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Abstract. TinyECC 2.0 is an open source library for Elliptic Curve
Cryptography (ECC) in wireless sensor networks. This paper analyzes
the side channel susceptibility of TinyECC 2.0 on a LOTUS sensor node
platform. In our work we measured the electromagnetic (EM) emana-
tion during computation of the scalar multiplication using 56 different
configurations of TinyECC 2.0. All of them were found to be vulnera-
ble, but to a different degree. The different degrees of leakage include
adversary success using (i) Simple EM Analysis (SEMA) with a single
measurement, (ii) SEMA using averaging, and (iii) Multiple-Exponent
Single-Data (MESD) with a single measurement of the secret scalar. It
is extremely critical that in 30 TinyECC 2.0 configurations a single EM
measurement of an ECC private key operation is sufficient to simply
read out the secret scalar. MESD requires additional adversary capabili-
ties and it affects all TinyECC 2.0 configurations, again with only a single
measurement of the ECC private key operation. These findings give evi-
dence that in security applications a configuration of TinyECC 2.0 should
be chosen that withstands SEMA with a single measurement and, be-
yond that, an addition of appropriate randomizing countermeasures is
necessary.

Keywords: TinyECC 2.0, Side Channel Analysis, SEMA, MESD, LOTUS Sen-
sor Node, Wireless Sensor Network.

1 Introduction

Wireless sensor nodes are the building blocks of many ubiquitous applications
in the Internet of Things (ToT), Ambient Intelligence, and Cyber Physical Sys-
tems. Such a Wireless Sensor Network (WSN) consists of many sensor nodes.
Sensor nodes gather physical properties of an environment such as temperature
or sound and communicate with a gateway sensor node, possibly via other sen-
sor nodes. Each sensor node is equipped with a battery and communicates with
other nodes through a wireless channel. The communication channels of a WSN



are therefore susceptible to sniffing attacks. To reach confidentiality on the wire-
less communication channel as well as to establish secure routing or enable node
authentication, the sensor nodes need to be equipped with cryptographic imple-
mentations. For this, symmetric or public-key cryptographic primitives can be
used. However, public-key cryptography is of advantage if there is a need of key
establishment, message authentication or authentication of broadcast messages.

For public-key cryptography, a performance advantage of Elliptic Curve Cryp-
tosystems (ECC) over the RSA algorithm is well proven, e.g., it was demon-
strated in [7] for small microprocessor platforms. TinyECC [16,19] is a config-
urable cryptographic library for ECC that has been developed by North Carolina
State University for the usage with the operating system TinyOS [1] on sensor
nodes. It offers implementations of EC Diffie-Hellman key exchange (ECDH), EC
digital signature algorithm (ECDSA), and EC public-key encryption (ECIES).
Further, it includes various configuration options for optimizing the computa-
tion on an elliptic curve. TinyECC will guide real IoT ECC implementations.
Therefore it is very important that especially open source implementations are
not severely vulnerable on known attacks.

Since 1996, a new class of implementation attacks on cryptographic algo-
rithms appeared that exploits the observation of side channels such as the con-
sumed time, power, or the emitted electro-magnetic radiation during computa-
tion in order to determine secret keys of an implementation. This class of passive
implementation attacks is called Side Channel Cryptanalysis (SCC). While the
first published attack was a timing attack [14], the most relevant publication in
this field is about Simple Power Analysis (SPA) and Differential Power Analysis
(DPA) [15]. Later on, it was shown that also the emitted electromagnetic (EM)
radiation during computation can be successfully exploited [6]. The same meth-
ods used in [15] are referenced as Simple Electromagnetic Analysis (SEMA) and
Differential Electromagnetic Analysis (DEMA) if the EM emanation is used as
side channel. SPA/SEMA uses a direct visible interpretation of measurements.
It may be successful with one single measurement, and it does not require the
knowledge of input and output data. DPA/DEMA computes statistics between
predictable key-dependent internal states of the computation and the physical
leakage. For this, DPA/DEMA needs the knowledge of input or output data of
the computation and requires a sufficient number of measurements.

