
Condensed Unpredictability

Maciej Skórski1?, Alexander Golovnev2, and Krzysztof Pietrzak3??

1 University of Warsaw maciej.skorski@gmail.com
2 New York University alexgolovnev@gmail.com

3 IST Austria pietrzak@ist.ac.at

Abstract. We consider the task of deriving a key with high HILL en-
tropy (i.e., being computationally indistinguishable from a key with high
min-entropy) from an unpredictable source.
Previous to this work, the only known way to transform unpredictability
into a key that was ε indistinguishable from having min-entropy was via
pseudorandomness, for example by Goldreich-Levin (GL) hardcore bits.
This approach has the inherent limitation that from a source with k bits
of unpredictability entropy one can derive a key of length (and thus HILL
entropy) at most k− 2 log(1/ε) bits. In many settings, e.g. when dealing
with biometric data, such a 2 log(1/ε) bit entropy loss in not an option.
Our main technical contribution is a theorem that states that in the
high entropy regime, unpredictability implies HILL entropy. Concretely,
any variable K with |K| − d bits of unpredictability entropy has the
same amount of so called metric entropy (against real-valued, determin-
istic distinguishers), which is known to imply the same amount of HILL
entropy. The loss in circuit size in this argument is exponential in the
entropy gap d, and thus this result only applies for small d (i.e., where
the size of distinguishers considered is exponential in d).
To overcome the above restriction, we investigate if it’s possible to first
“condense” unpredictability entropy and make the entropy gap small. We
show that any source with k bits of unpredictability can be condensed
into a source of length k with k− 3 bits of unpredictability entropy. Our
condenser simply “abuses” the GL construction and derives a k bit key
from a source with k bits of unpredicatibily. The original GL theorem
implies nothing when extracting that many bits, but we show that in
this regime, GL still behaves like a “condenser” for unpredictability. This
result comes with two caveats (1) the loss in circuit size is exponential in
k and (2) we require that the source we start with has no HILL entropy
(equivalently, one can efficiently check if a guess is correct). We leave it
as an intriguing open problem to overcome these restrictions or to prove
they’re inherent.

1 Introduction

Key-derivation considers the following fundamental problem: Given a joint dis-
tribution (X,Z) where X|Z (which is short for “X conditioned on Z”) is guar-
anteed to have some kind of entropy, derive a “good” key K = h(X,S) from

? Research supported by the WELCOME/2010-4/2 grant.
?? Research supported by ERC starting grant (259668-PSPC).

X by means of some efficient key-derivation function h, possibly using public
randomness S.

In practice, one often uses a cryptographic hash function like SHA3 as the
key derivation function h(.) [Kra10, DGH+04], and then simply assumes that
h(.) behaves like a random oracle [BR93].

In this paper we continue the investigation of key-derivation with provable
security guarantees, where we don’t make any computational assumption about
h(.). This problem is fairly well understood for sources X|Z that have high
min-entropy (we’ll formally define all the entropy notions used in 2 below), or
are computationally indistinguishable from having so (in this case, we say X|Z
has high HILL entropy). In the case where X|Z has k bits of min-entropy, we
can either use a strong extractor to derive a k − 2 log ε−1 key that is ε-close to
uniform, or a condenser to get a k bit key which is ε-close to a variable with
k − log log ε−1 bits of min-entropy. Using extractors/condensers like this also
works for HILL entropy, except that now we only get computational guarantees
(pseudorandom/high HILL entropy) on the derived key.

Often one has to derive a key from a source X|Z which has no HILL en-
tropy at all. The weakest assumption we can make on X|Z for any kind of key-
derivation to be possible, is that X is hard to predict given Z. This has been
formalized in [HLR07a] by saying that X|Z has k bits of unpredictability en-
tropy, denoted Hunp

s (X|Z) > k, if no circuit of size s can predict X given Z with
advantage > 2−k (to be more general, we allow an additional parameter δ > 0,
and Hunp

δ,s (X|Z) > k holds if (X,Z) is δ-close to some distribution (Y,Z) with
Hunp
s (Y |Z) > k). We will also consider a more restricted notion, where we say

that X|Z has k bits of list-unpredictability entropy, denoted H∗unps (X|Z) > k,
if it has k bits of unpredictability entropy relative to an oracle Eq which can be
used to verify the correct guess (Eq outputs 1 on input X, and 0 otherwise).4

We’ll discuss this notion in more detail below. For now, let us just mention that
for the important special case where it’s easy to verify if a guess for X is cor-
rect (say, because we condition on Z = f(X) for some one-way function5 f),
the oracle Eq does not help, and thus unpredictability and list-unpredictability
coincide. The results proven in this paper imply that from a source X|Z with
k bits of list-unpredictability entropy, it’s possible to extract a k bit key with
k − 3 bits of HILL entropy

Proposition 1. Consider a joint distribution (X,Z) over {0, 1}n × {0, 1}m
where

H∗unps,γ (X|Z) > k (1)

4 We chose this name as having access to Eq is equivalent to being allowed to output
a list of guesses. This is very similar to the well known concept of list-decoding.

5 To be precise, this only holds for injective one-way functions. One can generalise
list-unpredictability and let Eq output 1 on some set X , and the adversary wins if
she outputs any X ∈ X . Our results (in particular Theorem 1) also hold for this more
general notion, which captures general one-way functions by letting X = f−1(f(X))
be the set of all preimages of Z = f(X).

Let S ∈ {0, 1}n×k be uniformly random and K = XTS ∈ {0, 1}k, then the
unpredictability entropy of K is

Hunp
s/22kpoly(m,n),γ

(K|Z, S) > k − 3 (2)

and the HILL entropy of K is

HHILL
t,ε+γ(K|Z, S) > k − 3 (3)

with6 t = s · ε7

22kpoly(m,n)
.

Proposition 1 follows from two results we prove in this paper.
First, in Section 4 we prove Theorem 1 which shows how to “abuse” Goldreich-

Levin hardcore bits by generating a k bit key K = XTS from a source X|Z with
k bits of list-unpredictability. The Goldreich-Levin theorem [GL89] implies noth-
ing about the pseudorandomness of K|(Z, S) when extracting that many bits.
Instead, we prove that GL is a good “condenser” for unpredictability entropy: if
X|Z has k bits of list-unpredictability entropy, then K|(Z, S) has k − 3 bits of
unpredictability entropy (note that we start with list-unpredictability, but only
end up with “normal” unpredictability entropy). This result is used in the first
step in Proposition 1, showing that (1) implies (2).

Second, in Section 5 we prove our main result, Theorem 2 which states that
any source X|Z which has |X|−d bits of unpredictability entropy, has the same
amount of HILL entropy (technically, we show that it implies the same amount
of metric entropy against deterministic real-valued distinguishers. This notion
implies the same amount of HILL entropy as shown by Barak et al. [BSW03]).
The security loss in this argument is exponential in the entropy gap d. Thus, if
d is very large, this argument is useless, but if we first condense unpredictability
as just explained, we have a gap of only d = 3. This result is used in the second
step in Proposition 1, showing that (2) implies (3). In the two sections below
we discuss two shortcomings of Theorem 1 which we hope can be overcome in
future work.7

On the dependency on 2k in Theorem 1. As outlined above, our first
result is Theorem 1, which shows how to condense a source with k bits of list-
unpredictability into a k bit key having k − 3 bits of unpredictability entropy.
The loss in circuit size is 22kpoly(m,n), and it’s not clear if the dependency on 2k

6 We denote with poly(m,n) some fixed polynomial in (n,m), but it can denote dif-
ferent polynomial throughout the paper. In particular, the poly here is not the same
as in (2) as it hides several extra terms.

7 After announcing this result at a workshop, we learned that Colin Jia Zheng proved
a weaker version of this result. Theorem 4.18 in this PhD thesis, which is available
via http://dash.harvard.edu/handle/1/11745716 also states that k bits of unpre-
dictability imply k bits of HILL entropy. Like in our case, the loss in circuit size
in his proof is polynomial in ε−1, but it’s also exponential in n (the length of X),
whereas our loss is only exponential in the entropy gap ∆ = n− k.

http://dash.harvard.edu/handle/1/11745716

is necessary here, or if one can replace the dependency on 2k with a dependency
on poly(ε−1) at the price of an extra ε term in the distinguishing advantage. In
many settings log(ε−1) is in the order of k, in which case the above difference
is not too important. This is for example the case when considering a k bit key
for a symmetric primitive like a block-cipher, where one typically assumes the
hardness of the cipher to be exponential in the key-length (and thus, if we want
ε to be in the same order, we have log(ε−1) = Θ(k)). In other settings, k can be
superlinear in log(ε−1), e.g., if the the high entropy string is used to generate an
RSA key.

List vs. normal Unpredictability. Our Theorem 1 shows how to condense a
source where X|Z has k bits of list-unpredictability entropy into a k bit string
with k−3 bits unpredictability entropy. It’s an open question to which extent it’s
necessary to assume list-unpredictability here, maybe “normal” unpredictability
is already sufficient? Note that list-unpredictability is a lower bound for unpre-
dictability as one always can ignore the Eq oracle, i.e.,Hunp

ε,s (X|Z) > H∗unpε,s (X|Z),
and in general, list-unpredictability can be much smaller than unpredictability
entropy.8

Interestingly, we can derive a k bit key with almost k bits of HILL entropy
from a source X|Z which k bits unpredictability entropy Hunp

ε,s (X|Z) > k in two
extreme cases, namely, if either

1. if X|Z has basically no HILL entropy (even against small circuits).
2. or when X|Z has (almost) k bits of (high quality) HILL entropy.

