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Abstract The general concept of Physically Unclon-
able Functions (PUFs) has been nowadays widely ac-
cepted and adopted to meet the requirements of se-
cure identification and key generation/storage for cryp-
tographic ciphers. However, shattered by di�erent at-
tacks, e.g., modeling attacks, it has been proved that
the promised security features of arbiter PUFs, includ-
ing unclonability and unpredictability, are not sup-
ported unconditionally. However, so far the success of
existing modeling attacks relies on pure trial and er-

ror estimates. This means that neither the probability
of obtaining a useful model (confidence), nor the suf-
ficient number of CRPs, nor the probability of correct
prediction (accuracy) is guaranteed. To address these
issues, this work presents a Probably Approximately
Correct (PAC) learning algorithm. Based on a crucial
discretization process, we are able to define a Deter-
ministic Finite Automaton (of polynomial size), which
exactly accepts the regular language corresponding to
the challenges mapped by the given PUF to one re-
sponses.
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1 Introduction

Physically Unclonable Functions (PUFs), as introduced
by Gassend et al. [9], have attracted a great deal of
research interest due to their potential enhancement of
numerous applications. These applications are ranging
from hardware fingerprinting and authentication [28,33]
to secure storage for encryption mechanisms [16, 30].
Arbiter PUFs are one type of PUF instantiations [18],
where the core idea is to exploit the delay di�erences
between symmetrically designed electrical paths on a
silicon chip to generate a somehow random but unique
response [15].

Similar to all kind of PUFs, unclonability and un-

predictability are the main requirements of the arbiter
PUF family [3,24]. However, contrary to these basic re-
quirements, previous work in the literature introduced
di�erent successful attacks on arbiter PUFs. These at-
tacks can be classified into two categories: side chan-
nel attacks and modeling (i.e., machine learning) at-
tacks. The former type of attack uses the side chan-
nel information, such as photonic emissions and elec-
tromagnetic radiations, to physically characterize an
arbiter PUF [7,8,32]. On the other hand, modeling at-
tacks require only a subset of Challenge-Response Pairs
(CRPs) to build a mathematical model of the arbiter
PUF, which later can predict the response of that ar-
biter PUF, with some probability [15,25]. As being non-
invasive, modeling attacks can be more cost and time
e�ective in comparison to side channel attacks.

Although an increase in the number of PUF stages
or the addition of non-linearity to the PUF response
can reduce the e�ectiveness of modeling attacks [16,31],
by using extra side channel information and utilizing
more advanced machine-learning tools (i.e., requiring a
larger subset of CRPs) an attacker can still break the
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security of such arbiter PUFs [19,26]. It has been veri-
fied experimentally that the number of CRPs required
for a successful attack increases exponentially with the
number of stages [19]. This raises the natural question
to what preciseness an attacker in general can model
an arbiter PUF, with an arbitrary number of stages.
In other words, how many CRPs are really required
to model the PUF for given levels of accuracy and fi-
nal model delivery confidence. Unfortunately, this issue
has not been solved at all in the literature so far, and
thus modeling attacks rely only on trial and error or
heuristic approaches.

In this paper we present a novel well-defined math-
ematical representation of arbiter PUFs. Based on this
representation, we introduce a polynomial-time learn-
ing algorithm that provably learns the challenge-response
behavior of an arbitrary arbiter PUF, for given pre-
scribed levels of accuracy and confidence. We will show
how the levels of accuracy and confidence of a model are
related to the number of collected CRPs and the num-
ber of stages of an arbiter PUF, as well as the maximum
variation of delay values. In contrast to what has been
claimed in the literature so far, we will prove that the
maximum number of CRPs required for the attack is
polynomial in the number of stages. Finally, we evalu-
ate the time complexity of our learning algorithm and
prove that it is polynomial in the length of a given ar-
biter PUF, its maximum variation of delays and levels
of accuracy and confidence. The main contributions of
this paper are as follows:

A learning algorithm for prescribed levels of

accuracy and confidence. Based on a new mathe-
matical representation for arbiter PUFs, we introduce
a learning algorithm, which is able to model the PUF
for given levels of accuracy and confidence. The pro-
posed algorithm can be applied to break the security
of di�erent types of arbiter PUFs, including non-linear
PUFs (e.g., XOR arbiter PUFs).

Discretization of real-valued delay values. Our
mathematical representation is based on defining a set
of proper integer delay values that, at first glance, are
contrary to the real delay values, which can be observed
on a chip. However, we will first explain that the sta-
tistically relevant delay values of an arbiter PUF are
distributed within a limited interval. Secondly, it will
be demonstrated how we can discretize the di�erent
delay values with regard to the limited precision of the
arbiter placed at the end of its respective chain. Finally,
due to these facts, we present a mapping between these
discrete delay values to a fitting set of integer values.

Calculation of the maximum number of CRPs

required for our new attack. In order to learn the
challenge-response behavior of an arbiter PUF for given

levels of accuracy and confidence, we prove that the
maximum number of CRPs required for launching our
attack is polynomial in the length of an arbiter PUF.
Besides that, the impact of the limited variation of the
delays on the learnability of an arbiter PUF is also dis-
cussed.

