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Abstract

OAEP and other similar schemes proven secure in Random-Oracle Model require one or
more hash functions with output size larger than those of standard hash functions. In this
paper, we show that by utilizing popular Sponge constructions in OAEP framework, we can
eliminate the need of such hash functions. We provide a new scheme in OAEP framework
based on Sponge construction and call our scheme Sponge based asymmetric encryption padding
(SpAEP). SpAEP is based on 2 functions: Sponge and SpongeWrap, and requires only standard
output sizes proposed and standardized for Sponge functions. Our scheme is CCA2 secure
for any trapdoor one-way permutation in the ideal permutation model for arbitrary length
messages. Our scheme utilizes the versatile Sponge function to enhance the capability and
efficiency of the OAEP framework. SpAEP with any trapdoor one-way permutation can also
be used as a key encapsulation mechanism and a tag-based key encapsulation mechanism for
hybrid encryption. Our scheme SpAEP utilizes the permutation model efficiently in the setting
of public key encryption in a novel manner.
Keywords: OAEP, Sponge function, public key encryption, hybrid encryption, CCA2 security.

1 Introduction

The Optimal Asymmetric Encryption Padding (OAEP), proposed by Bellare and Rogaway at Eu-
rocrypt ‘94 [1], is a technique for converting the RSA trapdoor permutation into a chosen ciphertext
secure system in the random oracle model (ROM). In Crypto ’01, Shoup described a modification to
OAEP, called OAEP+, that provably converts any trapdoor one way permutation (f) into a chosen
ciphertext secure system in the random oracle model. In 2003, Phan and Pointcheval [2, 3] intro-
duced OAEP-3R which is RCCA secure (“relaxed CCA” [3] equivalent to “replayable CCA” [4]- a
slightly weaker notion than general CCA2) with any trapdoor one way permutation (f) in ROM.
Let “ciphertext overhead” [5] stand for the difference between the length of ciphertext and plain-
text. OAEP-3R was shown to have only t-bit ciphertext overhead, whereas OAEP and OAEP+
have 3t-bit ciphertext overhead, where t stands for security requirement in bits1. In 2008, Abe,
Kiltz and Okamoto [5] showed that security reduction of OAEP-3R forces ciphertext overhead to
be 2t. A new scheme called OAEP-4X was introduced in [5] which provides CCA2 security for any
trapdoor one way permutation in ROM. OAEP-4X has only t-bit ciphertext overhead which was
shown to be optimal (lowest achievable bound). In OAEP-4X, reduction of t-bit ciphertext over-
head with respect to OAEP-3R has only limited practical application such as in a highly bandwidth

1A security requirement of t-bit implies that at-least 2t queries are required to break the scheme with probability
close to 1
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constrained network. Therefore, for general applications ciphertext overhead reduction by t-bits is
a less interesting case.

Number of hash functions used in OAEP is 2 and these are used in a 2 round structure.
OAEP+ is also 2 round structure but uses 3 hash functions (2 hash function can run in parallel
while encryption). OAEP-3R is 3 round structure that uses 3 hash functions and OAEP-4X is 4
round structure that uses 4 hash functions. Each of these schemes (OAEP, OAEP+, OAEP-3R and
OAEP-4X), proven secure in ROM, requires one or more hash functions with arbitrary size output.
For example, for RSA-2048 (or RSA-3072) trapdoor one-way permutation, minimum number of
hash function with arbitrary size output required in OAEP, OAEP+, OAEP-3R and OAEP-4X are
1, 1, 2 and 2 respectively.

Currently, no cryptographic standard specifies an instantiation for hash function of arbitrary
size. However, some instantiations are implicit in PKCS #1 v2.1 [6], because RSA-OAEP [1]
is standardized. For example, RSA-OAEP requires two random hash functions G and H with
small input size (less than the RSA modulus) and arbitrary size output. Both G and H are
both instantiated in PKCS by the MGF1 pseudo-random number generator [6]. MGF1 uses a
hash function in counter mode: MGF1(x) = h(x〈count0〉)||h(x〈count1〉)||h(x〈count2〉)|| . . ., where
h is either SHA-1 or a SHA-2. Because MGF1 is not a regular standardized hash function, we
use a term “non-standard hash function” for such functions, which instantiate a hash function of
arbitrary output size by utilizing standard fixed length hash functions (e.g., SHA-1, SHA-2) to
generate arbitrary hash output. Similarly, in other OAEP-type schemes, instantiation of such hash
functions is done by using similar “non-standard hash function”.