In case 1. we observe that if HHILL
ε,t (X|Z) ≈ 0 for some t � s, or equivalently,

given Z we can efficiently distinguish X from any X ′ 6= X, then the Eq oracle
used in the definition of list-unpredictability can be efficiently emulated, which
means it’s redundant, and thus X|Z has the same amount of list-unpredictability
and unpredictability entropy, Hunp

s,ε (X|Z) ≈ H∗unps′,ε′ (X|Z) for (ε′, s′) ≈ (ε, s).
Thus, we can use Theorem 1 to derive a k bit key with k − O(1) bits of HILL
entropy in this case. In case 2., we can simply use any condenser for min-entropy
to get a key with HILL entropy k − log log ε−1 (cf. Figure 2). As condensing
almost all the unpredictability entropy into HILL entropy is possible in the two
extreme cases where X|Z has either no or a lot of HILL entropy, it seems con-
ceivable that it’s also possible in all the in-between cases (i.e., without making
any additional assumptions about X|Z at all).

GL vs. Condensing. Let us stress as this point that, because of the two issues
discussed above, our result does not always allow generate more bits with high
HILL entropy than just using the Goldreich-Levin theorem. Assuming k bits of
unpredictability we get k− 3 of HILL, whereas GL will only give k− 2 log(1/ε).
But as currently our reduction has a quantitatively larger loss in circuit size

8 E.g., let X by uniform over {0, 1}n and Z arbitrary, but independent of X, then for
s = exp(n) we have Hunp

s (X|Z) = n but H∗unps (X|Z) = 0 as we can simply invoke
Eq on all {0, 1}n until X is found.

than the GL theorem, in order to get HILL entropy of the same quality (i.e.,
secure against (s, δ) adversaries for some fixed (s, δ)) we must consider the un-
predictability entropy of the source X|Z against more powerful adversaries than
if we’re about to use GL. And in general, the amount of unpredictability (or any
other computational) entropy of X|Z can decrease as we consider more powerful
adversaries.

2 Entropy Notions

In this section we formally define the different entropy notions considered in this

paper. We denote with Drand,{0,1}s the set of all probabilistic circuits of size s

with boolean output, and Drand,[0,1]s denotes the set of all probabilistic circuits
with real-valued output in the range [0, 1]. The analogous deterministic circuits

are denoted Ddet,{0,1}s and Ddet,[0,1]s . We use X ∼ε,s Y to denote computational
indistinguishability of variables X and Y , formally9

X ∼ε,s Y ⇐⇒ ∀C ∈ Drand,{0,1}s : |Pr[C(X) = 1]− Pr[C(Y) = 1]| 6 ε (4)

X ∼ε Y denotes that X and Y have statistical distance ε, i.e., X ∼ε,∞ Y , and
with X ∼ Y we denote that they’re identically distributed. With Un we denote
the uniform distribution over {0, 1}n.

Definition 1. The min-entropy of a random variable X with support X is

H∞(X) = − log2 max
x∈X

Pr[X = x]

For a pair (X,Z) of random variables, the average min-entropy of X condi-
tioned on Z is

H̃∞(X|Z) = − log2 E
z←Z

max
x

Pr[X = x|Z = z] = − log2 E
z←Z

2−H∞(X|Z=z)

HILL entropy is a computational variant of min-entropy, where X (conditioned
on Z) has k bits of HILL entropy, if it cannot be distinguished from some Y that
(conditioned on Z) has k bits of min-entropy, formally

Definition 2 ([HILL99], [HLR07a]). A random variable X has HILL en-
tropy k, denoted by HHILL

ε,s (X) ≥ k, if there exists a distribution Y satisfying
H∞(Y) ≥ k and X ∼ε,s Y .

Let (X,Z) be a joint distribution of random variables. Then X has condi-
tional HILL entropy k conditioned on Z, denoted by HHILL

ε,s (X|Z) ≥ k, if there

exists a joint distribution (Y, Z) such that H̃∞(Y |Z) ≥ k and (X,Z) ∼ε,s (Y,Z).

9 Let us mention that the choice of the distinguisher class in (4) irrelevant (up to a

small additive difference in circuit size), we can replace Drand,{0,1}s with any of the
three other distinguisher classes.

Barak, Sahaltiel and Wigderson [BSW03] define the notion of metric entropy,
which is defined like HILL, but the quantifiers are exchanged. That is, instead
of asking for a single distribution (Y,Z) that fools all distinguishers, we only
ask that for every distinguisher D, there exists such a distribution. For reasons
discussed in Section 2, in the definition below we make the class of distinguishers
considered explicit.

Definition 3 ([BSW03], [FR12]). Let (X,Z) be a joint distribution of ran-
dom variables. Then X has conditional metric entropy k conditioned on Z

(against probabilistic boolean distinguishers), denoted by H
Metric,rand,{0,1}
ε,s (X|Z) ≥

k, if for every D ∈ Drand,{0,1}s there exists a joint distribution (Y,Z) such that

H̃∞(Y |Z) ≥ k and

|Pr[D(X,Z) = 1]− Pr[D(Y,Z) = 1]| 6 ε

More generally, for class ∈ {rand, det}, range ∈ {[0, 1], {0, 1}},
HMetric,class,range
ε,s (X|Z) ≥ k if for every D ∈ Dclass,ranges such a (Y,Z) exists.

Like HILL entropy, also unpredictability entropy, which we’ll define next, can be
seen as a computational variant of min-entropy. Here we don’t require indistin-
guishability as for HILL entropy, but only that the variable is hard to predict.

Definition 4 ([HLR07a]). X has unpredictability entropy k conditioned
on Z, denoted by Hunp

ε,s (X|Z) ≥ k, if (X,Z) is (ε, s) indistinguishable from some
(Y,Z), where no probabilistic circuit of size s can predict Y given Z with proba-
bility better than 2−k, i.e.,

Hunp
s,ε (X|Z) ≥ k ⇐⇒ ∃(Y,Z), (X,Z) ∼ε,s (Y,Z) ∀C, |C| 6 s : Pr

(y,z)←(Y,Z)
[C(z) = y] 6 2−k

(5)
We also define a notion called “list-unpredictability”, denoted H∗unpε,s (X|Z) ≥ k,
which holds if Hunp

ε,s (X|Z) ≥ k as in (5), but where C additionally gets oracle
access to a function Eq(.) which outputs 1 on input y and 0 otherwise. So, C can
efficiently test if some candidate guess for y is correct.10

Remark 1 (The ε parameter). The ε parameter in the definition above is not
really necessary, following [HLR07b], we added it so we can have a “smooth”
notion, which is easier to compare to HILL or smooth min-entropy. If ε = 0,
we’ll simply omit it, then the definition simplifies to

Hunp
s (X|Z) ≥ k ⇐⇒ Pr

(x,z)←(X,Z)
[C(z) = x] 6 2−k

Let us also mention that unpredictability entropy is only interesting if the con-
ditional part Z is not empty as (already for s that is linear in the length of X)

10 We name this notion ”list-unpredictability” as we get the same notion when instead
of giving C oracle access to Eq(.), we allow C(z) to output a list of guesses for y,
not just one value, and require that Pr(y,z)←(Y,Z)[y ∈ C(z)] 6 2−k. This notion is
inspired by the well known notion of list-decoding.

we have Hunp
s (X) = H∞(X) which can be seen by considering the circuit C (that

gets no input as Z is empty) which simply outputs the constant x maximizing
Pr[X = x].

Metric vs. HILL. We will use a lemma which states that deterministic real-
valued metric entropy implies the same amount of HILL entropy (albeit, with
some loss in quality). This lemma has been proven by [BSW03] for the uncon-
ditional case, i.e., when Z in the lemma below is empty, it has been observed
by [FR12, CKLR11] that the proof also holds in the conditional case as stated
below

Lemma 1 ([BSW03,FR12,CKLR11]). For any joint distribution (X,Z) ∈
{0, 1}n × {0, 1}m and any ε, δ, k, s

HMetric,det,[0,1]
ε,s (X|Z) > k ⇒ HHILL

ε+δ,s·δ2/(m+n)(X|Z) > k

Note that in Definition 2 of HILL entropy, we only consider security against
probabilistic boolean distinguishers (as ∼ε,s was defined this way), whereas in
Definiton 3 of metric entropy we make the class of distinguishers explicit. The
reason for this is that in the definition of HILL entropy the class of distinguishers
considered is irrelevant (except for a small additive degradation in circuit size,
cf. [FR12, Lemma 2.1]).11 Unlike for HILL, for metric entropy the choice of
the distinguisher class does matter. In particular, deterministic boolean metric

entropy H
Metric,det,{0,1}
ε,s (X|Y) > k is only known to imply deterministic real-

valued metric entropy H
Metric,det,[0,1]
ε+δ,s (X|Y) > k − log(δ−1), i.e., we must allow

for a δ > 0 loss in distinguishing advantage, and this will at the same time
result in a loss of log(δ−1) in the amount of entropy. For this reason, it is crucial
that in Theorem 2 we show that unpredictability entropy implies deterministic
real-valued metric entropy, so we can then apply Lemma 1 to get the same
amount of HILL entropy. Dealing with real-valued distinguishers is the main
source of technical difficulty in the proof of the Theorem 2, proving the analogous
statement for deterministic boolean distinguishers is much simpler.

3 Known Results on Provably Secure Key-Derivation

We say that a cryptographic scheme has security α, if no adversary (from some
class of adversaries like all polynomial size circuits) can win some security game
with advantage > α if the scheme is instantiated with a uniformly random
string.12 Below we will distinguish between unpredictability applications, where

11 This easily follows from the fact that in the definition (4) of computational indistin-
guishability the choice of the distinguisher class is irrelevant.

