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Abstract. Smart objects are devices with computational and communication
capabilities connected to the Internet forming the so called Internet of Things
(IoT). The IoT enables many applications, for instance outdoor lighting con-
trol, smart energy and water management, or environmental sensing in a smart
city environment. Security in such scenarios remains an open challenge due to
the resource-constrained nature of devices and networks or the multiple ways in
which opponents can attack the system during the lifecycle of a smart object.
This paper firstly reviews security and operational goals in an IoT scenario
inspired in a smart city environment. Then, we present a comprehensive and
lightweight security architecture to secure the IoT throughout the lifecycle of
a device. Our solution relies on the lightweight HIMMO scheme as the build-
ing stone and shows how HIMMO is not only efficient resource-wise, but that
it enables advanced IoT protocols and deployments. Our design and analysis
show that our HIMMO-based security architecture can be easily integrated in
existing communication protocols such as IEEE 802.15.4 or OMA LWM2M
providing a number of advantages that existing solutions cannot provide both
performance and operation-wise.

Keywords: Lightweight, Key distribution, Comprehensive Security Architecture,
Internet of Things.

1 Introduction

The ubiquitous connection of devices to the Internet, the Internet of Things (IoT),
will account for more than a third of the total Internet connections by 2018, according
to the Cisco M2M Devices Forecast 2013–2018 [1]. These devices will be deployed in
multiple scenarios including smart homes, healthcare, or smart cities. In each of these
environments, multiple applications are enabled: the IoT in a smart city can mean
connecting city infrastructure such as water meters, environmental sensors, or lighting
infrastructure to automate and improve city flows and functionalities.

According the same Cisco Forecast, privacy and security are still two of the tech-
nical issues that remain unsolved. The reason is that solutions created for traditional
computer networks do not suit the IoT performance, operational and security require-
ments. For instance, public-key cryptography allows any pair of devices to setup a
secure channel or enables accountability. However, it is computationally expensive



and requires the exchange of long keys, which has a negative impact during IoT op-
eration. Symmetric cryptography is lightweight but it does not scale, in particular
regarding key distribution and management, and this can lead to a lower security
level. For instance, if a wireless network relies on a single key, then the capture of a
single device will break down the whole system. Finally, IoT scenarios involve both
traditional and new threats and security protocols and primitives should be adapted
to address them. In particular, a security solution for the IoT should be secure and
technically feasible (e.g., performance wise) not only during operation but during the
whole lifecycle of a device.

In this context, this paper firstly reviews these operational and security goals in
the context of the lifecycle of a smart object deployed in a smart city scenario. We then
propose a comprehensive security architecture that addresses both goals during the
lifecycle of a smart device. Our security architecture relies on the recently introduced
and lightweight HIMMO scheme [2]. In this paper we show that HIMMO not only
provides good performance, but that it also enables very attractive features from
the point of view of deployment, operation, and maintenance. Our solution relies
on an infrastructure of Trusted Third Parties (TTPs) for the management of the
HIMMO security domains, device credentials and keying materials. This facilitates a
secure manufacturing process and distribution of HIMMO keying materials. The easy
integration of HIMMO with standard protocols such as LWM2M or IEEE 802.15.4 and
simple extensions of these protocols allows us to ensure efficient and secure network
access and device registration with a back-end server. Secure network operation is
further achieved in the sense of full collusion resistance and easy and lightweight
management of device credentials.

The rest of the paper is organized as follows: Section 2 describes the use cases
for IoT in a smart city scenario, introduces relevant communication protocols, and
analyzes operational and security goals for the IoT. Section 3 reviews the HIMMO
scheme. Section 4 details the proposed security architecture according to the typical
lifecycle of a smart object. Section 5 describes the implementation and evaluation
of the main building blocks of our security architecture. Section 6 discusses how our
architecture addresses the identified operational and security goals and compares it
with related work. Section 7 concludes this paper and points out future work.

2 Background

2.1 Use cases

The IoT in the context of smart cities enables services such as outdoor lighting control,
water control, smart energy networks, and environmental sensing [3]. For instance, an
environmental sensing network based on the IoT can be realized by means of a wire-
less mesh network that enables the communication between sensors: the environmental
sensors would use the mesh network to reach a border router that would further for-
ward the messages containing the gathered measurements towards a back-end system
in charge of device and data management. Here, the devices constitute one of the key
enablers of these services.