Evaluation of the time complexity of the new

attack. Finally, we will evaluate the time complexity of
our learning algorithm. Our proofs reveal that the run-
ning time of the proposed learning algorithm is polyno-
mial in the length of the given arbiter PUF, the maxi-
mum variation of delays and the given levels of accuracy
and confidence.

2 Notation and preliminaries

This section provides basic background and notations
required to understand the present paper. Particular
emphasis is given to arbiter PUFs, regular languages,
DFAs, and PAC learning. Unfortunately, all these dif-
ferent fields have their own established nomenclature,
which we kept in each of the following sections for the
sake of simplicity. However, since our framework cov-
ers all these individual fields, caution and flexibility re-
garding the notations used in more than one fields are
required by the reader.

2.1 Arbiter PUFs

PUFs are physical input to output mappings, which are
most often entangled with the intrinsic silicon prop-
erties of a chip. The input and output of a PUF are
called challenge and response, respectively. A PUF can
be described by the function f

PUF

: C æ Y where
f

PUF

(c) = y, C = {0,1}n being the set of challenges,
and Y = {0,1} the set of responses, c.f. [18]. PUFs in
general have a set of crucial properties, including being
evaluable, unique, unclonable, and one-way, c.f. [18].

An arbiter PUF consists of multiple switch blocks,
so called stages, connected in a chain terminated by an
arbiter, see Figure 2. In our notation, n is the number of
stages of an arbiter PUF under consideration. A chal-
lenge is a string c = c[1] · · · c[n] of n bits, where each
bit (e.g., c[i]) is fed into a single stage (e.g., ith stage).
The signal propagates through the direct paths inside
the ith stage if c[i] = 0, otherwise the crossed paths are
utilized. Let B

i

denote a random variable related to the
delay within the ith stage. The realizations of the vari-
ables B

i

in an arbiter PUF are certain —
i,1

, —
i,2

, —
i,3

,
and —

i,4

. Here —
i,1

and —
i,2

are the delays of the upper
and lower direct paths in the ith stage, respectively, see
Figure 2. On the other hand, the delays of the upper
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Fig. 1: Schematic of an arbiter-PUF

and lower crossed paths in the ith stage are —
i,3

and —
i,4

,
respectively. B

i

follows a Gaussian distribution with the
mean µ

i

and the deviation Ê
i

, cf. [27].
We define A

i

as a random variable corresponding
to the total delay between the enable point and the
outputs of the ith stage of the PUF. Following the linear
additive model of the arbiter PUF, cf. [15], we have

A
i

=
q

i

k=1

B
k

.

The realizations of the partial sums A
i

at the outputs of
the ith stage are denoted by –

i,j

, where j represents the
upper and lower output (i.e., j = 1 for upper and j = 2
for lower output), see Figure 2. The arbiter at the end of
the PUF chain has a precision “ > 0, and compares the
arrival times of signals on the upper and lower paths
(i.e., –

n,1

and –
n,2

). More formally, we assume that
the output of the arbiter is “1” if –

n,1

≠ –
n,2

> “,
whereas it is “0” if –

n,2

≠ –
n,1

> “. The metastable
condition, where |–

n,1

≠ –
n,2

| < “, will be discussed
later in Section 6. Finally, in order to take into account
the impact of di�erent path configurations for –

n,1

and
–

n,2

, we define the single bit

u
i

=
im

k=1

c[k]

related to the history of the paths that the signal fol-
lows.

2.2 Regular Language and Principles of DFAs

We assume that the reader is familiar with regular lan-
guages and Deterministic Finite Automata (DFA). There-
fore, we will only briefly recall the notations, which will
be used throughout this paper. We follow the standard
notation, as found in [1] and [12]. Consider the alpha-
bet À = {0,1} and the set of all strings Àú over À. By
|c| we denote the length of strings c œ Àú, and by ⁄ the
empty string of length |⁄| = 0.

A DFA A is given by A = (Q, ”, À, q
0

, F ) over the
alphabet À, with Q being the set of states, the initial
state q

0

, and the accepting states F ™ Q. The tran-
sition function ” : Q ◊ À æ Q is defined as follows.
For all q œ Q, a œ À and c œ Àú we have ”(q, ⁄) = q

and its canonical continuation to Àú, i.e., ”(q, ac) =
”(”(q, a), c). The set of strings accepted by A is called
its accepted language L(A) := {c œ Àú | ”(q

0

, c) œ F},
i.e., a regular language. A state q

i

is live, if there exist
c

1

, c
2

œ Àú such that c
1

c
2

œ L(A) with ”(q
0

, c
1

) = q
i

and ”(q
i

, c
2

) œ F . Otherwise, q
i

is called dead.

2.3 The PAC Model

The idea of the PAC (Probably Approximately Cor-
rect) model is that successful learning of an unknown
target should yield, with high probability, a hypothesis
that is a good approximation of the unknown target.
In order to describe this idea more precisely, we re-
call now the basic definitions of the PAC model. For
a more thorough introduction into this model and the
PAC learning framework, the reader is referred to the
excellent textbook [14].

