
Security Evaluation and Enhancement of
Bistable Ring PUFs

Xiaolin Xu1, Ulrich Rührmair2

Daniel E. Holcomb1, and Wayne Burleson1

1 ECE Department, University of Massachusetts Amherst
{xiaolinx,dholcomb,burleson}@umass.edu

2 Horst Görtz Institute for IT-Security, Ruhr Universität Bochum
ruehrmair@ilo.de

Abstract. The Bistable Ring (BR) Physical Unclonable Function (PUF)
is a newly proposed hardware security primitive in the PUF family. In
this work, we comprehensively evaluate its resilience against Machine
Learning (ML) modeling attacks. Based on the success of ML attacks, we
propose XOR strategies to enhance the security of BR PUFs. Our results
show that the XOR BR PUF with more than four parallel BR PUFs is
able to resist the ML modeling methods in this work. We also evaluate
the other PUF metrics of reliability, uniqueness and uniformity, and find
that the XOR function is also effective in improving the uniformity of
BR PUFs.

1 Introduction

In the last ten years, physical unclonable functions (PUFs) have established
themselves as an alternative to conventional security approaches [4][11]. In a
nutshell, a PUF is a disordered, at least partly randomly structured physical
system. Due to its random structure that is caused by uncontrollable, small-scale
manufacturing variations, it is physically unclonable, i.e., no two specimens can be
produced that are physically exactly identical. This limitation applies to both the
original manufacturer and to other, potentially adversarial, parties. All PUFs have
one basic functionality in common, namely some challenge-response mechanism:
They can be triggered or excited by signals that are commonly denoted as
challenges Ci. Upon excitation by a challenge Ci, they react by producing a
response RCi

that depends on their internal disorder and usually also on the
challenge itself. The tuples (Ci, R(Ci)) are called the challenge-response pairs
(CRPs) of the PUF.

Over the years, different variants or types of PUFs have emerged (see [12] for
an overview). They all share the above features of being a disordered structure,
possessing physical unclonability, and exhibiting some form of challenge-response
mechanism. However, their other security features, together with their intended
applications and associated attack scenarios, notably differ. This makes it useful
in scientific works to explicitly distinguish these types from each other [12].

2

The two main PUF-types are often denoted as weak and strong PUFs. Weak
PUFs possess essentially a single, fixed challenge C, as for example in the case
of SRAM PUFs. They are mainly used for internal key derivation in security
hardware. The underlying security assumption is that attackers must not be
able to access the internal response of the PUF, for example by reading out the
power-up state of the SRAM PUF [5][6]. In opposition to that, strong PUFs are
PUFs that have a very large number of possible challenges, too many to read out
all corresponding CRPs in feasible time. Their challenge-response mechanism
should be complex in the sense that it is hard to derive unknown CRPs from
a set of known CRPs. In particular, strong PUFs should not allow “modeling
attacks”, in which an adversary collects a subset of CRPs, uses them to train a
machine learning (ML) algorithm, and later employs the model produced by the
ML algorithm to predict unknown CRPs.

Strong PUFs are usually employed with a publicly accessible CRP interface,
i.e., anyone holding the PUF or the PUF embedding hardware can apply challenges
and read out responses. The lack of access restriction mechanisms on strong
PUFs is therefore a key difference from weak PUFs. In recent years, strong PUFs
have turned out to be a very versatile cryptographic and security primitive: First
of all, by using a fixed set of challenges, they can be employed for internal key
derivation, just like weak PUFs. But they can do more: They can also implement
a host of advanced cryptographic protocols, ranging from identification [11][9] to
key exchange [20][1] to oblivious transfer [1].

Their many possible applications make the secure construction of secure
strong PUFs a worthwhile and rewarding research target. Unfortunately, it is a
non-trivial one, too: A large number of powerful attacks on some first-generation
electrical strong PUFs have been published recently. They include the above
mentioned modeling attacks [13][14]; side channel attacks [15]; and also optical
characterization techniques [19]. Most of these attacks target the first electrical
strong PUF, the so-called Arbiter PUF [4][11] and variants thereof, for example
XOR Arbiter PUFs and Feed-Forward Arbiter PUFs. For this reason, alternative
silicon architectures have been proposed in recent years. One such alternative is
the ”Bistable Ring PUF” (BR PUF) [2][3], which was designed to have a more
complex internal response-generating mechanism in hopes of making ML attacks
harder.