12 We’ll call this string “key”. Though in many settings (in particular when keys are
not simply uniform random strings, like in public-key crypto) this string is not used
as a key directly, but one rather should think of it as the randomness used to sample
the actual keys.

the advantage bounds the probability of winning some security game (a typical
example are digital signature schemes, where the game captures the existential
unforgeability under chosen message attacks), and indistinguishability applica-
tions, where the advantage bounds the distinguishing advantage from some ideal
object (a typical example is the security definition of pseudorandom generators
or functions).

3.1 Key-Derivation from Min-Entropy

Strong Extractors. Let (X,Z) be a source where H̃∞(X|Z) > k, or equivalently,
no adversary can guess X given Z with probability better than 2−k (cf. Def. 1).
Consider the case where we want to derive a key K = h(X,S) that is statistically
close to uniform given (Z, S). For example, X could be some physical source
(like statistics from keystrokes) from which we want to generate almost uniform
randomness. Here Z models potential side-information the adversary might have
on X. This setting is very well understood, and such a key can be derived using
a strong extractor as defined below.

Definition 5 ([NZ93], [DORS08]). A function Ext : {0, 1}n × {0, 1}d →
{0, 1}` is an average-case (k, ε)-strong extractor if for every distribution (X,Z)

over {0, 1}n×{0, 1}m with H̃∞(X|Z) > k and S ∼ Ud, the distribution (Ext(X,S), S, Z)
has statistical distance ε to (Um, S, Z).

Extractors Ext as above exist with ` = k − 2 log(1/ε) [HILL99]. Thus, from any

(X,Z) where H̃∞(X|Z) > k we can extract a key K = Ext(X,S) of length
k − 2 log(1/ε) that is ε close to uniform [HILL99]. The entropy gap 2 log(1/ε) is
optimal by the so called “RT-bound” [RTS00], even if we assume the source is
efficiently samplable [DPW14].

If instead of using a uniform ` bit key for an α secure scheme, we use a key
that is ε close to uniform, the scheme will still be at least β = α + ε secure. In
order to get security β that is of the same order as α, we thus must set ε ≈ α.
When the available amount k of min-entropy is small, for example when dealing
with biometric data [DORS08,BDK+05], a loss of 2 log(1/ε) bits (that’s 160 bits
for a typical security level ε = 2−80) is often unacceptable.

Condensers. The above bound is basically tight for many indistinguishability
applications like pseudorandom generators or pseudorandom functions.13 For-
tunately, for many applications a close to uniform key is not necessary, and a
key |K| with min-entropy |K| − ∆ for some small ∆ is basically as good as a
uniform one. This is the case for all unpredictability applications, which includes

13 For example, consider a pseudorandom function F : {0, 1}k × {0, 1}a → {0, 1} and a
key K that is uniform over all keys where F(K, 0) = 0, this distribution is ε ≈ 1/2
close to uniform and has min-entropy ≈ |K| − 1, but the security breaks completely
as one can distinguish F(Uk, .) from F(K, .) with advantage β ≈ 1/2 (by quering on
input 0, and outputting 1 iff the output is 0).

OWFs, digital-signatures and MACs.14 It’s not hard to show that if the scheme
is α secure with a uniform key it remains at least β = α2∆ secure (against the
same class of attackers) if instantiated with any key K that has |K| −∆ bits of
min-entropy.15 Thus, for unpredictability applications we don’t have to extract
an almost uniform key, but “condensing” X into a key with |K| − ∆ bits of
min-entropy for some small ∆ is enough.

[DPW14] show that a (log ε + 1)-wise independent hash function Cond :
{0, 1}n×{0, 1}d → {0, 1}` is a condenser with the following parameters. For any

(X,Z) where H̃∞(X|Z) > `, for a random seed S (used to sample a (log ε+ 1)-
wise independent hash function), the distribution (Cond(X,S), S) is ε close to

a distribution (Y, S) where H̃∞(Y |Z) > ` − log log(1/ε). Using such an ` bit
key (condensed from a source with ` bits min-entropy) for an unpredictability
application that is α secure (when using a uniform ` bit key), we get security
β 6 α2log log(1/ε) + ε, which setting ε = α gives β 6 α(1 + log(1/α)) security,
thus, security degrades only by a logarithmic factor.

3.2 Key-Derivation from Computational Entropy

The bounds discussed in this section are summarised in Figures 1 and 2 in
Appendix A. The last row of Figure 2 is the new result proven in this paper.

HILL Entropy. As already discussed in the introduction, often we want to derive
a key from a distribution (X,Z) where there’s no “real” min-entropy at all

H̃∞(X|Z) = 0. This is for example the case when Z is the transcript (that can be
observed by an adversary) of a key-exchange protocol like Diffie-Hellman, where
the agreed value X = gab is determined by the transcript Z = (ga, gb) [Kra10,
GKR04]. Another setting where this can be the case is in the context of side-
channel attacks, where the leakage Z from a device can completely determine
its internal state X.

If X|Z has k bits of HILL entropy, i.e., is computationally indistinguishable
from having min-entropy k (cf. Def. 2) we can derive keys exactly as described
above assuming X|Z had k bits of min-entropy. In particular, if X|Z has |K|+
2 log(1/ε) bits of HILL entropy for some negligible ε, we can derive a key K that
is pseudorandom, and if X|Z has |K|+log log(1/ε) bits of HILL entropy, we can

14 [DY13] identify an interesting class of applications called “square-friendly”, this class
contains all unpredictability applications, and some indistinguishability applications
like weak PRFs (which are PRFs that can only be queried on random inputs). This
class of applications remains somewhat secure even for a small entropy gap ∆: For
∆ = 1 the security is β ≈

√
α. This is worse that the β = 2α for unpredictability

applications, but much better than the complete loss of security β ≈ 1/2 required
for some indistinguishability apps like (standard) PRFs.

15 Assume some adversary breaks the scheme, say, forges a signature, with advantage β
if the key comes from the distribution K. If we sample a uniform key instead, it will
have the same distribution as K conditioned on an event that holds with probability
2−∆, and thus this adversary will still break the scheme with probability β/2∆.

derive a key that is almost as good as a uniform one for any unpredictability
application.

Unpredictability Entropy. Clearly, the minimal assumption we must make on a
distribution (X,Z) ∈ {0, 1}n×{0, 1}m for any key derivation to be possible at all
is that X is hard to compute given Z, that is, X|Z must have some unpredictabil-
ity entropy as in Definition 4. Goldreich and Levin [GL89] show how to generate
pseudorandom bits from such a source. In particular, the Goldreich-Levin theo-
rem implies that if X|Z has at least 2 log ε−1 bits of list-unpredictability, then
the inner product RTX of X with a random vector R is ε indistinguishable from
uniformly random (the loss in circuit size is poly(n,m)/ε4). Using the chain rule
for unpredictability entropy,16 we can generate an ` = k − 2 log ε−1 bit long
pseudorandom string that is `ε indistinguishable (the extra ` factor comes from
taking the union bound over all bits) from uniform.

Thus, we can turn k bits of list-unpredictability into k−2 log ε−1 bits of pseu-
dorandom bits (and thus also that much HILL entropy) with quality roughly
ε. The question whether it’s possible to generate significantly more than k −
2 log ε−1 of HILL entropy from a source with k bits of (list-)unpredictability
seems to have never been addressed in the literature before. The reason might
be that one usually is interested in generating pseudorandom bits (not just HILL
entropy), and for this, the 2 log ε−1 entropy loss is inherent. The observation that
for many applications high HILL entropy is basically as good as pseudorandom-
ness is more recent, and recently gained attention by its usefulness in the context
of leakage-resilient cryptography [DP08,DY13].

In this paper we prove that it’s in fact possible to turn almost all list-
unpredictability into HILL entropy.

4 Condensing Unpredictability

Below we state Theorem 1 whose proof is in Appendix B, but first, let us give
some intuition. Let X|Z have k bits of list-unpredictability, and assume we start
extracting Goldreich-Levin hardcore bits A1, A2, . . . by taking inner products
Ai = RTi X for random Ri. The first extracted bits A1, A2, . . . will be pseudoran-
dom (given the Ri and Z), but with every extracted bit, the list-unpredictability
can also decrease by one bit. As the GL theorem requires at least 2 log ε−1 bits
of list-unpredictability to extract an ε secure pseudorandom bit, we must stop
after k−2 log ε−1 bits. In particular, the more we extract, the worse the pseudo-
randomness of the extracted string becomes. Unlike the original GL theorem, in
our Theorem 1 we only argue about the unpredictability of the extracted string,
and unpredictability entropy has the nice property that it can never decrease,
i.e., predicting A1, . . . , Ai+1 is always at least as hard as predicting A1, . . . , Ai.

16 Which states that if X|Z has k bits of list-unpredictability, then for any
(A,R) where R is independent of (X,Z), X|(Z,A,R) has k − |A| bits of list-
unpredictability entropy. In particular, extracting ` inner product bits, decreases
the list-unpredictability by at most `.

Thus, despite the fact that once i approaches k it becomes easier and easier to
predict Ai (given A1, . . . , Ai−1, Z and the Ri’s)

17 this hardness will still add up
to k −O(1) bits of unpredictability entropy.

The proof is by contradiction, we assume that A1, . . . , Ak can be predicted
with advantage 2−k+3 (i.e., does not have k − 3 bits of unpredictability), and
then use such a predictor to predict X with advantage > 2−k, contradicting the
k bit list-unpredictability of X|Z.