Let C
n

be a target concept class over the instance

space X
n

= {0, 1}n, and let X = fi
nØ1

X
n

and C =
fi

nØ1

C
n

. H
n

as the hypothesis space and H are defined
similarly. The notion of approximation is defined by as-
suming that there is an arbitrary probability distribu-
tion D on the instance space X

n

, giving the probability
of each instance. We then define the error of a hypoth-
esis h œ H with respect to a fixed target concept c œ C,
denoted by error(h), as

error(h) :=
q

xœh—c

D(x),

where — is the symmetric di�erence. The concept class
C is called PAC learnable on the hypothesis space H if
there exists a polynomial time algorithm L and a poly-
nomial p(·, ·, ·) such that for all n Ø 1, all target con-
cepts c œ C

n

, all distributions D on the instance space
X

n

, and all Á and ”, with 0 < Á, ” < 1, the following
holds. If the algorithm L is given at least p(n, 1/Á, 1/”)
independent random samples of c drawn according to
D, then with probability at least 1 ≠ ” the algorithm
L returns a hypothesis h œ H

n

such that error(h) Æ Á.
The smallest polynomial p is called the sample com-

plexity of L. With respect to C and H, two cases are
interesting. First, in the case of C = H, we say that C

is properly PAC learnable. The other case seems to be
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obvious, however, it should be more carefully consid-
ered. Indeed, if C is a concept class and there exists a
hypothesis class H such that: a) H can be evaluated
on given instances in polynomial time, and b) C is PAC
learnable by H, then we eventually say that C is PAC

learnable.

2.4 PAC Learning of a Regular Language

It has been proven by Angluin [1] that regular languages
are PAC learnable under DFA (as defined above), as a
promising representation. The proposed learning algo-
rithm e�ciently learns an unknown regular language
(i.e., the target concept) from an adequate teacher. For
an arbitrary conjecture, the original algorithm calls the
teacher to query whether the conjecture is correct. In
the case that it is not correct, the teacher provides a
counterexample [1].

Of crucial importance for our purposes is the fact
that Angluin also proved that the original algorithm
can be modified to obtain an algorithm requiring no
counterexample. According to the learning theory-related
literature, the learner (i.e., the learning algorithm) can
be provided with two types of answers as follow.

1. The membership queries are answered by “Yes/ No”.
2. The answer to the question on whether the conjec-

ture is equal to the unknown object (i.e., unknown
regular language) can be a counterexample, when
the conjecture is not correct.

As discussed by Angluin [1], the latter case is quite
involved due to the fact that it requires a precise rep-
resentation of the correct conjecture. Nevertheless, in
view of the PAC learning model, a random sampling
Oracle can be substituted for the source of the sec-
ond answers (a specific feature of the teacher). This can
be explained by the fact that with a high pre-defined
probability solely an approximately correct hypothesis
should be delivered by the learning algorithm. In other
words, instead of providing the counter examples to the
learner, it is given access to the Oracle EX that not
only answers the membership queries, but also com-
bine these answers with a sample chosen according to
a probability distribution (unknown to the learner) to
generate labeled examples. More formally, for a given
input c the oracle EX : Àú æ À returns a label p(c)
identifying whether the string c belongs to the regular
language L under consideration. Hence for all c œ L,
we have p(c) = 1, and otherwise p(c) = 0. A labeled
example is the pair (c, p(c)) and the set of positive ex-
amples (i.e., p(c) = 1) is denoted by S1, whereas the
set of negative examples is S0.

3 Representing Arbiter PUFs by DFAs

In this section we will derive a polynomial-sized rep-
resentation of arbiter PUFs by DFAs. To this end, we
first show how the real delay values of an arbiter PUF
can be mapped to a finite set of integer values. On the
basis of this mapping, we introduce a DFA-based rep-
resentation of an arbiter PUF.

3.1 Discretization Process of Delay Values

As mentioned before, the delay di�erences in the stages
of an arbiter PUF are caused by variations in the man-
ufacturing processes. It has been shown that B

i

(the
aforementioned random variable describing the delay of
the ith stage) follows a Gaussian distribution, cf. [27].
Thus, B

i

≥ N(µ
i

,Ê
i

), and its Probability Density Func-
tion (PDF) fB

i

(—
i

) is given by

fB
i

(—
i

) = 1

Ê

i

Ô
2fi

e≠(—

i

≠µ

i

)

2/2Ê

2
i .

The mean µ
i

is often reported by manufactures as
the nominal propagation delay of the utilized multi-
plexer, and the standard deviation Ê

i

is caused by the
variations in the manufacturing process, cf. [22]. As
99.7% of gaussian distributed values lie within the range
of three standard deviation away from the mean value,
the realizations of the B

i

for the ith stage (i.e., —
i,1

, —
i,2

,
—

i,3

, and —
i,4

) are drawn from an interval, whose length
is 6Ê, see Figure 2.

