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Abstract
A watermarking scheme for programs embeds some information called a mark into a program while

preserving its functionality. No adversary can remove the mark without damaging the functionality of
the program. In this work, we study the problem of watermarking various cryptographic programs such
as pseudorandom function (PRF) evaluation, decryption, and signing. For example, given a PRF key K,
we create a marked program C̃ that evaluates the PRF F (K, ·). An adversary that gets C̃ cannot come
up with any program C∗ in which the mark is removed but which still evaluates the PRF correctly on
even a small fraction of the inputs.

The work of Barak et al. (CRYPTO’01 and J.ACM, 59(2)) shows that, assuming indistinguishability
obfuscation (iO), such watermarking is impossible if the marked program C̃ evaluates the original pro-
gram with perfect correctness. In this work we show that, assuming iO, such watermarking is possible if
the marked program C̃ is allowed to err with even a negligible probability, which would be undetectable
to the user. We construct such a watermarking scheme with a secret-marking key used to embed marks
in programs, and a public-detection key that allows anyone to detect marks in programs. For our security
definition, we assume that the adversary can get oracle access to the marking functionality.

We emphasize that our security notion of watermark non-removability considers arbitrary adversar-
ial strategies to modify the marked program – for example, an adversary could obfuscate the marked
program and this should not remove the mark. This is in contrast to the prior works, such as that of
Nishimaki (EUROCRYPT ’13), which only consider restricted removal strategies that preserve the orig-
inal structure of the marked program (e.g., as a vector of group elements), but do not provide security
against arbitrary strategies.

1 Introduction

Digital watermarking enables us to embed some special information called a mark into digital objects such
as images, movies, music files, or software. We often call such objects marked. There are two basic
requirements for watermarking. The first is that a marked object should not be significantly different from
the original object. The second is that malicious entities should not be able to remove embedded marks
without somehow “destroying” the object (e.g., modify an image beyond recognition).

There are many works on watermarking perceptual objects such as images, movies, music files, etc.
Most of them do not give a rigorous theoretical treatment and their constructions are heuristic and ad-hoc.
The work of [HMW07] proposes general and rigorous definitions for such schemes, and gives an in-depth
exploration of the connections between such definitions, but does not provide any actual constructions.

∗The results of this paper were subsumed by [CHN+15].
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Watermarking Cryptographic Programs. In this work, we focus on watermarking programs, and specif-
ically ones that are cryptographic in nature, such as programs evaluating a pseudorandom function (PRF) or
implementing a signing or a decryption procedure. For concreteness, let us focus on the case of PRFs.

We define a watermarking scheme for a PRF family {F (K, ·)} to consist of procedures Mark(mk , ·)
and Detect(dk , ·) with a secret-marking key mk and a public-detection key dk . Given a PRF key K, the
marking procedure C̃ ← Mark(mk ,K) creates a marked PRF circuit C̃ that evaluates F (K, ·). Although
we will see that we cannot achieve perfect correctness where C̃(x) = F (K,x) for all inputs x, we will be
able to achieve statistical correctness where we allow a negligible error probability. The detection procedure
Detect(dk , C ′) either outputs that a circuit is marked or unmarked.

For security, we consider a game where we choose a random PRF key K and give the adversary the
marked circuit C̃ ← Mark(mk ,K). Intuitively, we require that the adversary cannot come up with any
program that correctly evaluates the PRF and removes the mark. More precisely, the adversary produces
a circuit C∗ and we insist that either: (1) the circuit C∗ does not even approximately compute F (K, ·),
meaning that C∗(x) = F (K,x) on at most an ε-fraction of the inputs x, or (2) the detection procedure
correctly detects that the circuit is marked by outputting marked ← Detect(dk , C∗). The parameter ε,
called the “approximation factor” and we can set it to some small constant such as 1% or even to any 1/poly
fraction. During the attack, the adversary is also given the public-detection key dk and access to the marking
oracle Mark(mk , ·) that he can query on arbitrary PRF keys of his choice.

Variants. We call the above type of watermarking “mark-embedding” to denote that it only distinguishes
between marked and unmarked program. We also consider “message-embedding” watermarking where the
marking procedure can be used to embed an arbitrary message into the program and the detection procedure
should recover the message.

We can also consider a relaxation of the above definition to the symmetric-key setting, where there is a
single secret watermarking key wk used by the marking and detection procedures, and weaker security def-
initions depending on whether the adversary has access to the marking and/or detection oracles (a detection
oracle Detect(wk , ·) allows an adversary to test whether a circuit is marked or unmarked – in the public-key
setting this is subsumed by giving the adversary the public-detection key dk ).

Motivation. To highlight the usefulness of watermarking cryptographic functions, we describe two ap-
plications as examples. However, we emphasize that the concept should have broader applicability beyond
these examples.

Consider an automobile manufacturer that wants to put electronic locks on its cars; the car contains a
PRF key K and can only be opened by running an identification protocol where it chooses a random input x
and the user must respond with F (K,x). When a car is sold to a new owner, the owner is given a software
key (e.g., a smart-phone application) consisting of marked program C̃ that evaluates the PRF F (K, ·) and
is used to open the car. The mark can embed some identifying information such as the owner’s name and
address. Even if the software key is stolen, the thief cannot create some new software that would open the
car while removing information about the original owner.

As another example, we can create a traitor-tracing scheme that preserves anonymity without having
a central registry of users. In this scenario there is a content provider that streams encrypted copyrighted
content to users. When users register, they provide some identifying information and they get a marked
decryption key with this information embedded, but the identifying information does not need to be stored
in any central registry in the long term.1 The content provider only stores an anonymous encryption key for

1Alternately, we can implement this using a two-party computation protocol, where the user has her identifying information as
an input (perhaps signed by a third party) and gets the marked key as an output without the content provider learning anything about
the user at any point in time.
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each user. If any user posts a valid decryption key in public, the identifying information about that user can
be recovered from the key.2

Impossibility? The work of Barak et al. [BGI+01,BGI+12] initiated the first theoretical study of program
watermarking. They propose a game-based definition which is similar to the weakest definition we con-
sider in this work (in the symmetric-key setting with no marking/detection oracles given to the adversary)
but require perfect correctness. Unfortunately, they show that this definition is unachievable assuming the
existence of indistinguishability obfuscation.

The main intuition behind the negative result is to consider an attacker that takes a marked program and
applies indistinguishability obfuscation (iO) to it. If the marked program implements the original program
with perfect correctness then the result of applying iO to it should be indistinguishable from that of applying
iO to the original program. Since the latter is unlikely to be marked, the same should apply to the former.
Therefore, this presents a valid attack against watermarking in general.

Barak et al. note that the above attack crucially relies on the perfect (rather than merely statistical)
correctness of the marked program, meaning that it correctly evaluates the original program on every in-
put. They mention that otherwise “it seems that obfuscators would be useful in constructing watermark-
ing schemes, because a watermark could be embedded by changing the value of the function at a ran-
dom input, after which an obfuscator is used to hide this change.” This idea was not explored further
in [BGI+01, BGI+12] and it is far from clear if a restricted notion of obfuscation such as iO would be suf-
ficient and what type of watermarking/security can be achieved with this approach. Indeed, this idea serves
as the starting point of our work.

Other Related Work. We mention that there are several other works [NSS99, YF11, Nis13] that pro-
pose concrete schemes for watermarking cryptographic functions, under several different definitions and
assumptions. For example, the work of Nishimaki [Nis13] gives formal definitions and provably secure
constructions for watermarking cryptographic functions (such as trapdoor functions). The main aspect that
sets our work apart from these works is that they only consider restricted attacks which attempt to remove a
watermark by outputting a new program which has some specific format (rather than an arbitrary program).
For example, in the work of Nishimaki [Nis13], cryptographic keys (both marked and unmarked ones) are
represented as a vector of group elements, and a valid attack is required to output a key of the same type. In
particular, for all of the schemes proposed in these works, the watermark can be removed via the attack de-
scribed in [BGI+01,BGI+12] where an adversary uses iO to obfuscate the marked program so as to preserve
its functionality but completely change its structure.

1.1 Our Results and Techniques

We start by giving new formal definitions of program watermarking, along the lines of what we described
earlier. To avoid the [BGI+01,BGI+12] impossibility results, our definition allows for statistical rather than
perfect correctness.

As our main technical contribution, we show how to watermark a family of PRFs. Our scheme has
a public-key detection procedure and achieves security in the presence of a marking oracle. We get a
mark-embedding scheme (no message) that allows for any ε = 1/poly approximation factor and a message-
embedding scheme that allows for approximation factors ε = 1/

√
2 + 1/poly. In the case of message-

2Note that, in this scenario, we assume that the content is encrypted separately under each user’s key, which corresponds to a
naive traitor-tracing scheme. Unfortunately, our watermarking definitions/constructions do not guarantee any security if the same
key is marked with different messages and therefore each user would need to get a different key. The novelty here is that the
identifying information about users is embedded in their keys rather than stored in a central registry. It would be interesting to
combine this idea with more advanced traitor-tracing schemes where content doesn’t need to be encrypted separately.
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embedding constructions, we show that there is an inherent lower bound of ε = 1/2. Both schemes rely on
(sub-exponentially secure) indistinguishability obfuscation (iO).

For intuition, we also first construct a simple “basic scheme” which is a mark-embedding scheme (no
message) in the symmetric-key setting (both the marking and detection keys are secret) and where the
adversary does not get access to the marking or detection oracles. This scheme highlights the high-level
ideas but removes much of the complexity needed for our full construction.

Once we have shown how to watermark a family of PRFs, we can easily extend this to watermarking
other cryptographic primitives such as the decryption procedure of a public-key encryption or the signing
procedure of a signature scheme. To do so, we rely on recent (obfuscation-based) constructions of public-
key encryption and signatures where the decryption/signing procedures are simply PRF evaluation [SW14].

Our techniques. On a high level, to watermark a PRF F (K, ·), we create a circuit C that evaluates the
PRF correctly on almost all inputs x, except for some special set of “marked-points” (of negligible density)
on which the program outputs incorrect values that can be detected. We obfuscate the circuit C to create a
marked circuit C̃ which “hides” the marked-points. The detection function can test an arbitrary circuit C ′

by evaluating it on some subset of the marked-points to determine if it is marked on unmarked.
For our basic scheme, we can implement the above idea by choosing a polynomial-sized set of ℓ marked-

points x1, . . . , xℓ and corresponding outputs y1, . . . , yℓ uniformly at random. These values form a water-
marking key wk which is needed to both embed marked and detect marks. The detection function tests if
on at least one of the ℓ points xi the program evaluates to yi, and if so it determines that the program is
“marked” else “unmarked”. We show that this implements “mark-embedding” watermarking (no message)
with security in the symmetric-key setting against an attacker that doesn’t get access to the marking or de-
tection oracles. We require that the PRF is a puncturable PRF [BW13, BGI14, KPTZ13, SW14] and the
obfuscation scheme satisfies iO security. The proof follows in two steps. Firstly, using a careful series of
hybrids, we show that an adversary that gets the marked program cannot differentiate between the marked-
points xi and uniformly random points in the domain. This relies on the puncturing proof technique by
Sahai and Waters [SW14]. Secondly, we show that this implies that the probability of an adversary being
able to come up with a program which is correct on even an ε-fraction of inputs, but is not detected (differs
from the marked program on all of the ℓ marked-points) is negligible as long as ℓ = O(λ/ε) where λ is the
security parameter. Therefore, we can set the approximation factor to any ε = 1/poly(λ) by choosing a
correspondingly larger ℓ.