However, the limited amount of resources, e.g., regarding energy or communica-
tion, has heavily limited and limits the functionalities that these systems can offer.
Security is specially affected by this since most cryptographic primitives or protocols
are just too heavy for many use cases so that a designer is confronted with two op-
tions: (i) using strong security, but that negatively affects the operation of the system



and the way a user interacts with the system, or (ii) using weaker security, in order
to not affect the expected system operation. In this context, it is important to note
that devices follow a lifecycle [4] that is to be considered in order to build a secu-
rity architecture. This lifecycle includes several phases: manufacturing, bootstrapping,
commissioning, and operational. In each of these phases, the system should remain
secure while operating as expected.

2.2 Relevant protocols

The above architecture in which a device communicates over a mesh network with a
back-end system can be realized by means of multiple communication protocols. For
instance, 6LoWPAN [5]/IEEE 802.15.4 [6] networks enable IP connectivity in a mesh
network. Currently there are multiple standards in development such as ZigBee-NAN
or Wi-Sun. Network connectivity from the border router to the back-end can be based
on a cellular link. End to end communication can be based on OMA LWM2M, in which
application data is exchanged between client and server by means of CoAP [7] and
the end to end communication is secured by means of DTLS [8] using pre-shared keys,
raw public-keys or certificates.

While protocols are available, security primitives are not optimal. For instance,
IEEE 802.15.4 networks often rely on a network or system wide symmetric-key. The
performance of DTLS and its cipher modes lack either flexibility or performance in
many cases.

2.3 Operational and performance goals

The above scenarios have very specific operational and performance needs. A security
architecture for the IoT should address all of them.

Because of the resource-constrained nature of the devices, security solutions should
achieve good performance (O-1) regarding energy consumption, bandwidth require-
ments, number of round trips, memory needs, and CPU usage.

The deployment of an IoT network is usually done in several phases. It should
thus be possible to add devices to a running system in a simple way (O-2).

Scalability is a key requirement so that a very high number of devices and back-
end servers can be easily supported (O-3). In order to ensure this scalability, it is
required to enable easy management of device’s credentials and attributes in both
centralized and distributed communication patterns (O-4).

Another important requirement refers to the easy integration with existing com-
munication protocols and architectures (O-5). This facilitates adoption and allows
for a smooth transition by avoiding the costs related to a change in the technology of
the network.

Finally, solutions should fit the use cases not only during the operational phase
but throughout all the lifecycle of a device (O-6). In the context of IoT this also
means that the deployed solutions have to remain secure during a long period of time
(10, 20, or even 30 years) (O-7).

2.4 Attack model and security goals

In addition to the above operational and performance goals, we consider an attack
model in which the opponent can aim at disrupting the system operation at different



stages of the lifecycle of a device. Next, we identify potential attacks and discuss
security goals that aim to prevent them.

First of all, the attacker (either external or insider) can aim at compromising a
root of trust, such as a Certification Authority (CA) in a Public Key Infrastructure
(PKI). This would allow him to gain full control over the system. One example of this
type of attack is the one suffered by DigiNotar [9]. Therefore, the first security goals
refer to being resilient to the compromise of a root of trust (S-1) and ensuring that a
single root of trust cannot monitor and control communication links (S-2). This last
requirement should still be compatible with key escrow if required (S-3).

The next type of attack focuses on the manufacturing process in which the de-
vices are configured with credentials and secret keys. If an opponent manages to get
control on a manufacturing facility, then he can modify or copy this information. An
important security goal is to facilitate a secure manufacturing process that prevents
this (S-4).

The next type of attack can happen when the devices are being deployed. In this
case, the back-end server might be exposed to fake devices and, in a similar way,
fake servers might impersonate the actual back-end server to gain control over the
devices. Authentication and authorization of device (S-5) and back-end server (S-6)
is required to prevent this situation. Even with end to end authentication, the devices
that are routing the information could still be exposed to a Denial of Service (DoS)
attack, since they would not be able to identify by themselves the communicating
parties. Thus, another goal is the prevention of DoS attacks during network access
(S-7).

During operation, an attacker might aim at physically capturing devices to misuse
their secret keys and credentials towards the back-end server or towards any other
device in the network. Therefore, a key goal will be that the compromise of any number
of devices does not affect the security of the whole system (S-8). Another goal to deal
with this attack is to facilitate the identification and blacklisting of compromised
devices (S-9).