With regard to the additive linear model of the ar-
biter PUF we have A

i

=
q

i

k=1

B
i

, where A
i

is the
random variable, which shows the total propagation de-
lays at the outputs of the ith stage. Therefore, the PDF
of the total propagation delays at the outputs of each
stage are the convolution of all PDFs of the previous
stages [23], i.e.,

fA
i

(–
i

) = fB
i

(—
i

) ú fB
i≠1(—

i≠1

) ú · · · ú fB1(—
2

) ú fB1(—
1

).

As all delays in each stage follow the normal distribu-
tion, A

i

also follows the normal distribution. Hence, in
an arbiter PUF of length n, if we assume that µ

1

=
µ

2

= · · · = µ
n

= µ and Ê
1

= Ê
2

= · · · = Ê
n

= Ê, we
can write

fA
i

(–
i

) = 1

Ê

Ô
2ifi

e≠(–

i

≠iµ)

2/2iÊ

2
.

As a result, the random variable A
n

, corresponding to
the total propagation delays at the last stage, will have
the mean nµ and the standard deviation

Ô
nÊ, see Fig-

ure 2. Therefore, we can assume that all statistically rel-
evant delay values lie within a limited interval, whose
length is 6

Ô
nÊ (i.e., within three standard deviation

away from the mean value nµ).
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Ê Ê

µ

Ô
nÊ

Ô
nÊ

nµ
—i,3 —i,2 —i,4 —i,1

—i,–n

fB
i

(—i)
fA

n

(–n)

Fig. 2: The distribution of B
i

(blue) with the mean µ and deviation Ê. Four examples of possible realization of B
i

are —
i,1

, —
i,2

, —
i,3

, and —
i,4

, which correspond to four delays at the ith stage. The distribution of total propagation
delay from the enable point to the outputs of last stage in an arbiter PUF with length n (red), with mean nµ and
deviation

Ô
nÊ.

It is obvious that the delay di�erences are real num-
bers. However, the arbiter at the end of the chain pro-
vides only a limited precision in terms of comparing the
total propagation delays of two paths [21]. Hence, it can
compare two signals with delay di�erences only above
a certain threshold, say “ > 0. As a result, the actual
number of di�erent delay values, which can be observed
and compared by the arbiter are limited. Due to this
fact, all propagation delays at the output of each stage
(i.e., –

i,j

, where 0 Æ i Æ n and 1 Æ j Æ 2) can be
mapped to integer values. A mapping f : R ‘æ Z is de-
fined as follows. For all – œ [nµ ≠ 3Ê

Ô
n, nµ + 3Ê

Ô
n],

we have
f(–) =

9
– ≠ nµ + 3Ê

Ô
n

“

:
.

It is straightforward to show that all real delay val-
ues lying in the interval [nµ ≠ 3Ê

Ô
n, nµ + 3Ê

Ô
n] are

mapped to integer values between 0 and M , where

M =
Ï

6

Ô
nÊ

“

Ì
.

Note that 0 and M correspond to the minimum and
maximum real values, respectively. The mapped values
are denoted by –

i,j

, and therefore, we have –
i,j

œ Z.
In this case, the response of the arbiter is “1” if –

n,1

≠
–

n,2

Ø 1, whereas it is “0” if –
n,2

≠–
n,1

Ø 1. The arbiter
is in the metastable condition, if |–

n,1

≠ –
n,2

| = 0.

3.2 Building a DFA out of an Arbiter PUF

According to the definition of a PUF, as presented in
Section 2.1, it seems tempting to represent PUFs by
boolean functions. However, being physical instances,
boolean functions cannot concisely capture the physical
characteristics of a PUF. Still, we can evaluate a PUF
in polynomial time (see Section 2.1). However, in order
to PAC-learn the intrinsic challenge-response behavior

of a given PUF, a polynomial-size representation of its
behavior is required. Therefore, we aim to derive such
a concise representation that can be used in a second
step to provide a PAC-learning algorithm, which works
in polynomial time and learns the unknown challenge-
response behavior of an arbiter PUF for predefined lev-
els of accuracy and confidence.

Consider a PUF, whose challenge-response function-
ality is given by the mapping f

PUF

: C æ Y where
f

PUF

(c) = y, C is the set of challenges, and Y is the
set of responses, cf. [18]. For an arbiter PUF we of
course have C = {0,1}n and Y = {0,1}. Let us de-
fine L

fPUF := {c œ C | f
PUF

(c) = 1}. We have L
fPUF ™

{0,1}n ™ Àú, where À = {0,1}. Hence, L
fPUF can be

thought as being the accepted language of a certain au-
tomaton. It accepts those strings c œ C, whose length
is n and f

P UF

(c) = 1.