If A1, . . . , Ak can be predicted as above, then there must be an index j s.t.
Aj can be predicted with good probability conditioned on A1, . . . , Aj−1 being
correctly predicted. We then can use the Goldreich-Levin theorem, which tells us
how to find X given such a predictor. Unfortunately, j can be close to k, and to
apply the GL theorem, we first need to find the right values for A1, . . . , Aj−1 on
which we condition, and also can only use the predictor’s guess for Aj if it was
correct on the first j− 1 bits. We have no better strategy for this than trying all
possible values, and this is the reason why the loss in circuit size in Theorem 1
depends on 2k.

In our proof, instead of using the Goldreich-Levin theorem, we will actually
use a more fine-grained variant due to Hast which allows to distinguish between
errors and erasures (i.e., cases where we know that we don’t have any good guess.
As outlined above, this will be the case whenever the predictor’s guess for the
first j − 1 inner products was wrong, and thus we can’t assume anything about
the jth guess being correct). This will give a much better quantitative bound
than what seems possible using GL.

Theorem 1 (Condensing Upredictability Entropy). Consider any distri-
bution (X,Z) over {0, 1}n × {0, 1}m where

H∗unpε,s (X|Z) > k

then for a random R← {0, 1}k×n

Hunp
ε,t (R.X|Z,R) > k −∆

where18

t =
s

22k poly(m,n)
, ∆ = 3

5 High Unpredictability implies Metric Entropy

In this section we state our main results, showing that k bits of unpredictability
entropy imply the same amount of HILL entropy, with a loss exponential in the
“entropy gap”. The proof is in Appendix C.

17 The only thing we know about the last extracted bit Ak is that it cannot be predicted
with advantage > 0.75, more generally, Ak−j cannot be predicted with advantage
1/2 + 1/2j+2.

18 We can set ∆ to be any constant > 1 here, but choosing a smaller ∆ would imply a
smaller t.

Theorem 2 (Unpredictability Entropy Implies HILL Entropy). For any
distribution (X,Z) over {0, 1}n × {0, 1}m, if X|Z has unpredictability entropy

Hunp
γ,s (X|Z) > k (6)

then, with ∆ = n− k denoting the entropy gap, X|Z has (real valued, determin-
istic) metric entropy

H
Metric,det,[0,1]
ε+γ,t (X|Z) > k for t = Ω

(
s · ε5

25∆ log2 (2∆ε−1)

)
(7)

By Lemma 1 this further implies that X|Z has, for any δ > 0, HILL entropy

HHILL
ε+δ+γ,Ω(tδ2/(n+m))(X|Z) > k

which for ε = δ = γ is

HHILL
3ε,Ω(s·ε7/25∆(n+m) log2(2∆ε−1))(X|Z) > k

References

BDK+05. Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam
Smith. Secure remote authentication using biometric data. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 147–163.
Springer, May 2005.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In V. Ashby, editor, ACM CCS
93, pages 62–73. ACM Press, November 1993.

BSW03. B. Barak, R. Shaltiel, and A. Wigderson. Computational Analogues of
Entropy. In S. Arora, K. Jansen, J. D. P. Rolim, and A. Sahai, editors,
RANDOM-APPROX 03, volume 2764 of LNCS, pages 200–215. Springer,
2003.

CKLR11. Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory
delegation. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of
LNCS, pages 151–168. Springer, August 2011.

DGH+04. Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal
Rabin. Randomness extraction and key derivation using the CBC, cascade
and HMAC modes. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 494–510. Springer, August 2004.

DORS08. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy Extractors: How
to Generate Strong Keys from Biometrics and Other Noisy Data. SIAM
Journal on Computing, 38(1):97–139, 2008.

DP08. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptogra-
phy. In 49th FOCS, pages 293–302. IEEE Computer Society Press, October
2008.

DPW14. Yevgeniy Dodis, Krzysztof Pietrzak, and Daniel Wichs. Key derivation
without entropy waste. In EUROCRYPT 14, LNCS. Springer, 2014.

DY13. Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In Amit Sahai,
editor, TCC 2013, volume 7785 of LNCS, pages 1–22. Springer, March 2013.

FR12. Benjamin Fuller and Leonid Reyzin. Computational entropy and informa-
tion leakage. Cryptology ePrint Archive, Report 2012/466, 2012. http:

//eprint.iacr.org/.
GKR04. Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Secure Hashed Diffie-

Hellman over non-DDH groups. In Christian Cachin and Jan Camenisch, ed-
itors, EUROCRYPT 2004, volume 3027 of LNCS, pages 361–381. Springer,
May 2004.

GL89. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In 21st ACM STOC, pages 25–32. ACM Press, May 1989.

Has03. Gustav Hast. Nearly one-sided tests and the Goldreich-Levin predicate.
In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages
195–210. Springer, May 2003.

HILL99. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999.

HLR07a. C.-Y. Hsiao, C.-J. Lu, and L. Reyzin. Conditional Computational Entropy,
or Toward Separating Pseudoentropy from Compressibility. In M. Naor,
editor, EUROCRYPT 07, volume 4515 of LNCS, pages 169–186. Springer,
2007.

HLR07b. Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional compu-
tational entropy, or toward separating pseudoentropy from compressibility.
In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages
169–186. Springer, May 2007.

Kra10. Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF
scheme. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
631–648. Springer, August 2010.

NZ93. Noam Nisan and David Zuckerman. More deterministic simulation in
logspace. In 25th ACM STOC, pages 235–244. ACM Press, May 1993.

RTS00. Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers,
extractors, and depth-two superconcentrators. SIAM J. Discrete Math.,
13(1):2–24, 2000.

http://eprint.iacr.org/
http://eprint.iacr.org/

A Figures

Deriving a (pseudo)random key of length |K| = k − 2 log ε−1

from a source (X,Z) ∈ {0, 1}n × {0, 1}m where X|Z has k bits (min/HILL/list-unpredictability) entropy

Entropy Entropy quantity and Derive key K of Quality of derived key

type quality of source length k − 2 log ε−1 as HHILL
ε′,s′(K|Z, S) = k − 2 log ε−1 = |K|

equivalently
(K,Z, S) ∼ε′,s′ (U|K|, Z, S)

min H̃∞(X|Z) = k K = Ext(X,S) ε′ = ε s′ =∞
HILL HHILL

δ,s (X|Z) = k K = Ext(X,S) ε′ = ε+ δ s′ ≈ s
Unpredict. H∗unpδ,s (X|Z) = k K = GL(X,S) = STX ε′ = mε+ δ s′ = s · ε4/poly(m,n)

Fig. 1. Bounds on deriving a (pseudo)random key K of length |K| = k− 2 log ε−1 bit
from a source X|Z with k bits of min, HILL or list-unpredictability entropy. Ext is a
strong extractor (e.g. leftover hashing), and GL denotes the Goldreich-Levin construc-
tion, which for X ∈ {0, 1}n and S ∈ {0, 1}n×|K| is simply defined as GL(X,S) = STX.
Leftover hashing requires a seed of length |S| = 2n (extractors with a much shorter
seed |S| = O(logn+ log ε−1) that extract k− 2 log ε−1 −O(1) bits also exist), whereas
Goldreich-Levin requires a longer |S| = |K|n bit seed. The above bound for HILL
entropy even holds if X|Z only has k bits of probabilistic boolean metric entropy (a
notion implying the same amount of HILL entropy, albeit with a loss in circuit size),
as shown in Theorem 2.5 of [FR12]

Deriving k bit key K with high HILL entropy from X|Z with k bits (min/HILL/list-unpredictability) entropy

Entropy Entropy quantity and Derive key of Quantity and quality of HILL entropy of K

type quality of soucre length |K| = k as HHILL
ε′,s′(K|Z, S) > k −∆

min H̃∞(X|Z) = k K = Cond(X,S) ε′ = ε s′ =∞ ∆ = log log ε−1

HILL HHILL
δ,s (X|Z) = k K = Cond(X,S) ε′ = ε+ δ s′ ≈ s ∆ = log log ε−1

Unpredict. H∗unpδ,s (X|Z) = k K = GL(X,S) = STX ε′ = ε+ δ s′ = s · ε7/22kpoly(m,n) ∆ = 3

Fig. 2. Bounds on deriving a key of length k with min (or HILL) entropy k−∆ from
a source X|Z with k bits of min, HILL or unpredictability entropy. Cond denotes a
(log ε+ 1) wise independent hash function, which is shown to be a good condenser (as
stated in the table) for min-entropy in [DPW14]. The bounds for HILL entropy follow
directly from the bound for min-entropy. The last row follows from the results in this
paper as stated in Proposition 1.

B Proof of Theorem 1

We will use the following theorem due Hast [Has03] on decoding Hadamard code
with errors and erasures.

Theorem 3 ([Has03]). There is an algorithm LD that, on input l and n and
with oracle access to a binary Hadamard code of x (where |x| = n) with an e-
fraction of errors and an s-fraction of erasures, can output a list of 2l elements
in time O(nl2l) asking n2l oracle queries such that the probability that x is
contained in the list is at least 0.8 if l > log2(20n(e + c)/(c − e)2 + 1), where
c = 1− s− e (the fraction of the correct answers from the oracle).

We’ll often consider sequences v1, v2, . . . of values and will use the notation
vba to denote (va, . . . , vb), with vba = ∅ if a > b. vb is short for vb1 = (v1, . . . , vb).