Unfortunately, the above scheme already becomes insecure if the adversary has access to a marking
oracle or a detection oracle, let alone if we make the key wk public. Fixing this in our full scheme is a
significant challenge and requires us to introduce a more complex variant of the above ideas where: (1)
The set of marked-points is different for each marked circuit and depends on the key K being marked,
while still allowing the detection procedure to find marked-points without knowing K, (2) The number of
marked-points is super-polynomial and the detection procedure tests the circuit on a small random subset
of ℓ of them; furthermore we obfuscate the main components of the detection procedure and release them
as a public-detection key. The proof of security of the full scheme scheme relies on a delicate sequence of
super-polynomially many hybrids, which requires us to rely on complexity leveraging, and therefore assume
the sub-exponential security of iO and puncturable PRFs.

To embed a message in the marked program, we follow the above approach but ensure that the outputs of
the marked circuit on the marked-points encode some information about the message which can be recovered
by the detection procedure.
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2 Preliminaries

2.1 Notations

For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}. A bold face lower-case letter denotes a vector like
x = (x1, . . . , xn). For two strings x1 and x2, x1∥x2 denotes a concatenation of x1 and x2. For program (or
circuit) C, C[a, b, c, . . .] denotes that C contains the values a, b, c, . . . “hardwired” in its description. When
D is a random variable or distribution, y ← D denote that y is randomly selected from D according to its
distribution. If S is a set, then x ← S denotes that x is uniformly selected from S. The expression y := z
denotes that y is set, defined or substituted by z. We say that function f : N → R is negligible in λ ∈ N if
f(λ) = λ−ω(1). Hereafter, we use f ≤ negl(λ) to mean that f is negligible in λ.

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote two ensembles of random variables indexed by λ ∈ N.
We define a distinguish probability between X and Y to be µ(λ) if for all PPT algorithm D,

|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| ≤ µ(λ)

We write X c≈µ Y to denote this. If µ is negligible, we just write X c≈ Y .

2.2 Definitions

In this section, we review basic notions and definitions used in this paper.

Obfuscation. The notion of indistinguishability obfuscation (iO) was proposed by Barak et. al. [BGI+01,
BGI+12] and the first candidate construction was proposed by Garg, Gentry, Halevi, Raykova, Sahai, and
Waters [GGH+13].

Definition 2.1 (Indistinguishability Obfuscation [BGI+12, GGH+13]) A PPT algorithm iO is an indis-
tinguishability obfuscator (iO) if it satisfies the following two conditions.

Functionality: For all security parameter λ ∈ N, for all circuit C for all input x, it holds that

Pr[C ′(x) = C(x) | C ′ ← iO(1λ, C)] = 1.

Indistinguishability: For all PPT distinguisher D and all circuit ensembles C0 = {C(0)
λ }λ∈N and C1 =

{C(1)
λ }λ∈N such that ∀λ, x : C

(0)
λ (x) = C

(1)
λ (x) and |C(0)

λ | = |C
(1)
λ | we have:∣∣∣Pr[D(iO(1λ, C(0)

λ )) = 1] − Pr[D(iO(1λ, C(1)
λ )) = 1]

∣∣∣ ≤ µ(λ)

where µ(λ) is negligible. If the distinguishing probability µ(λ) is bounded by 2−λ
ε

for some constant ε,
then we say iO is sub-exponentially secure iO.

For simplicity, we write iO(C) instead of iO(1λ, C) when the security parameter λ is clear from context.

Pseudorandom Functions. We review several variants of pseudorandom functions (PRFs).

Definition 2.2 (Pseudorandom Functions) A pseudorandom function F consists of two PPT algorithms
F = (Key, F ) and a pair of poly-time computable functions n(·) and m(·) that satisfy the following condi-
tion. For all PPT adversary A and K ← Key(1λ), it holds∣∣∣Pr[AF (K ,·) = 1]− Pr[AR(·) = 1]

∣∣∣ ≤ negl(λ)
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where F (K , ·) : {0, 1}n(λ) → {0, 1}m(λ) is a deterministic function and R is chosen uniformly at random
from the set of all functions with the same domain/range.

The notion of puncturable pseudorandom function (pPRF) was proposed by Sahai and Waters [SW14].

Definition 2.3 (Puncturable Pseudorandom Functions) A puncturable pseudorandom function (pPRF)
F consists of three (probabilistic) algorithms F = (Key,Puncture, F ) and a pair of computable functions
n(·) and m(·) that satisfy the following two conditions.

Functionality preserving under puncturing: For all polynomial size set S ⊆ {0, 1}n(λ) and for all x ∈
{0, 1}n(λ) \ S, it holds that

Pr[F (K , x) = F (K {S}, x) | K ← Key(1λ),K {S} := Puncture(K , S)] = 1.

Pseudorandom at punctured points: For all polynomial size set S = {x1, . . . , xk(λ)} ⊆ {0, 1}n(λ) it
holds that for all PPT adversary A,

µ(λ) :=
∣∣Pr[A(K {S}, {F (K , xi)}i∈[k]) = 1]− Pr[A(K {S}, Um(λ)·|S|) = 1]

∣∣ ≤ negl(λ)

where K ← Key(1λ), K {S} := Puncture(K , S) and Uℓ denotes the uniform distribution over ℓ bits.

If the distinguish probability µ(λ) is bounded by 2−λ
ε

for some constant ε, then we sayF is sub-exponentially
secure pPRF.

Theorem 2.4 ( [GGM86, BW13, BGI14, KPTZ13]) If one-way functions exits, then for all efficiently com-
putable n(·) and m(·), there exists a pPRF family whose input is an n(·) bit string and output is an m() bit
string.

Prefix Puncturable PRF. We introduce the notion of prefix puncturable PRFs, which is an extension of
pPRF. Prefix pPRFs allow us to puncture PRF keys at points that have a fixed prefix such as x∗ where ∗
means any (fixed length) string.

Definition 2.5 (Prefix Puncturable Pseudorandom Functions) A prefix pPRF F consists of three (prob-
abilistic) algorithms F = (Key,Puncture, F ) and poly-time computable functions n(·), m(·) that satisfy
the following two conditions.

Functionality preserving under prefix puncturing: For all strings s and for all x ∈ {0, 1}n(λ) such that
x does not contains s as a prefix it holds that

Pr[F (K , x) = F (K {s∥∗}, x) | K ← Key(1λ),K {s∥∗} := Puncture(K , s∥∗)] = 1.

Pseudorandom at prefix punctured points: For all PPT adversary A, and for all values s and all polyno-
mial sets of points S = {x1, . . . , xk(λ)} ⊆ {0, 1}n(λ) such that each xi ∈ S contains s as a prefix, it
holds that

µ(λ) :=
∣∣Pr[A(K {s∥∗}, {F (K , xi)}i∈[k(λ)]) = 1]− Pr[A(K {s∥∗}, Um(λ)|S|) = 1]

∣∣ ≤ negl(λ)

where K ← Key(1λ), K {s∥∗} := Puncture(K , s∥∗), and Uℓ denotes the uniform distribution over ℓ
bits.

If the distinguish probability µ(λ) is bounded by 2−λ
ε

for some constant ε, then we sayF is sub-exponentially
secure prefix pPRF.

We can easily construct prefix pPRFs from the GGM tree-based construction in the same way as puncturable
PRFs.
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Injective PRFs. We need pPRFs that satisfy the following injectivity condition.

Definition 2.6 (Injective property of pPRF)

Pr
K←Key(1λ)

[∃α,K ′ ̸= K : F (K,α) = F (K ′, α)] ≤ negl(λ)

In other words this says that w.o.p. over the choice of K, the value F (K,α) uniquely determines K.
The GGM tree-based pPRF from a special injective PRG satisfies this requirement. A special PRG is
G(x) = G0(x)∥G1(x) where G0(x) (resp, G1(x)) is the first (resp, last) half of the bits of G(x) and G0

and G1 are each injective, meaning that Prx[∃x′ ̸= x : G(x) = G(x′)] ≤ negl(λ). Moreover each of
|G0(x)|, |G1(x)| is of length at most |x| + p(λ) where p(λ) is some fixed polynomial. This ensures that, in
the GGM tree-based pPRF construction, the size of the output can grow by some additive amount in each
level but the overall growth in a level d tree is bounded by dpoly(λ). Such PRGs can be constructed from
standard assumptions such as DDH or LWE.

Injective pPRF from LWE. For example, using the learning with errors (LWE) assumption, we define
GA : Zn

q → Zm
p as GA(x) :=

⌊
AT · x

⌉
p

where operator ⌊·⌉p returns the nearest integer (for each coordi-
nate) modulo p. We can set q := p2 = 22k for some k = O(λ) and m := 4n + O(λ). Let A = A0∥A1

where A0,A1 ∈ Zn×m/2
q , then Gb(x) =

⌊
AT

b x
⌉
. In this case, each Gb(x) is injective w.o.p. over the choice

of A and it maps 2nk bits to 2nk + O(kλ) bits. See [BPR12] for details about the LWE assumption and
proof of security of the above construction.

Injective pPRF from DDH. Alternatively, it may seem that using DDH, we can set Gg1,g2(x) = gx1 , g
x
2

where g1, g2 are generators of some group G of primer order p. Unfortunately, the outputs cannot be directly
used as PRG inputs in the next level of the tree since they are group elements rather than exponents and we
do not know how to extract out two uniform values in Zp from them. Nevertheless, this approach can be
made to work by defining Gg1,g2,g3,h0,h1(x) = h0(g

x
1 , g

x
2 , g

x
3 ), h1(g

x
1 , g

x
2 , g

x
3 ) where h0, h1 are universal hash

functions that map G3 → Zp′ for some p′ such that log(p′) = log(p) +O(λ) and log(p′) ≤ (3/2) log(p)−
Ω(λ). This ensures injectivity (we are hashing p balls into p′ bins and therefore for any fixed ball there is
unlikely to be another ball colliding with it). It also ensures pseudorandomness security by thinking of h0, h1
as extractors via the leftover-hash lemma. In the context of the GGM construction we need a hierarchy of
DDH groups of order p1, p2, . . . (one for each level) where log(pi+1) = log(pi) + O(λ). Therefore the
output does not get “too large”.

3 Definition of Watermarking

We begin by defining the notion of program watermarking. Our definition is similar to the game-based
definition of Barak et al. [BGI+01, BGI+12] with the main difference that: (1) we allow “statistical” rather
than perfect correctness, (2) the challenge circuit to be marked is chosen uniformly at random from the
circuit family (for example, in the case of PRFs, this corresponds to marking a random PRF key), (2) we
strengthen the definition to the public-key detection setting and give the attacker access to the marking
oracle.

We start by defining two types of schemes which we will refer to as “mark-embedding” and “message-
embedding” watermarking. In the former programs are simply either marked on unmarked while in the latter
they can be marked with a (long) message. For conciseness, we define the notions simultaneously by defin-
ing the more general notion of “message-embedding” watermarking and thinking of “mark-embedding”
watermarking as a special case where the message spaceM consists of a single valueM = {marked}.
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Definition 3.1 (Watermarking Syntax) A message-embedding watermarking scheme for a circuit class
{Cλ}λ∈N and a message spaceM = {Mλ} consists of three algorithms (Gen,Mark,Detect).

Key Generation: (dk ,mk) ← Gen(1λ) takes as input the security parameter and outputs a pair of keys
(dk ,mk), called detection key and mark key.

Mark: C̃ ← Mark(mk , C,msg) takes as input a mark key, a circuit C ∈ Cλ and a message msg ∈Mλ and
outputs a marked circuit C̃.