In order to build an automaton A, we will use the
notation of the “integer” PUF propagation delays –

i,j

,
see Section 3.1. See Figure 3 for the central idea of our
automaton construction. After reading the first chal-
lenge bit applied to the first stage, A transits from q

0

(the initial state) to either q
1,1

or q
1,2

, depending on
whether c[1] = 0 or c[1] = 1. Here q

1,1

and q
1,2

corre-
spond to tuples ((–

1,1

, –
1,2

), u
1

, i = 1), where the first
elements of them are ordered pairs of possible delays
at the output of the first stage. Note that due to the
physical characteristics of the arbiter PUF — after the
signal propagated through either the direct or crossed
path — two di�erent pairs of delays will be obtained.
These two pairs are included in q

1,1

and q
1,2

. The sec-
ond element of these tuples is u

1

which “memorizes”
the first ith bits of the challenge, for the first stage we
have i = 1 and thus, u

1

= c[1]. Finally, the third ele-
ment of these tuples represents the depth in which the
respective nodes are, e.g., i = 1 for q

1,1

and q
1,2

. This
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component “counts” the number of bits of the input c,
which have been consumed so far.

In order to further elaborate on the definition of q
i,j

,
we provide an example on how the DFA transits from
q

i,j

to q
i+1,j

Õ when reading c[i + 1] = 0, cf. Figure 3. As
it can be seen from the figure, when u

i+1

= 0, the first
entry of the pair (–

i+1,1

, –
i+1,2

) contains the delays on
the upper paths (i.e., –

i+1,1

= –
i,1

+ —
i+1,1

), whereas
for u

i+1

= 1 it is composed of the delays on the lower
paths, i.e., –

i+1,1

= –
i,2

+—
i+1,2

. Hence, using u
i+1

, the
correct sum is defined. What has been explained here
is applicable for the other stages of the arbiter PUF as
well, the other states of A can be defined similarly.

The further and crucial characteristics of this DFA
representing an arbiter PUF are as follows. In Figure 3,
the states q

n,1

, . . . , q
n,2

n define the possible accepting
states in the following way. As mentioned in Section 3.1,
assume that f

PUF

(c) = 1 if –
n,1

≠ –
n,2

> 1, and when
–

n,2

≠ –
n,1

> 1, f
PUF

(c) = 0. For a challenge string
c = c

1

c
2

· · · c
n

, A accepts c if there is a sequence of
states such that r

0

= q
0

, r
i

= ”(r
i≠1

, c
i

) with 1 Æ i Æ n

and r
n

œ F , where

F = {q
n,k

| q
n,k

= ((–
n,1

, –
n,2

), u
n

, n)
s.t. –

n,1

≠ –
n,2

Ø 1, 1 Æ k Æ 2n}.

All other states, not being defined as accepting states,
are of course rejecting. Although it is possible that
–

n,1

= –
n,2

, in reality it will almost never occur (see
Section 6 for more details), thus we can safely exclude
this case. The special rejection state q

r

is reached af-
ter reading further bits following the nth bit of a given
input. After reaching the rejecting state, reading any
further bit results in staying in q

r

. We should stress
that since challenges are n-bit strings, all longer strings
are rejected, as well as shorter strings.

As it is evident from the above discussion, the size of
A as constructed above and based upon the total delay
at the output of each stage of the arbiter PUF is clearly
exponential in n. Consequently, if we represent an ar-
biter PUF by this A, the output of a learning algorithm
should be a hypothesis h with h œ H

n

that could not
be evaluated in polynomial time at all. However, hav-
ing a closer look, it will be proved that this DFA has
indeed only a size which is polynomial in n, and can
be used to PAC-learn an arbiter PUF. To shrink A, we
use the results of the discretization process of the real
delay values.

As mentioned in Section 3.1, the total delay values
can be mapped to the finite set of integer values in
[0, M ], where M can be regarded as a constant inde-
pendent of n. Therefore, the number of possible values
of –

i,j

for 1 Æ i Æ n and 1 Æ j Æ 2) is M + 1. For
a given depth i, the number of possible pairs of delays

Fig. 4: The shrunk DFA representing an arbiter PUF.
Note that the size of this DFA is clearly polynomial in
n.

on the upper and lower paths (i.e., (–
i,1

, –
i,2

)) is thus
at most (M + 1)2. Consequently, the number of dis-
tinguishable pairs, i.e., corresponding to the di�erent
ordered pairs of sums in each level of A cannot exceed
(M + 1)2, and thus the total number of distinguishable
states is limited by

O(n(M + 1)2).

Collapsing the indistinguishable states, a much smaller
DFA as shown in Figure 4 is obtained.

4 PAC-learning of Arbiter PUFs

With the help of the polynomial-size DFA derived in
Section 3, we can now describe a PAC-learning algo-
rithm to e�ciently learn the challenge-response behav-
ior of a given arbiter PUF. Such a PAC-learning algo-
rithm can be derived by adopting and modifying the
algorithms presented in the literature [1,14]. The algo-
rithm presented later by us can be seen as an adapted
version of what has been proposed by Angluin [1]. Here
we only describe the algorithm briefly, and refer the
reader to [1] for further details.

A given PUF provides the learner with access to the
Oracle EX := f

PUF

. See Section 2.4 and Figure 5. The
oracle EX provides labelled examples, whose length are
exactly n. Moreover, the length n of the examples, the
maximum delay value M , and the levels for the accu-
racy and confidence are provided also as inputs to the
algorithm.