Proof (of Theorem 1). It’s sufficient to prove the theorem for ε = 0, the general
case ε > 0 then follows directly by the definition of unpredictability entropy. To
prove the theorem we’ll prove its contraposition

Hunp
t (R.X|Z,R) < k −∆ ⇒ H∗unps (X|Z) < k (8)

The left-hand side of (8) means there exists a circuit A of size |A| 6 t such that

Pr
(x,z)←(X,Z),r←{0,1}k×n

[A(z, r) = r.x] > 2−k+∆ (9)

It will be convenient to assume that A initially flips a coin b, and if b = 0 outputs
a uniformly random guess. This loses at most a factor 2 in A’s advantage, i.e.,

Pr
(x,z)←(X,Z),r←{0,1}k×n

[A(z, r) = r.x] > 2−k+∆−1 (10)

but now we can assume that for any z, r and w ∈ {0, 1}k

Pr[A(z, r) = w] > 2−k−1 (11)

Using Markov eq.(10) gives us

Pr
(x,z)←(X,Z)

[Pr
r←{0,1}k×n

[A(z, r) = r.x] > 2−k+∆−2] > 2−k+∆−2 (12)

We call (x, z) ∈ supp[(X,Z)] “good” if

(x, z) is good ⇐⇒ Pr
r←{0,1}k×n

[A(z, r) = r.x] > 2−k+∆−2 (13)

Note that by eq.(12), (z, x)← (Z,X) is good with probability > 2−k+∆−2.
We will use A to construct a new circuit B of size s = O(t22k poly(n)) where

Pr
(x,z)←(X,Z)

[B(z) = x |(x, z) is good] > 1/2 (14)

Which with (14) and (12) further gives

Pr
(x,z)←(X,Z)

[B(z) = x] = Pr[B(z) = x|(x, z) is good] · Pr[(x, z) is good]

> 2−1 · 2−k+∆−2 = 2−k+∆−3 (15)

contradicting the right-hand side of (8), and thus proving the theorem.
We’ll now construct B satisfying (14), for this, consider any good (x, z). Let

R = Rk = (R1, . . . , Rk) be uniformly random and let A = Ak = (A1, . . . , Ak)
where Ai = Ri.x.

Let Â ← A(z,R) and define εi = PrR[Âi = Ai|Âi−1 = Ai−1]. Using (13) in
the last step

k∏
i=1

εi = Pr
R

[A = Â] = Pr
R

[A(z,R) = R.x] > 2−k+∆−2

Thus, here exists an i s.t., εi > 2
−k+∆−2

k = 1
2 +δ with δ ≈ ∆−2

k ·
ln(2)
2 . We fix this

i (we don’t know which i is good, and later will simply try all of them). Then

ERi−1 [Pr
Ri,Rki+1

[Âi = Ai | Âi−1 = Ai−1]] > 1/2 + δ

Using Markov

Pr
Ri−1

[Pr
Ri,Rki+1

[Âi = Ai | Âi−1 = Ai−1] > 1/2 + δ/2] >
δ

2
(16)

We call ri−1 good if (note that by the previous equation a random ri−1 is good
with probability > δ/2).

ri−1 is good ⇐⇒ Pr
Ri,Rki+1

[Âi = Ai | Âi−1 = Ai−1] > 1/2 + δ/2 (17)

From now on, we fix some good ri−1 and assume we know ai−1 = ri−1.x (later
we’ll simply try all possible choices for ai−1).

We define a predictor Pi(ri) that tries to predict ri.x given a random ri (and
also knows z, ri−1, ai−1 as above) as follows

1. Sample random rki+1 ← Rki+1

2. Invoke Âk ← A(z, r(i), x). Note that r(i) = (ri−1, ri, r
k
i+1) consists of the

fixed ri−1, the input ri and the randomly sampled rki+1.

3. if Âi−1 = ai−1 output Âi, otherwise output ⊥.

Using (11), which implies Pr[Âi−1 = ai−1] > 2−i, and (17) we can lower bound
Pi’s rate and advantage as

Pr
Ri

[Pi(Ri) 6= ⊥] = Pr[Âi−1 = ai−1] > 2−i,

Pr
Ri

[Pi(Ri) = Ri.x] > Pr[Âi−1 = ai−1](
1

2
+ δ/2). (18)

In terms of Theorem 3, we have a binary Hadamard code with e + c =
Pr[Âi−1 = ai−1], c−e = δ ·Pr[Âi−1 = ai−1], which implies that (e+c)/(c−e)2 6
2i

δ2 .

Now Theorem 3 implies that given such a predictor P we can output a list that
contains x with probability > 0.8 in time O(2i poly(m,n)) = O(2k poly(m,n)),
as we assume access to an oracle Eq with outputs 1 on input x and 0 otherwise,
we can find x in this list with the same probability.

Using this, we can now construct an algorithm as claimed in (14) as follows:
B will sample i ∈ {1, . . . , k} and then ri−1 at random. Then B calls Pi with all
possible ai−1 ∈ {0, 1}i−1. We note that with probability δ/2k (we lose a factor
k for the guess of i, and δ/2 is the probability of sampling a good ri−1) the
predictor Pi will satisfy (18).

If x is not found, B repeats the above process, but stops if x is not found
after 2k/δ iterations. The success probability of B is ≈ (1 − 1/e)0.8 > 0.5 as
claimed, the overall running time we get is O(22k poly(m,n)). ut

C Proof of Theorem 2

It’s sufficient to prove the theorem for γ = 0, the case γ > 0 then follows directly
by definition of unpredictability entropy. Suppose for the sake of contradiction

that (7) does not hold. That is, H
Metric,det,[0,1]
t,ε (X|Z) < k, which means that

there exists a distinguisher D : {0, 1}n × {0, 1}m → [0, 1] of size t that satisfies

ED(X,Z)− ED(Y,Z) > ε ∀(Y, Z) : H̃∞(Y |Z) > k. (19)

We will show how to construct an efficient algorithm that given Z uses D to pre-
dict X with probability at least 2−k, contradicting (6). The core of the algorithm
is the procedure Predictor described below.

Function Predictor(z,D′, `)

Input : z ← Z, [0, 2]-valued distinguisher D′

Output: x ∈ {0, 1}n
1 b← 1, i← 1
2 while b 6= 0 and i < ` do
3 x← {0, 1}n
4 b← BernoulliDistribution(D′(x, z)/2) /* outputs 1 w.p. D′(x, z)/2

*/

5 if b = 0 then
6 i← i+ 1
7 else
8 return x
9 end

10 end
11 return ⊥

Predictor(Z,D, `) samples an element x ∈ {0, 1}n according to some prob-
ability distribution. This distribution captures the following intuition: as the

advantage ED(X,Z)− ED(Y, Z) is positive (as assumed in (19)), we know that
x being the correct guess for X is positively correlated with the value D(x, Z).
The probability that Predictor(Z,D, `) returns some particular value x as guess
for X will be linear in D(x, Z).

Predictor(Z,D, `) may also output ⊥, which means it failed to sample an x
according to this distribution. The probability of outputting ⊥ goes exponen-
tially fast to 0 as ` grows.

A toy example: predicting X when Z is empty and D is boolean. Suppose that
ED(X) − ED(Y) > ε for all Y such that H∞(Y) > k. And assume that D(.) is
boolean (not real valued as in our theorem). Then Predictor(∅,D, `) will output
a guess for X that (if it’s not ⊥) is a random value x satisfying D(x) = 1.
The probability that this guess for X is correct equals ED(X)/|D| where |D| =∑
xD(x). Consider now the distribution Y of min-entropy k that maximizes

ED(Y). We can assume that Y is flat and supported on those 2k elements x
for which the value D(x) is the biggest possible. Observe that since ED(X) −
ED(Y) > 0, we have ED(Y) < 1 and since D is boolean, the support of Y contains
all the elements x satisfying D(x) = 1. Therefore we obtain ED(Y) = 2−k|D|.
Now we can estimate the predicting probability from below as follows:

Pr[X is predicted correctly] =
ED(X)

|D|
>

ED(Y) + ε

|D|
= 2−k +

ε

|D|

The above probability holds for ` = ∞, i.e., when predictor never outputs ⊥.
For efficiency reasons, we must use a finite, and not too big `. The predictor will

output ⊥ with probability (1− 2−n|D|)` and thus

Pr[we predcit X in time O(` · time(D))] =

(
2−k +

ε

|D|

)(
1−

(
1− 2−n|D|

)`)
With a little bit of effort one can prove that setting ` = 1+2n−k/ε ≈ 2∆/ε yields
the success probability 2−k independently of |D|.

Proof in general case - important issues Unfortunately, what we have proven
above cannot be generalized easily to the case considered in the theorem, there
are two obstacles. First, in the theorem we consider a conditional distribution
X|Z (i.e., the conditional part Z is not empty as above). Unfortunately we
cannot simply make the above argument separately for all possible choices Z = z
of the conditional part, as we cannot guarantee that the conditional advantages
ε(z) = ED(X|Z = z, z) − ED(Y |Z = z, z) are all positive; we only know that
their average ε = Ez←Zε(z) is positive. Second, so far we assumed that D is
boolean. This would only prove the theorem where the derived entropy in (7) is
against deterministic boolean distinguishers, and this is not enough to conclude
that we have the same amount of HILL entropy as discussed in Section 2.

Actual proof - preliminaries For real-valued distinguishers in the conditional
case, just invoking Predictor(Z,D, `) on a D satisfying (19), will not give a

predictor for X with advantage > 2−k in general. Instead, we first have to trans-
form D into a new distingusiher D′ that has the same distinguishing advantage,
and for which we can prove that the predictor will work.