OAEP-type schemes (OAEP, OAEP+,OAEP-3R) discussed above, work only for restricted
message length (less than input size of trapdoor one-way permutation) except OAEP-4X, which
works for long messages (more than input size of trapdoor one-way permutation) as well. To
encrypt lengthy messages, OAEP-4X uses one extra hash function and a passively secure symmetric
encryption scheme along with 4 hash functions. In OAEP-4X, the ability of handling long messages
is the result of utilizing well known Tag-KEM/DEM framework [7, 8]. Tag-KEM/DEM is considered
a hybrid encryption scheme [9, 7, 10, 11, 12, 13, 14, 15]. In hybrid paradigm, an asymmetric
key encapsulation mechanism (KEM) combines with a symmetric data encapsulation mechanism
(DEM). Traditionally, KEM is a probabilistic algorithm that produces a random symmetric key and
an asymmetric encryption of that key as the key encapsulation. DEM is a deterministic algorithm
that takes a symmetric key, generated by KEM, and encrypts the message under that key. In
Tag-KEM/DEM framework, KEM takes a feedback, referred to as the ‘tag’, from DEM part and
then generates key encapsulation. Final ciphertext results from concatenation of key encapsulation
and encryption of message. This traditional hybrid paradigm suffers from high ciphertext overhead
(difference between plaintext and ciphertext length) equivalent to the size of asymmetric encryption
of key.

In 2007, Bjørstad et.al. [8] introduced KEMs (RKEM and Tag-RKEM) with partial message
input/recovery. These KEMs help in significant reduction of ciphertext overhead in hybrid con-
structions. [8] also showed that the Tag-RKEM is more space efficient than the RKEM in terms of
the ciphertext overhead. For construction of RKEMs, [8] focuses over those asymmetric encryption
schemes which can recover the random variable used in encryption, during the decryption, like
in OAEP-type schemes. Therefore, [8] provided the use of RSA-OAEP in RKEMs as an example.
OAEP-4X has also utilized the same idea proposed in [8] along with some improvement in Tag-KEM
part. This signifies that the OAEP-type schemes are good candidates for constructing RKEMs and
successive improvements which took place in OAEP-type schemes helped in the instantiation of
the RKEMs also.

2



Motivation: Almost all previous public key cryptography literature dealing with OAEP-based
encryption, requires a perfect random function ( a Random oracle) over an arbitrary domain,
whereas in practice one is given a random function or permutation over a relatively small domain:
practical block-cipher, hash functions and permutations have smaller block size and fixed output
length. Therefore, for generating lengthy hash output, RSA-Full Domain Hash [16, 17, 18] or the
Mask Generation Function (MGF1) [6] in RSA-OAEP are currently implemented with a complex
construction of fixed length hashes and counters. For m blocks input and n blocks hash output,
a fixed length hash function has to run approximately m × n times. All of above mentioned
schemes (OAEP, OAEP+, OAEP-3R, OAEP-4X) proven secure in ROM require one or more hash
functions with output size larger than standard sizes (e.g., SHA-1, SHA-512). [19] showed that the
hash function instantiation proposed in the literature for such cases are weaker than a random
oracle, where hash functions are assumed to behave like random oracle in the security analysis.
The “non-standard hash function” (like MGF1) are not well analyzed in literature, have complex
construction of fixed length hash functions with counter and are also proven weaker than random
oracle. This raises a question on the possibility of modifying the OAEP framework which does
not require any “non-standard hash function” and where all the computations are performed in
standardized input-output settings.

Development of schemes from OAEP to OAEP-4X shows differences in the number of rounds,
depending upon calls to the hash functions used. OAEP and OAEP+ is considered as 2 round
structure, OAEP-3R as 3 round and OAEP-4X as 4 round. This naturally poses a question on the
possibility of further development of the OAEP-type scheme and reduce the number of rounds.

We have seen OAEP-type construction are good candidate in hybrid encryption for constructing
KEMs like in [8] and improvements in OAEP-type construction helps the RKEMs and hybrid
encryption also.

Presently, major existing and proposed crypto-systems are based on standard assumptions or
proven secure in random oracle model for public key cryptography. The crypto-systems based on
permutations, proven secure in ideal permutation model, and using them efficiently are yet to be
explored to develop new outlooks and techniques that can cross-pollinate and advance cryptography
as a whole. An open problem mentioned in [7] about having a hybrid construction from different
primitives like permutation, also helps us to pursue in this direction.

Interestingly, popular Sponge constructions [20], based on iterative permutation, are found
to be a suitable solution of all the questions mentioned above. Sponge constructions work in
standardized input-output settings [21, 20, 22, 23] and are useful for encryption, Authentication
Encryption (AE), variable length input/output and for MAC generations [24]. In a Sponge function,
for m blocks input and n blocks hash output, roughly m+n calls of internal primitive permutation
are required. Other than that, number of permutation calls in a Sponge function [20], used as
hash function, and SpongeWrap [22], a modification of Sponge function used as AE, is equal in
general. Therefore, versatility of Sponge function encourages the designers to come up with more
useful and efficient design. The glimpse of popularity of Sponge functions can be seen clearly in
CAESAR [25] and PHC [26] competition. Therefore, it is interesting to consider a permutation
based or more concretely a Sponge construction based OAEP-type scheme having a security proof
in ideal permutation model which can also be utilized in hybrid encryption.