At TRUST 2014, Hesselbarth and Schuster [16] succeeded in revealing some
basic vulnerabilities of the BR PUF against ML techniques. They proved that
BR PUFs can be attacked by a single layer artificial neural network (ANN) with
prediction errors between close to 0% and 20%, varying from hardware instance
to instance. Among the 20 FPGA instances examined, 14 could be predicted with
errors less than 10%. This puts close limits on the security usability of the BR
PUF on FPGAs. Schuster and Hesselbarth subsequently proposed a small design
improvement, so-called twisted BR PUFs (TBR PUFs), which they conjectured
to possess better security. Using their own ANN algorithm, they were also able to
attack TBR PUFs again. However, the TBR PUF shows average higher prediction
errors with respect to ANNs, indicating that TNR PUFs has some improvements

3

over plain BR PUFs. It remained open in the work of Schuster and Hesselbarth
whether said improvement is sufficient for secure practical usage of the TBR
PUF.

Our Contributions In this paper, we re-examine the security of the BR PUF and
TBR PUF closely, again using FPGA implementations. We thereby make the
following new contributions:

– We implement 8 instances of the BR PUF and the TBR PUF on FPGA. To
achieve a more comprehensive ML analysis, we implement bitlengths other
and larger than 64, namely also 32, 128 and 256. These bitlengths had never
before been implemented in silicon and studied in the literature.

– We develop the first analytical models for the BR PUF and the TBR PUF.
– We use these new models in order to apply, for the first time, support vector

machines (SVMs) to the BR PUF and the TBR PUF. This more powerful
ML-tool drastically improves the ML predication rates relative to previous
work. None of our 8 instances has a prediction error exceeding 5%. This
result answers the open question of Hesselbarth and Schuster whether certain
individual and particularly hard instances of the BR PUF or TBR PUF could
be used securely in practice: In our findings, this was not the case.

– We then propose a new, efficient strategy for the secure practical use of the
BR PUF: namely the employment of l instances in parallel, whose l outputs
are XORed at the end in order to produce one single-bit PUF-response. We
call the resulting structure XOR BR PUF. We show that even for small
values of l such as 4, this structure cannot be machine learned by our current
techniques, while it is still sufficiently stable in practice. This work is the
first study of XOR BR PUFs in the literature.

Organization of This Paper This paper is organized as follows. Section 2 discusses
our attacks on the BR PUF, while Section 3 details our attacks on the TBR PUF.
Section 4 suggests the use of XOR BR PUFs and evaluates their performance
improvement. Section 5 concludes the paper.

2 SVM Attack on BR PUFs

2.1 Mechanism of BR PUF

A ring oscillator (RO) is a device composed of an odd number of logically-inverting
delay elements. Since the output of the last element is always the logical “NOT”
of the first input, an RO will continually oscillate. Derived from the non-settling
structure of RO, BR PUF is a ring comprising an even number of inverting cells.
Such a design behaves like a memory cell and will fall into one of two possible
stable states: either “101010...” or “010101...”.

As depicted in Fig. 1, a 64-bit BR PUF is composed of 64 stages, where
each stage has two inverting delay elements (NOR gates as an example). A
challenge vector C = {c1, c2, . . . , cn} selects the NOR gates used in each bistable

4

ring configuration by providing values to the MUX and DEMUX gates of the
stages. Since each NOR gate has unique process variation, each different challenge
vector creates a unique bistable ring configuration, and in total 264 different
configurations can be created. A common “RESET” signal is added to each stage
to establish a known “all-0” state before letting the ring stabilize to produce its
response. Evaluation of the response begins when “RESET” is released and the
ring starts to oscillate through the selected NOR gates. Once a stable state is
reached, the outputs of any two adjacent stages will be logical compliments of
each other, either “10” or “01”. The choice among the two possible stable states
of the ring depends on noise and the process variation of the NOR gates used in
the ring configuration. Any interconnection node between two stages can be used
as an output port, and in this work we use the half bit-length port to read out
the response (Fig. 1).

c0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

...

0

...

1
0 0 0 0 0 00

11 1 1 1 1 1

RESET Response

c1 c30 c31

c32c33c62c63

Fig. 1: Schematic of a single BR-PUF with 64 stages.

