
Identity-Set-based Broadcast Encryption supporting
“Cut-or-Select” with Short Ciphertext

Yan Zhu, Xin Wang, RuiQi Guo
University of Science and Technology Beijing

zhuyan@ustb.edu.cn

Di Ma
University of Michigan-Dearborn

dmadma@umich.edu

ABSTRACT
In this paper we present an identity-set-based broadcast en-
cryption scheme with three working modes: set membership
(Include-mode), all member (All-mode), and negative mem-
bership (Exclude-mode) over the user identity set, simulta-
neously. The core of our scheme is the implementation of
cryptographic representation of subset by using two aggre-
gation functions: Zeros-based aggregation and Poles-based
aggregation. These two aggregation functions are capable of
compressing any subset into one element in a bilinear map
group for determining the membership between an element
and a subset. Our scheme achieves the optimal bound of
O(1)-size for either ciphertext (consisting of just two ele-
ments) or decryption key (one element) for an identity set
of large size. We prove that our scheme is secure under the
General Diffie-Hellman Exponent (GDHE) assumption.

Keywords
Broadcast Encryption, Cryptographic Membership, Aggre-
gation Function

1. INTRODUCTION
Broadcast encryption (BE) is a group-oriented cryptosys-

tem in which a broadcaster encrypts messages and transmits
them to a group of users U who are listening to a broadcast
channel and use their private keys to decrypt received mes-
sages. [1, 2, 3] One remarkable feature of broadcast encryp-
tion is that each user has a unique private key. In the public
key setting for n = |U| users, this feature means that broad-
cast encryption has a one-to-many (or 1 : n) public/private
key structure. In other words, many different private keys
correspond to one public key. This kind of key structure is
completely different from traditional 1 : 1 public/private key
structure. The benefits gained from this 1 : n key structure
include additional functionalities such as traitor tracing [4],
dynamic revocation, and so on.

Broadcast encryption can be widely used in many applica-
tion scenarios ranging from TV subscription services, DVD
copyright protection, and encrypted file systems, to secure
communication of social networks, e.g., Email, Blog, Web
communities. Existing broadcast encryption schemes can
be roughly categorized into two groups (related work is dis-
cussed in Section 7):

• Category I: Broadcast for multiple designated receivers
where a broadcast message is sent securely to a small
subset of users S and |S| � n [2, 5];

• Category II: Broadcast without multiple revoked re-
ceivers where a broadcast message is sent to all BUT
a small set of revoked users R and |R| � n [6].

Usually, these two categories of broadcast encryption do not
replace each other when n is large, so they can be thought
as two complementary approaches. There is little system-
atic work for integrating these two categories of broadcast
encryption into a secure BE system [2, 7, 8] from literature.

The two mechanisms, one-time designation or inclusion
(of Category I) and revocation or exclusion (of Category II)
for a subset of users, are extremely important for large-scale
IT systems with large-size users. For example, in email sys-
tem or Blog sites, we often communicate with several spec-
ified friends, but also sometimes broadcast to almost users
in community. To sum up, we list some desirable features
for developing a practical and flexible BE scheme:

1. The scheme should be able to support large-size users
and new user’s joining at an arbitrary time;

2. Two broadcast mechanisms, designation and revoca-
tion, should be supported simultaneously, and the ci-
phertext size should be independent on the number of
designated or revoked users;

3. For easy-to-use, the user’s identity (similar as identity-
based encryption) should be employed to memory and
distinguish the different users;

Our Motivation and Roadmap. In this paper our goal is
to develop a new group-oriented encryption which supports
two broadcast mechanisms, designation and revocation, si-
multaneously. We believe that the foundation of construct-
ing such an encryption system is to achieve cryptographic
decisional problem of set membership, that is, given a sub-
set S and an element e in U , determine whether or not e
belongs to S (i.e., e ∈ S or e 6∈ S) in a secure (or non-
deceptive) way. Obviously, our desired cryptosystem could
be constructed by solving the above problem.

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

Figure 1: Example of cryptographic representation
of subset and aggregation function.

Our approach of solving the above problem is to realize
the cryptographic representation of any given subset, and
then design a secure aggregation function to compress the
subset into a constant-size random element, which would be



used to construct our desired encryption system. Further,
we show an example of our approach in Figure 1, in which
such an approach can be realized by four following steps:

1. Given a set U = {e1, · · · , en}, we map each element ei
into a random point vi in cryptographic space, where
the partial information of these points is published as
the public key mpk (see the red points in Figure 1);

2. Given a subset S ⊆ U , we construct a curve c(x)
through all random points {vi} included in S (see t-
wo curves in Figure 1, each of which was interpolated
from points);

3. We introduce a random secret γ and then the aggre-
gation function is defined as the corresponding point
c(γ) in this curve, that is, Aggregate(mpk,S)→ c(γ),
where mpk is the public cryptographic parameters (see
the dashed blue line and the intersections of this line
and two curves);

4. We define the security feature of function that intend
to ensure the security of aggregation under the mali-
cious attacks (see Definition ?? and ?? in Section ??).

Finally, we expect to use this kind of aggregation for devel-
oping our encryption scheme. The privacy and randomness
of aggregation point c(γ) will provide guarantee for the se-
curity of our scheme. Moreover, the compression property
of aggregation function can ensure the O(1)-size ciphertext.

Our Contributions. In this paper we first present a new
identity-Set-based Broadcast Encryption (SBE) based on
cryptographic decisional problem of set membership. By
supporting both designation and revocation simultaneous-
ly, our scheme allows a nice property of ”Cut-or-Select”.
That is, a broadcaster is able to send a message to some
selected users or to all but some revoked ones. In detail, our
work is listed as follows:

• We propose a new approach to solve cryptographic de-
cisional problem of set membership by designing two
aggregation functions: Zeros-based aggregation and
Poles-based aggregation. Two corresponding fast al-
gorithms are developed to compress any subset quickly
into a constant-size element for designation and revo-
cation mechanisms.

• We present the construction of a SBE scheme with
three operation modes over the set of user identities:
set-membership, all member, negative membership for
any subset of users, simultaneously. Moreover, our
scheme achieve the optimal bound of O(1)-size for ei-
ther ciphertexts or decryption keys.

• We prove the security of two aggregation functions and
provide a complete security proof of our SBE scheme
based on general Diffie-Hellman exponent (GDHE) as-
sumption. Our scheme is secure for arbitrarily large
collusion of corrupted users. Moreover, our experi-
ments show that our SBE scheme is simple, easy-to-
implement and high performance, as well as short (128-
byte) and constant-size ciphertext for any size subset.

Organization. The preliminaries and definition of SBE are
provided in Section 2. We propose an effective solution for
cryptographic set membership in ??. Our ISBE scheme in

Section 3. We present the security and performance analysis
in Section 4, 5, and 6. Related work is presented in Section
7 and Section 8 concludes the Lab.

2. OUR DEFINITION OF SBE
We now give a formal definition of identity-Set-based Broad-

cast Encryption (SBE) with key encapsulation mechanism
[2], which is made up of four algorithms, shown as follows:

Setup(S): takes as input a bilinear map group system S.
It outputs a public key mpk and a master secret key
msk, where mpk contains a list of user’s profiles pp.

KeyGen(msk, IDk): takes as input msk and a user’s iden-
tity IDk. It outputs the user’s secret key skk and adds
a user’s profile ppk to pp, i.e., pp = pp ∪ {ppk}.

Encrypt(mpk,S,mode): takes as input mpk, a set of user’s
identities S, and a mode of operation mode, where
mode belongs to one of three modes in {u ∈ S, u ∈
ALL, u 6∈ S}. It outputs a ciphertext C and a random
session key ek, where (S,mode) is included in C.

Decrypt(mpk, skk,C): takes as input mpk, a ciphertext C,
and a user’s secret key skk. If this user satisfies the
access mode mode then the algorithm will decrypt the
ciphertext C and return a session key ek.

In SBE scheme, the user’s profile includes the identity of
this user and a public parameter generated in registry. Our
scheme makes use of these profiles to realize encryption and
decryption for a subset of users. As a group-oriented cryp-
tosystem, we employ a list of profiles to realize the manage-
ment of memberships. According to the different of opera-
tions, the set of users S will be used in three cases:

Include-mode (u ∈ S): used to specify multiple receivers,
where S denotes a set of specified users, such that the
user u ∈ S will be authorized to decrypt the message.

All-mode (u ∈ ALL): used to specify all receivers, and all
users is specified to decrypt the message.

Exclude-mode (u 6∈ S): used to revoke multiple receivers,
where S denotes a set of revoked users, such that the
user u 6∈ S will be authorized to decrypt the message.

