our parameter setting, $\left\lfloor T_1 \text{Rot}(rg(b'g + e') \cdot \sum_{j=1}^m h \cdot g_j^{-1}) \cdot S_1 \right\rfloor_q < q^{3/4}$. By Lemma 4 in [GGH13], $\left\lfloor T_1 \text{Rot}(\sum_{j=1}^m h \cdot e(b'g + e')) \cdot S_1 \right\rfloor_q \approx q$ when $\exists j \in [m], e \neq 0 \mod g_j$. Thus, the equality holds. □

3.3 Security

Consider the following security experiment:

1. $\text{par} \leftarrow \text{InstGen}(1^\lambda, 1^\tau)$
2. For $l = 0$ to κ:
 - Sample $d_i \leftarrow D_{z_i'}, \tau_i \leftarrow D_{z_i', \sigma^*}$
 - Compute level-0 encoding $E_i = \left[\sum_{i=1}^r d_i \cdot X_i \right]_q$
 - Generate level-1 encoding $U_i = \left[\sum_{i=1}^r d_i \cdot Y_i + \sum_{i=1}^r \tau_i Q \right]_q$.
(3) Set $U = \left[\prod_{j=1}^{t} U_j \right]_q$.

(4) Set $V_c = V_D = \left[T^* \cdot U \cdot P_{z^r} \cdot E_0 \cdot S^* \right]_q$.

(5) Set $V_{\kappa} = \left[T^* \cdot U \cdot P_{z^r} \cdot R_0 \cdot S^* \right]_q$, where $R_0 = \left[\sum_{i=1}^{t} W_i X_i \right]_q$ and $w \leftarrow D_{z^r, \sigma^r}$.

Definition 3.8 (ext-GCDH/ext-GDDH). According to the security experiment, the ext-GCDH and ext-GDDH are defined as follows:

Level- κ extraction CDH (ext-GCDH): Given $\{\text{par, U}_0, \ldots, \text{U}_\kappa\}$, output a level-$\kappa$ extraction encoding $W \in \mathbb{Z}_{q^k}^{k \times k}$ such that $\|V_c - W\|_\infty \leq q^{3/4}$.

Level- κ extraction DDH (ext-GDDH): Given $\{\text{par, U}_0, \ldots, \text{U}_\kappa, V\}$, distinguish between $D_{\text{ext-GDDH}} = \{\text{par, U}_0, \ldots, \text{U}_\kappa, V_D\}$ and $D_{\text{ext-RAND}} = \{\text{par, U}_0, \ldots, \text{U}_\kappa, V_R\}$.

3.4 Cryptanalysis

We first generate easily computable quantities in our construction, then analyze possible attacks using these quantities.

3.4.1 Easily computable quantities

On the one hand, encodings Y_i, X_j encode same element e_i, they cannot be directly multiplied. Since they are enveloped by different matrices T,S. To multiply them, we must use P_{z^r}. On the other hand, Q_δ are encoding of zero. However, the random matrices T,S are over modulo q. Thus, to eliminate T,S, we must compute the following expression: $V = \left[T^* \cdot U \cdot P_{z^r} \cdot D \cdot S^* \right]_q$, where U is a level-κ encoding and D is a level-0 encoding.

To obtain easily computable quantities, we require that U is a level-κ encoding of zero.

1. By using Q_δ, we compute $V^{(1)} = \left[T^* \cdot (Q_\delta)^k \cdot P_{z^r} \cdot D \cdot S^* \right]_q$.
2. By using cross-multiplication of Y_i, X_j, we compute $V^{(2)} = \left[T^* \cdot Y_i^{k-1} \cdot (Y_j \cdot P_{z^r} \cdot X_j - Y_j \cdot P_{z^r} \cdot X_i) \cdot S^* \right]_q$.
3. By using mix-multiplication of Q_δ and Y_i, X_j, we compute

 $V^{(3)} = \left[T^* \cdot (Q_\delta)^k \cdot Y_j^{k-1} \cdot (Y_i \cdot P_{z^r} \cdot X_j - Y_j \cdot P_{z^r} \cdot X_i) \cdot S^* \right]_q$;

 $V^{(4)} = \left[T^* \cdot (Q_\delta)^k \cdot Y_j^{k-1} \cdot P_{z^r} \cdot X_j \cdot S^* \right]_q$.

By our parameter setting, it is easy to see that the matrices $V^{(e)}, e \in \{4\}$ are not reduced modulo q, namely $\left[V^{(e)} \right]_q = V^{(e)}$.

