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Abstract

Gennaro, Gentry, Parno, and Raykova (GGPR) introduced
Quadratic Arithmetic Programs (QAPs) as a way of repre-
senting arithmetic circuits in a form amendable to highly effi-
cient cryptographic protocols [11], particularly for verifiable
computation and succinct non-interactive arguments [12].
Subsequently, Parno, Gentry, Howell, and Raykova intro-
duced an improved cryptographic protocol (and implemen-
tation), which they dubbed Pinocchio [13].

Ben-Sasson et al. [5] then introduced a lightly modified
version of the Pinocchio protocol and implemented it as part
of their 1ibsnark distribution. Later work by the same au-
thors employed this protocol [2—4, 10], as did a few works by
others [1, 14]. Many of these works cite the version of the
paper which was published at USENIX Security [6]. How-
ever, the protocol does not appear in that peer-reviewed pa-
per; instead, it appears only in a technical report [5], where
it is justified via a lemma that lacks a proof. Unfortunately,
the lemma is incorrect, and the modified protocol is unsound.
With probability one, an adversary can submit false state-
ments and proofs that the verifier will accept. We demon-
strate this theoretically, as well as with concrete examples in
which the protocol’s implementation in 1ibsnark accepts
invalid statements.

Fixing this problem requires different performance trade-
offs, indicating that the performance results reported by pa-
pers building on this protocol [1-4, 6, 10, 14] are, to a greater
or lesser extent, inaccurate.

1 Background: Quadratic Arithmetic Programs

Gennaro, Gentry, Parno, and Raykova (GGPR) introduced
Quadratic Arithmetic Programs (QAPs) as a way of repre-
senting arithmetic circuits in a form amendable to highly ef-
ficient cryptographic protocols [11], particularly for verifi-
able computation and succinct non-interactive arguments [12]
(and/or arguments of knowledge [7]).

We recall their definition below, and then give a brief ex-
ample of how to construct a QAP from an arithmetic circuit.

Definition 1 (Quadratic Arithmetic Program (QAP) [11])
A QAP Q over field F contains three sets of m+ 1 polynomials
V= {0} W= w019 = (k@) for k € {0....m},
and a target polynomial t(x). Suppose F is a function that
takes as input n elements of F and outputs n' elements, for
a total of N = n+n' I/O elements. Then we say that Q
computes F if: (c1,...,cy) € FN is a valid assignment of

F’s inputs and outputs, if and only if there exist coefficients

(CN41y---sCm) such that t(x) divides p(x), where:
p(x) = <vo(x) + i ck.vk(x)> . (wo(x) + i ck.wk(x)>
k=1 k=1

- (yo(x) + i Cr -yk(x)> )
k=1

In other words, there must exist some polynomial h(x) such
that h(x) -t(x) = p(x). The size of Q is m, and the degree is
the degree of t(x).

We now walk through a brief example of how an arith-
metic circuit can be converted into a QAP. Prior work pro-
vides more details of the general transformation [11, 13]. At
a high-level, we choose a “root” value for each multiplica-
tion gate in the circuit. Thus, for the circuit in Figure 1, we
choose three values r4, 75,76 € F. We then use the 1 polyno-
mials to represent “left” inputs into multiplications gates, the
W polynomials to represent “right” inputs, and the 9" poly-
nomials to represent outputs. Thus, in our example, we say
that vy (r4) = v1(rs) = 1, since wire ¢ is a left input to gates
4 and 5, while v (r¢) = 0, since ¢; is not a direct left input to
gate 5. Similarly, wp(r4) = w3(rs) = 1, since wires ¢; and c3
are right inputs to gates 4 and 5, respectively.

To actually instantiate the various polynomials, let X be
the set of root values selected (e.g., R = {ra,rs,76} in our
example). Let L;(x) be a Lagrange polynomial for r; over
R, ie., Li(r;) =1 and Vj #i: Li(r;) = 0. We can now
write each QAP polynomial as a simple summation of La-
grange polynomials. For example, in Figure 1, v;(x) is sim-
ply La(x) +Ls(x).

2 Ensuring QAP Consistency

When using QAPs in cryptographic protocols, it is crucial
to note that the standard QAP definition (Definition 1) only
considers the case where the same set of coefficients, i.e., the
cy, are applied to all three sets of equations. The definition
does not provide any guarantees if different coefficients are
applied.