Consider all possible mpk from Setup(S) → (mpk,msk), a
valid ciphertext C from Encrypt(mpk,S,mode) → (C, ek)
and KeyGen(msk, IDk) → skk. If the user’s identity IDk

satisfies the operation mode (S,mode) in C, then the de-
cryption algorithm will retrieve the session key ek, i.e.,

Pr

[
Decrypt(mpk, skk,C) = ek :

mode(IDk,S) = 1

]
= 1,

where mode(IDk,S) = 1 denotes the boolean judgment over
mode := {u ∈ S, u ∈ ALL, u 6∈ S} for a certain IDk and a
set of user’s identities S.

We now describe a game-based security definition of our
SBE scheme. We define a selective-set model for proving
the security of SBE under chosen plaintext attack (CPA).
Given a challenge ciphertext C∗ with (S∗,mode), the at-
tacker can repeatedly ask for secret keys R = {(IDi, ski)}
corresponding to a given mode used in C∗, but we have
mode(IDi,S) = 0 for all possible IDi in the corrupted keys
R, where i is a user counter. The security game follows.



• Setup. Given amode and a set S∗, the challenger runs
the Setup algorithm and gives mpk to the adversary.

• Learning. The adversary makes n times repeated pri-
vate keys queries for a user’s identity IDi. The chal-
lenger returns KeyGen(MK, φ)→ (ski, ppi) ifmode(IDi,S∗) =
0. Otherwise, it merely returns a public profile ppi,
where t is the number of all corrupted secret keys and
|S∗| = n− t.

• Challenge. The challenger completes Encrypt(mpk,S∗,
mode) = (C, ek), and then flips a random coin b =
{0, 1} and sets ekb = ek and ek1−b to a random ele-
ment of GT . The ciphertext (C, ek0, ek1) is given to
the adversary.

• Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined
as AdvIND,mode

SBE,A (n, t) = |Pr[b′ = b] − 1/2| for three modes.
A SBE scheme is (n, t)-secure against colluders [3, 9] if all
polynomial time adversaries have at most a negligible ad-
vantage in the above game.

3. OUR CONSTRUCTION

3.1 Aggregation Functions of Subsets
In this section, we illustrate our basic idea to design cryp-

tographic construction for set membership. In our idea, the
core notion is cryptographic representation of subset based
on aggregation functions. Given a set U , an aggregation
function is a cryptographic function to compress the infor-
mation of any subset S ⊆ U into a constant-size value. The
output of aggregation function is called the cryptographic
representation of subset. The definition of this function is
stated as follows:

Definition 1 (Aggregate function). Let PK denote
the public key space over a group G and U = {e1, · · · , en} be
a set of elements, the function Aggregate : PK × 2U → G
is a deterministic polynomial time algorithm satisfying:

Aggregate(mpk,S) = RS , (1)

where mpk is the public key in PK, a subset S ⊆ U , and RS
is a random enough element in G to avoid guessing.

This kind of aggregation function is our core in our SBE
scheme and foundation of cryptographic decisional problem
of set membership (see Section 1). In this paper, we use this
kind of function to build membership and negative member-
ship. More importantly, the constant size ciphertext can be
implemented in our SBE scheme only if the compression
property can be efficiently realized. Based on the presented
approach in Section 1, we present two aggregate functions,
ZerosAggr and PolesAggr, that realize the decision over set
membership and negative membership, respectively.

Before our aggregation functions are introduced, we first
give the definition of zeros and poles in a function as follows:

Definition 2 (Zeros and Poles). A rational polyno-

mial function has the form H(x) = P (x)
Q(x)

that is the quotient

of two polynomial P (x) and Q(x). We say the value z is a
zero of H(x) if P (z) = 0, and z is a pole of H(x) if Q(z) = 0.

Next, we propose two aggregation functions, ZerosAggr
and PolesAggr, for u ∈ {vi} and u 6∈ {vi} as below.

given a secret γ and a subset S, we propose the definition
of aggregation function that can aggregate the information
of S into the constant-size value gfS(γ) based on the above
polynomial fS(x). We call it the Zeros-based Aggregation
(in short, ZerosAggr) function since the hash values of all
elements in S are used for the (negative) zeros in the poly-
nomial fS(x). The algorithm is defined as follows:

Definition 3 (Zeros-based Aggregation). Given a
subset S = {e1, · · · , em} ∈ U and a cyclic group G, an al-
gorithm is called Zeros-based Aggregation function if there
exists a polynomial-time algorithm ZerosAggr that outputs

GS = ZerosAggr(mpk,S) = g
γ·

∏
ei∈S

(γ+xi), (2)

where, mpk = {gi = gγ
i

}i∈[1,|U|] is the public parameter, g
is a generator in G, xi = hash(ei) and γ is a secret.

Definition 4 (Poles-based Aggregation). Given a
subset R = {e1, · · · , em} ∈ U and a cyclic group G, an al-
gorithm is called Poles-based Aggregation function if there
exists a polynomial-time algorithm PolesAggr that outputs

HR = PolesAggr(mpk,R) = h
1∏

ei∈R(γ+xi) , (3)

where, mpk = {hi = h
1

γ+xi }ei∈U is the public parameter, h
is a generator in G, xi = hash(ei) and γ is a secret.

3.2 Our Construction
We now present our SBE scheme with three modes, such

as Include, ALL, and Exclude. In this scheme, we assume
that each user has a unique identity ID (e.g., email ad-
dress) and all users in cryptosystem make up a full set
U = {ID1, · · · , IDn}, where the size of U is not restrict-
ed. Given a subset of users S in U , we now present the SBE
providing two basic access control mechanisms: set member-
ship decision over u ∈ S and negative membership decision
over u 6∈ S, simultaneously.

Our SBE scheme is illustrated in Figure 4. In this scheme,
we choose the bilinear map system S = (p,G1,G2,GT , e(·, ·))
of prime order p and two generators g and h in G1 and
G2, respectively [10, 11], where p is the order of group-
s. Additionally, the algorithm will employ a hash function
hash : {0, 1}∗ → Z∗p, mapping any identity ID described
as a binary string to a random element xi ∈ Z∗p, that is,
xi = hash(IDi).

• Setup: we redefine two random elements G and H as
the generators in G1 and G2, respectively. We require
G 6= g and G is a secret. Let m be the maximum
number of aggregated users in the ZerosAggr algorith-
m. Usually, we set m ≤ n/2 because the sender can use
Include-mode when the size of S is greater than n/2.
In addition, the public profile pp is used to list all users
in system and their public tags, i.e., {(IDi, Hi)}. The
initial status is defined as ∅. As a group-oriented cryp-
tosystem, the parameter pp is usually shared through
public media, e.g., web, facebook, where each user can
search his friends profiles in a convenient way. Note
that, we must keep two values, G and Gε, secret be-
cause of the following reasons:



Setup(S): chooses two elements G
R←− G1, H

R←− G2, and two exponents γ, ε
R←− Z∗p. And then set R = e(G,H)ε

and sets Gk = Gγ
k

for k ∈ [1,m]. The master key is outputted as msk = (γ, ε,G,Gε) and the public key is
mpk =

{
S, H,R, {Gk}k∈[1,m], pp = φ

}
.

KeyGen(msk, IDk): Given an user’s identity IDk, defines xk = hash(IDk) and computers the k-th user’s secret key

skk = G
xkε

γ+xk , and Hk = H
ε

γ+xk ,

where, ppk = (IDk, Hk) is appended to pp, i.e., pp = pp ∪ {ppk}.

Encrypt(mpk,S,mode): picks a random s
R←− Z∗p and executes the following process:

• Case mode := (u ∈ S): invokes PolesAggr(mpk,S)→ HS = H
ε
∏
ei∈S

1
γ+xi , then computes

C1 = Hs, and C2 = (HS)s.

• Case mode := (u 6∈ S): invokes ZerosAggr(mpk,S)→ GS = G
γ·

∏
ei∈S

(γ+xi), then computes

C1 = Hs, and C2 = (GS)s

Finally, the ciphertext is published as C = (S,mode, C1, C2). The corresponded session key is ek = Rs.

Decrypt(mpk, skk, C): chooses one action from two following cases according to the mode in C:

• Case mode := (u ∈ S): checks whether IDk is a member of S, that is, IDk ∈ S. If true, it sets S− = S \ {IDk}
and invokes ZerosAggr(mpk,S−)→ GS− = G

γ·
∏
ei∈S−

(γ+xi). Next it retrieves the session key

ek′ = e(skk, C1) · e(GS− , C2). (4)

• Case mode := (u 6∈ S): checks whether IDk satisfies the relation IDk 6∈ S. If true, it sets S+ = S ∪ {IDk} and

invokes PolesAggr(mpk,S+)→ HS+ = H
ε
∏
ei∈S+

1
(γ+xi) . Next, it also retrieves the session key

ek′ = e(skk, C1) · e(C2, HS+). (5)

Figure 2: The full construction of set-based broadcast encryption (SBE).