2.2 Intuition for Modeling BR PUF

The intuition for our modeling attack is that the response can predicted based on
a summation of weights. Such an additive model is commonly used for predicting
the responses of Arbiter PUFs, where the weights represent stage delays [8]. An
additive model has also been used for predicting the resolution of metastability [7],
with weights representing the strength with which different cells pull toward a
particular outcome. We similarly use an additive model in this work; the weight
we associate with each gate represents the difference between its pull-up strength
and pull-down strength. The weights are summed across all gates used by a
challenge to find the overall favored response for that challenge; a positive sum
indicates a preference for the positive response. Note that the summation of
weights requires negative and positive polarities because the positive overall
response is favored by the pull-up strength of even stages and the pull-down
strength of odd stages.

5

2.3 Model

Let the difference between the pull-up and pull-down strength of the top NOR
gate in the ith stage be represented by ti, and in the bottom NOR gate in the ith

stage be represented by bi. The even stages will contribute toward the positive
response with strength ti (or bi if the challenge bit selects the bottom NOR gate
of the stage), and the odd stages will contribute toward the positive response
with strength −ti (or −bi). To account more generally for even-ness or odd-ness,
the strength of the ith stage toward the positive response can be written as
−1iti if the challenge bit is 0, and −1ibi if the challenge bit is 1. For a given
64-bit challenge, the total strength pulling toward the positive response is the
summation of 64 ti and bi weights.

0 170 340 510 680 850
50

60

70

80

90

100

pr
ed

ic
tio

n
ra

te
 (

%
)

training size

32−bit

0 300 600 900 1200 1500
50

60

70

80

90

100

pr
ed

ic
tio

n
ra

te
 (

%
)

training size

64−bit

0 500 1000 1500 2000 2500
50

60

70

80

90

100

pr
ed

ic
tio

n
ra

te
 (

%
)

training size

128−bit

0 1200 2400 3600 4800 6000
50

60

70

80

90

100

pr
ed

ic
tio

n
ra

te
 (

%
)

training size

256−bit

Fig. 2: Prediction rate of SVM modeling attacks on BR PUFs. When the length
of the BR PUF increases, more CRPs are required to train the model to achieve
95% prediction. Note that the scale of the x-axes are not consistent across the
subfigures.

For convenience we define αi and βi (Eq. 1) such that αi + βi = −1iti and
αi−βi = −1ibi. This notation allows the pull of the ith stage toward the positive
response to be written generally as αi + ciβi with challenge bit ci ∈ {−1, 1}. The
summed strengths toward the positive response for any challenge vector C is

6

r(C) as shown in Eq. 2. According to our formulation, if the ti and bi weights
were known explicitly, then the response could be predicted by the sign of R(C)
(Eq. 2).

αi = −1i

(
ti − bi

2

)
βi = −1i

(
ti + bi

2

)
(1)

R(C) = sgn(
∑

i=0..n−1
αi + ciβi) (2)

Given that weights are not known, since there are only two possible responses
of BR PUFs, based on the model above, we can convert the response prediction
of BR PUFs into a classification problem. Support Vector Machines (SVM)
are powerful learning tools that can perform binary classification of data, the
classification is realized with building a hyperplane separating surface. While
digesting the known input and output data sets, the hyperplane separating surface
will be curved to minimize the error of predicted values.

Known CRPs are used to train the classifier to predict responses from chal-
lenges. In the SVM formulation, first note that the αi terms in Eq. 2 can be
discarded because they are constant for a given PUF instance across all challenges.
Only ciβi terms remain, and from these terms the response must be predicted.
Given a set of challenges and associated responses, the training examples therefore
have as their feature vector an applied challenge Cj ∈ {−1, 1}n and as their
labels the observed response R(Cj) ∈ {−1, 1} to challenge Cj . Note that βi terms
do not appear explicitly in the SVM formulation as the classifier simply works to
find the maximum margin hyperplane to separate the challenges into two classes
according to their responses.