The main steps of the PAC-learning algorithm are
depicted in Algorithm 1. At the first stage, h

0

contains
⁄ and no string c is accepted. Since all examples with
f

PUF

(c) = 0 are rejected, and h
0

will be modified only
after receiving a positive example, we assume wlg. that
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Fig. 3: A DFA representing an arbiter PUF.

Fig. 5: Block diagram of the PAC-learning algorithm

the first example is positive. For the ith example, the
algorithm examines whether h

i≠1

is consistent. Then
h

i≠1

is updated, if it is not consistent with the exam-
ple. The procedures of checking the consistency and
updating a hypothesis are described extensively in [1]
and [14], and are not further discussed by us. Moreover,
the proof of the correctness of the above algorithm L
is also presented in [1], and the reader is again referred
to her celebrated result. The algorithm ensures that L
makes at most r

max

calls to the oracle EX, and that
the final output h is an Á/2-approximation of S1, as
shown by the following theorem.

Theorem 1 Let N := O(nM2) that represents the

number of live states, then L returns a hypothesis h

after at most O(N + (1/Á)(N log(1/”) + N2)) calls to

EX, and with probability at least (1 ≠ ”/2), h is an

Á/2-approximation of S1

.

As all the details of the proof are already given
by Angluin [1], we elaborate only on a few interesting
points from the proof given by Angluin. It is clear that

her algorithm is also applicable in the case that the
oracle EX, as in our case, provides only examples of
length n. This means that the PAC-learning problem
addressed by us can be thought of as being a simpli-
fied version of the more general problem solved in [1].
Furthermore, our algorithm is designed to learn exactly
those challenges yielding a 1 at the output of the final
arbiter of the given PUF.

The proof is based on the maximum number of calls
that L makes to EX. We can calculate the maximum
number of calls r

max

as follows cf. [1]. According to the
PAC model (see Section 2.3), with probability at least
1 ≠ ”/2, L should return a 1 ≠ Á/2 accurate hypothesis.
Hence, it is straightforward to show that if L has tested
i conjectures so far, the number of calls to the oracle
EX is

Ár
i

Ë = 1
Á

(ln(1/”) + log
2

(i + 1))
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Algorithm 1 PAC-learning algorithm L for f
PUF

.
Require: A list of (c

i

, fPUF(c

i

)), (Á, ”), n, and M

Ensure: h

1: h0 := ⁄

2: Wlog. let the first positive example be (c1, 1)

3: k = 0, i = 1

4: Examine the consistency of h

k

5: if h

k

is not consistent with c

i

then

6: Update h

k

7: k = k + 1

8: fi

9: i = i + 1

10: Let r

i

:= Á2/Á(ln(1/”) + (i + 1) ln 2)Ë
11: while r

i

Æ r

max

do

12: Proceed with the next example

13: Do steps 4-8

14: od

15: h := h

k

16: return h

As at most (N ≠ 1) di�erent h
k

have to be tested, we
have

r
max

=
(N≠2)ÿ

i=0

(r
i

+ 1)

= (N ≠ 1) +

+ 2/Á

Q

a(N ≠ 1) ln(1/”) + ln(2)
(N≠2)ÿ

i=0

(i + 1)

R

b

which results in

O
11

1 + 2

Á

ln(1/”)
2

n(M + 1)2 + 2

Á

n2(M + 1)4

2
.

Now we calculate the probability that the output h is
not a Á/2-approximation of S1. As in [1] we have

Pr[error(h) > Á/2] =
(N≠2)ÿ

i=0

(1 ≠ Á/2)r

i

which yields that

Pr[error(h) Æ Á/2] Ø 1 ≠ ”

2

.

The time consumed by L is bounded by the time
spent on searching for such strings, which distinguish
two states in h

k

. Since the maximum size of a set con-
taining all possible strings is |À| · |A

PUF

| + 1, which is
2(n · (M + 1)2) + 1, and the related steps (step 4 to 8 in
Algorithm 1) can be repeated at most r

max

times, the
time complexity of L is bounded by

O
!
(1 + (2/Á) ln(1/”))n2(M + 1)4 + (2/Á)n3(M + 1)6

"
.

Thus, we concluded that S1 can be e�ciently learned
(for given accuracy and confidence levels), and the re-
spective algorithm runs indeed in time polynomial in n,
M , 1/Á and 1/”.

Last but not least, we should further elaborate on
the definition of the accuracy level Á, and more specif-
ically, on the impact of building an erroneous DFA.

In Section 2.3, Á is defined as the error of hypothesis
delivered by the PAC learning algorithm. This error
can occur, when either deriving the representation of
an arbiter PUF or learning from membership queries.
The latter case is well studied in the relevant literature
cf. [1]. Here we focus on the error that may occur while
building the DFA-based representation of an arbiter
PUF. As mentioned, PAC learning of an arbiter PUF
under DFA representation is the direct consequence of
delay discretization. Therefore, the error of discretiza-
tion process should be taken into account.