After simplification, $V^{(e)}, e \in \{4\}$ have the form $T_i \cdot \text{Rot}(r \cdot g^k) \cdot S_j$, where $0 \leq k < \kappa$ and $r \in R$. By $T_i \in \mathbb{Z}_{q^{k \times n}}$, $S_j \in \mathbb{Z}^{n \times k}$, and $\text{Rot}(r \cdot g^k) \in \mathbb{Z}^{n \times n}$, we get $V^{(e)} \in \mathbb{Z}^{k \times k}$. It is easy to see that $V^{(e)}$ has destroyed the structure of the ring element $r \cdot g^k$, and does not have the property of the principal ideal lattice problem. We do not find feasible attacks by using $V^{(e)}$ for our construction.

Let t_i be the i-th row vector of T_i, s_j be the j-th column vector of S_j, and
\(\mathbf{m} = r \cdot \mathbf{g}^k \). We define a function \(f_{ts}(\text{Rot}(\mathbf{m})) = t^T \cdot \text{Rot}(\mathbf{m}) \cdot \mathbf{s} \). Thus \(v_{j,i}^{(e)} = t_j \cdot \text{Rot}(\mathbf{m}) \cdot s_i \) is the entry of the \(i \)-th row and the \(j \)-th column of \(V^{(e)} \). By arranging \(t^T \cdot \text{Rot}(\mathbf{m}) \cdot \mathbf{s} \), we can obtain a scalar product of \(\mathbf{m} \) and \(\mathbf{n} \), where \(\mathbf{n} \) is determined by \(t \) and \(s \). However, we cannot find usable information from \(v = t^T \cdot \text{Rot}(\mathbf{m}) \cdot \mathbf{s} \) when \(t, m, s \) are unknown.

3.4.2 Hu-Jia Attack

In this section, we argue that the Hu-Jia attack [HJ15a] does not work for our construction.

Hu-Jia Attack Description

Their attack includes three steps. The first step generates an equivalent level-0 encoding for a level-1 encoding; the second step computes an equivalent level-0 encoding for the product of several level-0 encodings; the final step transforms an equivalent product level-0 encoding into the shared secret key of MPKE by the modified encoding/decoding.

By analysis, the first step is the key of the Hu-Jia attack. We describe the concrete details of the first step as follows:

1. Let \(\mathcal{P}_0 = \left\{ \mathbf{q}, \mathbf{y} = \left[\left(1 + \mathbf{a} \mathbf{g} \right) / \mathbf{z} \right]_q, \mathbf{p}_z = \left[\left(\mathbf{h} \mathbf{z}^x \right) / \mathbf{g} \right]_q, \mathbf{x}_i = \left[\left(\mathbf{b}_i \mathbf{g} \right) / \mathbf{z} \right]_q, i = 1, 2 \right\} \) be the public parameters of the GGH map. We generate special decodings \(\left\{ \mathbf{y}^{(i)}, \mathbf{x}^{(i)}, i = 1, 2 \right\} \), where

\[
\mathbf{y}^{(i)} = \left[\mathbf{p}_z \mathbf{y}^{x-2} \mathbf{x}_i \right]_q = \mathbf{h} (1 + \mathbf{a} \mathbf{g})^{x-1} \mathbf{b}_i, \\
\mathbf{x}^{(i)} = \left[\mathbf{p}_z \mathbf{y}^{x-2} \mathbf{x}_i \right]_q = \mathbf{h} (1 + \mathbf{a} \mathbf{g})^{x-2} (\mathbf{b}_i \mathbf{g}) \mathbf{b}_i, i = 1, 2.
\]

Notice that \(\mathbf{y}^{(i)}, \mathbf{x}^{(i)} \) are not reduced modulo \(q \).

2. Given a level-1 encoding \(\mathbf{u} \), we have \(\mathbf{u} = \left[\left(\mathbf{d} \mathbf{y} + \mathbf{r}_1 \mathbf{x}_1 + \mathbf{r}_2 \mathbf{x}_2 \right) \right]_q \), where \(\mathbf{d} \) is secret level-0 encoding, and \(\mathbf{r}_1, \mathbf{r}_2 \) random noise elements.

Compute special decoding \(\mathbf{v} = \left[\mathbf{p}_z \mathbf{u} \mathbf{y}^{x-2} \mathbf{x}_i \right]_q = \mathbf{d} \mathbf{y}^{(i)} + \mathbf{r}_1 \mathbf{x}^{(i)} + \mathbf{r}_2 \mathbf{x}^{(2)} \).