2.4 SVM Attacks on BR PUFs

To explore the effectiveness of SVM attacks, we implemented on a Xilinx Spartan-
VI FPGA board, 8 BR PUFs with lengths of 32-, 64-, 128- and 256 bits, and
collected 1,000,000 CRPs from each of them (to decrease the impact of mea-
surement noise, all of the final CRPs are formulated by majority voting from
11 repeated measurements). SVM attacks are implemented with a linear kernel
to mimic the operation of single BR PUFs (note that to attack XOR BR PUFs,
SVM model with a polynomial kernel is utilized, where the poly-order of the
model is set as the XORing complexity of BR PUFs). The results of SVM attacks
are shown as Fig. 2. To demonstrate the relationship between prediction rate and
CRPs used for different PUF lengths, we utilize 95% as a threshold prediction
rate. It is clear that while the size of BR PUF is increasing, the demand for
CRPs is also increasing to build its ML model. However, for any tested size of
BR PUF, the SVM modeling attack is successful in predicting responses. This
means a single BR PUF is not secure, even if it has a large number of stages.

7

3 Twisted BR PUFs Attack

3.1 Model of TBR PUFs

Uniformity, or fractional Hamming weight, is an important feature of PUFs.
A good PUF that produces an equal number of 0 and 1 responses will have
a uniformity of around 0.50. However, the uniformity of CRPs of BR PUF
implementations has been found to be biased in previous work [16] (see also Sec.
4.3 in this work). To compensate for this drawback, TBR-PUF was proposed in
[16]. Compared to the BR PUF, the TBR-PUF has a more compact design; when
applying a challenge vector to the TBR PUF, all of its 2n inverting elements are
used in the ring. By contrast, in the standard BR PUF, half of the NOR gates in
the circuit are unused for any given challenge. Taking the TBR PUF in Fig. 3 as
an example, using challenge bit c0 = 1 or c0 = 0 will change the location of D0

0
and D0

1 in the ring, but in either case D0
0 and D0

1 will both contribute in some
polarity to the response.

C0

RESET

Response

D1
63

D0
63

D1
62

D0
62D0

1

D1
1D1

0

D0
0

C1 C62 C63

Fig. 3: Schematic of a single TBR-PUF with 64 stages.

From Sec. 2, we know that a ring composed of an even number of inverting
elements will stabilize according to the summed strength of the pull-up and
pull-down strengths of each gate. The TBR PUF uses pull-up and pull-down
strengths of all inverting components in the circuit, but only the polarity (i.e.
even-ness or odd-ness) of each element toward the overall ring response changes
with the challenge vector. According to the interconnections of the 64-bit TBR
PUF, the two NOR gates in the ith stage are the ith and 127− ith element in the
overall ring. Because one element is odd in the overall ring, and one is even, the
pull-up strength of the top and bottom gates in each stage are working against
each other. Therefore, the overall contribution toward the positive response is βi

(Eq. 3), or −βi if the ith challenge bit is negative. The overall sum of weights
pulling toward the positive response for challenge C is therefore R(C) (Eq. 4).
Eq. 2 and Eq. 4 differ only in in the physical meaning of βi, and in Eq. 2 having
an additional offset term of

∑
i αi, but in terms of ML modeling they are actually

the same identical model. Therefore, the complexity of ML attacks on the TBR
PUF is the same as the complexity of attacking the BR PUF.

βi = −1i(ti − bi) (3)

8

R(C) = sgn(
∑

i=0...n−1
ciβi) (4)

0 90 180 270 360 450
50

60

70

80

90

100

pr
ed

ic
tio

n
ra

te
 (

%
)

training size

32−bit

0 150 300 450 600 750
50

60

70

80

90

100

pr
ed

ic
tio

n
ra

te
 (

%
)

training size

64−bit

0 300 600 900 1200 1500
50

60

70

80

90

100

pr
ed

ic
tio

n
ra

te
 (

%
)

training size

128−bit

0 600 1200 1800 2400 3000
50

60

70

80

90

100
pr

ed
ic

tio
n

ra
te

 (
%

)

training size

256−bit

Fig. 4: Prediction rate of SVM modeling attacks on TBR PUFs of different bit
lengths. As in Fig. 2, to achieve same prediction rate, a larger PUF requires more
CRPs.

3.2 SVM Attacks on TBR PUFs
Given that we have shown the model of a TBR PUF to be the same as that of a
BR PUF, we can again train an SVM classifier to predict its responses to each
challenge. Eight TBR PUFs are implemented with Spartan-VI FPGA boards, and
1,000,000 CRPs are collected from each of them. For each CRP, majority voting
over 11 repeated measurements of the response to a challenge are performed in
order to reduce the impact of noise.