The way in which we modify D depends on the distribution Y |Z that mini-
mizes the left-hand side of (19). This distribution can be characterized as follows:

Lemma 2. Given D : {0, 1}n×{0, 1}m → [0, 1] consider the following optimiza-
tion problem

max
Y |Z

ED(Y, Z)

s.t. H̃∞(Y |Z) > k
(20)

The distribution Y |Z = Y ∗|Z satisfying H̃∞(Y ∗|Z) = k is optimal for (20) if
and only if there exist real numbers t(z) and a number λ > 0 such that for every
z

(a)
∑
x max(D(x, z)− t(z), 0) = λ

(b) If 0 < PY ∗|Z=z(x) < maxx′ PY ∗|Z=z(x
′) then D(x, z) = t(z).

(c) If PY ∗|Z=z(x) = 0 then D(x, z) 6 t(z)
(d) If PY ∗|Z=z(x) = maxx′ PY ∗|Z=z(x

′) then D(x, z) > t(z)

Proof. The proof is a straightforward application of the Kuhn-Tucker conditions
given in Appendix. ut

Remark 2. The characterization can be illustrated in an easy and elegant way.
First, it says that the area under the graph of D(x, z) and above the threshold
t(z) is the same, no matter what z is (see Figure 3).

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

D
(x
,z

1
)

D(x, z1)

t(z1)

D(x, z1) > t(z1)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

D
(x
,z

2
)

D(x, z2)

t(z2)

D(x, z2) > t(z2)

Fig. 3. For every z, the (green) area under D(·, z) and above t(z) equals λ

Second, for every z the distribution Y ∗|Z = z is flat over the set {x : D(x, z) > t(z)}
and vanishes for x satisfying D(x, z) < t(z), see Fig. 4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

D
(x
,z
)

D(x, z)

t(z)

D(x, z) > t(z)

D(x, z) < t(z)

2−10

2−8

2−6

2−4

2−2

20

P
Y

∗
|Z

=
z
(x
)

PY ∗|Z=z

Fig. 4. Relation between distinguisher D(x, z), threshold t(z) and distribution Y ∗|Z =
z.

Note that because of “freedom” in defining the distribution on elements x satis-
fying D(x, z) = t(z) (2, point (b)), there could be many distributions Y ∗|Z cor-
responding to fixed numbers λ and t(z) that satisfy the characterization above,

and this way are optimal to (20) with k = H̃∞(Y ∗|Z). For the sake of com-
pleteness we characterize bellow the all possible values of k that match to λ and
t(z). We note that this fact might be used to modify our nonuniform guessing
algorithm into a uniform one.

Corollary 1. Let D : {0, 1}n×{0, 1}m → [0, 1] and λ ∈ (0, 1). Let t(z) = t(λ, z)
be the unique numbers that satisfy the condition (a) in Lemma 2. Define

k(λ) = n− log (Ez←Z [1/P(D(U, z) > t(z))]) , (21)

which is a non-decreasing right continuous function of λ. Let k−(λ) = limλ′→λ− k(λ′)
and k+(λ) = limλ′→λ+ k(λ′) = k(λ) be the one-sided limits. Then for every Y ∗|Z
of min-entropy k = H̃∞(Y ∗|Z) fulfilling (b),(c) and (d) we have k− 6 k 6 k+.
Conversely, if k satisfies k− 6 k 6 k+ then there exists a distribution Y ∗|Z
fulfilling (b),(c) and (d) such that H̃∞(Y ∗|Z) = k.

Predicting given the thresholds t(z). We use the numbers t(z) to modify D and
then we call the procedurePredictor on the modified distinguisher. Lemma 3
below shows that we could efficiently predict X from Z, assuming we knew the
numbers t(z) for all z in the support of Z (later, we’ll show how to efficiently
approximate them)

Lemma 3. Let Y ∗|Z be the distribution satisfying H̃∞(Y ∗|Z) = k and maxi-

mizing ED(Y, Z) over H̃∞(Y |Z) > k, where k < n and D satisfies (19). Let t(z)
be as in Lemma 2. Define

D′(x, z) = max(D(x, z)− t(z), 0) (22)

and set ` = 2 · 2n−kε−1 in the algorithm Predictor. Then we have

Pr (Predictor(Z,D′, `) = X) > 2−k
(
1 + 2k−nε

)
(23)

Proof. We start by calculating the probability on the left-hand side of(23)

Claim 1 For any19 D′, the algorithm Predictor outputs X given Z = z with
probability

Pr
X,Z

(Predictor(Z,D′, `) = X|Z = z) = 2−n−1g

(
ED′(U, z)

2

)
· ED′(X|Z = z, z)

(24)

where U is uniform over {0, 1}n and g is defined by g(d) = 1−(1−d)`
d (so g(d) ≈

1/d for large `)

Proof (of Claim). It is easy to observe that

Pr[Predictor(z,D′, `) = x|Predictor(z,D′, `) 6= ⊥] =
D′(x, z)∑
x
D′(x, z)

(25)

In turn, for every round i = 1, . . . , ` of the execution, the probability that Pre-
dictor stops and outputs x′ is equal to Pr[U = x′]D′(x′, z)/2 = 2−n−1D′(x′, z),
the probability that it outputs anything (and thus leaves the while loop) is thus∑
x′ Pr[U = x′] ·

(
1− D′(x′,z)

2

)
= 1− ED′(U,z)

2 . So the probability of not leaving

the while loop for ` rounds (in this case the output is ⊥) is

Pr[Predictor(z,D′, `) = ⊥] = 1−
(

1− ED′(U, z)
2

)`
(26)

Combining the last two formulas we obtain

Pr[Predictor(z,D′) = x] = 2−n−1g(ED′(U, z)/2) · D′(x, z) (27)

Hence

Pr[Predictor(z,D′) = X|Z = z] =
∑
x

Pr[Predictor(z,D′) = x,X = x|Z = z]

=
∑
x

Pr[Predictor(z,D′) = x] Pr[X = x|Z = z]

= 2−n−1g(ED′(U, z)/2)
∑
x

D′(x, z) Pr[X = x|Z = z]

= 2−n−1g(ED′(U, z)/2)ED′(X|Z = z, z)
(28)

and the claim follows. ut
19 We will only use the claim for the distinguisher D′ as constructed above, but the

claim holds in general.

Now we can see why we cannot apply the algorithm Predictor using the distin-
guisher D satisfying only (19) directly. According to the last formula, the success
probability would be an averaged sum of products g(ED(U, z)) ·ED(X|Z = z, z)
over z. We know the average of the second factors of these products, but in
general cannot compare the values of ED(U, z) for different z’s. The crucial ob-
servation is that the distinguisher D′ we defined satisfies the same inequality
(19) as D (though, D′ has the range [0, 2] not [0, 1] as D). Moreover D′ has a
special form which allows us to simplify expression (23). The details are given
in the next two claims

Claim 2 We have ED′(X,Z)− ED′(Y, Z) > ε for all Y |Z : H̃∞(Y |Z) > k

Proof (of Claim). We argue that (a): ED′(X,Z) − ED′(Y ∗, Z) > ED(X,Z) −
ED(Y ∗, Z) and (b): Y ∗|Z maximizes D′(Y,Z) over H̃∞(Y |Z) > k. For the proof
of (a), observe that by (22) we have D′(x, z) > D(x, z)− t(z) for every x and z.
Hence ED′(X,Z) > ED(X,Z)−t(z). Moreover, if D(x, z)−t(z) < 0 then Lemma
2 implies PY ∗|Z=z(x) = 0 and thus ED′(Y ∗|Z = z, z) = ED(Y ∗|Z = z) − t(z).
Hence, for all z we have

ED′(X|Z = z)− ED′(Y ∗|Z = z, z) > ED(X|Z = z, z)− ED(Y ∗|Z = z, z)

The proof of (a) follows now by taking the average over z. The proof of (b)
follows by observing that D′ satisfies the characterization in (2) with t(z) = 0
for all z. ut

Claim 3 The exists a number λ′ ∈ (0, 1) such that ED′(U, z) = λ′ for every z.

Proof. Lemma 2 implies
∑
xD
′(x, z) = λ for every z. We can define λ′ = 2−nλ

and then it remains to show λ < 2n and λ > 0. Observe that the case t(z) < 0
in Lemma 2 is possible if and only if PY ∗|Z=z(x) = maxx′ PY ∗|Z=z(x

′) for all
x, which means H∞(Y ∗|Z = z) = n. Since k < n, we have t(z) > 0 for at least
one z and then λ =

∑
x max(D(x, z) − t(z), 0) 6

∑
xD(x, z) which essentially

means λ 6 2n. Lemma 2 guarantees that λ > 0 , therefore we need to show that
λ 6∈ {0, 2n}. Observe that if λ = 0 then the condition

∑
xD
′(x, z) = λ implies

D′(x, z) = 0 for all x and z, contradicting to Claim 2 because ε > 0. In turn,
if λ = 2n then from Lemma 2 we get D(·, z) ≡ 1 and t(z) = 0 for all z such
that t(z) > 0. This is possible only if PY ∗|Z=z(x) = maxx′ PY ∗|Z=z(x

′) for all x
which means H∞(Y ∗|Z = z) = n if t(z) > 0. But then H∞(Y ∗|Z = z) = n for
all z which contradicts k < n. ut

To calculate the success probability we need one more observation. The following
claim shows that support of D′ is contained in the support of Y ∗.