Also during operation, another security goal refers to the capability of establishing
a common shared key for providing further security services (S-10).

As the devices will be on the field for many years, a security solution should
provide long term security including resilience against post-quantum attacks (S-11).

Other security goals are perfect forward secrecy (S-12), meaning that a session key
derived from a set of long-term keys cannot be compromised if one of the long-term
keys is compromised in future, and non-repudiation (S-13), e.g. allowing a meter-
ing device signing the energy consumption so that there is proof of the amount of
consumed energy.

3 HIMMO

HIMMO is a Key Pre-Distribution Scheme (KPS), a concept introduced by Mat-
sumoto and Imai in 1987 [10]. Blundo et al. [11] present an elegant and efficient KPS
based on symmetric polynomials. However, their KPS is prone to collusion attacks: if
an attacker has compromised α+ 1 nodes, where α is the degree of the polynomial in
any variable, then he can crack the complete system by using simple (Lagrange) in-
terpolation. There was no known KPS that is both efficient and not prone to efficient
attacks of multiple colluding (or compromised) nodes (see [2] for further references)



until recently the HIMMO scheme solved this problem. This section reviews the oper-
ation of the HIMMO scheme that enables any pair of devices in a system to directly
agree on a common symmetric-key based on their identifiers and a secret key gen-
erating polynomial as introduced in [12]. Like Blundo’s scheme, HIMMO is based
on symmetric polynomials, but it introduces new features to make simple interpola-
tion attacks by colluding nodes infeasible. The underlying security principles on which
HIMMO relies have been analyzed in [13] and [14]. Furthermore, this section describes
two protocol extensions of the HIMMO scheme as described in [2].

We use the following notation: for each integer x and positive integer M , we denote
by 〈x〉M the unique integer y ∈ {0, 1, . . . ,M − 1} such that x ≡ y mod M .

3.1 HIMMO operation

Like any KPS, HIMMO requires a TTP, and three phases can be distinguished in its
operation [10].

In the setup phase, the TTP selects positive integers B, b,m and α, where m ≥ 2.
The number B is the bit length of the identifiers that will be used in the system, while
b denotes the bit length of the keys that will be generated. The TTP generates the
public modulusN , an odd number of length exactly (α+1)B+b bits (so 2(α+1)B+b−1 <
N < 2(α+1)B+b). It also randomly generates m distinct secret moduli q1, . . . , qm of the
form qi = N − 2bβi, where 0 ≤ βi < 2B and at least one of β1, . . . , βm is odd. Finally,
the TTP generates the secret root keying material, that consists of the coefficients
of m bi-variate symmetric polynomials of degree at most α in each variable. For
1 ≤ i ≤ m, the i-th root keying polynomial R(i)(x, y) is written as

R(i)(x, y) =

α∑
j=0

α∑
k=0

R
(i)
j,kx

jyk

with 0 ≤ R(i)
j,k = R

(i)
k,j ≤ qi − 1.

In the keying material extraction phase, the TTP provides each node ξ in
the system, with 0 ≤ ξ < 2B , the coefficients of the key generating polynomial Gξ:

Gξ(y) =

α∑
k=0

Gξ,ky
k (1)

where

Gξ,k =
〈 m∑
i=1

〈
α∑
j=0

R
(i)
j,kξ

j〉qi
〉
N
. (2)

In the key generation phase, a node ξ wishing to communicate with node η
with 0 ≤ η < 2B , computes:

Kξ,η =
〈
〈Gξ(η)〉N

〉
2b

(3)

It can be shown that Kξ,η and Kη,ξ need not be equal. However, as shown in Theorem
1 in [2], for all identifiers ξ and η with 0 ≤ ξ, η ≤ 2B ,

Kξ,η ∈ {〈Kη,ξ + jN〉2b | 0 ≤ |j| ≤ 2m}

In order to perform key reconciliation , i.e. to make sure that ξ and η use the same key
to protect their future communications, the initiator of the key generation (say node



ξ) sends to the other node, simultaneously with an encrypted message, information on
Kξ,η that enables node η to select Kξ,η from the candidate set C = {〈Kη,ξ + jN〉2b |
0 ≤ |j| ≤ 2m}. No additional communication thus is required for key reconciliation.
The key Kξ,η will be used for securing future communication between ξ and η. As an
example of helper data used for key reconciliation, node ξ sends to node η the number
σξ,η = 〈Kξ,η〉2s , where s = dlog2(4m+ 1)e. Node η can efficiently obtain the integer j
such that |j| ≤ 2m and Kξ,η ≡ Kη,ξ + jN mod 2b by using that jN ≡ Kξ,η −Kη,ξ ≡
σξ,η − Kη,ξ mod 2s. As N is odd, the latter equation allows for determination of j.
As σξ,η reveals the s least significant bits of Kξ,η, only the b− s most significant bits
Kξ,η, that is, the number b2−sKξ,ηc, should be used as key.