– When the adversary knows the value Gε, the de-
cryption is executed by using

e(Gε, C1) = e(Gε, Hs) = e(G,H)sε = ek.

– When the adversary knowsG and a sub-ciphertext

C2 = H
sε

γ+xi , the decryption is implemented by

e(G1 ·Gxi , C2) = e(Gγ+xi , H
sε

γ+xi ) = e(G,H)sε = ek.

• KeyGen: given a unique identity IDk, the user’s secret
key skk is only an element in G1. In addition, the
new user’s profile ppk is also appended into pp. The
scheme allows adding new members into the system
anytime, and the total number of users is unlimited in
the system.

• Encrypt: the sender may select one of Include and
Exclude mechanisms to implement secure broadcast,
where there is no limit for the number of “cut-or-
section” users. These two mechanisms employ two
Aggregate functions, ZerosAggr for Exclude-mode and
PolesAggr for Include-mode, which can aggregate all
information of user’s identities in S into two group ele-
ments GS and HS , respectively. We will introduce this
algorithm in detail in Section 3.4. And then, the pair
(H,GS) or (H,HS) is used to generate the ciphertext

(C1, C2) =

{
(Hs, (GS)s) for (u ∈ S)
(Hs, (HS)s) for (u 6∈ S)

Note that, a significant feature of our scheme is short
and constant-size ciphertext.

• Decrypt: this process only needs two steps for a suc-
cessful decryption: firstly, the receiver invokes two
Aggregate functions, ZerosAggr for Include-mode and
PolesAggr for Exclude-mode, taken as input S− or S+,
respectively. Secondly, the above result will be used to
decrypt the ciphertext by using two bilinear maps.

We verify that the decryption works correctly as follows:

Case mode := (u ∈ S): when IDk ∈ S, we have S− = S \
{ek} and GS− = G

∏
ei∈S,ei 6=ek

(γ+xi) can be computed
from the ZerosAggr algorithm. Based on this val-
ue, we check whether the triple (C1, C2) in ciphertext
matches the private key skk by using

e(skk, C1) · e(GS− , C2)

= e
(
G

xkε

γ+xk , Hs
)
· e

(
G

γ
γ+xk

∏
ei∈S

(γ+xi)

, H
s·ε

∏
ei∈S

1
γ+xi

)

= e(G,H)
xksε
γ+xk · e(G,H)

γsε
γ+xk = e(G,H)sε = Rsε = ek.

Case mode := (u 6∈ S): when IDk 6∈ S, we have S+ = S ∪
{ek} and HS+ = H

1
γ+xk

∏
ei∈S

1
(γ+xi) can be comput-

ed from the PolesAggr algorithm. Based on this val-
ue, we check whether the triple (C1, C2) in ciphertext



matches the private key skk by using

e(skk, C1) · e(C2, HS+)

= e
(
G

xkε

γ+xk , Hs
)
· e

(
G
sγ

∏
ei∈S

(γ+xi)

, H

ε
γ+xk

∏
ek∈S

1
γ+xi

)

= e(G,H)
xksε
γ+xk · e(G,H)

γsε
γ+xk = e(G,H)sε = Rsε = ek.

In summary, our scheme is easy-to-understand and the ci-
phertexts and decryption keys are constant size.

3.3 Construction for ALL-mode
We provide a solution for mode u ∈ ALL, that means that

all users can be authorized only if everyone of them holds a
valid key. This mode is usually realized based on Include-
mode with S = U , but it need to provide a complete list
of all users. A more effective method is to consider ALL-
mode as a special case of Exclude-mode with S = ∅, where
∅ denotes the empty set. The reason is that u ∈ ALL is
logically equivalent to u 6∈ ∅. In this case, the work mode
is defined as u 6∈ ∅. We provide this process as follows:

• Encrypt(mpk,∅, u ∈ ALL): picks a random integer
s ∈ Zp and computes the following cipertext C =
(∅, u ∈ ALL, C1, C2), where

C1 = Hs, C2 = Gs1.

The corresponded session key is ek = Rs.

• Decrypt(mpk, skk, C): When the mode u ∈ ALL in C
is found, it makes use of skk and the corresponding
public profile Hk to recover ek

ek = e(skk, C2) · e(C1, Hk)

= e

(
G

xkε
γ+xk , Hs

)
· e
(
Gsγ , H

1
γ+xk

)
= e(G,H)

xksε
γ+xk · e(G,H)

γsε
γ+xk = e(G,H)sε = Rsε.

In contrast with Include-mode with S = U , our construction
does not require to invoke the aggregation function. More-
over, the broadcaster does not need to provide (or know)
a list of all users’ identities, such that the total number of
receivers is unlimited in one time broadcast.

3.4 Construction of Aggregation Functions
Given a subset S, the aggregate functions defined in E-

quation (2) and (3) are used repeatedly in our constructions,
such that it is crucial to compute the output values (GS , HS)
from the public key mpk in an efficient way. We provide a
fast recursive method to realize them as follows:

3.4.1 Implement of ZerosAggr function
To implement fast ZerosAggr, we first extract the related

information {Gi = Gγ
i

}i∈[1,m] from mpk, where γ is an un-
known secret. Let |S| = t and we require t < m. We provide
a fast recursive way to realize the ZerosAggr function: given
all {xi = hash(ei)}ei∈S , we define the polynomial of X as

fS(X) =
∏

vi∈S
(X + xi) =

∑t

k=0
akX

k (mod p)

and compute the coefficient ak ∈ Zp for all k ∈ [0, t]. We
can use the recursive process to obtain these coefficients. Let

a
(j)
i denote the value of ai at the j-th cycle for j = 1, · · · , t

and i = 0, · · · , j. For each cycle, a new xk is appended into

the polynomial. After an inital coefficient is set as a
(0)
0 = 1,

the coefficients can be computed repeatedly in each cycle as

a
(k)
k = a

(k−1)
k−1 (k ≥ 1)

a
(k)
k−1 = a

(k−1)
k−2 + a

(k−1)
k−1 · xk (k ≥ 2)

· · · · · ·
a
(k)
1 = a

(k−1)
0 + a

(k−1)
1 · xk (k ≥ 2)

a
(k)
0 = a

(k−1)
0 · xk (k ≥ 1)

.

After t cycles running, the value a
(t)
0 , · · · , a(t)t are outputed

as a0, · · · , at. It is obvious that the output of ZerosAppr is
GS = Gγ·fS(γ). In face, although γ is unknown, we make
use of (G1, · · · , Gm) and t < m to compute GS as following

GS = Gγ·fS(γ) = G
γ·

∏
vi∈S

(γ+xi)

= G
∑t+1
k=1

ak−1·γk =
∏t+1

k=1
G
ak−1

k . (6)

Note that, when S = ∅ and t = 0, the output of this
algorithm is ZerosAggr(mpk,S) = G1. This value is used
to realize the broadcast for ALL users.

Algorithm ZerosAggr(mpk,S)
Begin
B[1] = 1;
for s = 1 to t do
B[s+ 1] = B[s];
for r = s downto 2 do
B[r] = B[r − 1] +B[r] ∗ xs;

end for
B[1] = B[1] ∗ xs;

end for
sum = 0;
for k = 1 to t+ 1 do
sum = sum ∗ pow(Gk, B[k]);

end for
Return sum;

Figure 3: The zeros-based aggregation function.

Based on the above crecursive process, we present a fast
algorithm, call ZoresAggr, show in Figure 3. In this algo-
rithm, we design a double-loop structure for computing the
coafficients of FS(X), where B[1] = a0, · · · , B[t + 1] = at.
And then, the final result is computed by accumulating all
G
ak−1

k for k = 1, · · · , t + 1. In this process, the function
pow(·) is invoked to obtain the power of element in G1, that

is, pow(Gk, B[k]) = G
B[k]
k = G

ak−1

k .