Claim 4 For every z we have

ED′(Y ∗|Z = z, z) = ED′(U, z) · 2n max
x′

PY ∗|Z=z(x
′). (29)

Proof (of Claim). By Lemma 2, D(x, z) > t(z) only if PY ∗|Z=z(x) = maxx′ PY ∗|Z=z(x
′)

therefore

ED′(Y ∗|Z = z, z) =
∑
x

max(D(x, z)− t(z), 0)PY ∗|Z=z(x)

=
∑
x

max(D(x, z)− t(z), 0) max
x′

PY ∗|Z=z(x
′),

and the claim follows by the definition of D′. ut

Now we are ready to prove the main result. From Claim 1 and Claim 3 we obtain

Pr (Predictor(Z,D′, `) = X) = 2−n−1Ez←Z [g(λ′/2) · D′(X|Z = z, z)]

= 2−n−1g(λ′/2) · ED′(X,Z) (30)

Claim 2 applied to Y = Y ∗ yields now the following estimate

Pr (Predictor(Z,D′, `) = X) > 2−n−1g(λ′/2) · (ED′(Y ∗, Z) + ε) . (31)

Observe that Claim 4, Claim 3, and H̃∞(Y ∗|Z) = k imply

ED′(Y ∗, Z) = Ez←Z [D′(Y ∗|Z = z, z)] = Ez←Z
[
ED′(U, z) · 2n max

x′
PY ∗|Z=z(x

′)
]

= 2nλ′ · Ez←Z
[
max
x′

PY ∗|Z=z(x
′)
]

= 2n−kλ′ (32)

Plugging this into (31) we get the following bound

Pr (Predictor(Z,D′, `) = X) > 2−n−1g(λ′/2) ·
(
2n−kλ′ + ε

)
= 2−k

(
1− (1− λ′/2)`

)(
1 +

2k−n−1ε

λ′/2

)
(33)

To give a lower bound on the success probability it remains to minimize the last
expression over λ′ ∈ (0, 1). This is answered below

Claim 5 Let h(s) = (1 − (1 − s)`)(1 + as−1), where a > 0 and ` > 1 + a−1.
Then h(s) > h(1) = 1 + a for all s ∈ [0, 1].

Proof (of Claim). The proof uses standard calculus and is given in the appendix.
ut

Computing t(z) from λ So far, we have shown how to construct the predict-
ing algorithm provided that we are given the numbers t(z). Now we will prove
that one can compute them approximately and use successfully in place of the
original ones. We start with a few useful facts about the auxiliary function g
already introduced in Claim 1 in the proof of Lemma 3. Below we summarize its
fundamental properties.

Lemma 4. For ` > 1 the function g(d) = 1−(1−d)`
d on [0, 1] satisfies:

(a) g is continuous at 0 and decreasing
(b) g is convex
(c) for any d2 > d1 we have g(d2) > g(d1)

(
1− `

2 · |d2 − d1|
)

Proof (of Lemma). The proof uses elementary calculus and is referred to the
appendix ut

The entire solution is based on the next two lemmas. The first lemma is based
on the intuition that replacing D by a distinguisher which approximates it close
enough should not affect the success probability of Predictor(Z,D, `) very
much. For technical reasons we present this statement assuming one-sided L1-
approximation. The second lemma describes an efficient algorithm which obtains
λ as a hint on its input and computes approximations for t(z) from below, for
every z.

Lemma 5. Let D1,D2 : {0, 1}n×{0, 1}m → [0, 1] be any two functions satisfying

(a) D2(x, z) > D1(x, z) for all x, z
(b) ED2(U, z)− ED1(U, z) 6 δ for all z

Then we have

Pr (Predictor(Z,D2, `) = X) > (1− `δ/2) Pr (Predictor(Z,D1, `) = X)
(34)

Proof (of Lemma). We have

Pr (Predictor(z,D2, `) = X|Z = z) = g(ED2(U, z))ED2(X|Z = z, z)

> g(ED2(U, z))ED1(X|Z = z, z), (35)

where the inequality follows from D2 > D1 > 0. The assumptions (a) and (b)
imply |ED1(U, z)− ED2(U, z)| 6 δ for every z. From property (c) in Lemma 4 it
follows that

g(ED2(U, z)) > g(ED1(U, z))(1− `δ/2)

for every z. Combining the last two estimates we get

Pr (Predictor(z,D2, `) = X|Z = z) > (1− `δ/2) · g(ED1(U, z))ED1(X|Z = z, z)

= (1− `δ/2) · Pr (Predictor(z,D1) = X|Z = z)
(36)

Taking the average over z ← Z completes the proof. ut

Lemma 6. Let D : {0, 1}n → [0, 1] be any function computable in time s, let
λ ∈ (0, 1) and t ∈ [0, 1] be a number such that Emax(D(U) − t, 0) = λ. There
exists a probabilistic algorithm FindThreshold(D, λ, δ,N) that runs in time

O (log(1/δ)N · time(D)) and with probability at least 1−2 log(12/δ)e−Nδ
2/3 out-

puts a number t′ such that Emax(D(U)− t′, 0) ∈ [λ, λ+ δ]. In particular, t′ 6 t.

Function FindThreshold(D, λ, δ,N)

Input : D : {0, 1}n → [0, 1], λ ∈ (0, 1), parameters δ,N
Output: t′ such that Emax(D(U)− t′, 0) ∈ [λ, λ+ δ]

1 t− ← −1, t+ ← 1
2 repeat
3 t′ ← (t− + t+)/2
4 x1, . . . , xN ← U /* fresh values every time */

5 λ′ ← N−1 ∑N
j=1 max (D(xj)− t′, 0) /* λ′ ≈ Emax(D(U)− ti, 0) */

6 if λ′ > λ+ 2δ
3

then
7 t− ← t′

8 else if λ′ < λ+ δ
3
then

9 t+ ← t′

10 else
11 return t′

12 end

13 until t+ − t− 6 δ
12

14 if t′ < −1 + δ
12

then
15 t′ ← −1
16 return t′

Proof (of Lemma). The idea is pretty simple: given t′ we approximate values
Emax(D(U) − t′, 0) by sampling and by comparing the result with λ, we can
find the right value of t′ using binary search. This corresponds to finding a blue
line on Fig. 4 such that the green area above is sufficiently close to λ.
The function h(t′) = Emax(D(U) − t′, 0) is clearly non-increasing with respect
to t′ and changes from 1 + ED(U) at t′ = −1 to 0 for t = 1. Moreover, it is
strictly decreasing in a small neighborhood of t′ = t and for all t′ < t. Indeed,
since λ > 0 there is at least one x such that D(x) > t. Taking t′ < t′′ 6
minx:D(x)>tD(x) we see that h(t′) − h(t′′) > 2−n(t′′ − t′) > 0. Hence, t′ > t
implies Emax(D(U) − t′, 0) < Emax(D(U) − t, 0) = λ. This proves the second
part of the statement. Denote by λ′i, t

′
i, t
−
i , t

+
i the values assigned in round i to

λ′, t′, t−, t+ respectively. Observe that by the Chernoff Bound20 and the union
bound over at most log(12/δ) rounds of the execution, with probability p =
1 − 2 log(12/δ) exp(−Nδ2/3) we have |λ′i − h(ti)| < δ

12 for every round i. Note
that with the same probability the algorithm satisfies the invariant property: if
there is t0 ∈ [t−i , t

+
i] such that h(t0) ∈

[
λ+ 5δ

12 , λ+ 7δ
12

]
and the algorithm jumps

to round i + 1 then t0 ∈
[
t−i+1, t

+
i+1

]
. Suppose that h(t0) ∈

[
λ+ 5δ

12 , λ+ 7δ
12

]
for

some t0 ∈ [−1, 1]. Now we have two possibilities: either we terminate with ti such
that λi ∈

[
λ+ δ

3 , λ+ 2δ
3

]
which means h(ti) ∈

[
λ+ 3δ

12 , λ+ 7δ
12

]
and we are done,

or we will eventually find such t0 up to an error δ
12 . Since |h(t2)−h(t1)| 6 |t2−t1|

for any t1, t2, the returned number t′ satisfies h(t0) − δ
12 6 h(t′) 6 h(t0) + δ

12 ,
in particular it satisfies the desired inequality. It remains to consider the case

20 We use the following version: let X1, . . . , XN be [0, 1]-valued independent random
variables, let X =

∑N
i=1Xi and µ = EX. Then Pr (|X − µ| > δµ) < 2 exp(−µδ2/3)

when either h(t) < λ+ 5δ
12 for all t or h(t) > λ+ 7δ

12 . Since h(1) = 0 the second is

clearly impossible. In the first case we have h(t) 6 h(−1) < λ+ 5δ
12 , which means

that in every round i we have t−i = −1 and either we terminate with ti such that
λ′i ∈

[
λ+ δ

3 , λ+ 2δ
3

]
which means h(ti) ∈

[
λ+ 3δ

12 , λ+ 7δ
12

]
and we are done, or

in every round i we do the assignment t+i+1 = ti which yields ti = −1+2−i+1 and

the main loop halts with ti < −1 + δ
12 . The algorithm outputs then −1 which

satisfies the desired inequality, because of the assumption h(−1) < λ + 5δ
12 and

the trivial inequality h(−1) > 1 > λ. ut
Let D′ be as in Lemma 3. Let t′(z) = FindThreshold(D, λ, δ,N), define
D′′(x, z) = max(D(U, z)−t′(z), 0). Denote by Pr[bad] the probability that ED′′(U, z) 6∈
[λ, λ+δ] (i.e. probability of failure of the algorithm FindThreshold). If the event
bad doesn’t occur then D′′ > D′ and ED′′(U, z) 6 ED′(U, z) + δ. Applying the
last two claims we obtain

Pr [Predictor(z,D′′, `)] > 2−k
(
1 + 2k−nε

)
·
(

1− `δ

2

)
Pr[¬bad] (37)

By the elementary inequality (1 + s)(1 − s/4)2 > 1 valid for s ∈ [0, 1], for this
probability to be bigger than 2−k it is enough to require

`δ/2 6 2k−nε/4 (38)

2 log(12/δ) exp(−Nδ2)/3) 6 2k−nε/4 (39)

The solution for the first inequality is δ = O(22(k−n)ε2) which implies δ � ε. The
second one gives us N = Ω

(
(1/δ)2(log log(1/δ) + n− k + log(1/ε)

)
which can

be simplified to N = Ω
(
(1/δ)2(log(1/δ)

)
. The total running time is (up to a con-

stant factor) the time needed for invokingO (` ·N log(1/δ)) = O
(
(2∆/ε)5 log2

(
2∆/ε

))
times of the distinguisher D .