3.2 Implicit certification and verification of credentials

Implicit certification and verification of credentials is further enabled on top of the
basic HIMMO scheme. A node that wants to register with the system provides the
TTP with its credentials, e.g., device type, manufacturing date, etc. The TTP, which
can also add further information to the node’s credentials such as a unique node
identifier or the issue date of the keying material and its expiration date, obtains the
node’s identity as ξ = H(credentials), where H is a public hash function. When a
first node with identity ξ wants to securely send a message M to a second node with
identity η, the following steps are taken.

– Step 1: Node ξ computes a common key Kξ,η with node η. It uses the computed
common key to encrypt and authenticate its credentials and message M , say
e = EKξ,η (credentials|M).

– Step 2: Node ξ sends (ξ, e, σξ,η) to node η, where σξ,η is helper data helping node
η to find Kξ,η.

– Step 3: Node η receives (ξ′, e′, σ′ξ,η). Using σ′ξ,η, it computes its common key Kη,ξ′

with ξ′ to decrypt e′ obtaining the message M and verifying the authenticity of the
received message. Furthermore, it checks whether the credentials’ in e′ correspond
with ξ′, that is, it validates if ξ′ = H(credentials’).

This method not only allows for direct secure communication of message M , but also
for implicit certification and verification of ξ’s credentials because the key generating
polynomial assigned to a node is linked to its credentials by means of H. If the output
size of H is long enough, e.g., 256 bits, the input (i.e., the credentials) contains a
unique node identifier, and if H is a secure one-way hash function, then it is infeasible
for an attacker to find any other set of credentials leading to the same identity ξ.
The fact that credential verification might be prone to birthday attacks motivates
the choice for the relation between identifier and key sizes, namely, B = 2b. In this
way, the scheme provides an equivalent security level for credential verification and key
generation. The capability for credential verification enables e.g. the verification of the
expiration date of the credentials (and the keying material) of a node, or verification
of the access roles of the sender node ξ.

3.3 Enhancing privacy by using multiple TTPs

Using multiple TTPs was introduced by Matsumoto and Imai [10] for KPS and can
also be elegantly supported by HIMMO [2]. In this scheme, a number of TTPs
provide a node with keying materials linked to the node’s identifier during the keying
material extraction phase. Upon reception, the device combines the different keying



materials by adding the coefficients of the key generating polynomials modulo N .
Key generation is performed as usual. This scheme enjoys two interesting properties
without increasing the resource requirements of the nodes. First, privacy is enhanced
since a single TTP cannot eavesdrop the communication links. In fact, all TTPs
should collude to monitor the communication links. Secondly, compromising a sub-
set of TTPs does not break the overall system.

4 Design

This section describes the proposed security architecture focusing on the security
goals presented in Section 2.4 and the operational goals described in Section 2.3. In
the following subsections, we detail our solution according to the lifecycle of a smart
object in which we show how keying materials are managed by means of a TTP
infrastructure. This TTP infrastructure can be used to enable secure manufacturing of
the smart objects (Section 4.1). The HIMMO keying material enables secure network
access of a smart object in a typical smart city scenario (Section 4.2). Finally, this
HIMMO keying material provides a way of ensuring secure operation and credential
management during normal operation (Section 4.3).
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Fig. 1: Architecture overview.

Figure 1 depicts the components of our security architecture including: (i) an
infrastructure of roots of trust in charge of handling the HIMMO root keying materials
(Section 4.1). (ii) A number of factories producing smart objects configured with
secret keys and credentials (Section 4.1). (iii) An authentication process, in which a
smart object registers with a back-end system in order to get credentials for access to
the network (Section 4.2). (iv) A secure operation phase in which smart objects can
securely communicate with each other, using the credentials obtained in the previous
step (Section 4.3).