3.4.2 Implement of PolesAggr function
To implement fast aggregation, we first extract the related

information {(xi, Hi = H
ε

γ+xi )}ei∈S from mpk. Given Hi
and Hj , it is easy to obtain the aggregation equation

(Hj/Hi)
1

xi−xj = (H
ε

γ+xj /H
ε

γ+xi )
1

xi−xj = H
ε

(γ+xi)(γ+xj) ,

where xi 6= xj is a prerequisite for this equation. The value
1

xi−xj
modulo p can be computed by using extended Eu-

clidean algorithm (called xGCD) in Z∗p. Next, we expand
this equation to multi-value cases. We define the follow-
ing denotation Bs,r, where 1 ≤ s < r ≤ t, and Bs,r =



H
ε∏r

k=s
(γ+xk) . In the same way, we can compute

Bs,r+1 = (Bs,r/Bs+1,r+1)
1

xr+1−xs

= (H
ε∏r

k=s
(γ+xk) /H

ε∏r+1
k=s+1

(γ+xk)
)

1
xr+1−xs

= (H
ε

(γ+xs) /H
ε

(γ+xr+1) )
1

xr+1−xs
· 1∏r
k=s+1

(γ+xk)

= H
ε

(γ+xs)(γ+xr+1)
· 1∏r
k=s+1

(γ+xk)
= H

ε∏r+1
k=s

(γ+xk) .

Finally, the output value HS = B1,t can be completed by
computing sequentially Bs,r for s = [1, t−1] and r = [1, t−s],
as well as the induction

Br,r = Hr ∀r ∈ [1, t],

Bs,r+1 = (Bs,r/Bs+1,r+1)
1

xr+1−xs ,
s ∈ [1, t− 1], r ∈ [1, t− s],

(7)

where Br,r is the initial input Hr for r = [1, t].

Algorithm PolesAggr(mpk,S)
Begin
for r = 1 to t do
B[r] = Hr

end for
for s = 1 to t− 1 do

for r = 1 to t− s do
if xr+s = xr then

Return 0.
end if
tmp1 = xr − xr+s;
tmp2 = invert(tmp1, p);
tmp3 = B[r + 1]/B[r];
B[r] = pow(tmp3, tmp2);

end for
end for
Return B[1];

Figure 4: The poles-based aggregation function.

We provide the algorithm of the above recursive process,
called PolesAggr, in Figure 4. This fast algorithm is de-
rived from Equation (7). In the aggregation process, double
loops are used to compute the value of B[r] = Br,r+s for
s = 1, · · · , t − 1 and r = 1, · · · , t − s, repeatedly. In each
cycle, the output value 0 denotes the error if there exist
two equivalent values xr+s and xr. This means that two
identities are identical or a hash collision occurred, but t-
wo identities IDr+s and IDr are equivalent with negligible
probability according to the property of cryptographic hash
function. Next, two functions, invert(·) and pow(·), are used
to compute the inverse element and the power of element,
that is, tmp2 = 1/tmp1 (mod p) and B[r] = tmptmp23 ∈ G2.

4. SECURE ANALYSIS

4.1 Security Analysis for Our SBE Scheme
We prove the semantic security of our system by relying on

the General Diffie-Hellman Exponent (GDHE) framework in
[3, 5]. We overview the GDHE framework in Appendix A.
We will not analyze ALL-mode because this mode can be
realized as a special case of Exclude-mode, that is, S = ∅.
We start by defining the following computational problem.

According to construction of two aggregation functions,
we assume f(x) and g(x) be two known random polynomials

of respective degree t and n− t with pairwise distinct roots,{
f(X) =

∏t
i=1(X + xi) =

∑t
i=0 ai ·X

i,

g(X) =
∏n−t
i=1 (X + x′i) =

∑n−t
i=0 bi ·X

i.

Moreover, h(x, y, z) = f(x)g(x)yz be a three-variable poly-
nomial in a bilinear group system S = (p,G1,G2,GT , e(·, ·)).

Based on these two polynomials, we provide a new compu-
tational problem, called GDHE1 problem, which is used to
prove the semantic security of our SBE scheme for Include-
mode (u ∈ S). This problem is defined as follows:

Theorem 1 ((n, t)-GDHE1 Problem). Let γ, ς, ε ∈ Z∗p
be three secret random variables, f(X) and g(X) are two

polynomials described above, and Ĝ, Ĥ be generators of S.
Given the values in (F1, F2, F3)-GDHE1 problem with

F1(γ, ς, ε) =
〈
Ĝε, Ĝγε, · · · , Ĝγt−1ε, Ĝγf(γ), · · · , Ĝγmf(γ)

〉
,

F2(γ, ς, ε) =

〈
Ĥε, Ĥγε, · · · , Ĥγnε,

Ĥf(γ)g(γ), Ĥςf(γ)g(γ), Ĥςεf(γ)

〉
,

F3(γ, ς, ε) = e(Ĝ, Ĥ)εf
2(γ)g(γ),

and T
R←− GT , decide whether e(Ĝ, Ĥ)ς·ε·f

2(γ)·g(γ) = T . For
any algorithm A that makes a total of at most q queries
to the oracles computing the group operation and the bi-
linear pairing, the advantage of A is AdvIND

GDHE1,A(n, t) ≤
(q+2s+2)2·d

2p
, where s = n+ t+m+ 4 and d = 2n.

We provide the proof of this theorem in Appendix B. In
this proof, we reduce this problem to the weakest case G1 =
G2 = G, so that the polynomials (F1, F2, F3, T ) in bilinear
map group are converted to three polynomials (P,Q, h) in
bilinear map group. Then we prove that h is independent
of (P,Q) and complete the final proof based on Theorem 4
in Appendix. In fact, we also show the security of this as-
sumption based on the following analysis: Considering that
ς only appears in Ĥςεf(γ) and Ĥςf(γ)g(γ), we only pick them
out for three following cases:

Case Ĥςεf(γ) : we need to find Ĝf(γ)g(γ) to meet e(Ĝf(γ)g(γ),

Ĥςεf(γ)) = T . Let g(x) =
∏n−t
i=1 (x+x′i) =

∑n−t
i=0 bi ·x

i,
where b0 = x′1x

′
2 · · ·x′n−t 6= 0 because all x′i 6= 0. So

that, this polynomial f(x)g(x) is represented as

f(x)g(x) =
∑n−t

i=0
ai(x

if(x)) = b0f(x)+
∑n−t

i=1
bi(x

if(x)).

But it is infeasible for computing Ĝf(γ)g(γ) = (Ĝf(γ))b0 ·
(Ĝγ

if(γ))bi because there dose not exist the item Ĝf(x)

from all known items Ĝγf(γ), · · · , Ĝγ
mf(γ).

Case Ĥςf(γ)g(γ) : we need to find Ĝεf(γ) to meet e(Ĝεf(γ),

Ĥςf(γ)g(γ)) = T and it is also infeasible because f(x) =∏t
i=1(x + xi) =

∑t
i=0 ai · x

i =
∑t−1
i=0 ai · x

i + xt is a

polynomial of degree t and at = 1, such that Ĝεf(γ) =∏t−1
i=0(Ĝεγ

i

)ai · Ĝγ
t

cannot be built from all known

Ĝε, Ĝγε, · · · , Ĝγ
t−1ε.

Linear combination between Ĥςεf(γ) and Ĥςf(γ)g(γ) :
assume that there exist two coefficients a, b to satisfy

e(Ĝ
f(γ)

aγg(γ)
γ+x′i , Ĥςεf(γ)) · e(Ĝε

bf(γ)
γ+xi , Ĥςf(γ)g(γ)) = T

So that, we have aγ
γ+x′i

+ b
γ+xi

= 1. To solve this equa-

tion, we have (a− 1)γ2 + (axi + b− xi − x′i)γ + (bx′i −



xix
′
i) = 0. It is easy find that our solution is a = 1 and

b = xi = x′i, but it contradicts with the assumption of
xi 6= x′i for all xi and x′i in f(γ) and g(γ).

Next, we provide another problem, called GDHE2 prob-
lem, which is used to prove the security of our SBE scheme
for negative membership (Exclude-mode on u 6∈ S):

Theorem 2 ((n, t)-GDHE2 Problem). Let γ, ς, ε ∈ Z∗p
be three secret random variables, f(X) and g(X) are two

polynomials described above, and Ĝ, Ĥ be generators of S.
Given the values in (F1, F2, F3)-GDHE2 problem with

F1(γ, ς, ε) =

〈
Ĝε, Ĝγε, · · · , Ĝγt−1ε,

Ĝγf(γ), · · · , Ĝγmf(γ), Ĝςγf2(γ)

〉
,

F2(γ, ς, ε) =

〈
Ĥε, Ĥγε, · · · , Ĥγnε,

Ĥf(γ)g(γ), Ĥςf(γ)g(γ)

〉
,

F3(γ, ς, ε) = e(Ĝ, Ĥ)εf
2(γ)g(γ),

and T
R←− GT , decide whether e(Ĝ, Ĥ)ς·f

2(γ)·g(γ) = T . For
any algorithm A that makes a total of at most q queries
to the oracles computing the group operation and the bi-
linear pairing, the advantage of A is AdvIND

GDHE2,A(n, t) ≤
(q+2s+2)2·d

2p
, where s = n+ t+m+ 4 and d = 2n.