In this paper we present practical EM side channel analysis results of a
TinyECC 2.0 implementation on a LOTUS sensor node. A LOTUS node is an
advanced 32-bit wireless sensor node platform [10, 17]. In our work we tested 56
configurations of TinyECC 2.0 regarding side channel leakage on this platform.
We tested the vulnerability of these configurations on SEMA and, additionally,
on MESD [18] attacks which was rarely studied on ECC implementations before.
It it is shown that SEMA compromises the secret scalar of 30 tested TinyECC 2.0
configurations after just one single EM measurement of an ECC private key
operation. Moreover, all tested configurations turned out to be vulnerable on
MESD using one single EM measurement of the secret scalar in an ECC private
key operation.



2 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is a very efficient technology to realize pub-
lic key cryptosystems and public key infrastructures (PKI). A comprehensive
introduction to ECC is given in [9].

An elliptic curve F is an algebraic structure. E is defined by an equation
over an arbitrary field M:

E: 9y’ +aizy+asy =z + asx® + asx + ag (1)

where a1, a2, as3,a4,a6 € M. Equation (1) is called a Weierstrass equation
over Affine Coordinates.

Fields are abstractions of number systems such as real numbers R. Fields
consists of a set of elements and two operations, usually denoted addition and
multiplication. Due to implementation and performance issues finite fields are
regarded called Galois Field GF(), too. The order of a Galois field is the number
of elements of the field GF(). A Galois Field GF(q) with order ¢ exists only
if ¢ = p™ where p is a prime number and m a positive integer. p is called
characteristic of the Galois Field in this case. If m = 1, GF(p) is called a prime
field, if m > 1, GF(p™) is called an ezxtension field and if p = 2, GF(2™) is
called a binary field. In TinyECC only elliptic curve groups over prime fields
GF(p) are regarded. So we restrict to elliptic curves over prime field in this
paper. A prime field GF(p) consists of the following elements: {0, 1,2, ..., p -
1}.

If the characteristic of p is different from 2 or 3 equation (1) is transformed
to

y? =2 +ar+b modp (2)

where a,b € GF(p) and 4a® + 27b% £ 0.

Equation (2) describes an elliptic curve E over GF(p) which consists of all
pairs (z;,y;) where z;,y; € GF(p) which solve equation (2). The pairs (z;, y;)
are called ECC curve points. Additionally, the point at infinity oo is also said to
be on the elliptic curve. Given an elliptic curve F, there is a defined operation
for adding two curve points G : (z1, y1) and Q : (z2, y2) to produce a third
point T : (z3, y3) with G+ Q = T. T is element of the given elliptic curve E,
too. With this addition rule + the set of points of E (GF(p)) forms an (additive)
Abelian group with oo serving as identity element. The addition rule contains
the case that two identical points G : (x1, y1) are added: G + G = 2 G (point
doubling) with 2 G on the elliptic curve E. This idea is used to define a cyclic
subgroup:

(@) = {,G,2G,3G,....(n—1)G} (3)

G is the base point of the cyclic group (G) and n is the order of G. The calcu-
lation of k G, where k is an integer, is called a scalar multiplication. The problem
of finding k given the ECC points G and k G is called elliptic curve discrete log-
arithm problem (ECDLP). Tt is computational infeasable to solve ECDLP for



appropriate domain parameters. The prime p of GF(p), the coefficients a,b of
equation (2), G and its order n form the domain parameter of a cyclic subgroup.