Detect: msg′ ← Detect(dk , C ′) takes as input a detection key and and an arbitrary circuit C ′ (which may
not be in the family Cλ) and outputs msg′ ← Detect(dk , C ′) where msg′ ∈ M ∪ {unmarked}. We
say that detection is black-box if it only uses oracle-access to C ′ to evaluate it on various inputs, but
ignores its description otherwise.

We also define mark-embedding watermarking which is the same as above but the message space M
consists of a single value M = {marked}. In this case we omit the input msg from the syntax of the
marking algorithm and simply write C̃ ← Mark(mk , C). We also define a variant with symmetric-key
detection where there is a single secret watermarking key wk = mk = dk .

Before we define the correctness and security of watermarking, we define the following notion of ap-
proximating a function.

Definition 3.2 (ε-Approximating a Function) A circuit C is said to ε-approximate a function f : {0, 1}n →
{0, 1}∗, denoted by C ∼=ε f , if Prx←{0,1}n [C(x) = f(x)] ≥ ε.

We are now ready to define program watermarking.

Definition 3.3 (Watermarking Security) A watermarking scheme (Gen,Mark,Detect) for circuit family
{Cλ}λ∈N and with message spaceM = {Mλ} is required to satisfy the following properties.

Statistical Correctness: There is a negligible function ν(λ) such that for any circuit C ∈ Cλ, any message
msg ∈Mλ and any input x in the domain of C, it holds that

Pr

[
C̃(x) = C(x) :

(dk ,mk)← Gen(1λ)

C̃ ← Mark(mk , C,msg)

]
≥ 1− ν(λ).

Detection Correctness: For every C ∈ Cλ, msg ∈Mλ and (dk ,mk)← Gen(1λ):

Detect(dk ,Mark(mk , C,msg)) = msg.

Meaningfulness: For every circuit C (not necessarily in Cλ), it holds that

Pr
(dk ,mk)←Gen(1λ)

[Detect(dk , C) ̸= unmarked] ≤ negl(λ).

Non-Removability: For every PPT A we have

Advnrmv
A (λ, ε) := Pr[Expnrmv

A (λ, ε) = 1] ≤ negl(λ)

where ε is a parameter of the scheme called the approximation factor and Expnrmv
A (λ, ε) is the game

defined next.

Definition 3.4 (Non-Removability Security Game) The game Expnrmv
A (λ, ε) is defined as follows.
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1. The challenger generates (dk ,mk)← Gen(1λ) and gives dk to the adversary A.

2. The adversary has oracle access to the mark oracleMO. IfMO is queried a circuit Ci and message
msgi, then it answers Mark(mk , Ci,msgi).

3. At some point, the adversary sends a challenge message msg ∈Mλ to the challenger. The challenger
samples a circuit C ← Cλ uniformly at random and generates C̃ ← Mark(mk , C ,msg), and sends C̃
to the adversary.

4. The adversary can make more queries to MO and finally outputs a circuit C∗. If it holds C∗ ∼=ε

C̃ ∧ Detect(dk , C∗) ̸= msg then the experiment outputs 1, otherwise 0. 3

We can also weaken the above definition in several ways that we mention below.

Variant: Selective-Message Security and Mark-Embedding. Firstly, in the case of message-embedding
watermarking, we could consider a selective-message security variant where the adversary has to declare the
message msg embedded in the challenge circuit at the very beginning of the game, before seeing the detec-
tion key or making queries to the marking oracle. In this case the security game consists of the following
steps:

1. The adversary sends a challenge message msg ∈Mλ to the challenger.

2. The challenger generates (dk ,mk) ← Gen(1λ), samples a circuit C ← Cλ uniformly at random and
generates C̃ ← Mark(mk , C ,msg). It gives dk , C̃ to the adversary A.

3. The adversary A gets oracle access to the mark oracleMO and at some point outputs a circuit C∗. If
it holds C∗ ∼=ε C̃ ∧ Detect(dk , C∗) ̸= msg then the experiment outputs 1, otherwise 0.

Note that selective-message security implies full security via a guessing argument – the reduction loses a
factor of |Mλ| in the advantage and therefore this relies on complexity leveraging when |Mλ| is super-
polynomial.

In the case of mark-embedding watermarking, there is no challenge message (we always have msg =
marked) and therefore the game becomes as above with step 1 omitted.

Variant: Symmetric-Key Schemes and No-Oracle Security. We can also consider a variant in the
symmetric-key setting where there is a single watermarking key wk = mk = dk and the attacker is not
given dk in step 1 of the security game. In this case we can consider several variants of the definition de-
pending on whether the adversary has access to the marking and/or detection oracles. The simplest setting
we consider is a mark-embedding scheme in the symmetric-key setting with no-oracle security, where the
attacker does not get access to either the marking or the detection oracles. In this case, the security game
just consists of the following two steps:

1. The challenger chooses wk ← Gen(1λ), C ← Cλ and gives C̃ ← Mark(mk , C ) to the adversary.

2. The adversary outputs a circuit C∗. If C∗ ∼=ε C̃ ∧ Detect(wk , C∗) ̸= marked then the experiment
outputs 1, otherwise 0.

3The definition would be equivalent if we had required C∗ ∼=ε C instead of C∗ ∼=ε C̃, up to a negligible difference in ε, since
by statistical correctness we have C ∼=δ C̃ for some δ = 1− negl(λ).
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Note on Statistical Correctness. We mention that, by an averaging argument, the statistical correctness
requirement implies that for any distributionD over inputs x, with overwhelming probability over the choice
of the marked circuit C̃, we have Prx←D[C̃(x) = C(x)] ≥ 1−negl(λ). Therefore, this requirement is more
meaningful than simply insisting that C̃ ∼=δ C for some δ = 1− negl(λ).

Note on the Circuit Family. We also note that the marking procedure expects to get a circuit C ∈ Cλ
from the designated family. For example, in the case of watermarking a PRF family {F (K, ·)}, we will
assume that the family Cλ consists of some “canonical representation” of the circuits computing the function
F (K, ·), and we can simply equate circuits C ∈ Cλ with PRF keys K; we will write Mark(mk ,K,msg) in
place of Mark(mk , C,msg) where the C is the canonical circuit computing F (K, ·). In the non-removability
security game, the fact that the challenge circuit C ← Cλ is chosen randomly corresponds to marking
a random PRF key. However, we emphasize that the detection procedure Detect(dk , C ′) must work on
arbitrary circuits C ′, which may not be from the designated family, and the adversary wins if he can create
any circuit C ′ which is correct and on which detection fails.

Impossibility of Message-Embedding for ε ≤ 1
2 . Unfortunately, message-embedding watermarking is

impossible in a setting where the adversary can make a single non-adaptive query to the marking oracle
(even without a detection oracle) when ε ≤ 1

2 . This holds even if the message space is justM = {0, 1} and
even in the symmetric-key setting when the adversary has no access to a detection oracle. The adversary
chooses a random bit b ← {0, 1} at the beginning of the game. It makes a single non-adaptive call to the
marking oracle on a random circuit C ← Cλ with the message bit 1− b and gets back some marked circuit
C̃1−b. It then chooses the challenge message b and gets back some challenge marked circuit C̃b. It creates a
circuit C∗ such that, on inputs x that start with the bit b, C∗(x) = C̃b(x) and on inputs x that start with the
bit 1− b, C∗(x) = C̃1−b(x). This ensures that C∗ ∼=ε C̃b for ε = 1

2 meaning that C∗ is an ε-approximation
of the challenge marked circuit. But since the way that C∗ is created is symmetric with respect to b and
1− b, we know that Pr[Detect(dk , C∗) = b] ≤ 1

2 .

4 Watermarking PRFs

In this section, we construct schemes for watermarking any puncturable PRF family. To build up intu-
ition, we start with a simple “basic construction” which is a mark-embedding symmetric-key watermarking
scheme with “no-oracle security” (the attacker does not get access to either the marking or the detection
oracles). We then explain the challenges that we need to overcome to get full security in the public-key
detection setting, and give our full construction which achieves this.

For all of the schemes, let F = (Key,Puncture, F ) be some puncturable PRF (pPRF) family where,
for K ← Key(1λ) we have F (K, ·) : Dλ → Rλ with Dλ = {0, 1}n(λ), and Rλ = {0, 1}m(λ) for some
super-logarithmic n(λ),m(λ) = ω(log λ). We often drop λ from Dλ and Rλ. We construct a watermarking
scheme for PRF evaluation of F . We identify the PRF evaluation circuits computing the function F (K , ·)
with their key K and assume (without loss of generality) that the marking procedure just takes K as an
input.

4.1 Basic Construction: Symmetric-Key Watermarking, No Oracles

In this section, we start by proposing the most basic of our watermarking schemes, which is a mark-
embedding construction in the symmetric-key setting and achieves security against an adversary with no
oracle access (weakest security). We call this “the basic construction” throughout the paper, and the intu-
ition for it was given in the introduction.
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Construction. Our watermarking scheme with “approximation factor” ε = ε(λ) is defined as follows.

Gen(1λ): Set ℓ := λ/ε. Choose an x = (x1, . . . , xℓ)← Dℓ and a vector y = (y1, . . . , yℓ)← Rℓ uniformly
at random and set wk := (x,y). We can assume that x1, . . . , xℓ are distinct.

Mark(wk ,K ): Output iO(C[K ,x,y]). The program C[K ,x,y] is described in Figure 1. The size of the
program is appropriately padded to be the maximum size of all modified programs, which will appear
in the security proof.

Detect(wk , C ′): If there exists i ∈ [ℓ] such that yi = C ′(xi), then output marked, else unmarked.

Constants: x = (x1, . . . , xℓ) ∈ Dℓ, y = (y1, . . . , yℓ) ∈ Rℓ, pPRF key K .

Inputs: x ∈ D

Code: If there exists i such that x = xi, then output yi. Else, output F (K , x).

Figure 1: Program C[K ,x,y]

We call the value x = (x1, . . . , xℓ) the marked-points since marked programs outputs special values
from y for these inputs. We can easily verify that the basic construction satisfies statistical correctness,
detection correctness, and meaningfulness properties in Definition 3.3.

Security Proofs for the Basic Construction. We prove the security, non-removability, of the basic con-
struction.

Theorem 4.1 The basic construction satisfies symmetric-key non-removable security with no oracles (where
the adversary in the security game of non-removability has oracle access to neither the mark nor detect
oracle) if F is a pPRF and iO is an indistinguishability obfuscator.

We prove Theorem 4.1 by using the following two lemmas.

Lemma 4.2 If F is a pPRF and iO is an indistinguishability obfuscator, then the following holds. For
K ← Key(1λ) and uniformly random and independent x,x′ ← Dℓ and y ← Rℓ, it holds that

(x, iO(C[K ,x,y]))
c
≈ (x′, iO(C[K ,x,y])).

Lemma 4.3 If a PPT adversary A that has no oracle access breaks the non-removability security with
probability δ(λ), then we can construct a PPT distinguisher D that can distinguish (x, iO(C[K ,x,y]))
and (x′, iO(C[K ,x,y])) with probability δ(λ)− negl(λ).

Lemma 4.2 and 4.3 immediately imply Theorem 4.1.

Proof of Lemma 4.3. Given an input (x∗ = (x∗1, . . . , x
∗
ℓ ), C̃ = iO(C[K ,x,y])), we construct a distin-

guisher D that uses the adversary A to distinguish between x∗ = x and x∗ = x′ for uniformly random and
independent x′. The distinguisherD gives C̃ to the adversaryA as a challenge marked program. Eventually,
A outputs a program C∗ and D verifies whether there exits i such that C∗(x∗i ) = C̃(x∗i ) or not. Formally,
D proceeds as follows.