We provide the proof of this theorem in Appendix C. We
here give a simple comparison with GDHE1 and GDHE2 in
Table 1. As seen from this table, most of items are shared
between two problems except a slight different: GDHE1 has

a unique item Ĝςγf
2(γ) and GDHE2 is Ĥςεf(γ). This means

that there is a strong correlation between two problems.

Table 1: Comparison with GDHE1 and GDHE2

Common Elements GDHE1 GDHE2

F1
Ĝε, Ĝγε, · · · , Ĝγt−1ε,

Ĝςγf
2(γ)

Ĝγf(γ), · · · , Ĝγmf(γ)

F2
Ĥε, Ĥγε, · · · , Ĥγnε,

Ĥςεf(γ)

Ĥf(γ)g(γ), Ĥςf(γ)g(γ)

F3 e(Ĝ, Ĥ)εf
2(γ)g(γ)

We now prove the semantic security of our SBE scheme
based on the security model in Section 2, which has the se-
mantic security against chosen plaintext attacks (IND-CPA)
with colluders. Usually, we need two separate proofs that
prove the security of SBE scheme under two different modes,
Include-mode and Exclude-mode, respectively. However, we
found that these two proofs has too many similarities ac-
cording to the comparison result in Table 1. Therefore, we
combine two proofs into a full proof of our SBE scheme.
Based on (n, t)-GTDHE1 and (n, t)-GTDHE2, the security
of our SBE scheme satisfies the following theorem:

Theorem 3 (Security of SBE Scheme). Our SBE
scheme for both Include-mode and Exclude-mode is seman-
tically secure against chosen plaintext attacks with colluder-
s assuming the (n, t)-GDHE1 and (n, t)-GDHE2 problem is
hard in S for 0 ≤ t ≤ n.

The proof of this theorem is presented in Appendix D.
Note that, our scheme is secure for arbitrary large collusion
of corrupted users because the number of corrupted users t
is not restricted in the above theorem.

5. PERFORMANCE EVALUATION

5.1 Parameter Gneration
Our scheme is constructed on the general bilinear map

group system S = (p,G1,G2,GT , e(·, ·)) with prime order
p, where decisional Diffie-Hellman is hard. We set up our
systems using bilinear pairings introduced by Boneh and
Franklin [10]. We define the bilinear pairing takes the form
e : E(Fq)× E(Fq)→ F∗q2 (The definition given here is from

[11, 12]), where p is a prime and k = 2 is the embedding
degree (or security multiplier). It turns out the total number
of elements is ]E(Fq) = q + 1 and ]E(Fq2) = (q + 1)2. The
order p is some prime factor of q+ 1. We invoke this kind of
pairing directly based on the Stanford’s PBC library 1. In
order to ensure the security of our scheme, we uses 256-bit
base field, which is equivalent to 128-bit security (κ=128-
bit) for symmetric encryption [13].

5.2 Performance Analysis
We first provide the performance analysis from two as-

pects: computation costs and communication overheads.
Here, we assume that t denotes the size of included or ex-
cluded subset and m denotes the manixium number of ag-
gregated users. We present the computation cost of our SBE
scheme in Table 2. We use [E] to denote the computation
cost of an exponent operation in G, namely, gx, where x is
a positive integer in Zp and g ∈ G or GT . We neglect the
computation cost of algebraic operations and simple modu-
lar arithmetic operations because they run fast enough [14].
The most complex operation is the computation of a bilin-
ear map e(·, ·) between two elliptic points (denoted as [B]).
The symbols ZAgg(t) and PAgg(t) denote two aggregation
algorithms where t denotes the size of subset. It is easy to
find that the encryption and decryption costs are related to
the performance of aggregation algorithms, but if the ag-
gregation algorithms are excluded, all algorithms have the
constant number of operations after m, t are set.

Table 2: Computation overhead of our scheme.
SBE

ALL Include Exclude

Setup (1 + m)[E] + 1[B]
KeyGen 2[E]
Encrypt 3[E] PAgg(t)+3[E] ZAgg(t)+3[E]
Decrypt 2[B] ZAgg(t)+2[B] PAgg(t)+2[B]

Then, we analyze the storage and communication costs of
our scheme. This means that the length of integer is l0 = |q|
in Zp. Similarly, we have l1 = l2 = 2|q| in G1 and G2,
and lT = 2|q| in GT for the embedding degree k = 2. The
storage and communication costs of our scheme is shown in
Table 3. We neglect the storage/communication cost of the
subset of user’s identities because the size of each identity
cannot too large as a easy-to-remember string. It is also easy
to find that the private key, the ciphertext, and the session
key has the constant and short size (e.g., only 64-byte for a
ciphertext with point compression) regardless of the size of
subset in ciphertext.

In short, our scheme has the advantages as follows:

• The computation cost is low if there exist fast algo-
rithms to realize the aggregation of subset.

1http://crypto.standord.edu/pbc/times.html



0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 Poles-based Aggregation  Zeros-based Aggregation 

 

 

Th
e 

tim
e 

co
m

su
m

pt
io

ns
 o

f A
lg

or
ith

m
 (s

)

The number of  elements in the subset

 

 

Th
e 

tim
e 

co
m

su
m

pt
io

ns
 o

f A
lg

or
ith

m
 (s

)

Figure 5: Time overheads of aggregation functions.

Table 3: The storage/communication overhead.
Algorithm SBE Our system

Setup
PK l2 + lT + ml1 + nl2 (m+n+2)*64-Byte
mk l0 + lT 192Byte

KeyGen SK(k) l1 64-Byte
Encrypt C l1 + l2 128-Byte
Decrypt ek lT 64-Byte

• The size of private key and ciphertext is constant and
short regardless of the size of subset in ciphertext.

The size of public key is related to the size of community
(or the total number of users). This is not a large problem in
applications because the users have access to a large shared
storage medium in which the profiles can be stored [2]. For
example, we usually provide a on-line search service for i-
dentity query from the profile list in public key. In other
applications, each user only needs to store part of profiles,
such as his friends’ identities, because encryption and de-
cryption just need to input a subset of specified users rather
than to know all users.

6. EXPERIMENTAL RESULTS
Using GMP and JPBC libraries, we have developed a

Java-language cryptographic library upon which our SBE
cryptosystem can be constructed. This Java library contain-
s Pairing-based algorithms on elliptic curves and has been
tested on both Windows and Mac OSX platforms. Our S-
BE cryptosystem is a lightweight software about 600 lines
of code built on Eclipse. To evaluate the performance of our
SBE cryptosystem, our experiments are run in a Mac laptop
with 2.0GHz processor and 4G RAM.

6.0.1 Performance of Aggregation Functions
At first, we evaluate the performance of two aggregation

functions. It is easy to analyze the computational costs
of two functions from Section 3.4: the ZeorsAggr function
needs O(t2) times multiplication operations in Z∗p and O(t)
times exponent operations in G1; and the PolesAggr func-
tion needs O(t2) times exponent operations in G2 and O(t2)
times xGCD operations in Z∗p. Hence, the computational
costs of PolesAggr is far greater than (roughly t times as)
that of ZerosAggr due to the cost of operations in G1 and
G2 is much larger than that in Z∗p.

We give the result of experiments for two aggregation

functions in Figure 5, in which time consumptions of two
functions are showed under the different size of subsets (from
10 to 100). From this figure, it is easy to find that the com-
putational costs of ZerosAggr is proportional to the size of
subset, and the costs of PolesAggr grows rapidly for the sus-
tained growth of subset sizes. The memory overheads of two
algorithms are proportional to the size of subset. These re-
sults are completely consistent with our previous theoretical
analysis. However, the time consumption is still high for a
large-size subset, so that we can improve the performance
by using parallel algorithm or fast elliptic curve algorithm.

6.0.2 Performance under Different Modes
We next analyze the performance of encryption and de-

cryption processes according to three modes, including ALL,
Include, and Exclude in Figure 6. The left sugfigure shows
the time consumption of encryption for these three modes
in which the encryption overhead in Include-mode is great-
est of all. The similar result of decryption is showed in
the right subfigure but the decryption overhead in Exclude-
mode is greatest of all instead of Include-mode. When the
system is not large, the users can choose Include-mode or
Exclude-mode according to application requirements, e.g.,
the Include-mode is used to reduce the overhead of decryp-
tion for mobile terminals with limited power (smart phone or
sensor node) while leaving heavy encryption for high-power
servers. In addition, the aggregation functions could be pre-
processed in some applications with the fixed receivers, such
that encryption and decryption can be achieved rapidly.