D Proof of Lemma 2

Proof. Consider the following linear optimization program

maximize
Px,z,az

∑
x,z

D(x, z)P (x, z)

subject to −Px,z 6 0, (x, z) ∈ {0, 1}n × {0, 1}m∑
x

Px,z −PZ(z) = 0, z ∈ {0, 1}m

Px,z − az 6 0, z ∈ {0, 1}m∑
z

az − 2−k 6 0

(40)

This problem is equivalent to (20) if we define PY,Z(x, z) = P (x, z) and replace

the condition
∑
z maxx PY,Z(x, z) 6 2−k, which is equivalent to H̃∞(Y |Z) > k,

by the existence of numbers az > maxx PY,Z(x, z) such that
∑
z az 6 2−k. The

solutions of (40) can be characterized as follows:

Claim 6 The numbers (Px,z)x,z, (az)z are optimal for (40) if and only if there
exist numbers λ1(x, z) > 0, λ2(z) ∈ R, λ3(x, z) > 0, λ4 > 0 such that

(a) D(x, z) = −λ1(x, z) + λ2(z) + λ3(x, z) and 0 = −
∑
x λ

3(x, z) + λ4

(b) We have λ1(x, z) = 0 if Px,z > 0, λ3(x, z) = 0 if Px,z < az, λ4 = 0 if∑
z az < 2−k.

Proof (of Claim). This is a straightforward application of KKT conditions. ut

It remains to apply and simplify the last characterization. Let (P ∗x,z)x,z, (a
∗
z)z be

optimal for (40), where P ∗(x, z) = PY ∗,Z(x, z), and λ1(x, z), λ2(z), λ3(x, z), λ4(x)
be corresponding multipliers given by the last claim. Define t(z) = λ2(z) and
λ = λ4. Observe that for every z we have a∗z > max

x
P(x, z) > 2−nPZ(z) > 0

and thus for every (x, z) we have

λ1(x, z) · λ3(x, z) = 0 (41)

If P ∗(x, z) = 0 then P ∗(x, z) < a∗(z) and λ3(x, z) = 0, hence D(x, z) 6 t(z)
which proves (c). If P ∗(x, z) = maxx′ P

∗(x, z) then P ∗(x, z) < 0 and λ1(x, z) = 0
which proves (d). Finally observe that (41) implies

max(D(x, z)− t(z), 0) = max(−λ1(x, z) + λ3(x, z), 0) = λ3(x, z)

Hence, the assumption
∑
x λ

3(x, z) = λ4 = λ proves (a).
Suppose now that the characterization given in the Lemma is satisfied. Define

P ∗(x, z) = PY,Z(x, z) and az = maxz PY ∗,Z(x, z), let λ3(x, z) = max(D(x, z)−
t(z), 0), λ1(x, z) = max(t(z) − D(x, z), 0) and λ4 = λ. We will show that these
numbers satisfy the conditions described in the last claim. By definition we have
−λ1(x, z) +λ2(z) +λ3(x, z) = D(x, z), by the assumptions we get

∑
x λ

3(x, z) =
λ = λ4. This proves part (a). Now we verify the conditions in (b). Note that
D(x, z) < t(z) is possible only if PY ∗|Z=z(x) = 0 and D(x, z) > t(z) is possible
only if PY ∗|Z=z(x) = maxx′ PY ∗|Z=z(x

′). Therefore, if PY,Z(x, z) > 0 then we
must have D(x, z) > t(z) which means that λ1(x, z) = 0. Similarly if PY,Z(x, z) <
maxz PY ∗,Z(x, z) then D(x, z) 6 t(z) and λ3(x, z) = 0. Finally, since we assume

H̃∞(Y ∗|Z) = k we have
∑
z az = 2−k and thus there is no additional restrictions

on λ4. ut

E Proof of Corollary1

Proof (of Corollary). Let ymax(z) = maxx′ PY |Z=z(x
′). Consider the function

fδz (x) =

ymax(z) + δ, D′(x, z) > t(z)

1−#{x: D′(x.z)>t(z)}·(ymax+δ)

#{x: D′(x,z)=t(z)} , D′(x, z) = t(z)

0, D′(x, z) < t(z)

(42)

This function defines a distribution that satisfies

fδz (x) 6 max
x′

fδz (x′) ∀x : D′(x, z) 6 t(z) (43)

if and only if δ satisfies

1

{x : D′(x.z) > t(z)}
6 ymax(z) + δ 6

1

{x : D′(x.z) > t(z)}
(44)

In particular these conditions are satisfied for δ = 0. Suppose now that there are
zi and xi for i = 1, 2 such that 0 < PY ∗|Z=zi(xi) < max

x′
PY ∗|Z=z(x

′). Define δ

by

δ = min

(
ymax(z1)− 1

{x : D′(x, z1) > t(z1)}
,

1

{x : D′(x, z2) > t(z2)}
− ymax(z2)

)
By Lemma 2 we immediately obtain that δ > 0. It follows easily from the
definition of δ that the number −δ satisfies (44) with z = z1 and that δ satisfies
(44) for z = z2. We can see now that if we replace the distribution Y ∗|Z = z1
by f−δz1 and the distribution Y ∗|Z = z2 by fδz2 then we obtain the distribution

Y ′|Z satisfying conditions in Lemma 2 and H̃∞(Y ′|Z) = k. Finally, observe
that δ = 1

#{x:D′(x,z2)>t(z2)} − ymax(z2) means that the distribution Y ′|Z = z2 is

uniform on {x : D′(x.z2) > t(z2)}. In turn, if δ = ymax(z1) − 1
#{x:D′(x,z1)>t(z1)}

then the distribution Y ′|Z = z1 is uniform on {x : D′(x, z1) > t(z1)}. ut

F Proof of Claim 5, Lemma 3

Proof. We check that lims→0 h(s) = a` and thus the function h is continuous on
the interval [0, 1]. This means that h attains its minimum at some point s = s0.
There is nothing to prove if s0 ∈ {0, 1}. Suppose that s0 ∈ (0, 1). Then we must
have ∂h

∂s

∣∣
s=s0

= 0. The first derivative of the function h is given by the following
formula

∂h

∂s
=
s`(a+ s)(1− s)`−1 + a

(
(1− s)` − 1

)
s2

=
−a+ (1− s)`−1 (a(1− s) + (a+ s)`s)

s2
(45)

Therefore for s = s0 we obtain (1− s0)`−1 = a
a(1−s0)+(a+s0)`s0

and hence

h(s0) = (1− (1− s0) · (1− s0)`−1)
(
1 + as−10

)
=

(a+ s0)2`

a(1− s0) + (a+ s0)`s0
(46)

Note that the last expression is increasing with respect to ` and that from the
assumption we have ` > 1+a

a+s0
. Using this we obtain

h(s0) >
(a+ s0)(1 + a)

a(1− s0) + (1 + a)s0
= 1 + a (47)

which completes the proof. ut

The lemma follows now immediately by combining (33) and the last claim. ut

G Proof of Lemma 4

Proof (of Lemma). It is easy to see that limd→0+ g(d) = `. We have

∂g(d)

∂d
=

(1− d)`−1(d(`− 1) + 1)− 1

d2
(48)

Using the inequality 1− d 6 e−d we obtain

∂g(d)

∂d
6

e−d(`−1) (d(`− 1) + 1)− 1

d2
6 0

Where the second inequality follows from the inequality es > 1 + s applied for
s = d(`− 1). This proves (a). The second derivative is given by

∂2g(d)

∂d2
= −

(1− d)`−2
(
2 + 2d(`− 2) + d2((`− 2)2 + `− 2)

)
− 2

d3
(49)

Using 1− d 6 e−d and applying the inequality es > 1 + s+ 1
2s

2, which holds for
s > 0, for s = d(`− 1) we obtain

∂2g(d)

∂d2
= −

(1− d)`−2
(
2 + 2d(`− 2) + d2((`− 2)2 + `− 2)

)
− 2

d3

> −
(1− d)`−1

(
2 + 2d(`− 1) + d2(`− 1)2

)
− 2

d3

> −
e−d(`−1)

(
2 + 2d(`− 1) + d2(`− 1)2

)
− 2

d3

> −2− 2

d3
= 0, (50)

which proves (b). Finally, note that by convexity we have

g(d2)− g(d1) > (d2 − d1) · ∂g(d)

∂d

∣∣∣∣
d=d1

. (51)

Since g(d) > 0 and ∂ ln g(d)
∂d = ∂g(d)

∂d /g(d) we can rewrite this as

g(d2)− g(d1)

g(d1)
> (d2 − d1) · ∂ ln g(d)

∂d

∣∣∣∣
d=d1

. (52)

Note that the function d → ln g(d) is convex, as the composition of the convex
function g(·) and the convex increasing function ln(·). Therefore,

∂ ln g(d)

∂d
>
∂ ln g(d)

∂d

∣∣∣∣
d=0

= −`− 1

2
(53)

Combining the last two inequalities yields

g(d2)− g(d1)

g(d1)
> − `

2
· (d2 − d1), d2 − d1 > 0. (54)

which completes the proof of (c). ut

	Condensed Unpredictability