1. D gets (x∗, C̃) and gives C̃ to A.

11



2. D receives C∗ from A and runs Test(C∗, C̃) described in Figure 2 to test if C∗ approximates C̃. If
Test outputs 0, then D outputs 0. Otherwise, goes to the next step.

3. If for all i ∈ [ℓ], C̃(x∗i ) ̸= C∗(x∗i ), then D outputs 1, otherwise 0.

Inputs: Two programs C0 and C1.

Parameters: 0 < ε < 1.

Set cnt := 0 and R := 8λ(1/ε)2. For i = 1, . . . , R, do

1. Choose zi ← D

2. If C0(zi) = C1(zi) then set cnt := cnt+ 1

Let ε̂ := cnt/R ∈ [0, 1] be the fraction of trials in which C0(zi) = C1(zi).

If ε̂ < 3
4ε, then output 0, else 1.

Figure 2: Test algorithm Test for approximation of programs

Analysis of Test. Let Zi be a random variable such that Zi = 1 if and only if C0(zi) = C1(zi) for zi ← D.
Note that Zi are independent and identically distributed.

If C0
∼=ε C1 then Pr[Zi = 1] ≥ ε and the Chernoff bound implies Pr[ε̂ < 3

4ε] ≤ exp(−1
8Rε2) ≤

exp(−λ). This means that the test outputs 1 with overwhelming probability.
If it is not the case that C0

∼=ε/2 C1 then Pr[Zi = 1] < ε/2 and the Chernoff bound implies Pr[ε̂ ≥
3
4ε] ≤ exp(−1

8Rε2) ≤ exp(−λ). This means that the test output 0 with overwhelming probability.

Analysis of D. Next, we analyze how D works.
If the given distribution is the real one (x, iO(C[K ,x,y])) (i.e., x∗ = x), then A wins with the

non-removability game with probability δ(λ) , meaning that it outputs an un-marked program C∗ that ε-
approximates C̃. If this happens, then Test passes (outputs 1) with overwhelming probability 1 − negl(λ)
and, for all i ∈ [ℓ], C∗(x∗i ) ̸= C̃(x∗i ). Therefore, in this case, D outputs 1 with probability at least
δ(λ)− negl(λ).

If the given distribution is random one (x′, iO(C[K ,x,y])) (i.e., x∗ = x′), then x and x′ are uniformly
random and independently distributed. In this case, we have no guarantees about the program C∗ output by
A and we analyze two cases. One case is that C∗ does not ε/2-approximate C̃. In this case, the probability
that Test passes (outputs 1) is negligible. The other case is that C∗ does ε/2-approximate C̃. In this case,
since x∗ = (x∗1, . . . , x

∗
ℓ) are ℓ random values independent of C̃, C∗, it holds that

Pr[ ∀i C̃(x∗i ) ̸= C∗(x∗i )] =
∏
i

Pr[C̃(x∗i ) ̸= C∗(x∗i )] ≤ (1− ε/2)ℓ ≤ negl(λ).

Therefore, if the distribution is a random the probability that D outputs 1 is at most negl(λ).
This means that D has distinguishing advantage δ − negl(λ). 2

Proof of Lemma 4.2. We define a sequence of hybrid games to prove the lemma.

Hyb0: This is the real game. The distribution is as follows. For K ← Key(1λ), x← Dℓ and y ← Rℓ,

(x, iO(C[K ,x,y])).
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Hyb1: In this game, we replace the pPRF key with a punctured one. The distribution is as follows. For
K ← Key(1λ), x← Dℓ, y ← Rℓ, K {x} := Puncture(K ,x), program C[K {x},x,y] in Figure 3,

(x, iO(C[K {x},x,y])).

Constants: x ∈ Dℓ, y ∈ Rℓ, pPRF key K {x}.

Inputs: x ∈ D

Code: If there exists i such that x = xi, then output yi. Else, output F (K {x}, x).

Figure 3: Program C[K {x},x,y]

It holds that Hyb0
c≈ Hyb1 if iO is an indistinguishability obfuscation. In Hyb1, the PRF key is

punctured, but program C[K {x},x,y] does not compute F at points x due to the if-branch code.
Thus, for all input x, the behavior of two programs is exactly the same and this is indistinguishable
by iO.

Hyb2: In this game, we replace y with outputs of pPRF. The distribution is as follows. For K ← Key(1λ),
x← Dℓ, yi := F (K , xi) for all i ∈ [ℓ], K {x} := Puncture(K ,x), and program remains C[K {x},x,y]
shown in Figure 3.

It holds that Hyb1
c
≈ Hyb2 by the security of the pPRF F . The only difference is the distribution of

y, but this is indistinguishable due to the pseudorandomness at punctured points of pPRF.

Hyb3: We replace the punctured PRF key with a standard one and erase the “if-branch” in the code of the
obfuscated program. The distribution is as follows. For x ← Dℓ, K ← Key(1λ), and program C[K ]
in Figure 4,

(x, iO(C[K ])).

It holds that Hyb2
c
≈ Hyb3 if iO is an indistinguishability obfuscation. In these two hybrid games, the

Constants: pPRF key K .

Inputs: x ∈ D

Code: Output F (K , x).

Figure 4: Program C[K ]

output of two programs is F (K , x) for any input x. Thus, the behavior of two programs are exactly
the same due to the functionality preserving property under puncturing.

Note that in Hyb3 the vector x does not appear in the obfuscated program and therefore by “renaming”
this vector we can write the distribution as x′ ← Dℓ, K ← Key(1λ), and program C[K ] in Figure 4,

(x′, iO(C[K ])).

Hyb4: We change the PRF key again, that is, we use K {x} := Puncture(K ,x) and set yi := F (K , xi)
for all i ∈ [ℓ]. The distribution is as follows. For K ← Key(1λ), x,x′ ← Dℓ, yi := F (K , xi) for all
i ∈ [ℓ], K {x} := Puncture(K ,x), and program C[K {x},x,y] in Figure 3,

(x′, iO(C[K {x},x,y]).
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It holds that Hyb3
c≈ Hyb4 by the security of iO (same as Hyb2

c≈ Hyb3).

Hyb5: We choose uniformly random y ← Rℓ again. For K ← Key1
λ
, x,x′ ← Dℓ, y ← Rℓ, K {x} :=

Puncture(K ,x), and the program in Figure 3,

(x′, iO(C[K {x},x,y])).

It holds Hyb4
c≈ Hyb5 by the security of the pPRF (same as Hyb1

c≈ Hyb2).

Hyb6: We replace pPRF key K {x} with a normal one. For K ← Key(1λ), x,x′ ← Dℓ, y ← Rℓ, and the
program in Figure 1,

(x′, iO(C[K ,x,y])).

It holds Hyb5
c≈ Hyb6 by the security of iO (same as Hyb0

c≈ Hyb1).

Thus, we obtained (x, iO(C[K ,x,y]))
c≈ (x′, iO(C[K ,x,y])). 2

4.2 Full Construction: Public-Key Detection and Security with Marking Oracle

We now construct a watermarking scheme with public-key detection and with security in the presence of
a marking oracle (see Definition 3.4). We begin with a mark-embedding scheme (no message) that works
for any approximation factor ε = 1/poly(λ) and then show how to convert it into a message-embedding
scheme that works for approximation factors ε = 1

2 + 1/poly(λ).

Overview and Intuition. There are several challenges that we need to overcome to go form the basic
construction to our full construction. Not only does the basic construction crucially rely on the watermarking
key wk being secret, it already fails to be secure even if the adversary has access to either one of the marking
or detection oracles.

Attack using the marking oracle: Assume the adversary makes just one call to the marking oracle with
an arbitrary key K ′ and gets a marked program C̃ ′. Then, on the marked-points x1, . . . , xℓ it will
happen that C̃ ′(xi) ̸= F (K ′, xi), while for all other points equality holds. Therefore, the adversary
can easily distinguish the marked-points from random points. In particular this leads to a concrete
attack. Once the adversary gets a challenge marked program C̃ for some random and unknown PRF
key K, the adversary can create a program C∗ which has K ′, C̃ ′, C̃ hard-coded and, on input x, if
C̃ ′(x) ̸= F (K ′, x) then C∗(x) outputs⊥ else it outputs C̃(x). The program C∗ gives the same output
as C̃ on everything other than the marked-points and therefore very closely approximates C̃ but will
not be detected as marked with our detection procedure.

This attack shows that the set of marked-points cannot be static but must depend on the key being
marked. But this raises a significant challenge since the detection procedure must be able to find
marked-points and test the given program on them without knowing what the underlying key is.

Attack using the detection oracle: If the adversary gets the challenge marked program C̃ = iO(C[K ,x,y]),
he can create programs C ′[v](x) which evaluate C̃(x) unless the first |v| bits of x match the value v in
which case C ′[v](x) outputs⊥. By calling the detection oracle with such program C ′ (for appropriate
choices of v) and seeing if detection succeeds or fails the adversary can use a variant of binary search
to learn all the values x. Once the adversary learns x he can create a program C∗ which evaluates C̃
on all inputs other than the ones in x and this will remove the mark while maintaining approximate
correctness.

14



We now outline the main ideas for how to solve the above problems.

Security with a Public-Detection Key: Firstly, our main idea to get security in the presence of a detection
oracle, is to use super polynomially many marked-points. More concretely, the set of marked-points
is some super-polynomial sized pseudorandom subset S ⊆ D of negligible density. The detection
procedure only tests the given program on some small (polynomial) number of random points in S.
This way, even if the adversary learns the points that were used by polynomially executions of the
detection procedure, it does not learn too much about the overall set of marked-points S. Since the
set of marked-points is now super-polynomial we cannot simply hard-code the outputs of the marked
program at the marked-points. We fix this next while also achieving security against a marking oracle.

Secondly, our main idea to get a scheme with a public-detection key, is to obfuscate the main compo-
nents of the detection procedure so as to hide the set S of marked-points.

Protection against the marking oracle: Achieving security in the presence of a marking oracle is the most
challenging part. To do this, we need to make sure that the set of marked-points x is different for each
key K being marked while also ensuring that the detection procedure can find the marked-points
without knowing K. We do this by introducing an additional concept that we call “find-points” α
which are static and do not depend on K. The set of marked-points x for some key K depends on the
values F (K,α) for the find-points α. The detection procedure first tests the program on a find-point α
to find the corresponding marked-point x and only then tests it the value of the program on x is some
special marked output. By calling the marking oracle on various keys K(1),K(2), . . . the adversary
can learn something about the marked-points for each of these keys, but will not learn anything about
the set of find-points or the set of marked-points for the challenge key K.

Scheme Outline. To make the above precise, assume we want to mark a PRF family with domain D =
{0, 1}n and range R = {0, 1}m. We write elements in the domain D as x = xL∥xR where xL ∈ {0, 1}n′

and xR ∈ {0, 1}n−n′
for some prefix length n′. Our construction relies on three auxiliary PRFs F (K1, ·),

F (K2, ·), F (K3, ·), with different domains/ranges as will be clear from context, which together make up
the marking key mk = (K1,K2,K3).

For each value xL ∈ {0, 1}n′
there is a corresponding find-point α = F (K1, x

L), which is stati-
cally determined by the marking key. There is also a corresponding marked-point x = xL∥xR which
depends on the output of the PRF F (K,α) for the key K being marked and is computed by setting:
β := F (K,α), xR := F (K2, x

L∥β). On a marked-point x as above, the marked program outputs a marked-
output y = F (K3, x

L∥β). Note that there are τ = 2n
′

marked-points in total and, by picking n′ appropri-
ately, we can ensure that this is a super-polynomial number of marked-points but a negligible fraction of the
total domain.