The same results are listed in Table 4. As seen from this
table, the overhead of encryption or decryption is constant in
ALL-mode no matter how large the total number of users is
in system. In Include-mode, the encryption overhead is more
higher than that of decryption due to the time consumption
of PolesAggr is much larger than that of ZerosAggr. The
similar situation also appears in Exclude-mode where the
decryption overhead is more higher than that of encryption
based on the same reason. However, no matter what mode
we pick, the ciphertext is only two points on an elliptic curve
and the size of ciphertexts is constant for any mode.

6.0.3 Performance of SBE Cryptosystem
Finally, we provide the result of experiments to illustrate

the performance of our SBE cryptosystem. Our experiments
were implemented by a test (and demo) routine about 1000



0 20 40 60 80 100

0.01

0.1

1

10

0 20 40 60 80 100

0.01

0.1

1

10

 

 

Th
e 

tim
e 

ov
er

he
ad

s 
of

 E
nc

ry
pt

io
n

The number of elements in subset

 Encryption for  ALL Mode
 Encryption for Include Mode
 Encryption for Exclude Mode

 

Th
e 

tim
e 

ov
er

he
ad

s 
of

 D
ec

ry
pt

io
n

The number of elements in subset

 Decryption for ALL Mode
 Decryption for Include Mode
 Decryption for Exclude Mode

Figure 6: Time overheads of different modes.

Table 4: Time consumption of encryption and de-
cryption under the different modes.

Size
Encryption Decryption

ALL Include Exclude ALL Include Exclude

20 0.01239 0.55603 0.11251 0.01056 0.10591 0.63935
40 0.01164 2.21912 0.22061 0.01046 0.21214 2.39276
60 0.0109 5.02113 0.3162 0.00815 0.31277 5.30531
80 0.01055 8.99909 0.418 0.0081 0.41469 9.40407
100 0.01066 14.19017 0.5107 0.00775 0.50979 14.6477

lines of code. At first, we tested the total overheads of en-
cryption and decryption under the different modes. As seen
from left of Figure 7, encryption and decryption in Include-
mode has the same overhead as Exclude-mode. This result
is the same with our theoretical analysis.

Next, we show time consumption of four functions, Set-
up, KeyGen, Encrypt and Decrypt, under different size of
subsets (from 10 to 100) in right of Figure 7. In this exper-
iment, we require two functions, Setup and GenKey, deal
with all elements in a given subsets. Their overheads are
proportional to the subset size but are still small. From this
figure, the overhead of Setup or KeyGen is far less than that
of encryption and decryption. In summary, our experiments
show that our SBE scheme is simple, easy-to-implement,
and high performance.

7. RELATED WORK
Fiat and Naor [1] were the first to formally explore broad-

cast encryption. They presented a private-key solution which
was secure against a collusion of t users and has ciphertext
size ofO(t log2 t logn). Naor et al. [6] presented a fully collu-
sion secure BE system that is efficient for broadcasting to all,
but a small set of revoked users. However that these system-
s do not support public-key encryption, the first public-key
BE scheme was proposed by Dois et al. [9]. Boneh and Sil-
verberg also show that n-linear maps give the ultimate fully
collusion secure scheme with constant public key, private
key, and ciphertext size. Soon after this, the bilinear maps
became the basis for many subsequent proposals, including
Delerablée et al. [5] proposed identity-based broadcast en-
cryption and gave a selective CPA secure scheme. Existing
broadcast encryption can be divided into two category:

One category is broadcast with multiple revoked receivers,
meaning that we broadcast to all but a small set of revoked
users R and |R| � n. The best known systems are the
scheme of Delerablée et al.[5] which achieves the optimal
bound of O(1)-size either for ciphertexts or decryption keys
for any subset of revoked users. More importantly, several

dynamic behaviors, e.g., dynamic user joining, key updating,
were supported by their BE systems.

Another category is broadcast for multiple designated re-
ceivers, where message is sent to a small subset of users
S, and |S| � n. Untill now, the best known systems are
the scheme of Boneh, Gentry and Waters [2] which achieves
O(
√
n)-size ciphertexts and public keys for any subset of re-

ceivers, where each user’s private keys are of constant size.
Their trivial scheme where both ciphertexts and private keys
are of constant size and public key size is linear in total num-
ber of users is more efficient when |S| < O(

√
n). However,

their upper bound on the number of possible users n must
be chosen at initialization time, so that new users cannot
join dynamically the system. In summary, these work gave
us many important inspirations for our research.

8. CONCLUSION
In this paper we present a new group-oriented cryptosys-

tem, called set-based broadcast encryption. Our main con-
tribution is to give the first cryptographic constructions for
the decision problem of set membership and negative mem-
bership. for future work, we will improve the performance
and apply our scheme into some practical applications, e.g.,
broadcasting, keyword searching, and voting.

9. REFERENCES
[1] A. Fiat and M Naor. Broadcast encryption. In

Advances in Cryptology (CRYPTO’93), volume 773 of
LNCS, pages 480–491, 1994.

[2] Dan Boneh, Craig Gentry, and Brent Waters.
Collusion resistant broadcast encryption with short
ciphertexts and private keys. In Advances in
Cryptology (CRYPTO’2005), volume 3621 of LNCS,
pages 258–275, 2005.

[3] Dan Boneh, Xavier Boyen, and Eu-Jin Goh.
Hierarchical identity based encryption with constant
size ciphertext. In Advances in Cryptology
(EUROCRYPT’2005), volume 3494 of LNCS, pages
440–456, 2005.

[4] Dan Boneh and M Franklin. An efficient public key
traitor tracing scheme. In Advances in Cryptology
(CRYPTO’1999), volume 1666 of LNCS, pages
338–353, 1999.

[5] Cécile Delerablée. Identity-based broadcast encryption
with constant size ciphertexts and private keys. In



0 10 20 30 40 50 60 70 80 90 100
0.01

0.1

1

10

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

12

14

16

18

20

 

 

Th
e 

tim
e 

ov
er

he
ad

s 
of

 E
nc

ry
pt

io
n&

D
ec

ry
pt

io
n

The number of elements in subset

 Encrypt&Decrypt for ALL Mode
 Encrypt&Decrypt for Include mode
 Encrypt&Decrypt for Exclude Mode

 

 

Th
e 

tim
e 

ov
er

he
ad

s 
of

 d
iff

er
en

t p
ro

ce
ss

es
 (s

)

The number of elements in subset

 Setup Function
 GetKey Function
 Encrypt&Decrypt for ALL Mode
 Encrypt&Decrypt for Include mode
 Encrypt&Decrypt for Exclude Mode

Figure 7: Time overhead of Algorithms in SBE.

Advances in Cryptology–ASIACRYPT 2007, pages
200–215. Springer, 2007.

[6] D Naor, M. Naor, and J Lotspiech. Revocation and
tracing schemes for stateless receivers. In Advances in
Cryptology (Crypto’2001), volume 2139 of LNCS,
pages 41–62, 2001.

[7] Duong Hieu Phan, David Pointcheval, Siamak Fayyaz
Shahandashti, and Mario Strefler. Adaptive cca
broadcast encryption with constant-size secret keys
and ciphertexts. In ACISP, pages 308–321, 2012.

[8] Dan Boneh, Brent Waters, and Mark Zhandry. Low
overhead broadcast encryption from multilinear maps.
In JuanA. Garay and Rosario Gennaro, editors,
Advances in Cryptology C CRYPTO 2014, volume
8616 of Lecture Notes in Computer Science, pages
206–223. Springer Berlin Heidelberg, 2014.

[9] Y. Dodis and N. Fazio. Public key broadcast
encryption for stateless receives. In Proceedings of the
Digital Rights Management Workshop 2002, volume
2696 of LNCS, pages 61–80, 2002.

[10] D. Boneh and M. Franklin. Identity-based encryption
from the weil pairing. In Advances in Cryptology
(CRYPTO’2001), volume 2139 of LNCS, pages
213–229, 2001.

[11] Jean-Luc Beuchat, Nicolas Brisebarre, Jérémie Detrey,
and Eiji Okamoto. Arithmetic operators for
pairing-based cryptography. In CHES, pages 239–255,
2007.

[12] Honggang Hu, Lei Hu, and Dengguo Feng. On a class
of pseudorandom sequences from elliptic curves over
finite fields. IEEE Transactions on Information
Theory, 53(7):2598–2605, 2007.

[13] Bogdan Warinschi Gaven Watson Nigel P. Smart,
Vincent Rijmen. Algorithms, key sizes and parameters
report.