The ECDLP is often exploited in elliptic curve cryptography, e.g., to con-
struct elliptic curve keys. A private key is an integer d that is selected uniformly
at random from the interval {1, ..., n - 1}. The result S = d G is the according
public key. (d, S) forms an elliptic key pair. The scalar multiplication is computed
by a sequence of point doublings and conditional point additions on the ellip-
tic curve whereat the concrete formulas for point doublings and point additions
depend on the choice of coordinates and the underlying modular arithmetics.
The ECDLP is utilized in ECC schemes such as Diffie-Hellman Key Agreement
(ECDH), Elliptic Curve Digital Signature Algorithm (ECDSA) or the Elliptic
Curve Integrated Encryption Scheme (ECIES).

3 TinyECC 2.0 and the LOTUS Sensor Node

TinyECC, a Configurable Library for Elliptic Curve Cryptography in Wireless
Sensor Networks (Version 2.0) is released on 2/3/2011 [19]. It was developed
at the Cyber Defense Laboratory, a Department of Computer Science at the
North Carolina State University with support by the National Science Founda-
tion (NSF) and the US Army Research Office (ARO).

TinyECC 2.0 is implemented in the programming language nesC. It is de-
veloped for use in TinyOS-2.x operating systems. It offers implementations of
an EC Diffie-Hellman key exchange (ECDH), EC digital signature algorithm
(ECDSA) and a public-key encryption (ECIES). It includes the following vari-
ants of optimizations for computing on an elliptic curve [16]:

— Barrett Reduction (see also [2]),

— Curve-Specific Optimization,

Inline Assembly and Hybrid Multiplication,
— Sliding Window Method (see also [2]),

— Projective Coordinate Systems,

Shamir’s Trick.

Barrett Reduction and Curve-Specific Optimization optimize the modular re-
duction. Inline Assembly and Hybrid Multiplication uses Inline-Assembly code
for speeding up double and add operations in particular. This Inline-Assembly
optimization is developed for the sensor nodes MICAz, TelosB/Tmote Sky and
Imote2 motes. The Sliding Window Method reduces the number of additions by
computing a window of some bits of the scalar. Elliptic curves can be defined
over different coordinate systems. Point addition in affine coordinates require the
calculation of a multiplicative inverse. If inversion is significant more expensive
than multiplication it is advantageous to represent ECC points using projec-
tive or Jacobian representation. So, the scalar multiplication is also speeded-up
by using a weighted Jacobian representation in contrast to affine coordinates.
Shamir’s Trick reduces the signature verification time.



TinyECC 2.0 uses ECC curves and parameters that are recommended by
Standards for Efficient Cryptography Group (SECG) [22,19]. Concretely, the
curves secpl28rl, secp128r2, secpl60kl, secpl160rl, secpl60r2, secp192kl, and
secp192rl are used. The numbers 128, 160, and 192 are the bits of key length.
The addition 'k’ denotes that the parameters are associated with the Koblitz
curve. The addition ’r’ marks that the parameter are chosen randomly. Note,
that there is an ongoing trend towards higher key lengths of elliptic curves, e.g.,
according to [21] the minimum key length is increased to 192 bit. However, for
a medium security level ECC key lengths of 128 and 160 bit should still be
acceptable.

3.1 LOTUS Sensor Node

For our analysis of TinyECC 2.0 we chose the sensor node LOTUS because it
belongs to the most advanced generation of sensor nodes [10,17] that is also
intended for security applications. It is equipped with a low-power ARM Cor-
tex M3 32-bit processor. The current version of TinyOS Version 2.1.2 does not
support this sensor node. The manufacturer MEMSIC Inc of the Lotus sensor
node offers a development environment MoteWorks3.4. MoteWorks comprises
TinyOS in a version 1.x and further product specific optimizations [11]. For the
use of TinyECC 2.0 in this development environment, TinyECC 2.0 and Mote-
Works 3.4 need to be integrated. For this, we did very small adjustments that are
mainly renamings of functions, an insertion of a hardware specific macro, and
an extension of the interfaces random.nc and RandomLFSR.nc with a function
rand32().