Following the experiment in Sec. 2.4, SVM attacks with polynomial kernel
are applied on TBR PUFs of 32-, 64-, 128- and 256 bit-length (the poly-order of
the model is set as the XORing complexity). The results in Fig. 4 show that the
modeling attacks succeed in modeling all different sizes of the TBR PUF, with
prediction rate no lower than 95%.

9

4 XORing BR PUFs to Enhance the Security

It is possible using ML to model the behavior of a single strong PUF like the
Arbiter PUF [8]. To thwart modeling attacks, an XOR function was proposed as
a way to enhance security of Arbiter PUFs [17] and lightweight PUFs [10]. In
an XOR PUF, the same challenge vector is applied to l single PUFs in parallel,
and their outputs are XORed together to form a one-bit response. XORing is
an efficient method to enhance the security of strong PUFs, because the XOR
function obfuscates the CRPs of the individual PUFs [17]. Inspired by this idea,
we propose to use XOR strategies on BR PUFs to improve their resistance to
modeling attacks.

4.1 Review of Existing Attacks on XOR PUFs

The addition of XOR functions increases the resistance of strong PUF against
modeling attacks. Both the training time and number of CRPs required to train
a model increase exponentially with the number of XORed PUFs [13]. Attacking
XOR-based Arbiter PUFs with more than five parallel Arbiter PUFs was stated
as difficult based on pure ML modeling [14]. Later works devised a more powerful
class of hybrid attacks that combine side channels with ML [15, 21]. Power and
timing side-channels allow information about the sub-responses (i.e. the responses
of single PUFs before the final XOR) of XORed PUFs to be extracted and used
to improve the prediction rate of ML models. In light of these hybrid attacks, if
the side-channel information of BR PUFs can also be measured, then the use of
XOR will not be an effective way to enhance the security.

4.2 SVM Modeling Attacks on XORed BR PUF

Adopting the model of single BR PUF in Sec. 2, for an XOR BR PUF employing
l BR PUFs, the XORed response to a challenge C can be described by Eq. 5.
Note the similarity between this formula and the formula of the single BR PUF
(Eq. 2). The only modification is that now each stage has l different α and β
terms, one for each of the PUFs. The overall response is based on how many of
the individual PUFs have a positive response.

R(C) = sgn
(l−1∏

j=0
(
n−1∑
i=0

αi,j + ciβi,j)
)

(5)

In applying SVM to XOR BR PUF, it is found that we can only break the
complexity up to 2 XOR for 128-bit length and 3 XOR for 64-bit length. The
number of CRPs and runtime1 for SVM modeling attacks against XOR BR PUFs
are listed in Tab. 1. We can surmise that XOR BR PUFs with 4 or more XORed
outputs are beyond the reach of current SVM modeling attacks.
1 The computer used has a common Intel 3630QM quadcore processor.

10

No. of Bit CRPs Predict. Training*
XORs Length (×103) Rate Time

2

32 0.8 95% 3 sec
64 4 95% 10 sec
128 18 95% 6 mins
256 —– 50.8% —–

3

32 1.2 95% 5 sec
64 7.2 95% 24 sec
128 —– 50.1% —–
256 —– 50.1% —–

4

32 —– 50.1% —–
64 —– 50.3% —–
128 —– 49.8% —–
256 —– 50.1% —–

Table 1: The run times and number of CRPs that are required for SVM attacks
on the XOR BR PUFs of different sizes. Prediction rates around 50% imply that
the SVM model can not break XOR BR PUFs of these complexity. *Note that
the training time is greatly determined by the computational systems.

4.3 Performance Evaluation of XORed BR PUF

While the basic motivation of XORing BR PUF is to resist modeling attacks,
the impact of the XOR on other key metrics must also be considered. In this
section, we evaluate the impact of the XOR function on reliability, uniqueness,
and uniformity.

Reliability Reliability is the ratio of consistent CRPs when a PUF is operating in
different environment conditions such as temperature. To evaluate the reliability
of XOR BR PUFs, 8 BR PUFs are measured across different temperatures between
27◦C and 75◦C, with a 4◦C step, using a Sun Electronics EC12 Environmental
Chamber [18] to control the temperature (Fig. 5a). Reliability is evaluated by
comparing CRPs collected at 27◦C to CRPs collected at other temperatures. For
a XOR PUF, any unstable sub-response can cause the XORed response to be
unreliable. Therefore, the reliability at any temperature will decrease with the
number of PUFs that are XORed together (Fig. 5b). According to the first BR
PUF paper [3], an effective solution to solve this problem is employing CRPs
that settle down quickly, since those CRPs are less sensitive to noise.