[14] Paulo S. L. M. Barreto, Steven D. Galbraith, Colm
O’Eigeartaigh, and Michael Scott. Efficient pairing
computation on supersingular abelian varieties. Des.
Codes Cryptography, 42(3):239–271, 2007.

APPENDIX
A. GDHE ASSUMPTION

We give a rough overview of the General Diffie-Hellman
Exponent (GDHE) assumption introduced by Boneh, Boyen
and Goh [3] that will be used to analyze our schemes. Let

G,GT be groups of order p and e : G × G → GT be a non-
degenerate bilinear map.

Definition 5 (GDHE Problem). Let P,Q ∈ Fp[X1, · · · , Xm]s

be two s-tuples of m-variate polynomials over Fp and gen-

erators Ĝ, Ĥ ∈ G1 and G2, where s,m ∈ Z+. We write
P = (p1, · · · , ps) and Q = (q1, · · · , qs). Given a vector

S =
(
ĜP (x1,··· ,xm), e(Ĝ, Ĥ)Q(x1,··· ,xm)

)
∈ Gs ×GsT

and T
R←− GT , decide whether T = e(Ĝ, Ĥ)h(x1,··· ,xm), where

the polynomial h ∈ Fp[X1, · · · , Xm].

It is easy to find that almost previous decisional Diffie-
Hellman assumptions can be reduced into GDHE assump-
tion. We say that an algorithm A that outputs b ∈ {0, 1}
has advantage ε in solving the GDHE problem if

AdvIND
GDHE(A) =

∣∣∣∣ Pr[A(S, e(Ĝ, Ĥ)h(x1,··· ,xm)) = 0]
−Pr[A(S, T ) = 0]

∣∣∣∣ > ε.

The following theorem gives a lower bound on the advan-
tage of a generic algorithm in solving the decision (P,Q, h)-
Diffie-Hellman problem.

Theorem 4 ([3],Theorem A.2). Let P,Q ∈ Fp[X1, · · · , Xm]s

be two s-tuples of m-variate polynomials over Fp and h ∈
Fp[X1,
· · · , Xm]. Let d = max(2dP , dQ, dh), where dP (resp. dQ, dh)
denote the maximal degree of elements of P (resp. of Q,h).
If h is independent of (P,Q) then for any A that makes a
total of at most q queries to the oracles (computing the group
operation in G,GT and the bilinear pairing e : G×G→ GT ),

one has AdvIND
GDHE(A) ≤ (q+2s+2)3·d

2p
.

In this theorem, we define that a polynomial h is inde-
pendent on the sets (P,Q) if there does not exist s2 + s
constant {aij}si,j=1, {bk}sk=1, such that h =

∑s
i,j=1 aijpipj +∑s

k=1 bkqk.

B. PROOF OF THEOREM 1
Proof. We consider the weakest case G1 = G2 = G and

thus pose Ĥ = Ĝu, where u is a random variate. In the
(F1, F2, F3, T )-GDHE1 problem, if one replace γ by x, ε by
v, and ς by y, we see that our problem is reformulated as
(P,Q, h)-GDHE, where F1, F2 are integrated into P , F3 and



T correspond to Q and h, respectively. Such that, we have
P (x, y, u, v) =


1, v, xv, x2v, · · · , xt−1v,
xf(x), · · · , xmf(x),

uv, uvx, · · · , uvxn, uf(x)g(x),
uvyf(x), uyf(x)g(x)


Q(x, y, u, v) = (1, uvf2(x)g(x))
h(x, y, u, v) = uvyf2(x)g(x)

where d = 2n, m = 4 and s = t + m + n + 4. According
to the analysis method in [3], we next show that the poly-
nomial h is independent of (P,Q), that is, no coefficients
{aij}si,j=1, {bk}sk=1 exist such that h =

∑s
i,j=1 aijpipj +∑s

l=1 blql, where the polynomials pi and qi are the one list-
ed in P and Q above. Considering that y only appears
in (uvyf(x), uyf(x)g(x)), we must pick them out for al-
l cases. A simple analysis method is to find the multi-
ples of uvy from all possible products of two polynomials
(uvyf(x), uyf(x)g(x)) in P . The polynomials (uv, uvx, · · · , uvxn)
can be excluded because (uvyf(x), uyf(x)g(x)) have con-
tained u. Further, the polynomials (v, xv, x2v, · · · , xt−1v)
also conflict with uvyf(x) because they all contain v. So,
we consider three cases:

• For the former uvyf(x), we need to find the polynomial
h(x, y, u, v)/uvyf(x) = f(x)g(x). Let g(x) =

∏n−t
i=1 (x+

x′i) =
∑n−t
i=0 bi · x

i, where b0 = x′1x
′
2 · · ·x′n−t 6= 0 be-

cause all x′i 6= 0. So, f(x)g(x) is represented as

f(x)g(x) =
∑n−t

i=0
ai(x

if(x)) = b0f(x)+
∑n−t

i=1
bi(x

if(x)).

but it is infeasible for computing it because there dose
not exist the polynomial f(x) in P (x, y, u, v) even though
we can get (xf(x), · · · , xlf(x)) from P (x, y, u, v).

• For the latter uyf(x)g(x), we need to find the polyno-
mial h(x, y, u, v)/uyf(x)g(x) = vf(x) and it is also in-
feasible because the polynomial f(x) =

∏t
i=1(x+xi) =∑t

i=0 ai · x
i =

∑t−1
i=0 ai · x

i + xt, which is a polyno-
mial of t degree and at = 1, cannot be built from
(v, xv, · · · , xt−1v).

• For linear combination between uvyf(x) and uyf(x)g(x),
assume that there exist two coefficients a, b to satisfy

h(x, y, u, v) = a · uvyf(x) · p1 + b · uyf(x)g(x) · p2.

So that, we have vf(x)g(x) = avp1 + bg(x)p2. To sat-
isfy it, p1 is merely derived from (xf(x), · · · , xlf(x))
and p2 is from (v, xv, · · · , xt−1v). This means xf(x)|p1.
Next we have avp1 = g(x)(vf(x) − bp2), so we have
g(x)|p1. These two results show xf(x)g(x)|p1. Since
p1|g(x)(vf(x)−bp2), we have xf(x)|(vf(x)−bp2). How-
ever, we know p2 is a polynomial of x with at most
degree t− 1, so (vf(x)− bp2) is a polynomial of x with
degree t. This is a contradiction with the fact that
xf(x) has degree t+ 1.

Hence, no linear combination among the polynomials from
the known P,Q loads to h. This means that h is independent
of (P,Q). Therefore, we obtain the advantage of the adver-

sary AdvIND
GDHE1,A(n, t) ≤ (q+2s+2)3·d

2p
according to Theorem

(4).

C. PROOF OF THEOREM 2
Proof. This proof is similar to the previous proof. We al-

so consider the weakest case G1 = G2 = G. We see that our

problem (F1, F2, F3, T )-GDHE is reformulated as (P,Q, h)-
GDHE, where the result after conversion is

P (x, y, u, v) =


1, v, xv, x2v, · · · , xt−1v,
xf(x), · · · , xmf(x),

uv, uvx, · · · , uvxn, uf(x)g(x),
yxf2(x), uyf(x)g(x)


Q(x, y, u, v) = (1, uvf2(x)g(x))
h(x, y, u, v) = uvyf2(x)g(x)

where d = 2n, m = 4 and s = n + t + m + 4. We show
that the polynomial h is independent of (P,Q). Considering
that y only appears in (yxf2(x), uyf(x)g(x)), we must pick
them out for all cases. Next, there only exist the polynomi-
als, (uv, uvx, · · · , uvxn), which contain uv, so we have the
candidate combination between yxf2(x) and these polyno-
mials, but the combination between uyf(x)g(x)) and them
will be excluded. Such that, we only need to consider three
cases:

• For the former (yxf2(x), we need to find the polynomial
h(x, y, u, v)/yxf2(x) = uvg(x)/x, but it is infeasible for
all (uv, uvx, · · · , uvxn) because g(x) =

∏n−t
i=1 (x+x′i) is

not divisible by x when all x′i 6= 0 for i = 1, · · · , n− t.
• For the latter uyf(x)g(x)), we need to find the poly-

nomial h(x, y, u, v)/uyf(x)g(x) = vf(x) and it is also
infeasible because f(x) =

∏t
i=1(x+ xi) =

∑t
i=0 aix

i =

xt +
∑t−1
i=0 aix

i, which is a polynomial of t degree, can-
not be built from (v, xv, · · · , xt−1v).

• For linear combination between yxf2(x) and uyf(x)g(x),
assume that there exist two coefficients a, b to satisfy

h(x, y, u, v) = a(yxf2(x))(uv g(x)
x+x′i

)+b(uyf(x)g(x))( vf(x)
x+xi

).