3.2 Configurations of TinyECC 2.0 on the LOTUS Sensor Node

As described in Section 3, TinyECC 2.0 supports six optimizations. Among
them, we cannot use the Inline Assembly and Hybrid Multiplication because it
is an inline Assembly code for the sensor nodes MICAz, TelosB/Tmote Sky and
Imote2 mote that cannot be used with the LOTUS sensor node. This is certainly
a restriction when using TinyECC 2.0 on a modern platform. Further, we do not
use the optimization “Shamir’s Trick” in our tests.

TinyECC 2.0 provides seven elliptic curve parameters they are recommended
by SECG. For the calculation on each elliptic curve we used both affine coordi-
nates and projective coordinates. Each combination of elliptic curve and coor-
dinates is tested with the optimizations “Simply”, “Barrett Reduction”, “Curve-
Specific Optimization” and “Sliding Window Method”. The term “Simply” in-
dicates that no optimization is applied. Altogether, this results in 56 different
configurations of TinyECC 2.0 on the LOTUS sensor node that are analyzed on
side channel leakage in Section 5.



4 Related Work on Side Channel Analysis

Computation of the scalar multiplication is efficiently done using the double-
and-add algorithm shown in Algorithm 1 that is a left-to-right binary multiplica-
tion algorithm [2,4]. The double-and-add algorithm is analogous to the common
square-and-multiply algorithm for computing the modular exponentiation.

Algorithm 1 Double-and-Add Algorithm
Require: elliptic curve point P and a positive integer d = (1,d¢—2, ..., d1,do)2
Ensure: S =dP
: Q<+ Py
: for i from ¢ — 2 to 0 do
Q+—2Q;
Ifd; =1 then Q + Q + P;
end for
: Return Q;

Coron [4] has pointed out that a naive implementation of Algorithm 1 is
vulnerable against SPA if the point doubling (aka double operation) and point
addition (aka add operation) can be visually distinguished in the power measure-
ments of a scalar multiplication. Experimental results for distinguishing point
doubling and point addition are provided by Ors et al. [20] on an FPGA based
ECC implementation.

In [18] a powerful technique called “Multiple-Exponent, Single-Data” (MESD)
was introduced for an exponentiation algorithm using the ’square-multiply’ al-
gorithm. For MESD, the adversary is assumed to have access to a special cryp-
tographic device that exponentiates a chosen value using chosen exponents and
further that the implementation of this special cryptographic device is identical
to the device under attack that computes the exponentiation with the secret
exponent. The attack starts from the first secret bit of the exponent that is
processed. To attack the i-th bit of the secret exponent the adversary asks the
special cryptographic device to exponentiate the key guess that the i-th bit is
one. Afterwards the adversary computes the difference signal between the mea-
sured trace with the secret exponent and the measurement trace with the chosen
exponent. If the difference remains zero for more than one subsequent operation
the guess is correct. Otherwise, if the difference remains zero only for the next
squaring operation the guess is wrong, i.e., the next secret exponent bit is zero.
The amount of leakage determines whether one trace of the secret exponent
is sufficient for analyzing the difference signal or whether multiple traces are
needed. We are aware of only one paper [8] that has applied MESD to ECC
implementations before.

Principle solutions for countermeasures are already given by Coron in [4].
For SPA resistance a double-and-add resistant algorithm is proposed that avoids
conditional branching [4]. Further directions for preventing simple side channel



analysis are the use of unified formulae for point doubling and addition [3] and
the use of inherently protected algorithms such as the Montgomery Ladder [12].
These countermeasures may secure against SPA /SEMA, but not against MESD
and DPA /DEMA as the processed data are not randomized. For DPA resistance
Coron [4] proposes three directions for countermeasures based on randomiz-
ing intermediate data: (i) randomization of the private exponent, (ii) blinding
the point G, and (iii) the use of randomized projective coordinates. The last
two countermeasures are also effective to prevent an MESD attack. A valuable
overview on the state-of-the-art of countermeasures for ECC can be found in [5].