4.1 TTP infrastructure and Smart object manufacturing

Our architecture relies on the HIMMO capability for working with multiple TTPs to
address goals S-1, S-2, S-3, S-4, and S-13.

We consider multiple TTPs can generate and securely manage HIMMO root keying
materials. The role of these TTPs is similar to today’s CA infrastructure with the
obvious differences in the underlying technology.

When a new set of devices needs to be manufactured, the back-end server in charge
of those devices will request a subset of the TTPs to extract HIMMO keying materials
linked to some device credentials. In the following we will assume that these credentials
depend on the unique MAC address of each device η, e.g., η =MAC address of η. The
back-end server will also determine which factories will get HIMMO keying materials
from which TTPs. Next, TTP j will extract HIMMO keying material Gjη(y) for device
η and securely send these keying materials to the corresponding manufacturing facility
l. Here, each device η will receive Gjη(y) and update its locally aggregated keying

material as Gη(y) =
〈
Gη(y) +Gjη(y)

〉
N

In a similar way, the back-end server ξ can
request at any time a new set of keying materials from those TTPs and obtain its
aggregated keying material in a similar way.

4.2 The authentication process for network access

We use the HIMMO keying material to enable secure network access and device
registration in a typical smart city scenario, addressing goals S-5, S-6, S-7, S-8, S-
9, S-10. In this procedure, the joining node η aims to register with a back-end server
after its verification and the back-end server aims to register the joining node after
authenticating it. Although the server can verify the client, it is equally important
that devices in the network can verify the authenticity of the joining node in order
to prevent possible abuse that could lead to DoS attacks. The verification could be
done at different levels in the network to thwart an attack as early as possible. The
process is described below and the devices are organized in an IEEE 802.15.4 [6] mesh
network, which is typical example of an IoT network.

– Step 1: A joining node η is installed and waits to hear beacons from devices in a
network.

– Step 2: A neighboring node, working as relay node or a border router, regularly
sends a broadcast beacon as part of the normal network traffic.

– Step 3: Upon reception of a network beacon originating, e.g., from a relay node
r, node η will securely send a IEEE 802.15.4 message protected with the HIMMO
key Kη,r =

〈
〈Gη(r)〉N

〉
2b

. The Key Identifier and Key Identifier Mode [6] can be
used to indicate that HIMMO key derivation is in use.

– Step 4: The relay node will process this message protected at IEEE 802.15.4 and
reply with the identity of the border router, if verification of the message sent by
η is successful. Kη,r could be cached by r for further communication.

– Step 5: Node η then will start a DTLS [8] handshake towards the back-end server
through relay node r in which the communication at IEEE 802.15.4 is protected
by Kη,r. Note that the relay node operates as described in [15]. Furthermore, the
first DTLS message, Client Hello, includes the identity of the joining node and an
authentication token created with Kη,br so that the border router can verify it.

– Step 6: Node r will relay only DTLS traffic from device η. Furthermore, the border
router will only forward the DTLS traffic if the verification of the authentication
token is successful and the identity of the joining node is not blacklisted.



– Step 7: The back-end server gets the request from the joining node and engages
in a DTLS handshake in which both joining node and back-end server mutually
authenticate each other and verify their credentials. This handshake may be based
on the lightweight scheme as proposed in [16]. Upon successful establishment of
the DTLS session, the joining node will receive the network key, KNetwork, from
the server.

Upon successful completion of this protocol, the key used to secure IEEE 802.15.4
layer communication on the link between node η and any node ξ is computed as
KNetwork
η,ξ = Kη,ξ ⊕KNetwork, where ⊕ denotes bit-wise XOR.

We note that the above protocol relies on the identity-based nature of HIMMO
and its properties to mutually authenticate the joining device and back-end server.
This is achieved by means of DTLS-HIMMO since HIMMO can be easily integrated
in DTLS [16]. Furthermore, the above protocol uses HIMMO identities to allow for
early detection and prevention of DoS attacks at relaying devices and at the border
router.

4.3 Secure operation

Secure operation aims at fulfilling security goals S-3, S-5, S-6, S-8, S-9, S-10, S-13
and all operational and performance objectives.