Since \(\mathbf{v} \) is not reduced modulo \(q \), then compute \(\mathbf{v} \mod \mathbf{y}^{(i)} = (\mathbf{r}_1 \mathbf{x}^{(i)} + \mathbf{r}_2 \mathbf{x}^{(2)}) \mod \mathbf{y}^{(i)} \).

3. Given \(\mathbf{v} \mod \mathbf{y}^{(i)} \) and \(\left\{ \mathbf{x}^{(i)} \mod \mathbf{y}^{(i)}, \mathbf{x}^{(2)} \mod \mathbf{y}^{(i)} \right\} \), we get \(\mathbf{v}' = \mathbf{v} \mod \mathbf{y}^{(i)} \in \mathbf{x}^{(i)}, \mathbf{x}^{(2)} \) such that \(\left(\mathbf{v} - \mathbf{v}' \right) \mod \mathbf{y}^{(i)} = 0 \). Let \(\mathbf{v}' = \mathbf{r}'_1 \mathbf{x}^{(i)} + \mathbf{r}'_2 \mathbf{x}^{(2)} \).

4. Compute \(\mathbf{d}'^{(0)} = (\mathbf{v} - \mathbf{v}') / \mathbf{y}^{(i)} \) over \(\mathbb{K} = \mathbb{R}[X] / \left< x^n + 1 \right> \) such that the quotient \(\left\| \mathbf{d}'^{(0)} \right\| \) is not small, Hu and Jia [HJ15a] controlled the size of \(\mathbf{d}'^{(0)} \) by using \(\mathbf{x}^{(i)} \in \mathbb{K} \).

Non-applicability of Hu-Jia Attack

1. Let \(\mathcal{P}_0 = \left\{ q, \left\{ \mathbf{Y}_i, \mathbf{X}_j \right\}_{i \in [r]}, \left\{ \mathbf{Q}_d \right\}_{d \in [r]}, \mathbf{P}_z, \mathbf{T}^T, \mathbf{S}^+ \right\} \) be the public parameters of our new construction. Similarly, we generate special decodings \(S = \left\{ \left\{ \mathbf{Y}_i^{(j)} \right\}_{i \in [r]}, \left\{ \mathbf{X}_j^{(j)} \right\}_{j \in [r]} \right\} \) as follows:

\[
\mathbf{Y}^{(i)} = \left[\mathbf{T}^T \cdot (\mathbf{Y}^{x-2} \mathbf{Q}_i) \cdot \mathbf{P}_z \cdot \mathbf{I} \cdot \mathbf{S}_i^+ \right]_q = \mathbf{T}_i \text{Rot}(\mathbf{a}_i \mathbf{g} + \mathbf{e}_i)^{x-2} (\mathbf{a}_i \mathbf{g} + \mathbf{e}_i) \mathbf{q}_i \mathbf{h} \mathbf{S}_i.
\]
\[X^{(j)} = \left[T^* \cdot (Y_i^{v-2}Q_i) \cdot P_{v^*} \cdot I \cdot S^\star \right]_{Q_1} = T_i \text{Rot}((a_i g + e_i)^{v-2} (q_i g_i q_i h') S_i, \]

where \(h' = (\sum_{j=1}^m h_j g / g_j) \).

Notice that \(Y^{(i)}, X^{(j)} \) are not reduced modulo \(q \).

(2) Given a level-1 encoding \(U = \left[\sum_{i=1}^r d_i Y_i + \sum_{j=1}^\rho r_j Q_j \right] \), we compute special decoding \(V = \left[T^* \cdot (Y_i^{v-2} U Q_i) \cdot P_{v^*} \cdot I \cdot S^\star \right]_{Q_1} = \sum_{i=1}^r d_i Y^{(i)} + \sum_{j=1}^\rho r_j X^{(j)}. \)

Since \(V \) is not reduced modulo \(q \) and \(V \in \mathbb{Z}_{k_1 k_2}^k \), \(V \) belongs to the space spanned by \(k = k_1 k_2 \) elements in \(S \).

On the one hand, we cannot find \(k \) elements in \(S \) such that \(V = \sum_{i=1}^r d_i Y^{(i)} + \sum_{j=1}^k r_j X^{(j)} \) with \(d_i, r_j \) which are small integers. In fact, there sometimes does not exist \(k \) elements in \(S \) satisfying to the condition that \(d_i, r_j \) are small integers.

On the other hand, we cannot solve \(V = \sum_{i=1}^r d_i Y^{(i)} + \sum_{j=1}^k r_j X^{(j)} \) with \(d_i, r_j \) which are small integers if we choose \(k \geq \lambda n \) elements in \(S \) to guarantee that there are small integers \(d_i, r_j \).