5 Experimental Results

5.1 Measurement Set-Up

The measurement setup consists of a Lotus node and two digital storage Oscillo-
scopes, a Picoscope 5203 by Picotech and a LeCroy WaveRunner 640Zi. We used
the near-field probes LF-B-3 and LF-U-2,5 from Langer EMV. As a trigger we
used the green LED of the Lotus node (see Fig. 1(a)). The node was powered by
an USB cable with 5 Volt and the CPU frequency was 16 MHz. The near-field
probe LF-B-3 was positioned near the Vo pin of the Lotus node (see Fig. 1(b)).
The positioning of near-field probe LF-U-2.5 was on the resistor “R18” or on the
surface of the microcontroller shown in Fig. 1(c).

(b) LF-B-3  positioned (c) LF-U-2,5 positioned on
near the VCC pin. the surface of the microcon-
troller.

Fig. 1. Measurement setup.



5.2 SEMA and MESD Results

Experimental tests were applied at the computation of the scalar multiplication
d G where d is the private key and G is the base point of the elliptic curve. This
indeed is the computation of the public key S = d G, e.g., at key generation. To
simplify testing we generally used a small bit sized value of d = (101011011)s.
This does not affect the generality of our attacks.

We followed a two-step approach:

1. First, we recorded a few measurements of the beginning of the scalar multipli-
cation. For SEMA, we performed an optical inspection of the measurements
curve whether we can distinguish the double and add operation. This step
is repeated using different EM probe settings.

2. Second, we applied the MESD attack for all configurations that were not
compromised using a single measurement in the first step, Again, we repeated
this step using different EM probe settings.

The results of the analysis are shown in Fig. 2. For assessment of our results
we define the following classifications:

— ’s”: SEMA leakage using a single measurement.

— ’a’: SEMA leakage using an average curve of twenty of measurements.

— ’'d’: MESD leakage using a single measurement.

— 'wd’: MESD leakage of the sliding window method using a single measure-
ment.

These classifications are ordered towards attacks of increasing difficulty. We en-
sured that all configurations that are classified with ’a’ can also be broken with
MESD using only one single measurement of the secret scalar. The additional
character '+’ indicates that the operation double and add are clearly visible and
the character ’-’ indicates that it is more difficult to separate the operations by
optical inspection, but still feasible.

In the context of ECC protocol schemes, averaging of measurements of a
secret scalar is a threat for ECIES and static ECDH schemes. In such a scheme
SEMA using an average curve is the easier attack compared to an MESD attack.
If a single measurement using SEMA or MESD is sufficient to extract the secret
scalar this jeopardizes every ECC scheme.

Summarizing Fig. 2, there are fourteen extremely vulnerable configurations
categorized as 's+’ and sixteen vulnerable configurations categorized as ’'s-’. A
single measurement of each of these thirty configurations is sufficient to expose
the secret scalar. Using averaging of twenty single measurements, the secret
scalar can be read out from ten configurations that are classified as ’a’. There
are two configurations that withstand SEMA using averaging but can be broken
with MESD, therefore they are classified as 'd’. All fourteen configurations using
the sliding window method cannot be compromised using SEMA. This is obvious
because there are multiple possibilities for each addend in the add operation
so that distinguishing the double and add operations is not sufficient in these
configurations. However, our results show that all fourteen configurations using
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Fig. 2. Summary of Classification Results.

a sliding window method can be broken with MESD. It is important to note
that with a good positioning of the EM probe it is possible to successfully apply
MESD with only one single measurement of the secret scalar. A further result
is that all configurations using affine coordinates — besides those using sliding
window method — belong to the categorizations s+’ and ’s-’. The results using
projective coordinates are manifold, there are eight configurations classified as
's+’, ten classifications classified as ’a’ and two classifications ’d’. The results
depend both on the elliptic curve and on the optimization, there is no clear advise
to use a certain optimization. Below we provide some exemplary experimental
results.