Firstly, we illustrate how HIMMO ensures a fully collusion resistant mesh network
based on IEEE 802.15.4. IEEE 802.15.4 supports the usage of pairwise keys between
devices, however, key agreement is left out of the standard. Therefore, in practice,
most standards rely on a network or system-wide key so that if a single device is
captured, then the whole network or system breaks down. Furthermore, compromised
devices cannot be easily identified since an attacker can fake any identity so that
securely updating such a network or system wide key is infeasible (in addition to
being very costly from an operational point of view). In our security architecture,
secure operation in a IEEE 802.15.4 network works as follows:

– Step 1: Note ξ will advertise its presence by means of unsecured broadcast beacon.

– Step 2: Node η will obtain a common HIMMO key with device η as Kη,ξ =〈
〈Gη(ξ)〉N

〉
2b

. Node η will also obtain helper data ση,ξ. If node η has joined the

network, then it will use pairwise key KNetwork
η,ξ = Kη,ξ⊕KNetwork. If node η has

not joined the network yet, then it will use pairwise key Kη,ξ.

– Step 3: Node η sends a secure IEEE 802.15.4 message to ξ protected with the
pairwise key determined in the previous step. This message contains the MAC
address of the sender (η) and ση,ξ in the Key Identifier field of the 802.15.4
security header.

– Step 4: Node ξ receives the secure message from η. It generates the pairwise
HIMMO key with the MAC address of η as Kξ,η =

〈
〈Gξ(η)〉N

〉
2b

and recovers
Kη,ξ from Kξ,η and ση,ξ. Assuming that node ξ has already joined the network,
then ξ knows KNetwork so that it can compute KNetwork

η,ξ and process the incoming

message with both Kη,ξ and KNetwork
η,ξ . If the verification of the message with Kη,ξ

is successful, then node η is considered a joining device and only DTLS traffic for
network access is allowed. Alternatively, the message is verified with KNetwork

η,ξ so
that the device is identified as part of the network and normal routing and data
traffic is enabled.



This solution enables pairwise keys between devices based on HIMMO so that the
IEEE 802.15.4 network becomes fully collusion resistant to the physical capture of
devices. Note that this represents a huge improvement with the state-of-the-art in
which most deployments rely on a single network-wide or even system-wide key that
represents a single point of failure. Furthermore, compromised devices can be iden-
tified since the HIMMO keying material is cryptographically bound to the device
identifier and in this case it is chosen to be the MAC address of the device. This
means that captured devices can be blacklisted. Finally, this method allows us to eas-
ily differentiate devices that have joined the network from devices that have not done
so yet. This differentiation, however, could also be determined by indicating which key
is used to protect the packet by using the Key Index field of the Key Identifier in the
IEEE 802.15.4 Auxiliary Security Header (ASH) [6]. This would avoid verification of
the packet with two keys in Step 4. The Key Index field (or a part of it) will indicate
to node ξ which key, Kη,ξ or KNetwork

η,ξ , was used to secure the packet.
We further note that HIMMO cannot only be used at MAC layer to generate

pairwise keys between neighboring devices, but it can also be used to enable secure
communication between any pair of devices in the network/system at application layer
by means of DTLS [16]. This is similar to the process described in previous section
with the difference that the communication is not between the joining device and
the back-end server, but between two arbitrary devices. As a consequence any pair of
devices can securely agree on a common symmetric key used in DTLS and verify any
other set of credentials. Performance benefits will become clear in the next section.

5 Implementation and evaluation

The design described in Section 4 addresses the needs of real-world environments as
Smart Santander [3]. This section provides performance measures for the building
blocks that comprise this architecture.

According to its different functionalities and resource requirements, we divide the
HIMMO implementation into two modules: one that provides TTP capabilities and
would likely be implemented in a server, and another one that provides node func-
tionalities and would likely be implemented in a device.

The TTP module allows choosing the HIMMO public parameters described in
Section 3.1. It also generates the keying materials for the network devices tailored to
the word-length and architecture of each device for optimal performance. The TTP
module is implemented in Java and can be easily integrated in a web service.

For the node module implementation, it is worth noting that HIMMO has been
designed to enable very efficient performance in constrained devices. From Equa-
tion (3) we observe that obtaining a symmetric key just requires the evaluation of a
polynomial of degree α modulo N and taking the b least significant bits. This means
that only α + 1 modular multiplications are required to compute the key. In each
multiplication, the B bit identifier multiplies the (α+ 1)B + b bit coefficient and the
result is reduced modulo N . These modular operations can be implemented in a very
efficient manner for appropriate choices for N , e.g., N = 2(α+1)B+b − 1. Many imple-
mentations are possible for the node module because of the heterogeneous nature of
the devices. Specialized implementations will optimize performance, sacrificing porta-
bility. We have both developed a generic and portable library that can be adapted
to work with different devices and also optimized the algorithm for a very resource
constrained device.