So that, we have ax
x+x′i

+ b
x+xi

= 1. To solve this equa-

tion, we have (a− 1)x2 + (axi + b− xi − x′i)x+ (bx′i −
xix
′
i) = 0. It is easy find that our solution is a = 1 and

b = xi = x′i, but it contradicts with the assumption of
xi 6= x′i for all xi and x′i in f(x) and g(x).

Hence, no linear combination among the polynomials from
P,Q loads to h. This also means that h is independent
of (P,Q). Therefore, we obtain the advantage of adver-

sary AdvIND
GDHE2,A(n, t) ≤ (q+2s+2)3·d

2p
according to Theorem

(4).

D. PROOF OF THEOREM 3
Proof. Suppose there exists an adversary A can break

the security of our SBE scheme with the advantageAdvIND,mode
SBE,A (n, t)

for either Include-mode or Exclude-mode. Our objective is
to build a PPT algorithm B to solve the above (n, t)-GDHE1

or (n, t)-GDHE2 problem by using the advantage of A. S-
ince there merely exists a slight different between GDHE1

and GDHE2: Ĥςεf(γ) lies in GDHE1 but Ĝςγf
2(γ) in GDHE2

(see Table 1), such that we merge them into one complete
proof, as follows:

Initial. According to the assumption that B is given as in-
put an (n, t)-GDHE1 or (n, t)-GDHE2 instance. From
this instance, B does not know γ, ς, ε but knows 2n ran-
dom integers xi, x

′
i, ai, bi ∈ Z∗p in f(x) and g(x), where

any pairwise (xi, x
′
i) are not equal to each other. First-

ly, B defines a set of identities U , and then require A



to choose randomly a challenge subset S from U such
that R = U \ S, where |U| = n and R = t. Secondly,

B formally sets G = Ĝf(γ) (but he can by no means

compute the value of G) and H = Ĥf(γ)g(γ). In order
to compute H, we first need to compute the polyno-
mial coefficients ci of f(X) · g(X) =

∏t
i=1(X + xi) ·∏n−t

i=1 (X + x′i) =
∑n
i=0 ci ·X

i, where all xi and x′i are

known, and then H =
∏n
i=0(Ĥεγi)ci is computed from

Ĥε, Ĥγε, · · · , Ĥγnε. Based on them, it computes easily
the public parameter:

mpk =


H = Ĥf(γ)g(γ) =

∏n
i=0(Ĥεγi)ci ,

R = e(G,H)ε = e(Ĝ, Ĥ)εf
2(γ)g(γ),

Gk = Gγ
k

= Ĝγ
kf(γ) for k = [1,m].

Learning. In this phase, the adversary A can issue up to n
times secret-key queries {IDi} to gain the information
of this cryptosystem. For each query IDi, we consider
two following cases: ID ∈ S and IDi ∈ R:

IDi ∈ R : B chooses randomly an element xi and let
xi = hash(IDi). Then B defines the polynomial

fi(X) =
f(X)

X + xi
=
∏t

k=1,k 6=i
(X+xi) =

∑t−1

k=0
a′kX

k

of degree t − 1 for i ∈ [1, t]. Based on the known

values (Ĝε, Ĝεγ , · · · , Ĝεγ
t−1

), B generates the se-
cret key of the corrupted users

sk(i) = G
xiε
γ+xi = Ĝ

ε
xif(γ)
γ+xi = Ĝεxifi(γ)

=
(
Ĝε

∑t−1
j=0 a

′
jγ
j
)xi

=

(∏t−1

j=0

(
Ĝεγ

j
)a′j)xi

.

Similarly, B computes the coefficients b′k of fi(X)g(X) =∑n−1
k=1 b

′
kX

k and uses (Ĥε, Ĥεγ , · · · , Ĥεγn) to com-
pute

Hi = H
ε

γ+xi = Ĥεfi(γ)g(γ) =
∏n−1

k=0
(Ĥγkε)b

′
k ,

where b′k is a known integer for all k = [0, n − 1].

Finally, B sends sk(i) and ppi = (IDi, Hi) to A.

Note that, all these keys {sk(i)}IDi∈R are available
for the ciphertext which is encrypted by the public
encryption key.

IDi ∈ S : B chooses randomly an element x′i and let
x′i = hash(IDi). B is merely required to use the
above-mentioned approach to generate (IDi, Hi),

that is, B define gi(X) = g(X)
X+x′i

for i ∈ [1, n−t] and

computesHi = Ĥf(γ)gi(γ) in terms of (Ĥε, Ĥεγ , · · · , Ĥεγn).
Finally, B sends ppi = (IDi, Hi) to A.

Note that the total number of attribute values is n. Hi
can be computed easily because the polynomials fig
and fgi are of degree n − 1. In addition, A can query
the hash value xi = h(IDi) at any time if IDi ∈ R.
Otherwise, B returns the hash value x′i = h(IDi).

Challenge. B defines ς = s, but ς is unknown for B. Next,
according to the given challenge mode∗, B chooses one
of two modes, u ∈ S and u 6∈ S to compute the chal-
lenge ciphertext from two given instances, GDHE1 or
GDHE2, respectively. The ciphertext is generated as
follows:

• u ∈ S: B constructs a ciphertext as follows:{
C1 = Hs = Ĥςf(γ)g(γ),

C2 = H
sε
g(γ) = Ĥςεf(γ),

where B get these two values from GDHE1 instance.

• u 6∈ S: B constructs a ciphertext as follows:{
C1 = Hs = Ĥςf(γ)g(γ),

C2 = Gsγf(γ) = Ĝςγf
2(γ),

where B get these two values from GDHE2 instance.

For both cases, B defines the session key ek as T . B
now selects a random bit b ← {0, 1}, sets ekb = T
and sets ek1−b to a random element of GT . Finally,
B sends the challenge C = (C∗, ek0, ek1) to A, where
C∗ = (S,mode∗, C1, C2).

Note that, as seen from Section 4.1, there exists a slight
different between GDHE1 and GDHE2: Ĥςεf(γ) lies in

GDHE1 but Ĝςγf
2(γ) in GDHE2, which is responsible

for the different of the above ciphertexts.

Guess. A returns a guess b′ ∈ {0, 1} to B. If b = b′, B
outputs 1, otherwise 0.

We now analyze the validate of B as follows: if the given

value T is valid, i.e., T = e(Ĝ, Ĥ)ςεf
2(γ)g(γ), the challenge

C∗ and ek will be valid because

ek = e(G,H)sε = e(Ĝf(γ), Ĥf(γ)g(γ))ςε

= e(Ĝ, Ĥ)ςεf
2(γ)g(γ) = T.

In this case, we have the success probability of B is

Pr[b = A(C)|T = ek] = Pr[b = b′|T = ek]

= Pr[b′ = 1|b = 1 ∧ T = ek] · Pr[b = 1] +

Pr[b′ = 0|b = 0 ∧ T = ek] · Pr[b = 0]

= Pr[b′ = 1|b = 1 ∧ T = ek] · 1
2

+

Pr[b′ = 0|b = 0 ∧ T = ek] · 1
2

Otherwise, the adversary A randomly guesses and picks an

answer b′ with 1/2 possibility, such that Pr[b = b′|T R←−
GT ] = Pr[b 6= b′|T R←− GT ] = 1/2,. Based on them, we have

AdvIND
GDHE1,2,B(n, t) = |Pr[b = b′|T = ek]− Pr[b = b′|T R←− GT ]|

= |Pr[b′ = 1|b = 1 ∧ T = ek] · 1
2

+

Pr[b′ = 0|b = 0 ∧ T = ek] · 1
2
− 1

2
|

=
1

2

∣∣∣∣ Pr[b′ = 1|b = 1 ∧ T = ek]−
Pr[b′ = 1|b = 0 ∧ T = ek]

∣∣∣∣
Based on the definition of AdvIND

SBE,A(n, t) in Section 2, we
have the following equation under the precondition of T =
ek:

AdvIND,mode
SBE,A (n, t) = |Pr[b′ = b]− 1/2|

= 1
2
|Pr[b′ = b]− Pr[b′ 6= b]|

= 1
2
|Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|.

Summing up, we get thatAdvIND
GDHE1,2,B(n, t) = AdvIND,mode

SBE,A (n, t)
for two modes. According to Theorem 1 and 2, we have

proved that AdvIND
GDHE1,2,B(n, t) ≤ (q+2s+2)2·d

2p
, where s =

n + t + m + 4 and d = 2n. Thus, AdvIND,mode
SBE,A (n, t) also

satisfies the same negligible success probability.