The integers \(d_i, r_j \) are required to be small since \(V = T_i \text{Rot}(r) S_i \) cannot be directly multiplied to derive the product of some equivalent secret keys as that in [HJ15a]. We must use \(d_i, r_j \) to generate the level-0 encoding \(E = \left[\sum_{i=1}^r d_i Y_i \right] \) corresponding to \(U \).

In short, we cannot find an equivalent level-0 encoding encoded by \(U \). Thus, the Hu-Jia attack is prevented in our construction.

3.4.3 Cheon-Lee Attack

The Cheon-Lee attack [CL15] for the GGH map consists of three steps. The first step is find a basis of secret ideal lattice \(\ll g \gg \). The second step is to find the shortest vector of \(\ll g \gg \) using HNF. The third step is to apply a lattice reduction algorithm on reduced dimension to solve the GDDH on the GGH map.

Because the matrices \(T_i, S_i \) in \(V = T_i \text{Rot}(r) S_i \) have damaged the structure of ring element \(r \), one cannot get a basis of ideal lattice \(\ll r \gg \). That is, one cannot also compute a basis of ideal lattice \(\ll g \gg \). Thus, The Cheon-Lee attack does not work in our construction.

3.4.4 The Subgroup Membership and Decision Linear Problems

The SubM problem. Let \(R_j \) be \(g \) \(R \), \(G = R_i \times \cdots \times R_m \), and \(G_1 = \{ 0 \} \times R_2 \times \cdots \times R_m \). Let \(Z_i \) be level-1 encodings of elements from \(G \), and \(Z_i^{(1)} \) be level-1 encodings of elements from \(G_1 \). When generating encoding \(U \leftarrow \text{enc(par, t, d, r)} \), we replace \(Y_i \) with \(Z_i \) or \(Z_i^{(1)} \). The subgroup membership problem is to distinguish between \(U \leftarrow \text{enc(par, t, d, r)} \) using \(Z_i \) and \(U_1 \leftarrow \text{enc(par, t, d, r)} \) using \(Z_i^{(1)} \).

By the above analysis, \(V^{(e)} \) has erased the structure of principal ideal lattice problem. That is, one cannot distinguish between \(U \) and \(U_1 \). Thus, we conjecture that the SubM problem is hard in our encoding scheme.

The DLIN problem. Given a matrix of elements \(A = (a_{i,j}) \in R^{w \times w} \) and their encodings matrix \(T = (\text{enc(par, t, a_{i,j}, r)}) \), the DLIN problem is to distinguish between rank \(w \) and rank \(w-1 \) matrices \(A \). Based on same reason, we conjecture that the DLIN problem is hard in our encoding scheme.
4 Variant

We can use polynomial ring instead of integer ring \mathbb{Z} for our symmetric construction to improve the efficiency of our construction. It is easy to verify that our constructions are still correct under this case.

We can adapt the above symmetric construction into asymmetric variant. This variant is same as that [GGH13], except with changing polynomial ring to matrix ring.

5 Applications

In this section, we describe two applications using our construction, the MPKE protocol and the instance of witness encryption.

5.1 MPKE Protocol

Setup($1^k, 1^\lambda$). Output $(\text{par}) \leftarrow \text{InstGen}(1^k, 1^\lambda)$ as the public parameters.

Publish(par, j). The j-th party samples $d_j \leftarrow D_{z^*, \sigma^*}$, $r_j \leftarrow D_{z^*, \sigma^*}$, publishes the public key $U_j = \left[\sum_{i=1}^{\rho} (d_{j,i} \cdot Y_i) + \sum_{i=1}^{\rho} (r_{j,i} \cdot Q_i) \right]_q$ and generates the secret key $D_j = \left[\sum_{i=1}^{\rho} (d_{j,i} \cdot X_i) \right]_q$.

KeyGen($\text{par}, j, D_j, \{U_k\}_{k \neq j}$). The j-th party computes $C_j = \prod_{k \neq j} U_k$ and extracts the common secret key $sk = \text{Ext}(\text{par}, D_j, C_j) = \text{Extract}(\text{msb}(\left[T^* \cdot C_j \cdot P_{z^*} \cdot D_j \cdot S^* \right]_q))$.

Theorem 5.1 Suppose the ext-GCDH/ext-GDDH defined in Section 3.2 is hard, then our construction is one round multipartite Diffie-Hellman key exchange protocol.