In their work, GGPR ensure consistency by giving a
generic procedure for “strengthening” a regular QAP into
a strong QAP. Unfortunately, this procedure increases the
QAP’s degree to 3d + 2N, more than tripling the original
QAP. This significantly impacts the performance of crypto-
graphic protocols employing the QAP. For example, in the
verifiable computation setting, the cost of key generation and



G G (ra,rs,r6) (ra,rs,r6) (r4,rs,76)
Cy vi(ri)  (L,LLO) |[wi(ri) (0,000 |yi(r;) (0,0,0)
va(ri) (0,000 |wa(r;) (1,0,0) |y2(ri)  (0,0,0)
v3(ri)  (0,0,0) |ws(ri) (0,1,0) |y3(r;) (0,0,0)
C4 C5 V4(ri) (0,0,l) W4(r,') (0,0,0) y4(r,-) (1,0,0)
vs(ri)  (0,0,0) |ws(r;) (0,0,1) |ys(r;) (0,1,0)
Ce ve(ri)  (0,0,0) |ws(r;) (0,000 |ys(ri) (0,0,1)

Output t(x) = (x—rg) (x — r5) (x — r6)

Figure 1: Arithmetic Circuit and Equivalent QAP. Each wire value comes from, and all operations are performed over, a field F. The
polynomials in the QAP are defined in terms of their evaluations at the three roots, ry, rs, and re. See text for details.

the size of the evaluation key grow linearly in the degree, and
the prover’s effort grows as O(dlogd).

In contrast, the Pinocchio verifiable computation proto-
col [13] solved the consistency problem at the cryptographic
level, rather than changing the QAP itself. In other words, the
protocol works for ordinary QAPs, and uses cryptographic
techniques to check for consistency. We summarize the pro-
tocol in the left half of Figure 2. To simplify the presenta-
tion, we omit the extra terms and steps necessary to make the
protocol zero knowledge. We also use a symmetric pairing
group, although in practice [13], the protocol is typically im-
plemented using an asymmetric group.

The Pinocchio protocol is proven secure under the d-PKE,
g-PDH and 2¢-SDH assumptions [13].

The Pinocchio protocol ensures the same coefficients are
used for each set of coefficients in two ways. First, the proto-
col requires the prover to apply the “internal” variables (cor-
responding to the proof witness) to both the bare g,* ) gk )

and g;" ) terms in the evaluation key, as well as the [ terms,
which combine each triplet of v, wy, and y; polynomials into
a single term. If a malicious prover applies different coeffi-
cients to, say, the wy terms, this will be caught by the check
in Equation 2. Second, to ensure the consistency of the terms
corresponding to the IO (or equivalently to the proof state-
ment), the verifier computes those terms herself. In other
words, she takes the 10 (or statement) from the prover and
applies those terms to the corresponding v, wy, and y; terms
herself before checking Equation 1.

3 An Unsound Modification of Pinocchio

Ben-Sasson et al. [5] introduced a tweaked version of the
Pinocchio protocol, as shown on the right-hand side of Fig-
ure 2. The primary change is that the prover calculates the IO
terms for the W and 9 polynomials, and the verifier only cal-
culates the IO terms for the ¥ polynomials. In terms of mem-
ory, this shifts 2N terms from the verification key to the evalu-
ation key. In terms of computation, this requires the prover to
perform an additional SN multi-exponentiations, but it saves
the verifier 2N multi-exponentiations.

To ensure consistency of the IO while checking only the
7V polynomials, Ben-Sasson et al. [5, Lemma 2.4] claim that
it suffices that the 9 polynomials are non-zero and distinct.
Note that this is not the case for the example in Figure 1.

Therefore, Ben-Sasson et al. need a transformation to ensure
this condition. Unfortunately, this transformation is not spec-
ified in their work. Looking at the code of their implementa-
tion, 1 ibsnark, the transformation appears to be as follows.
They add one additional equation (or gate), which means in-
creasing the QAP’s degree by one, and they use this equa-
tion to ensure the 4 polynomials are distinct. Concretely, the
equation used is

<1+£(i+1)c,~> -(0) =0. )

i=1
In our running example, this means adding an additional root
value, say r7, and setting

vi(r1) =2 w(rr)=3 w(rm) =4 v(r;)=5 (6)

Unfortunately, the lemma justifying the security of Ben-
Sasson et al.’s tweaked protocol is not accompanied by a
proof, and it is, in fact, false; the conditions they give are
insufficient to produce a secure SNARK, and indeed an ad-
versary can succeed with probability one in producing a false
statement with a proof that the verification algorithm will ac-
cept. Fundamentally, the protocol does not in fact ensure that
the coefficients applied to the QAP polynomials are consis-
tent across all three sets of polynomials.

The key problem is that making the ¥ polynomials distinct
is insufficient; they must instead be independent. As long as
the polynomials are not independent, a malicious prover can
take advantage of the dependencies to make false claims.

Returning to our example, notice that even with Ben-
Sasson et al’s transformation, the polynomials v;(x) and
v3(x), while distinct, are not independent. Concretely,
va(x) = 3L7(x) and v3(x) = 4L7(x), where L;(x) is the La-
grange polynomial corresponding to r7.