In order to evaluate the performance of the HIMMO scheme, we have implemented
it on three different devices: a very resource-constrained 8-bit CPU ATMEGA128L
running at 8 MHz, the 32-bit NXP LPC1769 LPCXpresso Board running at 120
MHz, and an Intel i3 3120M (64-bit), at 2.50 GHz running Xubuntu 14.04. The
implementations for the NXP LPC1769 and the Intel i3 3120M are based on our
generic C library, including the big integer arithmetic required for key generation. The
implementation for the ATMEGA128L, on the other hand, is optimized in assembler.
This show both the possibilities of the generic C library and the optimization power
of a specialized implementation.

For very resource constrained devices, specialized implementations are preferred:
our optimized implementation for the ATMEGA128L fits in just 428 bytes of flash
memory. This shows that HIMMO can fit even in very resource constrained devices
or when integrated as part of the IEEE 802.15.4 logic described in the above section.
We also note that the RAM consumption is linear with α since we have to keep in
memory a term that is (α+1)B+b bits. Table 1 and Table 2 provide a brief summary
of the performance of the HIMMO scheme implemented in the above CPUs.

Table 1: HIMMO performance for B = b = 128 as a function of α.

α 26 34 40 50

Keying material size (KB) 6.90 11.18 15.07 22.83

ATMEGA128L (8-bit @ 8 MHz) 223 367 497 743

CPU time (msec) NXP LPC1769 (32-bit @ 120 MHz) 18.38 30.59 41.77 64.25

Intel i3 3120M (64-bit @ 2.5 GHz) 0.067 0.109 0.147 0.225

Table 2: HIMMO performance for α = 26 as a function of b = B.

b = B 64 128 192 256

Keying material size (KB) 3.45 6.90 10.34 13.79

ATMEGA128L (8-bit @ 8 MHz) 63 223 393 632

CPU time (msec) NXP LPC1769 (32-bit @ 120 MHz) 5.55 18.39 40.34 71.41

Intel i3 3120M (64-bit @ 2.5 GHz) 0.023 0.067 0.134 0.224

The above node module can be used to enable the functionality described in the
design section. In particular, it can be easily integrated with IEEE 802.15.4 ensuring a
fully collusion resistant network during operation. It can also be used to enable secure
network access and registration by means of DTLS-HIMMO, achieving functionali-
ties such as mutual authentication and verification, which today are only possible
with public-key cryptography, at the speed and memory requirements of symmetric
cryptography. In this context, the left part of Figure 2 shows the time elapsed to
successfully complete a DTLS handshake in different modes, we can see that HIMMO
with mutual verification is almost 7 times faster than mutual verification with the



ECC alternative. On the right, we can see the ratio between exchanged data and
payload: for a secure interchange of 1 KB this ratio is around 40 % smaller with
HIMMO compared with ECC both providing mutual authentication. More detailed
performance measures, as well as a complete description of this implementation are
available on [16].
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Fig. 2: From top to bottom: (1) ECDH-ECDSA with mutual authentication,
(2) ECDH-ECDSA with server authentication, (3) HIMMO with mutual verifica-
tion of client’s and server’s credentials (B = 256, b = 128, α = 50), (4) HIMMO with
mutual verification of client’s and server’s credentials (B = 256, b = 128, α = 26),
(5) HIMMO with mutual authentication (B = 128, b = 128, α = 26) and (6) PSK.

6 Discussion and comparison with related work

This section discuses how the proposed security architecture fulfills the goals described
in Sections 2.4 and 2.3, and compares our solution with approaches based on symmet-
ric cryptography (Pre-Shared Key (PSK)) and on asymmetric cryptography (Public
Key Cryptography (PKC)).

A PSK is lightweight and very efficient but, as we can see in Table 3, it is unable
to support most of the security goals identified in Section 2.4. Such a solution is not
scalable. We might wish to share the same key with a large number of devices.This
is the current approach in IEEE 802.15.4 as it does not require any additional infras-
tructure. However, this approach leads to a single point of failure —if the key gets
compromised, the security of all the network will be broken— which is a really impor-
tant problem in networks where not even the physical integrity of the devices can be
guaranteed. This approach also does not enable for identification, authentication, or
authorization of devices. If on the other hand many (pairwise) keys are distributed,
this involves huge amounts of memory, makes credential management difficult, and
the addition of new devices to the network becomes more complex.