To mark a key K we obfuscate a program that gets some input x, tests if x is a marked point for K, and
if so outputs a marked output y, and otherwise computes F (K,x). In the symmetric-key setting, we would
use a detection procedure that tests a program C ′ as follows. It first picks a random value xL ← {0, 1}n1 and
computes the corresponding find-point α := F (K1, x

L). Then it computes β = C ′(α) and uses this to find
the corresponding marked-point x = xL∥xR where xR := F (K2, x

L∥β). Finally, it computes y = C ′(x)
and tests if y = F (K3, x

L∥β) is a marked output (we can repeat this test several time to amplify). In the
public-key detection setting, we essentially obfuscate the main components of the detection procedure and
release the obfuscation as a public-detection key.

On an intuitive level, the above ensures that even if we are given the marked-points corresponding to
some keys K ′, we do not learn anything about the find-points or about the marked-points for the challenge
key K. However, to remove a mark from the challenge marked program, an adversary would need to change
the behavior of this program on a large fraction of either the find points or the marked points.
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4.2.1 A Mark-Embedding Construction

We now give a detailed description of our mark-embedding scheme (no message) in the public-detection
key setting and with security in the presence of a marking oracle.

Setup, Parameters. Recall that our goal is to construct a watermarking scheme for a pPRF family F with
F (K , ·) : {0, 1}n → {0, 1}m. We assume F has the injective property explained in Section 2.2. As in
Section 4.1, we use notation D = {0, 1}n and R = {0, 1}m. (Note that n,m are polynomials in λ but we
write n instead of n(λ) to simplify notation.)

Let n′′ ≤ n′ ≤ n be polynomials such that n− n′ = ω(log λ), n′ − n′′ = ω(log λ) and n′′ = ω(log λ).
Our construction will rely on three auxiliary pPRF families F1 with F (K1, ·) : {0, 1}n

′ → {0, 1}n, F2 with
F (K2, ·) : {0, 1}n′+m → {0, 1}n−n′

, and F3 with F (K3, ·) : {0, 1}n′+m → {0, 1}m where F2 and F3

are prefix pPRF families as in Definition 2.5. Our construction will also rely on a pseudorandom number
generator (PRG) G(·) : {0, 1}n′′ → {0, 1}n′

. In addition to the pPRF families F ,F1,F2,F3 and the PRG
G, we also rely on an indistinguishability obfuscator iO.

Our proof will consist of O(τ) hybrids where τ := 2n
′

is super-polynomial. In each of these hybrids
we will rely on the security of F ,F3 or iO. This requires us to rely on complexity leveraging, where we
assume that a PPT attacker cannot break the security of the schemes F ,F3 or iO with probability better
than µ = µ(λ) such that τ · µ remains negligible. This can be done if we (e.g.,) assume that F ,F3 and the
iO have sub-exponential security. We do not need sub-exponential security for F1,F2, and G.

For a string x ∈ D, we will parse it as x = xL∥xR where xL ∈ {0, 1}n′
and xR ∈ {0, 1}n−n′

.

Construction. For any inverse-polynomial approximation factor ε = ε(λ) we set ℓ = ℓ(λ) = λ/ε2 and
define our construction as follows.

Gen(1λ): Choose the marking key mk := (K1,K2,K3) consisting of randomly chosen keys for the PRFs
F1,F2,F3 respectively. Output (dk ,mk) where the detection key dk := (D̃1, D̃2) consists of two
obfuscated programs D̃1 ← iO(D1[K1]) and D̃2 ← iO(D2[K2,K3]) defined as:

D1[K1](r) := F (K1,G(r)) , D2[K2,K3](r, β) := (F (K2,G(r)∥β), F (K3,G(r)∥β)).

Mark(mk ,K): Output C̃ ← iO(C[K,K1,K2,K3]) where the program C[K,K1,K2,K3] is described in
Figure 5.

Constants: pPRF keys K,K1,K2,K3.

Inputs: x ∈ D

Code: Parse x = xL∥xR. Set α := F (K1, x
L), β := F (K , α), x̂R := F (K2, x

L∥β).
If xR = x̂R then output F (K3, x

L∥β) else output F (K , x).

Figure 5: Program C[K ,K1,K2,K3]

Detect(dk , C ′): For i ∈ [ℓ]: select ri ← {0, 1}n
′′

at random, set xLi := G(ri), αi := D̃1(ri), βi := C ′(αi)

and (xRi , yi) := D̃2(ri, βi). If there is some i ∈ [ℓ] such that C ′(xLi ∥xRi ) = yi then output marked,
else output unmarked.

The size of program C (resp. D1, D2) in this construction is appropriately padded to be the maximum size
of all modified programs of C (resp. D1, D2), which will appear in the security proof.

We can easily verify that the construction above satisfies statistical correctness, detection correctness,
and meaningful properties.
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Security Proofs for the Mark-Embedding Construction. We prove the non-removability security of the
mark-embedding construction.

Theorem 4.4 The above watermarking construction is a secure mark-embedding scheme with a public-key
detection and security in the presence of a marking oracle, assuming that: F ,F1 are pPRFs, and F2,F3 are
prefix pPRFs, G is a PRG and iO is a indistinguishability obfuscator and F ,F3, iO are sub-exponentially
secure with distinguishing advantage µ such that τµ is negligible where τ = 2n

′
.

Lemma 4.5 Under the same conditions as in Theorem 4.4, for all PPT distinguishers D it holds that∣∣∣Pr[DMO(mk ,·)(C̃, dk ,α,x) = 1]− Pr[DMO(mk ,·)(C̃, dk ,α′,x′) = 1]
∣∣∣ ≤ negl(λ).

where (mk = (K1,K2,K3), dk) ← Gen(1λ), K is a random key for F , C̃ ← Mark(mk ,K) and
MO(mk , ·) is the marking oracle. The values α = (α1, . . . , αℓ) and x = (x1, . . . , xℓ) correspond to
random find-points and mark-points as sampled by the detection procedure and are chosen as follows.
For i = 1, . . . , ℓ: choose ri ← {0, 1}n

′′
at random, xLi := G(ri), αi := F (K1, x

L
i ), βi := F (K , αi),

xRi := F (K2, x
L
i ∥βi) and xi := xLi ∥xRi . On the other hand α′ ← Dℓ,x′ ← Dℓ are uniformly random.

Lemma 4.6 If a PPT adversary A breaks non-removability security of our construction with probability
δ(λ), then we can construct a PPT distinguisher DMO(mk ,·) such that∣∣∣Pr[DMO(mk ,·)(C̃, dk ,α,x) = 1]− Pr[DMO(mk ,·)(C̃, dk ,α′,x′) = 1]

∣∣∣ ≥ δ(λ)− negl(λ).

where the distributions are defined as in 4.5.

Lemma 4.5 and 4.6 immediately imply Theorem 4.4.

Proof of Lemma 4.6. Given a distribution (C̃, dk ,α∗,x∗), we construct a distinguisher D as follows. D
gives dk and C̃ to the adversary A as a detection key and a challenge marked program, respectively. If A
attempts to query a PRF key K(j) to the marking oracle, then D passes it toMO(mk , ·) and replies with
the answer ofMO(mk ,K(j)). Eventually, A outputs a program C∗ and D proceeds as follows:

1. D runs Test(C∗, C̃). If Test outputs 0, then D outputs 0. Test is described in Figure 2.

2. If for all i ∈ [ℓ], (C̃(x∗i ) ̸= C∗(x∗i ) ∨ C̃(α∗i ) ̸= C∗(α∗i )), D outputs 1, otherwise 0.

The analysis of the distinguishing advantage is similar to that in the proof of Lemma 4.3. In particular,
the analysis of Test is the same and ensures that if C∗ does ε-approximate C̃ then the test outputs 1 with
overwhelming probability and if C∗ does not ε/2-approximate C̃ then the test outputs 0 with overwhelming
probability. We now continue to the analysis of D.

Analysis of D. If the given distribution is the real one (C̃, dk ,α,x), then A wins the non-removability
game with probability δ, meaning that it outputs a program C∗ that ε-approximates C̃ but is not detected as
marked by an execution of the detection procedure which evaluates C∗ on the points x,α. If this happens,
then Test passes and outputs 1 with overwhelming probability 1−negl(λ) and, for all i, (C∗(xi) ̸= C̃(xi)∨
C̃(α∗i ) ̸= C∗(α∗i )). Therefore, in this case, D outputs 1 with probability at least δ − negl(λ).

If the given distribution is random one (C̃, dk ,α′,x′), then x′ and α′ are uniformly random and inde-
pendently distributed. We analyze two cases. One case is that C∗ does not ε/2-approximate C̃. In this case,
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the probability that Test passes (outputs 1) is negligible. The other case is that C∗ does ε/2-approximate C̃.
In this case, since x′1, . . . , x

′
ℓ, α
′
1, . . . , α

′
ℓ are 2ℓ random values independent of C̃, C∗, it holds that

Pr
[
∀i

(
C̃(x′i) ̸= C∗(x′i)

)
∨
(
C̃(α′i) ̸= C∗(α′i)

)]
=
∏
i

(
1− Pr

[(
C̃(x′i) = C∗(x′i)

)
∧
(
C̃(α′i) = C∗(α′i)

)])
≤ (1− (ε/2)2)ℓ ≤ negl(λ)

if ℓ = O(λ/ε2). Therefore, if the distribution is a random the probability thatD outputs 1 is at most negl(λ).
This means that D has distinguishing advantage δ − negl(λ). 2

Proof of Lemma 4.5. We define a sequence of hybrid games to prove this lemma. We call the left-hand
side distribution in Lemma 4.5 the real distribution REAL and the right-hand side distribution is the random
distribution RAND. Similarly in the proof of Lemma 4.2 in Section 4.1, we will transform the challenge
program in the real distribution into another program that does not depend on K1,K2,K3 and then replace
x and α with uniformly and independently random x′ and α′, respectively. We define the following main
hybrid games (but proving the indistinguishability of some of these will require more intermediate hybrids).
See Table 1 for an abbreviated overview of the hybrids emphasizing the differences between them.

REAL: This is the real distribution (left-hand side in Lemma 4.5). The distinguisher is given the values

(C̃, dk = (D̃1, D̃2),α,x)

and access to the marking oracleMO(mk , ·). Recall that (mk = (K1,K2,K3), dk)← Gen(1λ), K
is a random key for F and C̃ ← Mark(mk ,K). The values α = (α1, . . . , αℓ) and x = (x1, . . . , xℓ)
are chosen as follows. For i = 1, . . . , ℓ: choose ri ← {0, 1}n

′′
at random, xLi := G(ri), αi :=

F (K1, x
L
i ), βi := F (K , αi), xRi := F (K2, x

L
i ∥βi) and xi := xLi ∥xRi .

Hyb1: For i ∈ [ℓ], instead of choosing xLi := G(ri), we now choose xLi ← {0, 1}n
′

uniformly at random.

Hyb2: Instead of choosing challenge program C̃ ← iO(C[K,K1,K2,K3]) where the program C[K,K1,K2,K3]
is described in Figure 5, we now set C̃ ← iO(C[K ]) where C[K ](x) := F (K , x) just evaluates the
PRF. Also, instead of choosing the detection key component D̃2 ← iO(D2[K2,K3]) as defined in the
scheme description, we now choose D̃2 ← iO(D′2[K ,K1,K2,K3]) as defined in Figure 6. 4

Constants: pPRF keys K ,K1,K2,K3.