When calculating the term corresponding to the IO (or the
proof statement), the verifier calculates v;,(s) = Zf-vzl crvi(s)
(in the exponent), using the c; values the prover supplies for
the 10 (or statement). If we focus on the portion of the sum
that comes from inputs 2 and 3, we have cpva(s) + c3v3(s).
In our example, this becomes 3¢3L7(s) + 4¢3l (s) = (3ca +
4c3)L7(s). Thus, as long as ¢ and ¢3 remain in the proper
ratio, v;,(s) will have the same value; hence any checks it
participates in during verification will remain unchanged.



Protocol 1 (Pinocchio protocol from regular QAPs [13])

e (EKp,VKr) « KeyGen(F,1"): Let F be a function with
N input/output values from F. Convert F into an arith-
metic circuit C; then build the corresponding QAP Q =
(t(x), V, W, ) of size m and degree d. Let 1,0 = {N+
1,...,m}, i.e., the non-10-related indices.

Let e be a non-trivial bilinear map [8] e : G x G — Gy,
and let g be a generator of G.

R

Choose 1,,1,8,00,04,,0y,B,Yy & F and set ry =r,-r,,
g =28" gw=g" and 8y =
Constmct the public evaluation key EKF as:

Vi S Wi S Vi S

( {g }kE Lia {g }kE Lia» {gy }kE Lnia >
ocvv,{ s) ocwwk s) Oy (s)
}ke Iia s }kE Lia» {g }ke Lnid»

{g }ie[d B {gﬁvk Bwk( )geyk(
and the public verification key as: VKF = (g, g™, g™,

t
g%, g%, gPY, &) (W) gkl kI o

o (y,my) < Compute(EKF,u): On input u, the worker eval-
uates the circuit for F to obtain 'y < F(u); he also learns
the values {¢;}ic|m) of the circuit’s wires.

He solves for h(x) (the polynomial such that
p(x) = h(x) - ( ), and computes the proof T, as:

( gvmu[ s) g‘xmid (s)’ g;mid (s) , gh(S)’
ggvvm,d( 9 gOwmials) gg.vymid(S)
ggvmid( )g‘[:)’vwmld< )gﬁymtd( ) )’

where Vpia(x) = Ypep . cx - vi(x), and similarly for
Wmid (S) and ypiq (S)

o {0,1} < Verify(VKr,u,y, TE))' The verification of an al-

leged proof with elements gVmia, gWmia | g¥mia  oH g",ﬁud
w!

g"mid, g Viid, and g% uses the publlc verlﬁcatlon key VKr
and the pairing function e for the following checks.

e Divisibility check for the QAP: using elements from
= [Tkew ( (s ))Ck (and similarly for
gw“’ *) and gy 0 ) and check:

e(gv (s)g"ra( )gvmld ’gxo(s)gxio(s)gymid) _ (1)

e(gy(- )’g )e(g¥°(s)g§’”(s)g§mi”,g).

e Check that the linear combinations computed over V,

VKF compute gv

W and Y are in their appropriate spans:

{4 . w!. )
e(gy",g) = e(gymd, g™), e(gw", g) =e(gym,g™),

(g ) = e(ghm, g™).
o Check that the same coefficients were used in each of

the linear combinations over V, W and Y :
e(gZ’ g'Y) — e(gymid gymid gymld BY) (2)

} kel mid )’

Protocol 2 (Optimization of Ben-Sasson et al. [5])
e (EKp,VKr) + KeyGen(F,1*): Let F be a function with

N input/output values from F. Convert F into an arith-
metic circuit C; then build an augmented QAP Q' =
(t(x), V, W, ) of size m and degree d. Let I,i; = {N +
1,...,m}, i.e., the non-10-related indices.

Let e be a non-trivial bilinear map [8] e : G x G — G,
and let g be a generator of G.

Choose rv,rw,s Oly, Oy, Oy, B, YA F and set ry =1y, - 1y,

g =28" 8w =_g" and gy =g"

Construct the publlc evaluatlon key EKF as:
vi(s) wi(s) k(s)

( {gV }kE [m] 9 8w } ’ { y }k

)

ke [m] € [m]
oy vi(s) Oy wi (s) 0¥k (s)
o & e 0
CO T U )

ke [m]
and the public veriﬁcation key as: VKr = (g', g™, g™

g%, g, 8P, gV, { gt }ke{O}U[N]
(y,my) < Compute(EKFp,u): On input u, the worker eval-
uates the circuit for F to obtain 'y + F(u); he also learns
the values {c;} i) of the circuit’s wires.