PKC solves most security goals, but is much more resource-consuming than PSK
or HIMMO in terms of required CPU time, memory, bandwidth, and round-trips (e.g.,
see fig:DTLSPerformance). In a similar way, in order to comply with security goal S-1
—resiliency to root of trust compromise— it would be necessary to have a chain of CA
signing the certificates; this will increase the certificate length for each signing, which
will affect both memory usage and network overhead. As one of the main sources of
energy consumption in an IoT network is the wireless radio, the battery life would
also be affected. In contrast, HIMMO can achieve this property without performance
penalty. The integration with OMA LWM2M would be easy, as it supports DTLS, but
integration with IEEE 802.15.4 without protocol changes is not possible. Furthermore,



it would imply a serious degradation in the network performance. Similarly, it could
be possible to use certificates to design a joining protocol which would prevent DoS
attacks, but it would result in a great increase in network overhead because of the
certificate exchanges. Existing PKC solutions (e.g., all PKC-based cipher-suites in
(D)TLS) would break down if a quantum computer is built.

HIMMO and PSK do no not offer perfect foward secrecy (S-12); the ∗ in the row
for (S-12) means that PKC does offer this feature for some cipher suites, e.g. those
based on DHE or ECDHE key exchange. Being symmetric schemes, HIMMO and
PSK do not offer non-repudiation (S-13): a device A can sign data with the key it
uses to communicate with device B, and claim that the data has been signed by B
using the latter’s key for communicating with A. PKC does offer non-repudiation, as
each party has its own public–private key pair.

Table 3: Comparison between different security architectures. Relative performance
from most efficient (*) to least (***).

Design goals HIMMO PKC PSK

O-1: Performance * *** *

O-2: Easy device addition to a running system 3 3 3

O-3: Scalable 3 3 -

O-4: Easy credential management 3 3 -

O-5: Easy integration with existing protocols 3 - 3

O-6: Fits device lifecycle 3 3 -

O-7: Long term security 3 3 3

S-1: Resilient to root of trust compromise 3 3 -

S-2: Single root of trust cannot monitor 3 3 -

S-3: Key escrow 3 - 3

S-4: Facilitates secure manufacturing 3 3 -

S-5: Device authentication and authorization 3 3 -

S-6: Back-end authentication and authorization 3 3 -

S-7: Prevents DoS attacks 3 3 -

S-8: Fully collusion resistance 3 3 -

S-9: Device identification and blacklisting 3 3 -

S-10: Key agreement 3 3 3

S-11: Post-quantum resilience 3 - 3

S-12: Perfect forward secrecy - 3∗ -

S-13: Non-repudiation - 3 -

7 Conclusions

The IoT is an emerging area involving many connected smart devices that need to
be secured during their entire lifecycle. This problem is not solved with current se-



curity solutions: asymmetric-key cryptography is computationally hungry, difficult
to integrate with protocols, and not suitable for long term deployments, while the
symmetric-key option is extremely efficient, but does not scale and offers limited se-
curity properties.

We have reviewed the operational and security requirements of a real-world IoT
scenario and build on top of them a comprehensive and lightweight security architec-
ture based on HIMMO. Thus, our security architecture is tailored to the requirements
of IoT, its attack vectors, and resource requirements.

Our solution builds on HIMMO’s excellent performance —a combined HIMMO-
based key agreement and credential verification handshake can be done in a few
hundred milliseconds even on very resource-constrained devices— to create a scalable,
operationally friendly and secure architecture.

HIMMO can be easily integrated in modern protocols like IEEE 802.15.4 or DTLS,
providing, at the relatively low costs of symmetric cryptographic solutions, features
that before were only feasible with asymmetric cryptography. Some of the security
features enabled by HIMMO are full collusion resistance, device and back-end au-
thentication and verification, pairwise key agreement, support for multiple TTPs and
key escrow, or protection against DoS attacks.

Because our architecture combines great security features with low resource needs
and allows easy integration in modern protocols, we believe that it is a very compet-
itive approach to secure the IoT and related emerging areas.
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