5.2 Witness Encryption

5.2.1 Construction

Garg, Gentry, Sahai, and Waters [GGSW13] constructed an instance of witness encryption based on the NP-complete 3-exact cover problem and the GGH map. However, Hu and Jia [HJ15a] have broken the GGH-based WE. In this section, we present a new construction of WE based our new multilinear map.

3-Exact Cover Problem [GGH13, Gol08] Given a collection \mathcal{S} of subsets T_1, T_2, \ldots, T_π of $[K] = \{1, 2, \ldots, K\}$ such that $K = 3\theta$ and $|T_i| = 3$, find a 3-exact cover of $[K]$. For an instance of witness encryption, the public key is a collection \mathcal{S} and the public parameters par in our construction, the secret key is a hidden 3-exact cover of $[K]$.

Encrypt($1^k, \text{par}, M$):

1. For $k \in [K]$, sample $d_k \leftarrow D_{z^*, \sigma^*}$, $r_k \leftarrow D_{z^*, \sigma^*}$ and generate level-1 encodings $U_k = \left[\sum_{i=1}^{\rho} d_{k,i} \cdot Y_i + \sum_{i=1}^{\rho} (r_{k,i} \cdot Q_i) \right]_q$.

2. Compute $U = \left[\prod_{k=1}^{K} U_k \right]_q$ and $sk = \text{Ext}(\text{par}, I, U)$, and encrypt a message M into ciphertext C, where I is the identity matrix.

3. For each element $T_i = \{i_1, i_2, i_3\}$, sample $r_i \leftarrow D_{z^*, \sigma^*}$, and generate a level-3
encoding \(\mathbf{U}_{T_i} = \left[\mathbf{U}_h \mathbf{U}_b \mathbf{U}_b + \sum_{\delta} r_{T_i,\delta}(Q_{\delta})^3 \right]_q \).

(4) Output the ciphertext \(C \) and all level-3 encodings \(E \in \left\{ \mathbf{U}_{T_i}, T_i \in \text{Set} \right\} \).

\[\text{Decrypt}(C, E, W): \]

(1) Given \(C, E \) and a witness set \(W \), compute \(\mathbf{U} = \left[\prod_{T_i \in W} \mathbf{U}_{T_i} \right]_q \).

(2) Generate \(\mathbf{s} = \text{Ext}(\text{par}, \mathbf{I}, \mathbf{U}) \), and decrypt \(C \) to a message \(M \).

Similar to \[\text{GGSW13}\], the security of our construction depends on the hardness assumption of the Decision Graded Encoding No-Exact-Cover.

Theorem 5.2 Suppose that the Decision Graded Encoding No-Exact-Cover is hard. Then our construction is a witness encryption scheme.

5.2.2 Hu-Jia Attacks

(1) The Hu-Jia attack \[\text{HJ15a}\] is prevented in our new construction. One cannot obtain an equivalent secret key according to the analysis in 3.4.2. As a result, one cannot get an equivalent secret key using a combined 3-exact cover.

(2) The Hu-Jia attack \[\text{HJ15b}\] is thwarted in our new construction. Since Gu map-1 \[\text{Gu15}\] uses hidden randomizers, in some sense one merely can generate a deterministically level-1 encoding. As a result, one can compute \(\mathbf{U}_{T_i} = \left[\mathbf{U}_{T_j} \mathbf{U}_{T_k} (\mathbf{U}_{T_j})^{-1} \right]_q \) if \(T_i = T_j \cup T_k - T_j \). Thus, one can generate a combined 3-exact cover, and correctly compute a secret level-\(K \) encoding. However, since \(\mathbf{U}_{T_i} = \left[\mathbf{U}_h \mathbf{U}_b \mathbf{U}_b + \sum_{\delta} r_{T_i,\delta}(Q_{\delta})^3 \right]_q \) is a level-3 encoding in our new construction, one cannot obtain \(\mathbf{U}_{T_i} = \left[\mathbf{U}_{T_j} \mathbf{U}_{T_k} (\mathbf{U}_{T_j})^{-1} \right]_q \) when \(T_i = T_j \cup T_k - T_j \). This is because our construction uses encodings \(Q_{\delta} \) of zero.

6 Conclusion

In this paper, we describe a new modification of GGH, which supports the applications for public tools of encoding in GGH, such as MPKE and WE. Our construction removes the special structure of the principal ideal lattice problem, and avoids potential attacks generated by algorithm of solving short principal ideal lattice generator. However, the security of our construction depends upon new hardness assumption, which cannot be reduced to classical hardness problem, such as LWE or SVP.

References

[BWZ14] D. Boneh, D. J. Wu, and J. Zimmerman. Immunizing multilinear maps against zeroizing