The EM leakage of an ’s+’ classified measurement is shown in Fig. 3(a). The
operation double and add are clearly distinguishable. Therefore an adversary can
easily identify the secret key by a single measurement. The classification ’s-’ must
be viewed in more detail. Fig. 3(b) shows the EM measurement, the time range
1.8 to 3.8 ms shows a double operation and the time range 3.8 - 5.7 ms shows the
add operation. The difference of the two operations is the following: the double
operation start with a peak and ends with two peaks. The add operation doesn’t
have a peak. This difference is not the same for all classifications with ’s-’ but
the difficulty is similar.

First, all configurations were tested with the Picoscope. Configurations that
cannot be broken with a single-measurement were further analyzed using the
WaveRunner 6407Zi.

For averaging of EM measurements, twenty traces were found to be sufficient
to show visible differences of the double and add operation. At the configuration
“Curve-Specific Optimization” using projective coordinates with the two elliptic
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(a) Classification ’s+': Configuration "Simply” with affine co-
ordinates and the secp160rl elliptic curve parameter.
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(b) Classification ’s-”: Configuration “Curve-Specific Opti-
mization” with affine coordinates and the secp128rl elliptic
curve parameter.

Fig. 3. Exemplary Results of the Classification ’s’.

curve parameters secp192k1 and secp192rl a difference could be found which
was visible on the measuring instrument by switching the mode intensity.

For the classification ’d’ we used the technique “Multiple-Exponent, Single-
Data” (MESD) [18]. For simplification of our tests we used the same LOTUS
sensor node for both the measurement of the secret scalar and the hypothetical



(a) Classification ’a’: Configuration "Curve-Specific Optimization” using projective co-
ordinates and secp160k1 elliptic curve parameter.

G

(b) Classification ’a’: Configuration “Curve-Specific Optimization” using projective co-
ordinates and secpl92rl elliptic curve parameter.

Fig. 4. Exemplary Results of the Classification 'a’.

scalar. If two LOTUS sensor nodes have to be used because the hypothetical
key cannot be loaded in the target device, the measurement condition of the
second device needs to be adjusted to the target device which demands for some
additional post-processing in order to align the measurement traces. The first
hypothetical key value was always (111...1) in dual representation. The length
depends on the length of the chosen elliptic curve parameter. We also measured a
single trace and computed the difference of the traces. If the starting bit sequence
from the secret scalar and the hypothetical key is equal, then the difference is
remarkably reduced up to a certain time. If the starting bit sequence is not equal
the difference persists. Next we built a new hypothesis by changing the bit on



the i-th position of the guessed scalar to 0 and measured the EM trace again.
This is repeated until the last difference of the traces has disappeared. The last
hypothetical key is then expected to be the correct secret scalar. If [ is the length
of the secret scalar, one expects [ iterations of this analysis in the worst case.

(a) Use of hypothetical key = 1111111115. (b) Use of hypothetical key = 1011111115.

1

=
—

[l e i i
(c) Use of hypothetical key = 1010111112. (d) Use of hypothetical key = 1010110115.

Fig. 5. Exemplary Results of the classification ’d’ using secp128rl elliptic curve pa-
rameter. In each figure, the top curve is the single measurement of the guessed scalar
and the second curve is the single of the secret scalar. If the bit sequences are made
more equal, the differences approaches zero in the third curve.

In these experiments we found out that a delay must be considered if the
secret scalar and the key hypothesis have a different bit length, see Fig. 6. An
adversary can use this information to build the key hypothesis with the same
length.