Inputs: r, β

Code: Set xL := G(r), α := F (K1, x
L), xR := F (K2, x

L∥β).
If β = F (K , α), then set y := F (K , xL∥xR) else set y := F (K3, x

L∥β). Output (xR, y).

Figure 6: Program D′2[K ,K1,K2,K3]

Hyb3: In this hybrid the values x and α are replaced with uniformly random elements x′ ← Dℓ and
α′ ← Dℓ, respectively.

RAND: This is the random distribution (right-hand side in Lemma 4.5). The only changes from Hyb3 are
that the challenge program C̃ and detection key D̃2 are changed back to the original programs but the
values x′,α′ remain random.
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Table 1: An overview of hybrid games
Hybrid game Challenge: iO(·) dk : iO(·) α xL xR

REAL C[K ,K1,K2,K3] D2[K2,K3] F (K1,x
L) G(r) F (K2,x

L∥β)
Hyb1 C[K ,K1,K2,K3] D2[K2,K3] F (K1,x

L) random F (K2,x
L∥β)

Hyb2 C[K ] D′2[K ,K1,K2,K3] F (K1,x
L) random F (K2,x

L∥β)
Hyb3 C[K ] D′2[K ,K1,K2,K3] random random random
RAND C[K ,K1,K2,K3] D2[K2,K3] random random random

Lemma 4.7 If G is a pseudo-random number generator, then REAL
c
≈ Hyb1.

Proof of Lemma 4.7. These hybrid games are indistinguishable due to the pseudorandomness of G. 2

Notation. Before we proceed to the rest of the proof, we introduce some notation for puncturing PRFs.
We write K{x → y} to denote a PRF key K which is punctured at the points x with a hard-coded output
y. In other words this denotes the process of first creating a punctured key K {x} := Puncture(K , x) and
storing the tuple K{x → y} = (K {x}, x, y). We define F (K{x → y}, x) = y and else F (K{x →
y}, x′) = F (K {x}, x′) = F (K,x′) when x′ ̸= x.

We also use similar notation for prefix pPRFs where we write K{s∥∗ → y} = (K {s∥∗}, s, y). For
any input x that has s as a prefix, we define F (K{s∥∗ → y}, x) = y and for all other x′ we define
F (K{s∥∗ → y}, x′) = F (K {s∥∗}, x′) = F (K,x′).

Lastly we use the notation K{x→ ⊥} to denote K{x→ y⊥} for some fixed “dummy value” y⊥ in the
range of F (K, ·), say the all 0 string.

Lemma 4.8 If F and F3 are sub-exponentially secure pPRFs, F satisfies the injective property in Defini-
tion 2.6, and iO is a sub-exponentially secure indistinguishability obfuscation, so that the distinguishing
advantage for each of these is bounded by some function µ such that τµ = negl(λ), then Hyb1

c≈ Hyb2.

Proof of Lemma 4.8. To prove indistinguishability of Hyb1
c≈ Hyb2, we a introduce of intermediate hybrid

games corresponding to each one of the values xL ∈ {0, 1}n′
. We interchangeably identify the strings

xL ∈ {0, 1}n′
with integers j ∈ {0, . . . , τ − 1} for τ = 2n

′
via the usual binary representation. We define

the following hybrids games (see Table 2 for a concise overview).

Hybj1: Everything is the same as in Hyb1 except that the challenge program C̃ and the detection key com-
ponent D̃2 are changed to:

• C̃ ← iO(Cj [K,K1,K2,K3]) where Cj [K,K1,K2,K3] is described in Figure 7,

• D̃2 ← iO(Dj
2[K,K2,K3]) where Dj

2[K,K2,K3] is described in Figure 8.

Hybj1-1: Everything is the same as in Hybj1 except that we always use the punctured keys

K{(j∥xRj )→ ⊥} and K3{(j∥βj)→ yj}

in all obfuscated programs in place of K,K3, where we define αj = F (K1, j), βj = F (K , αj),
xRj = F (K2, j∥βj) and yj = F (K3, j∥βj). In particular, this means that we obfuscate the following
programs:

4As a sanity check, note that this ensures that the detection procedure still outputs marked when executed on C̃.
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Constants: pPRF keys K ,K1,K2,K3.

Inputs: x ∈ D

Code: Parse x = xL∥xR. Set α := F (K1, x
L), β := F (K , α), x̂R := F (K2, x

L∥β).
If xR ̸= x̂R or xL < j, then output F (K , x) else output F (K3, x

L∥β).

Figure 7: Program Cj [K ,K1,K2,K3]

Constants: pPRF keys K ,K1,K2,K3.

Inputs: r, β

Code: Set xL := G(r), α := F (K1, x
L), xR := F (K2, x

L∥β).
If xL < j and β = F (K , α), then set y := F (K , xL∥xR) else set y := F (K3, x

L∥β).
Output (xR, y).

Figure 8: Program Dj
2[K ,K1,K2,K3]

Table 2: An overview of hybrid games from Hyb1 to Hyb2
Hybrid Challenge: iO(C[·]) dk : iO(D2[·]) i-th query: iO(C[·]) hard-wired yj

Hyb01 C[K ,K1,K2,K3] D2[K2,K3] C[K (i),K1,K2,K3] none
...

...
...

...
...

Hybj1 Cj [K ,K1,K2,K3] Dj
2[K ,K1,K2,K3] C[K (i),K1,K2,K3] none

Hybj1-1 Cj [punctured]* Dj
2[punctured]* C[punctured]* F (K3, j∥β)

Hybj1-2 Cj [punctured]* Dj
2[punctured]* C[punctured]* F (K , j∥xRj )

Hybj+1
1 Cj+1[K ,K1,K2,K3] Dj+1

2 [K ,K1,K2,K3] C[K (i),K1,K2,K3] none
...

...
...

...
...

Hyb2 Cτ+1[K ,K1,K2,K3] Dτ+1
2 [K ,K1,K2,K3] C[K (i),K1,K2,K3] none

* In this table, [punctured] means keys K and K3 are punctured. Note that keys K1, K2, and K (i) are not punctured.
See the definitions of hybrid games for details.

• The challenge program C̃ obfuscates Cj [K{j∥xRj → ⊥},K1,K2,K3{j∥βj → yj}].

• The detection key component D̃2 obfuscates Dj
2[K{j∥xRj → ⊥},K1,K2,K3{j∥βj → yj}].

• Each query to the marking oracle with some PRF key K(i) outputs a program C̃(i) that obfus-
cates C[K (i),K1,K2,K3{j∥βj → yj}].

Hybj1-2: Everything is the same as in Hybj1-1 except that use the hard-wired value yj := F (K , j∥xRj )
instead of yj = F (K3, j∥βj).

Let µ be the maximal distinguishing advantage of a PPT attacker against the iO scheme and the pPRFs
F ,F3. Let q be the number of queries to the marking oracle. Then the following hybrids are indistinguish-
able for all j ∈ {0, . . . , τ}.

Claim: Hybj1
c≈(q+2)µ Hybj1-1. This holds by iO security since the programs being obfuscated in both hy-

brids are functionally equivalent. In particular, none of the programs ever evaluates F (K, j∥xRj ) and
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therefore we can use a punctured key K{(j∥xRj )→ ⊥} in place of K without changing functionality.
On the other hand the keys K3 and K3{(j∥βj)→ yj} are functionally equivalent.

There are q+2 obfuscated programs in total and therefore we pay a factor of q+2 in the distinguishing
advantage: the q outputs of the marking oracle C̃(i), the challenge program C̃, and the detection key
program D̃2.

Claim: Hybj1-1
c
≈2µ Hybj1-2. This holds by the pPRF security of F and F3. In particular, given the punc-

tured keys K{j∥xRj } and K3{j∥βj}, the value F (K3, j∥βj) is indistinguishable from a uniformly
random value which is in turn indistinguishable from F (K , j∥xRj ) .

Claim: Hybj1-2
c≈(q+2)µ Hybj+1

1 . This holds by iO security since the programs being obfuscated in both
hybrids are functionally equivalent. In particular, in both hybrids, the obfuscated challenge program
C̃ and detection-key program D̃2 are using F (K, j∥βj) in place of F (K3, j∥βj). On the other hand,
each of the programs output by the marking oracle C̃(i) never evaluates F (K3, j∥βj) and hence it does
not matter whether these programs use a punctured key or not. This follows since, each program C̃(i)

evaluates F (K3, j∥βi,j) where βi,j = F (K(i), αj) is different from βj = F (K,αj) by the injective
property of the pPRF F .5

Moreover, we have Hyb1
c
≈2µ Hyb01 and Hybτ1

c
≈2µ Hyb2 since the programs being obfuscated to get

C̃ and D̃2 in these hybrids are functionally equivalent. Combining this and the the above claims, we get
Hyb1

c≈O(qτµ) Hyb2. Since τµ = negl(λ) and q = poly(λ) we get the computational indistinguishability

Hyb1
c≈ Hyb2 which proves the lemma.

2

Lemma 4.9 If F1 is a secure pPRF, F2,F3 are secure prefix pPRFs, and iO is secure indistinguishability
obfuscation, then it holds Hyb2

c≈ Hyb3.

Proof of Lemma 4.9. To prove the indistinguishability of these hybrid games, we introduce intermediate
hybrid games for i = 1, . . . , ℓ+ 1.

Hybi2: This is the same as Hyb2 except for how the values α = (α1, . . . , αℓ),x = (x1, . . . , xℓ) are chosen.
For i′ < i, instead of choosing αi′ = F (K1, x

L
i′), βi′ = F (K,αi′), xRi′ = F (K2, x

L
i′∥βi′) and setting

xi′ = xLi′∥xRi′ we now choose uniformly random values α′i′ ← D, x′i′ ← D.

Hybi2-1: This is the same as Hybi2 but instead of the PRF keys K1 and K2,K3 we use punctured keys
K1{xLi }, K2{xLi ∥∗}, K3{xLi ∥∗} in all obfuscated programs – namely, in the detection key D̃1, D̃2 and
in the marked programs C̃(j) output by the marking oracle (note that K1,K2,K3 do not appear in the
challenge program C̃ at this point). We do this as follows:

• For the detection key D̃1, D̃2 we can simply output ⊥ on the punctured inputs. In other words,
D̃1, D̃2 are respectively obfuscations of

D1[K1{xLi → ⊥}] , D′2[K,K1{xLi → ⊥},K2{xLi ∥∗ → ⊥},K3{xLi ∥∗ → ⊥}].

5Technically, we need to ensure that the distinguisher never queries the marking oracle with the key K(i) = K contained in
the challenge program. This is without loss of generality since if the distinguisher can ever guess K then it can already perfectly
distinguish the two challenge distributions without making additional calls to the marking oracle. In other words, we can convert
any distinguisher into one with the above restriction while maintaining the same distinguishing advantage.
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Table 3: An overview of hybrid games from Hybi2 to Hybi+1
2

Hybrid K1 Kb αi xR
i hard-wired hard-wired

b ∈ {2, 3} PRF outputs in PRF outputs in
C[K (j), ·] D1[·] and D′2[·]

Hybi2 K1 Kb F (K1,x
L
i ) F (K2,x

L
i ∥βi) none none

Hybi2-1 K1{xL
i } Kb{xL

i ∥∗} F (K1,x
L
i ) F (K2,x

L
i ∥βi) x̂R

j,i yj,i ⊥
Hybi2-2 K1{xL

i } Kb{xL
i ∥∗} F (K1,x

L
i ) random random random ⊥

Hybi2-3 K1{xL
i } Kb{xL

i ∥∗} random random random random ⊥
Hybi2-4 K1{xL

i } Kb{xL
i ∥∗} random random x̂R

j,i yj,i ⊥
Hybi+1

2 K1 Kb random random none none

• For each query K(j) to the marking oracle, we compute αi = F (K1, x
L
i ), βj,i = F (K(j), αi),

xRj,i = F (K2, x
L
i ∥βj,i), yj,i = F (K3, x

L
i ∥βj,i) and we obfuscate the program

C[K(j),K1{xLi → ⊥},K2{xLi ∥∗ → xRj,i},K3{xLi ∥∗ → yj,i}].