Uniqueness Uniqueness is the capability of a PUF to distinguish itself from
other instances. Uniqueness is quantified as the fraction of responses that are
different across instances when the same challenges are applied. Thus for m
PUF instances, a total of m∗(m−1)

2 uniqueness values are obtained. To better
explore the uniqueness of XOR BR PUF, we compute its within-class (response

(a) experimental platform

20 40 60 80
80

85

90

95

100

re
lia

bi
lit

y
(%

)

temperature

XOR=1
XOR=2
XOR=3
XOR=4
XOR=5
XOR=6
XOR=7
XOR=8

(b) reliability across different tempera-
tures

Fig. 5: Evaluating reliability across different temperatures. Because the reliability
of each single BR PUF decreases with temperature, the reliability of the XOR
BR PUF results degrade significantly.

flipping by noise, temperature noise here) and between-class uniqueness (response
difference between instances), these results are depicted in Fig. 6.

Uniformity Uniformity denotes the average response of a PUF, the ideal value
of which is 0.5, meaning equal amount of “1” and “0” responses. Uniformity that
is far away from 0.5 will have less response entropy and be easier to attack with
modeling [22]. In our experiment, the uniformity of a single BR PUF is found
to be highly biased, and this phenomenon was also reported in [16] [22]. The
XOR function helps to remove this bias. To validate the uniformity improvement
from the XOR function, we collected the CRPs from eight 64-bit BR PUFs from
FPGA (without CRP majority voting). It is found that some PUF instances show
extreme bias, but XORing more single BR PUFs together decreases response
bias (Fig. 7).

5 Conclusion and Future Works

In this work, we studied two relatively new PUF variants: BR PUF and its
derived architecture TBR PUF. Their resilience against ML modeling attacks is
explored and it is shown that their response can be predicted with success rate
exceeding 95% using reasonable runtime and less than 10k CRPs in all cases. Our
work confirms that neither a single BR, nor TBR, PUF is secure. To strengthen
the BR PUF against modeling attacks, we proposed and evaluated an XOR BR
PUF variant. It is found that XORing 4 or more BR PUFs together produces a
behavior that is beyond the modeling capability of current SVM ML attacks, and
also improves other key PUF metrics like uniformity. Future work will explore the
effectiveness of other modeling attacks, like Evolutionary Strategy and Logistic
Regression methods.

12

0 0.5 1
0

0.1

0.2

XOR=2

fr
eq

ue
nc

y

0 0.5 1
0

0.1

0.2

XOR=3

fr
eq

ue
nc

y

0 0.5 1
0

0.1

0.2

XOR=4

fr
eq

ue
nc

y

0 0.5 1
0

0.1

0.2

XOR=5

fr
eq

ue
nc

y

0 0.5 1
0

0.1

0.2

XOR=6

fr
eq

ue
nc

y

0 0.5 1
0

0.1

0.2

XOR=7

fr
eq

ue
nc

y

within
between

Fig. 6: The between-class and within-class Hamming distance of XOR PUFs.
Even when XORing together more BR PUFs, the within-class and between-class
Hamming distances can still be differentiated. The results are based on 8 BR
PUFs, thus there is only one 8 XOR BR PUF and no uniqueness is formulated
for it.

0 1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

un
if

or
m

ity

XOR size

Fig. 7: The response uniformity of a single BR PUF (represented by “XOR=1” in
plot) is highly biased. When more BR PUFs are XORed together, the uniformity
is closer to 0.5.

13

References

1. Brzuska, C., Fischlin, M., Schröder, H., and Katzenbeisser, S. Physically
uncloneable functions in the universal composition framework. In Advances in
Cryptology–CRYPTO 2011. Springer, 2011, pp. 51–70.

2. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., and Ruhrmair, U. The
bistable ring puf: A new architecture for strong physical unclonable functions. In
Hardware-Oriented Security and Trust (HOST), 2011 IEEE International Sympo-
sium on (2011), IEEE, pp. 134–141.

3. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., and Ruhrmair, U. Char-
acterization of the bistable ring puf. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2012 (2012), IEEE, pp. 1459–1462.

4. Gassend, B., Clarke, D., Van Dijk, M., and Devadas, S. Silicon physical
random functions. In Proceedings of the 9th ACM Conference on Computer and
Communications Security (2002), ACM, pp. 148–160.

5. Guajardo, J., Kumar, S., Schrijen, G., and Tuyls, P. FPGA intrinsic PUFs
and their use for IP protection. Cryptographic Hardware and Embedded Systems
(2007).

6. Holcomb, D. E., Burleson, W. P., and Fu, K. Power-up SRAM State as an
Identifying Fingerprint and Source of True Random Numbers. IEEE Transactions
on Computers (2009).

7. Holcomb, D. E., and Fu, K. Bitline PUF: Building Native Challenge-Response
PUF Capability into Any SRAM. In Cryptographic Hardware and Embedded Systems
(CHES 2014) (Sept. 2014), L. Batina and M. Robshaw, Eds., vol. 8731 of Lecture
Notes in Computer Science, pp. 510–526.

8. Lim, D. Extracting secret keys from integrated circuits, MSc Thesis, 2004.
9. Lofstrom, K., Daasch, W. R., and Taylor, D. Ic identification circuit using

device mismatch. In Solid-State Circuits Conference, 2000. Digest of Technical
Papers. ISSCC. 2000 IEEE International (2000), IEEE, pp. 372–373.

10. Majzoobi, M., Koushanfar, F., and Potkonjak, M. Lightweight secure PUFs.
In Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided
Design (2008), IEEE Press, pp. 670–673.

11. Pappu, R., Recht, B., Taylor, J., and Gershenfeld, N. Physical one-way
functions. Science 297, 5589 (2002), 2026–2030.

12. Rührmair, U., and Holcomb, D. E. PUFs at a glance. In Proceedings of the
conference on Design, Automation & Test in Europe (2014), European Design and
Automation Association, p. 347.

13. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., and Schmid-
huber, J. Modeling attacks on physical unclonable functions. In Proceedings of
the 17th ACM conference on Computer and communications security (2010), ACM,
pp. 237–249.

14. Rührmair, U., Sölter, J., Sehnke, F., Xu, X., Mahmoud, A., Stoyanova, V.,
Dror, G., Schmidhuber, J., Burleson, W., and Devadas, S. PUF modeling
attacks on simulated and silicon data. Information Forensics and Security, IEEE
Transactions on (2013).

15. Rührmair, U., Xu, X., Sölter, J., Mahmoud, A., Majzoobi, M., Koushanfar,
F., and Burleson, W. Efficient power and timing side channels for physical
unclonable functions. In Cryptographic Hardware and Embedded Systems–CHES
2014. Springer, 2014, pp. 476–492.

14

16. Schuster, D., and Hesselbarth, R. Evaluation of bistable ring PUFs using
single layer neural networks. In Trust and Trustworthy Computing. Springer, 2014,
pp. 101–109.

17. Suh, G. E., and Devadas, S. Physical unclonable functions for device authentica-
tion and secret key generation. In Proceedings of the 44th annual Design Automation
Conference (2007), DAC ’07, ACM, pp. 9–14.

18. Sun Electronic Systems, I. Model EC1X Environmental Chamber User and
Repair Manual, 2011.

19. Tajik, S., Dietz, E., Frohmann, S., Seifert, J.-P., Nedospasov, D.,
Helfmeier, C., Boit, C., and Dittrich, H. Physical characterization of arbiter
PUFs. In Cryptographic Hardware and Embedded Systems–CHES 2014. Springer,
2014, pp. 493–509.

20. Van Dijk, M. E. System and method of reliable forward secret key sharing with
physical random functions, Jan. 26 2010. US Patent 7,653,197.

21. Xu, X., and Burleson, W. Hybrid side-channel/machine-learning attacks on
PUFs: a new threat? In Proceedings of the conference on Design, Automation &
Test in Europe (2014), European Design and Automation Association, p. 349.

22. Yamamoto, D., Takenaka, M., Sakiyama, K., and Torii, N. Security evaluation
of bistable ring PUFs on FPGAs using differential and linear analysis. In Computer
Science and Information Systems (FedCSIS), 2014 Federated Conference on (2014),
IEEE, pp. 911–918.