When calculating M (the maximum delay varia-
tion), we assume that all the statistically relevant de-
lay values are lying within a limited interval [nµ ≠
3Ê

Ô
n, nµ+3Ê

Ô
n], corresponding to 99.7% of the total

values. It can be thought that the values lying outside
of this intervals are not considered, which may result in
an error. Hence the definition of Á should be refined to
reflect the impact of this error. To this end, we claim
that the error of discretization process can be limited
to Á/4, that is equal to the error of learning. Therefore,
even in the case of an erroneous DFA representation,
the error of the delivered hypothesis does not exceed
Á/2.

We begin with the calculation of the probability that
the delay values are lying outside the interval [nµ ≠
3Ê

Ô
n, nµ + 3Ê

Ô
n]. That is

Pr (|–
n

≠ nµ| Æ 3Ê
Ô

n) = erf( 3Ô
2

) = 0.9973.

Now we define 1 ≠ Pr (|–
n

≠ nµ| Æ 3Ê
Ô

n) Æ Á/4 that
yields 0.01 Æ Á. Comparing this result with the con-
dition defined in PAC model (0 < Á < 1), it can be
understood that in the case of erroneous DFA, the accu-
racy of the delivered hypothesis cannot be better than
Á/2 = 0.5%.

5 Comparison with related work

We have proved that the arbiter PUF family is subject
to PAC-learning attacks and presented an algorithm,
which predicts the output of an arbiter PUF for given
Á and ”. The notion of PAC-learning was already earlier
used in the context of PUFs by Hammouri et al. [11]
to assess the security of their proposed scheme. In or-
der to do so, they represent a noiseless arbiter PUF
as a Linear Threshold Function (LTF) [2], as first pro-
posed in [10]. This implicitly leads to the conclusion
that a noiseless arbiter PUF is PAC-learnable, as the
Vapnik–Chervonenkis dimension of the proposed rep-
resentation (LTF) for a noiseless arbiter PUF is equal
to n + 1 (for more details and a proof of this, cf. [2]).
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Consequently, a noiseless arbiter PUF is in principle
PAC-learnable under LTF-based representations. How-
ever, this has not been revealed in [11], since the dis-
cretization of real-valued delays was neither explored
nor known at that time. And indeed only this process
enables the preferred Perceptron algorithm to PAC-
learn LTFs representing arbiter PUFs, cf. [2]. To the
best of our knowledge, our framework is the first algo-
rithm that provably learns an arbitrary chosen arbiter
PUF under a well-established representation, for pre-
scribed levels of accuracy and confidence, in polynomial
time.

Since the mathematical proof is proposed in this
paper, it seems redundant to conduct further experi-
ments or simulations that provide a proof of concept.
Nevertheless, for the sake of completeness, we compare
our theoretical findings with experimental results re-
ported in [25]. Note that the hypothesis class of Lo-
gistic Regression algorithm (LR) applied in [25] can
be discretized to obtain a finite hypothesis class [29].
Moreover, thanks to our discretization process, the loss
function of LR is also bounded, hence, it can be con-
verted to a PAC learning algorithm. In this case, the
maximum number of CRPs required to launch an at-
tack is polynomial in n, 1/Á and 1/”. According to
above discussion, we can attempt to compare the num-
ber of CRPs required by our algorithm and LR. We
have proved that the number of CRPs required by our
PAC-learning framework is polynomial in n, M , 1/Á

and 1/”. This has been only partially and empirically
verified in previous work, e.g., [25], where the impact
of M and ” has not been known. They have shown
that when n is increased from 64 to 128, the number
of CRPs required to model the PUF for Á = 0.01 in-
creases almost linearly. However, as mentioned before,
it is not ensured that the final model may be delivered
after the learning phase. In other words, it is not guar-
anteed that for a given level of confidence, an arbiter
PUF can be modeled for a given Á by collecting a sub-
set of CRPs. This is contrary to our algorithm, where
the number of CRPs is polynomial in n and the final
model is delivered with probability at least 1 ≠ ”. Fur-
thermore, and more crucially, by relying primarily on
the results of their experiments the authors of [25] have
estimated the number of CRPs and the time required
for launching the attack in general. In contrast to this,
we have calculated the number of CRPS and the time
complexity of our algorithm based on our mathematical
proof.

6 Practical Considerations

This section devoted to the lessons learned from the
practice that enable us to prove the vulnerability of
arbiter PUFs to PAC learning attacks.

6.1 The Important Role of M

The certain essential aspect of our framework is related
to our proposed DFA-based representation established
with regard to the observation that the delay values can
be mapped to a finite set of integer values. Here we fur-
ther elaborate on this observation. It has been demon-
strated that the maximum delay deviation of each in-
verter used in the PUF chain is 9 picoseconds for both
cases, i.e., direct and crossed paths on average for a
Xilinx Virtex-5 FPGA [21]. This delay di�erence is vir-
tually in line with what has been observed by authors
of [20], where for 12 XC5VLX110 chips (Xilinx Virtex-5
family) the delay deviation is smaller than 10 picosec-
onds on all chips. Assuming 6Ê = 10 ps, the maximum
variation of delay at the end of the PUF chain consist-
ing of n stages is 10

Ô
n ps. However, this value has to

be divided by the precision of the arbiter to calculate
the maximum value M , cf. Sec. 3.1. For an absolute
precise arbiter, the precision “ can be thought as being
infinitesimal, i.e., “ æ 1/Œ, see [21]. Nevertheless, the
precision of the arbiter is reported to be only in the
range of 2.5 ps for a Xilinx Virtex-5 FPGA, cf. [21]. As
an example, under the assumption that n = 128,

M = Á6Ê
Ô

n/“Ë = Á10 ·
Ô

128/2.5Ë = 46.