We can rewrite the code of the above program in a simplified (but functionally equivalent) man-
ner as shown Figure 9.

Constants: pPRF keys K (j),K1{xLi → ⊥},K2{xLi ∥∗ → xRj,i},K3{xLi ∥∗ → yj,i}.

Inputs: x ∈ D

Code: Parse x = xL∥xR. If xL = xLi , then set x̂R := xRj,i and ŷ = yj,i.

Else, set α := F (K1{xLi }, xL), β := F (K (j), α), x̂R := F (K2{xLi ∥∗}, xL∥β), ŷ = F (K3, x
L∥β).

If xR = x̂R, then output ŷ else output F (K (j), x).

Figure 9: Program C[K (j),K1{xL
i → ⊥},K2{xL

i ∥∗ → x̂R
j,i},K3{xLi ∥∗ → yj,i}]

Hybi2-2: This is the same as Hybi2-1 except that:

• When answering the j’th marking-oracle query, we choose the values xRj,i and yj,i uniformly
at random instead of computing αi = F (K1, x

L
i ), βj,i = F (K(j), αi), xRj,i = F (K2, x

L
i ∥βj,i),

yj,i = F (K3, x
L
i ∥βj,i).

• In x = (x1, . . . , xℓ) we now sample xi = xLi ∥xRi by choosing xRi uniformly at random instead
of computing βi = F (K,αi), xRi = F (K2, x

L
i ∥βi). This is equivalent to sampling xi ← D

uniformly at random.

Hybi2-3: This is the same as Hybi2-2 except that, in α = (α1, . . . , αℓ), we now select αi ← D uniformly at
random instead of αi = F (K1, x

L
i ).

Hybi2-4: This is the same as Hybi2-3 except that, when answering the j’th marking-oracle query, we switch
back to choosing xRj,i and yj,i by computing αi = F (K1, x

L
i ), βj,i = F (K(j), αi), xRj,i = F (K2, x

L
i ∥βj,i),

yj,i = F (K3, x
L
i ∥βj,i). Note that the value αi in the vector α is still chosen uniformly at random.

We describe an overview of hybrid games in Table 3 to emphasize differences. The following hybrids are
indistinguishable for all i ∈ {1, . . . , ℓ+ 1}.
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Claim: Hybi2
c≈ Hybi2-1. This follows by iO security since the programs being obfuscated are functionally

equivalent. This is clear for the responses of the marking oracle. For the detection key components
D̃1, D̃2, note that the programs D1, D

′
2 only evaluate K1,K2,K3 on the points of the form xL or

xL∥∗ where xL = G(r) for some r. However, since xLi is chosen uniformly at random, it is not of this
form (with overwhelming probability) and therefore we can puncture the keys at xLi or xLi ∥∗ without
changing functionality.

Claim: Hybi2-1
c≈ Hybi2-2. This follows by the prefix pPRF security of F2,F3. In particular, since we use

punctured keys K2{xLi ∥∗}, K3{xLi ∥∗} their outputs are indistinguishable from random on inputs of
the form xLi ∥∗. Note that by injectivity of F the values βi and βj,i are distinct and therefore we can
replace the PRF outputs by random and independent values.

Claim: Hybi2-2
c
≈ Hybi2-3. This follows by the pPRF security of F1. In particular, since we use a punctured

key K1{xLi } we can replace F (K1, x
L
i ) by uniform.

Claim: Hybi2-3
c≈ Hybi2-4. This follows by the prefix pPRF security of F2,F3 (same as showing Hybi2-1

c≈
Hybi2-2).

Claim: Hybi2-4
c≈ Hybi+1

2 : This follows by iO security (same as showing Hybi2
c≈ Hybi2-1).

Lastly, by noting that Hyb2 = Hyb12 and Hybℓ+1
2 = Hyb3 we get Hyb2

c≈ Hyb3 which proves the lemma.
2

Lemma 4.10 Hyb3
c≈ RAND.

Proof of Lemma 4.10. This proof is the same as the proof of Lemma 4.8 (in reverse manner). 2

By Lemma 4.7, 4.8, 4.9, 4.10, we complete the proof of Lemma 4.5. 2

4.2.2 A Message-Embedding Construction

In this section, we propose a message-embedding watermarking scheme in the public-key detection setting
and with selective-message security in the presence of a marking oracle. We can get a scheme that allows
for any approximation factor ε(λ) = 1√

2
+ 1/poly(λ).

Setup. Our construction can be thought of as an “upgrade” of the construction in Section 4.2.1. As before,
our goal is to construct a watermarking scheme for a pPRF family F with F (K , ·) : {0, 1}n → {0, 1}m.
We set the message space to be someM⊆ {0, 1}m. Let the pPRF F1,F2,F3 and the PRG G be defined as
in Section 4.2.1.

Construction. For any approximation factor ε(λ) = 1√
2
+ ρ(λ) where ρ(λ) is some inverse polynomial,

we set ℓ = ℓ(λ) = λ/ρ2 and define our construction as follows.

Gen(1λ): This is exactly the same as the key-generation procedure of our mark-embedding construction.
Choose the marking key mk := (K1,K2,K3) consisting of randomly chosen keys for the PRFs
F1,F2,F3 respectively. Output (dk ,mk) where the detection key dk := (D̃1, D̃2) consists of two
obfuscated programs D̃1 ← iO(D1[K1]) and D̃2 ← iO(D2[K2,K3]) defined as:

D1[K1](r) := F (K1,G(r)) , D2[K2,K3](r, β) := (F (K2,G(r)∥β), F (K3,G(r)∥β)).
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Constants: pPRF keys K,K1,K2,K3 and message msg.

Inputs: x ∈ D

Code: Parse x = xL∥xR. Set α := F (K1, x
L), β := F (K , α), x̂R := F (K2, x

L∥β).
If xR = x̂R then output F (K3, x

L∥β)⊕msg else output F (K , x).

Figure 10: Program C[K ,K1,K2,K3,msg]

Mark(mk ,K,msg): Output iO(C[K,K1,K2,K3,msg]) where the program C[K,K1,K2,K3,msg] is de-
scribed in Figure 10.

Detect(dk , C ′): For i = 1, . . . , ℓ: Select ri at random, set xLi := G(ri), αi := D̃1(ri), βi := C ′(αi) and
(xRi , yi) := D̃2(ri∥βi), and compute msgi := C ′(xLi ∥xRi )⊕ yi. If there exists a “majority value” msg
such that |{i : msg = msgi}| > ℓ/2 then output msg, else output unmarked.

We can easily verify that the above construction above satisfies statistical correctness, detection correct-
ness, and meaningful properties.

Security Proofs for the Message-Embedding Construction. We prove the non-removability security
of the above construction in the selective-message setting, following essentially the same strategy as the
mark-embedding construction with small modifications.

Theorem 4.11 The above construction is a message-embedding watermarking scheme with public-detection
and selective-message security in the presence of a marking oracle for any approximation factor ε(λ) =
1√
2
+ 1/poly(λ) under the same conditions as in Theorem 4.4.

The above theorem follows from the following two lemmas.

Lemma 4.12 Under the conditions of Theorem 4.4, it holds that for all PPT D and all message msg ∈M:∣∣∣Pr[DMO(mk ,·,·)(C̃, dk ,α,x) = 1]− Pr[DMO(mk ,·,·)(C̃, dk ,α′,x′) = 1]
∣∣∣ ≤ negl(λ).

where (mk = (K1,K2,K3), dk) ← Gen(1λ), K is a random pPRF key, C̃ ← Mark(mk ,K,msg),
MO(mk , ·, ·) is the marking oracle that gets as input a pPRF key K(j) and a message msgj and out-
puts C̃ ← Mark(mk ,K(j),msgj). The values α = (α1, . . . , αℓ) and x = (x1, . . . , xℓ) correspond to
random find-points and mark-points as sampled by the detection procedure and are chosen as follows.
For i = 1, . . . , ℓ: choose ri ← {0, 1}n

′′
at random, xLi := G(ri), αi := F (K1, x

L
i ), βi := F (K , αi),

xRi := F (K2, x
L
i ∥βi) and xi := xLi ∥xRi . On the other hand α′ ← Dℓ,x′ ← Dℓ are uniformly random.

Lemma 4.13 If a PPT adversaryA breaks selective-message non-removability security of the given scheme
with probability δ(λ) and approximation factor ε > 1√

2
+ ρ, then we can construct a PPT distinguisher

DMO(mk ,·,·) and some message msg ∈M such that∣∣∣Pr[DMO(mk ,·,·)(C̃, dk ,α,x) = 1]− Pr[DMO(mk ,·,·)(C̃, dk ,α′,x′) = 1]
∣∣∣ ≥ δ(λ)− negl(λ).

where the distributions are those of 4.12.
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Proof of Lemma 4.13. This proof is similar to that of Lemmas 4.3 and 4.6 with some minor differences. In
particular, the distinguisher D sets msg to be the message chosen by the adversaryA at the beginning of the
game, and gets the challenge values (C̃, dk ,α∗,x∗), where α∗ and x∗ is either (α,x) or (α′,x′). It gives
C̃, dk to A and simulates the marking oracle for A using its own oracle. At some point A outputs C∗.

1. D runs a test that finds an estimate ρ̂ for Prx←D[C̃(x) = C∗(x)]− 1√
2

which is within ρ/4 of the actual
probability with overwhelming probability. (This can be done the same way as in Test described in
Figure. 2 with appropriate changes in parameters). If ρ̂ < 3

4ρ then output 0.

2. If for majority of i ∈ [ℓ], (C̃(x∗i ) ̸= C∗(x∗i )) ∨ (C̃(α∗i ) ̸= C∗(α∗i )), D outputs 1, otherwise 0.

If the distribution of (x∗,α∗) is that of (x,α) then with probability δ the adversary A outputs a “win-
ning program” C∗ such that C∗ ∼=ε C̃ and (C̃(x∗i ) ̸= C∗(x∗i )) ∨ (C̃(α∗i ) ̸= C∗(α∗i )) for a majority of i.
Therefore, D outputs 1 with probability δ − negl(λ).

If the distribution of (α∗,x∗) as that of (α′,x′) then (1) either it is not the case that C∗ ∼=1/
√
2+ρ/2

C̃ in which case the test fails and D outputs 0 with overwhelming probability, or (2) it is the case that
C∗ ∼=1/

√
2+ρ/2 C̃ in which case: each i we have

Pr[(C̃(x∗i ) = C∗(x∗i )) ∧ (C̃(α∗i ) = C∗(α∗i ))] ≥ (1/
√
2 + ρ/2)2 = 1/2 + Ω(ρ).