He solves for h(x) (the polynomial

such that

p(x) = h(x) - t(x)), and computes the proof T, as:
( g“jmid(s)’ gWW(S) , g}y(s) , gh(S)’
(s o W(s) oy Y(s)
ggw mzd( )’ gW , gy
pv(s) pw(s) py(s)
8v 8w 8y )

where Viia (X) = Yre 4 €k Vi(X), W(S) = Le[m] Ck - Wi(X)
and similarly for y(s).

{0,1} « Verify(VKp,u,y,m,):
leged proof with elements g'mid, gV oY oH gV""id, gW/,
gY,, and g uses the public verification key VKr and the
pairing function e for the following checks.

The verification of an al-

o Divisibility check for the QAP: using elements from VKp

compute only gv = Ilkev ( m) and then check

that:

vo(s) vio(s)

e((gv g W()(S)

gff) = 3)
gy,8)-

gf’”"" g
) gMe(g?

e Check that the linear combinations computed over ‘V,
W and Y are in their appropriate spans:

mld

W0 )

(g ’g) _e(g\’mdvg ) (gw 7g) 7e(gw 8

Y’ Y ,
e(gy 7g> = e(gy )ga))'
o Check that the same coefficients were used in each of
the linear combinations over V, W and Y :

e(g”,g") = e(gye) glmia gl g | oBY). 4

Figure 2: The original Pinocchio protocol (left) and the modifications introduced by Ben-Sasson et al. (right), with changes highlighted.
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To exploit this, the malicious prover can first calculate a
correct proof for a legitimate IO (or proof statement). In our
example, he might choose inputs c; = 1, ¢ =2, and ¢3 = 10
with a correct output of ¢ = 20. He then exploits the depen-
dencies between ¥ polynomials to return a false statement
with the proof he just calculated. For example, he might re-
turn ¢y = 1, ¢ = 10, and ¢3 = 4 with an incorrect output
of c¢ = 20 (rather than a correct output of 40). In both cases
(3¢a +4c3) = 46, so the value the verifier calculates for g, (s)
remains unchanged, and hence the verification algorithm ac-
cepts, both with the correct IO and with the invalid IO.

As further confirmation, we implemented the example in
Figure 1, and confirmed that 1ibsnark! accepts as valid
the cheating IO ¢y = 1, ¢, = 10, ¢3 =4, and ¢¢ = 20. Note
that as a performance optimization, 1 ibsnark will dynami-
cally decide to relabel the ¥ polynomials as W polynomials,
and vice versa, depending on the sparsity of the two sets of
polynomials. In the example shown in Figure 1, it does make
the swap. Hence, to see the unsoundness example above in
action, we disabled the swap. Alternately, with the swap en-
abled, we can analyze the pre-swap W polynomials and find
that using invalid IO ¢y =6, ¢; =2, ¢c3 = 10, and ¢ = 18 also
causes 1ibsnark to incorrectly accept.

4 Remedies

One simple solution is to use the original Pinocchio proto-
col, which directly ensures consistency by having the verifier
check the IO terms on all three sets of polynomials.

Alternately, we can try to preserve the property that the ver-
ifier only checks the 4 polynomials by adopting a strategy
similar to GGPR’s original strengthening step. Specifically,
we can add one QAP equation per dependent IO term, and use
that equation to ensure that ¥ constitutes a complete set of
mutually independent polynomials. For example, if we add N
additional roots rg1,...,r4+y and set v;(ry4;) = 1 (and O for
the rest of the new roots), this would ensure independence and
remove the degree of freedom the adversary exploited above.
The downside is that this technique potentially increases the
QAP’s degree and size by up to N. Hence, in the worst case,
compared with the Pinocchio protocol, the cost of key gen-
eration increases by 8N exponentiations and the evaluation
key grows by 8N. Similarly, the prover’s work increases by
13N multi-exponentiations, and the field operations needed to
solve for /(x), the only superlinear step, increase from dlogd
to (d+N)log(d+N).

Whether these costs are worth the 2N savings for the veri-
fier is application dependent. Of course, in some applications,
many of the ¥ polynomials will already be independent, and
hence the costs described above will decrease accordingly.

Adopting one of these remedies results in higher overhead
for the verifier or for the key generator and prover, relative to
using the unsound protocol. Hence, the absolute performance
numbers reported in papers using Ben-Sasson et al.’s mod-
ified protocol [1-4, 6, 10, 14] underestimate the true costs.

T As of commit faflebbe961e51539122d471854b929fdca5864e.

Relative performance measurements may still be valid.

Based on this work, the 1ibsnark authors are develop-
ing a patch that implements the new version of the protocol,
as described above, with extra QAP equations added. Prelim-
inary performance results suggest that for applications with
small IO relative to the computation, the performance impact
is quite small [9].
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