Therefore, the size of the collapsed DFA would be only
282,752 states. This is far less than the size of O(2128)
states, which would be obtained without considering
the limited variation of the delays.

Naturally, to make PAC-learning of a concrete PUF
less e�ective, one is tempted to construct a PUF with a
very large M . Theoretically, the maximum delay value
M can be increased by enlarging the manufacturing de-
viations, and also using more precise arbiters. However,
the deviation Ê cannot be arbitrary large on real pro-
duction chips. For instance, when increasing Ê, a Field
Programmable Gate Array (FPGA) cannot be utilized
anymore as a general purpose device for other appli-
cations. Moreover, with regard to the higher cost, the
PUF constructors cannot arbitrarily increase the preci-
sion of the arbiter. Due to these limitations, arbitrary
large M ’s can be excluded in practice for FPGAs and
standard CMOS process devices.
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6.2 Dealing with the Metastable Condition

In Section 3.2 we have stated that in practice it may
rarely happen that –

n,1

= –
n,2

. This can be explained
by the fact that this equation represents the possible
metastable condition of the arbiter PUF, when the out-
put of the arbiter is not persistent for a certain chal-
lenge c. Note that this metastablity of the arbiter PUF
must have been already solved by the PUF manufac-
turer. Moreover, aiming at PAC-learning of an arbiter
PUF under a DFA-based representation, we can also
easily overcome this issue by applying two well-known
strategies.
– The label of every chosen example, e.g., f

PUF

(c),
(potentially having the metastablity situation) will
be stabilized by majority voting through several or-
acle calls on the same example (challenge).

– A problematic example resulting in di�erent out-
puts at the arbiter can be simply discarded and sub-
stituted by another randomly chosen example.

6.3 Note on the PAC Learnability of Modified
Architectures

The fact leading to the success of heuristic-based mod-
eling attacks in general is that although an arbiter PUF
with n stages allows for 2n challenges, the number of de-
lay values forming –

n,1

and –
n,2

is only linear in n [17].
Possible countermeasures against modeling attacks that
have been introduced so far are based on adding non-
linearity to arbiter PUFs, such as XOR or feed-forward
arbiter PUFs [13]. It has been shown that these coun-
termeasures are rather e�ective (see [19,25]). Thus, the
number of CRPs required for modeling is exponential in
n in this case. We claim that although the non-linearity
of an arbiter PUF may result in a more complex repre-
sentation of that, our approach can be applied to break
the security of the modified arbiter PUFs (XOR- and
feed-forward PUFs) as well. For instance, in the case of
XOR-PUFs, if the number of XORs is constant and in-
dependent of n, the DFA-representation that has been
proposed by us can be modified to enable even a PAC-
learning algorithm of an XOR-based arbiter PUF. Since
the size of the modified DFA is still polynomial in n and
M , the number of CRPs required for modeling is poly-
nomial in n, M and 1/Á as well as 1/”. The running
time of algorithm remains polynomial in n, M and 1/Á

as well as 1/”. To sum all this up, due to the constant
value of M for both, arbiter PUFs and its modified
structures, it is possible to learn modified arbiter PUFs
for given Á and ”. Furthermore, it is ensured that the
PAC-learning algorithm runs in time polynomial in n,
M , 1/Á and 1/”.

7 Conclusion

In this paper, we have proved that arbiter PUFs are
e�ciently PAC-learnable under a DFA-based represen-
tation. As our DFA-based representation of the arbiter
PUF requires integer delay values, we have presented a
statistical discretization and mapping process from the
real values of the multiplexer delays to a set of integer
values. Based on the limited variation in di�erent de-
lay values, we are able to construct a collapsed DFA,
whose size is polynomial in the number of stages and
maximum variation of delay values. It is proved that in
contrast to other modeling attacks, our PAC-learning
framework is provably able to learn the challenge-response
behavior of the PUF for given accuracy and confidence
levels. Furthermore, it has been shown that the max-
imum number of CRPs required for learning is poly-
nomial in the number of stages, maximum deviation of
delay values, as well as given levels of accuracy and con-
fidence. Finally, we have evaluated the time complexity
of our PAC-learning algorithm, which is polynomial in
the length n of the arbiter PUF, the maximum vari-
ation of delays and levels of accuracy and confidence.
Last but not least, we demonstrate that mechanisms
devised based on the security of PUFs cannot be an ul-
timate solution to the problem of secure authentication
and IC fingerprinting. This has been already observed
and discussed in the literature [4–6].
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