The classification *wd’ is exploitable by the technique MESD on the sliding
window method. Usually, the EM leakage of the sliding window method makes
the block length visible and one can distinguish between the double and the
add operation. Without knowledge of the value of the additional point a direct
extraction of the secret scalar is not possible. The sliding window method used
with TinyECC 2.0 divides the bit string in blocks of 4 bits. The addend is chosen
according to the value of a 4-bit block. If the 4-bit block is zero there is no add
operation, i.e., in this case the 4-bit block can usually be directly identified as
all-zero block. The MESD technique operates similar as described before at the
'd’ classification. The difference is that the window size has to be determined
first. For each block, 24 —1 guessed exponents are loaded and analyzed. If the first
block of scalar bits is correct the difference approaches zero for the add operation
and at least for the next four subsequent double operations. The worst case effort
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Fig. 7. Exemplary Results of the classification 'wd’ using the sliding window expo-
nentiation on elliptic curve secpl60rl and projective coordinates. In each figure, the
top curve is the single measurement of the guessed scalar and the second curve is the
single measurement of the secret scalar. If the bit sequences are made more equal, the
differences approaches zero in the third curve.

needed by this classification is given by b - (2% — 1) wherein b is the number of
blocks of w-bit windows.

Note that the quality of EM analysis results depends strongly on the concrete
positioning of the EM probe. It is therefore a difficult matter. There were three
areas found, on the VCC-Pin, on the resistor “R18“ and on the surface of the
microcontroller shown in Fig. 1(c). The best positioning depends on the studied
configuration of TinyECC 2.0 and has to be analyzed manually. Besides the



position of the EM probe the polar and azimuthal angle between the head of the
EM probe and the chip surface are of importance. Some experience is needed
to find a good positioning of the EM probe that enables that the analysis is
successful. The voltage of the measurements was between 10 mV and 100 mV.

Full Key Recovery It is worth noting that the SEMA characteristics of the
measurements do not change if a full-bit sized scalar is used. Full key recov-
ery boils then down to a question of the capabilities of the oscilloscope, i.e., it
needs to be checked whether a single measurement can be completely recorded
with a sampling rate that is sufficient for a successful SEMA attack. In order
to analyze full key recovery with one single measurement we exemplarily in-
vestigated the configurations “Simply” (’s+’) and “Barrett Reduction” (’s-’) on
the curve secp192r1 using affine coordinates which lead to the largest execution
times of the scalar multiplication. Both take approximately 1.1 seconds with
a randomly chosen scalar d. Using the Picoscope 5203 there is a buffer size of
32 MS that limits the maximum sampling rate to 20 MS/s with one channel and
to 10 MS/s with two channels. 10 MS/s turned out to be sufficient to break the
's+’ characterization, here an undersampling can be easily tolerated. For the ’s-’
characterization it is significantly more difficult. However, it was verified that a
sampling rate of 10 MS/s also allows to break this configuration with one single
measurement.

6 Conclusion

It is revealed that the susceptibility of the analyzed 56 TinyECC 2.0 config-
urations towards SEMA is manifold. Though in the end the secret scalar of
all configurations can be compromised, they are susceptible to different classes
of attacks. This paper leads to a cautionary note that 30 configurations are
vulnerable to a complete SEMA leak with one single measurement. Adding of
randomizing countermeasures is assumed to fail to protect these configurations.
Though the leakage characteristics also depend on the used hardware platform,
LOTUS in our case, this is a strong indication that exploitable vulnerabilities of
TinyECC 2.0 exist also on other platforms.

These findings are important for users of TinyECC 2.0. For practical applica-
tions with TinyECC 2.0 we recommend to use the sliding window method that
has intrinsically a high resistance against SEMA attacks. Moreover, all configu-
rations turned out to be vulnerable on MESD using a single measurement of the
secret scalar. To counteract MESD attacks it is required that each run of the
implementation uses internally a different representation of the processed data
[18]. This can be achieved by blinding of the base point or the use of randomized
projective coordinates [4]. Additionally, randomization of the secret scalar may
be useful to counteract possible SEMD attacks [18].
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