Moreover, since the events are independent for each i, the probability that equality holds for fewer than
a majority of i ∈ [ℓ] is (by Chernoff bound) 2−Ω(ρ2ℓ) which is negligible. Therefore, D outputs 1 with
probability negl(λ). 2

Proof of Lemma 4.12. This proof is essentially the same as that of Lemma 4.5. We explain only the
important differences. In the message-embedding construction, for marked points, the output of a marked
program is F (K3, x

L∥β) ⊕ msg. When moving from Hybrid 1 to Hybrid 2 we remove the marked points
from the challenge circuit C̃ which just outputs F (K,x) on all inputs x, but we need to patch the detection
key appropriately so it still detects C̃ as marked and outputs the right message. To do that we modify the
intermediate hybrids Hybj1 so as to use the following circuits for the challenge marked circuit C̃ and the
detection key component D̃2 respectively:

• Cj [K ,K1,K2,K3,msg] described in Figure 11

• Dj
2[K ,K1,K2,K3,msg] described in Figure 12.

Constants: pPRF keys K ,K1,K2,K3, and message msg.

Inputs: x ∈ D

Code: Parse x = xL∥xR. Set α := F (K1, x
L), β := F (K , α), x̂R := F (K2, x

L∥β).
If xR = x̂R and xL ≥ j, then output F (K3, x

L∥β)⊕msg, else output F (K , x).

Figure 11: Program Cj [K ,K1,K2,K3,msg]

In Hybrid 2, the detection key D̃2 uses the circuit Dρ
2 . The important difference here is that program

Dj
2[K ,K1,K2,K3,msg] used in the detection key must contain the challenge message msg embedded in

the challenge program. To embed msg in the hybrid detection key, we must know the message before we
give dk to the adversary. Thus, the scheme achieves selective-message security. Note that the adversary can
adaptively query pPRF key K (j) and message msgi toMO(mk , ·, ·). The rest of the proof is essentially the
same where all the hybrids are defined analogously. 2
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Constants: pPRF keys K ,K1,K2,K3, and message msg.

Inputs: r, β

Code: Set xL := G(r), α := F (K1, x
L), xR := F (K2, x

L∥β).
If xL ≥ j or β ̸= F (K , α), then set y := F (K3, x

L∥β), else set y := F (K , xL∥xR)⊕msg.
Output (xR, y).

Figure 12: Program Dj
2[K ,K1,K2,K3,msg]

Full Security. We can achieve full security with an adaptively (rather than selectively) chosen embedded
message by using the standard complexity leveraging technique where we guess the message msg before
starting the security game. This loses a factor of |M| in the security reduction which is super-polynomial
if the message space M is. However, since we already rely on complexity leveraging and assume sub-
exponentially secure iO and PRFs to achieve public-detection, this does not impact our full result in any
significant way.

Note on the approximation factor. Our scheme only achieves security for approximation factors ε >
1/
√
2 rather than ε > 1/2 (which we showed optimal in Section 3). This comes from the fact the detection

procedure calls the circuit C ′ twice and requires both calls to return the correct value a majority of the time.
In fact, there is a concrete attack on our message-embedding construction for an approximation factor ε in
the range 1

2 ≤ ε ≤ 1√
2
. We leave it as an open problem if it is possible to construct a scheme that works for

all ε > 1/2.

Improved Rate with ECC. We note that we can think of the above construction as relying on a naive
repetition code over the alphabet Σ = {0, 1}m, where we just repeat the same message many times. We
can modify the construction to allow for a larger message domain M than just Σ by using better codes,
such as the Reed-Solomon code. In this variant we would set M = Σd for some polynomial d (without
increasing the parameters n,m of the underlying pPRF). We would think of a message msg ∈ Σd as a
degree d − 1 polynomial pmsg over F2m . For simplicity, let’s assuming that n = m and in this case we
can modify the program in Figure. 10 so that, instead of outputting F (K3, x

L∥β) ⊕ msg we would output
F (K3, x

L∥β) ⊕ pmsg(x). The detection procedure would apply the error-decoding procedure of the Reed-
Solomon code to recover the message.

List Decoding. We note that our construction could also be modified to work for any ε = 1/poly(λ)
approximation factors by (necessarily) relaxing the definition and allowing the detection procedure to output
a (small) list of possible messages rather than a single message. For security, we would require that the
correct message is contained in the list. For example, in our construction, instead of outputting the “majority
value” msg such that |{i : msg = msgi}| > ℓ/2 we could output all O(1/ε) values msg such that
|{i : msg = msgi}| > εℓ (or output unmarked if no such value exists). By signing the messages with a
standard signature scheme, we could also ensure that the list of messages output by the detection procedure
can only contain (in addition to the correct message) the messages that were embedded in some watermarked
circuit by a previous call to the marking oracle.
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5 Watermarking Other Cryptographic Primitives

We show how to use our watermarking scheme for pPRF to watermark other cryptographic primitives. Sahai
and Waters proposed a public-key encryption (PKE) scheme and a signature (SIG) scheme based on pPRF
and iO [SW14]. We briefly review their schemes since we apply our watermarking schemes to their PKE
and SIG schemes.

The Sahai-Waters PKE scheme. Let G be a PRG.

Key Generation: Choose pPRF key K ← Key(1λ) and generate an encryption program E in Figure 13.
Output (pk , dk) := (iO(E),K ).

Encryption: For plaintext m, choose randomness r ∈ {0, 1}λ and output ct := iO(E)(m, r).

Decryption: Parse ct = (c1, c2) and output m′ := F (K , c1)⊕ c2.

Constants: pPRF key K .

Inputs: plaintext m ∈ {0, 1}m, randomness r ∈ {0, 1}λ

Code: Let t := G(r) and output ct := (t, F (K , t)⊕m).

Figure 13: Encryption Program E

The Sahai-Waters SIG scheme. Let f be a one-way function.

Key Generation: Choose pPRF key K ← Key(1λ) and generate a verification program V in Figure 14.
Output (vk , sk) := (iO(V),K ).

Signing: For message m, output σ := F (K ,m).

Verification: Output what iO(V)(m, σ) outputs.

Constants: pPRF key K .

Inputs: Signature σ, message m

Code: Check if f(σ) = f(F (K ,m)). If it holds, then output 1, otherwise 0.

Figure 14: Verification Program V

As we reviewed, the decryption procedure of the PKE scheme and the signing procedure of the SIG
scheme are just evaluations of a pPRF. Thus, we can watermark these primitives by using our watermark-
ing schemes for pPRF. However, there is a subtle issue when we prove the non-removability of a marked
decryption/signing program. In these settings, the adversary is given public values related to a pPRF key,
that is, iO(E) or iO(V). We should show the PKE and SIG schemes are secure even if iO(E) and iO(V)
are constructed from marked pPRF key K̃ = Mark(mk ,K ,msg) to reduce the non-removability of marked
decryption/signing program to non-removability of pPRF. To achieve this and for modular analysis, we
introduce an extension of pPRF, puncturable marked PRF.
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Definition 5.1 (Puncturable Marked PRF) A puncturable marked PRF (pmPRF) scheme from pPRF (Key,
F,Puncture) consists of watermarking scheme for pPRF (Gen,Mark,Detect), a puncture-with-mark algo-
rithm PunctureM, and a evaluation-with-mark algorithm F̃ . They satisfy the following conditions. (we omit
F in subscripts in algorithms.)

Functionality preserving under puncturing: For all polynomial size set S ⊆ {0, 1}n(λ), for all x ∈
{0, 1}n(λ) \ S, for all msg ∈M, it holds that

Pr

F̃(K̃ , x) = F̃(K̃ {S}, x) :
K ← Key(1λ), (dk ,mk)← Gen(1λ),

K̃ := Mark(mk ,K ,msg),

K̃ {S} := PunctureM(mk ,K ,msg, S)

 = 1.

Pseudorandom at punctured points: For all polynomial size set S ⊆ {0, 1}n(λ) and msg ∈ M, it holds
that for all PPT adversary A,∣∣∣Pr[A(K̃ {S}, F̃(K̃ , S)) = 1]− Pr[A(K̃ {S}, Um(λ)·|S|) = 1]

∣∣∣ ≤ negl(λ)

where (dk ,mk)← Gen(1λ), K ← Key(1λ), K̃ := Mark(mk ,K ,msg), S = {x1, . . . , xk}, K̃ {S} :=
PunctureM(mk ,K ,msg, S), F̃(K̃ , S) denotes multiple values (F̃(K̃ , x1), . . . , F̃(K̃ , xk)), and Uℓ de-
notes the uniform distribution over ℓ bits.

We can easily construct pmPRF from our watermarking schemes by replacing pPRF key K in a marked
program with a punctured key K {S}. For example, PunctureM(mk ,K ,marked, S) can compute a punc-
tured and marked pPRF key K̃ {S} = C[K {S},x,y] in the basic construction if we have mk = wk =
(x,y) and K . Although we cannot compute K̃ {S} from K {S} even if we use mk , it does not cause
any problem since we use K̃ {S} only in security proofs. Similarly, we can construct pmPRF from the
constructions with public-key detection in Section 4.2.

Security of Sahai-Waters PKE and SIG based on pmPRF. Even if we replace pPRF F (K , ·) in Sahai-
Waters PKE and SIG with pmPRF F̃ (K̃ , ·), they remain secure since marked pPRFs have statistical correct-
ness and we can puncture marked pPRF keys as we observed. Thus, the original proofs by Sahai and Waters
still work.

Constants: Marked pPRF key K̃ .

Inputs: ct = (c1, c2)

Code: Output F̃ (K̃ , c1)⊕ c2.

Figure 15: Marked Decryption Program D̃

Constants: Marked pPRF key K̃ .

Inputs: m

Code: Output F̃ (K̃ ,m).

Figure 16: Marked Signing Program S̃
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On Non-Removability of Marked Decryption and Signing Programs. If there exists adversary A of
the non-removability security game for PKE, then we can construct adversary B of the non-removability
security game for pPRF. We focus on the PKE case and the SIG case is similarly proved. B is given
K̃ = Mark(mk ,K ,msg). B gives A program D̃ described in Figure 15 and a public key iO(Ẽ) where Ẽ
is the same as E except that K is replaced with K̃ = Mark(mk ,K ,msg). Giving iO(Ẽ) does not give the
adversary any more power to break the non-removability since it is constructed from the marked pPRF key.

Eventually, A outputs un-marked program C∗ such that C∗ ∼=ε D̃. Thus, B outputs a program that
computes C∗(c1, c2)⊕ c2 for input (c1, c2) as an un-marked pPRF program. This is a valid attack since we
assume A breaks the non-removability of the marked decryption program D̃.

6 Conclusions

We have shown how to watermark various cryptographic programs such as PRFs, public-key encryption
and signatures. Our watermarking schemes have a public-key detection procedure and achieve security in
the presence of the marking oracle. The attacker cannot remove the mark by coming up with any program
that functionally approximates the marked program where we can achieve an approximation factor of ε =
1/poly in the case of “mark-embedding” schemes and ε = 1√

2
+1/poly in the case of “message-embedding”

schemes. Several interesting open questions remain.
Firstly, it would be interesting to further explore the connection between obfuscation and watermarking

and to see if some form of obfuscation is necessary to achieve watermarking or if one can come up with con-
structions that avoid obfuscation. Less ambitiously, one could hope to at least avoid complexity leveraging
in the constructions of watermarking.

Secondly, it would be interesting to achieve a fully public-key watermarking construction where both
the marking and the detection procedure only use public keys. This kind of watermarking appears plausible
and we can even come up with a heuristic construction by taking our watermarking scheme with a secret-
key marking procedure and releasing an obfuscated marking procedure as a public marking key. However,
proving such a scheme secure by only relying on iO appears difficult.

Thirdly, it would be interesting to achieve a message-embedding construction with the optimal approxi-
mation factor ε > 1/2 rather than ε > 1/

√
2.

Lastly, it would be interesting to come up with watermarking schemes for richer classes of programs as
well as more applications for watermarking cryptographic programs.
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