Our Contribution: In this work, we introduce a Sponge based Asymmetric Encryption Padding
scheme (SpAEP), a novel way to use the SpongeWrap [22] and the Sponge function [20] to en-
crypt arbitrary length messages in Asymmetric key cryptography. Each function (SpongeWrap
and Sponge) iterates a public invertible permutation as a primitive function. Permutation calls in
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Sponge function and in a SpongeWrap are generally the same for equal number of input-output
data blocks.

� We provide new direction for constructing asymmetric key cryptographic schemes in ideal permu-
tation model by utilizing permutations, having smaller/practical domain, in SpAEP. Almost all
previous public key cryptography literature dealing with OAEP-based encryption requires hash
functions (or a random function) over an arbitrary domain.

� SpAEP uses the Sponge function and the SpongeWrap in standard input-output settings, pro-
posed for “Sponge functions” [21, 20, 22, 23], as per security requirement. Therefore, SpAEP
remove the requirement of having “non-standard hash function”, which is required in OAEP,
OAEP+, OAEP-3R and OAEP-4X for generating hash output of different sizes than standard
size (“non-standard output size”).

� In SpAEP, both functions (Sponge function and SpongeWrap) are used in parallel during encryp-
tion to speed-up the process. Therefore, we consider SpAEP as 1 round structure in comparison
to other OAEP-type schemes.By functions in parallel we refer to potential parallelism properties
of Sponge functions, where output of permutation calls of Sponge function feed into permutation
calls of SpongeWrap as input in pipe-lined fashion. Let Sponge function and SpongeWrap have n,
n > 0, permutation calls respectively, then output of nth permutation of SpongeWrap is feed into
(n+ 1)th permutation of SpongeWrap and partial output in nth permutation of Sponge function.
This means (n + 1)th permutation of SpongeWrap and nth permutation of Sponge function can
be processed in parallel. However, the functions are not parallelized during decryption.

Features of SpAEP and Comparison with other OAEP-type schemes

� Although the permutation used in Sponge is invertible, we do not use this fact for our construc-
tion and provide inverse-freeness. Therefore our construction allows using permutations which
are inefficient to invert but efficient in the forward direction. That is, computation time, imple-
mentation or memory efficiency of the forward direction of the permutation can be exploited by
user in our design. Moreover, our design allows using a non-invertible mapping in the Sponge
function.

� Conceptually, our approach is similar to the scheme Tag-KEM with partial ciphertext recovery [8]
but in our case the message can be directly recovered. Therefore, our scheme can be used as a
Tag-KEM with partial message recovery. (We do not pursue this line in this paper due to the
space limitation). This Tag-KEM version of our scheme is similar to OAEP-4X, which trivially
take us to the comparison among OAEP-4X and SpAEP and other OAEP-type schemes.

� Let f be a trapdoor one-way permutation then we denote the instantiation of our scheme with f
by f -SpAEP. The f -SpAEP can process arbitrary length messages. Our scheme is CCA2 secure
when used with any trapdoor one-way permutation.

� We provide a formal security proof of f -SpAEP in adaptive chosen ciphertext attack (CCA-2)
notion in the ideal permutation model. Instead of directly using security proof, in ROM, of sponge
construction, we prefer a dedicated proof from scratch in ideal permutation model to avoid multi-
stage game problem [27, 28]. Although [2] introduced an efficient scheme in ideal permutation
model with full domain permutation encryption, still it remained impractical because having
such big permutation size equivalent to trapdoor one-way permutation size is itself hard. Similar
problem of output size occurs when a scheme requires hash output different (generally larger)
than standard sizes.
In Table 1, we compare OAEP [1], OAEP+ [29], OAEP-3R [2] and OAEP-4X [5] with SpAEP.
In Table 1 cipher text overhead values are taken from Table 1 [5].
OAEP, OAEP+ and OAEP-3R can only handle messages of length less than input size of trapdoor
one-way permutation unlike OAEP-4X and SpAEP can handle any message size.
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OAEP [1] OAEP+ [29] OAEP-3R [2] OAEP-4X [5] SpAEP

Ciphertext-
overhead

3t 3t 2t t 2t

# Function
calls

2 Hash 3 Hash 3 Hash
5 Hash, 1 Sym-
metric Encryp-
tion (E)

1 SpongeWrap,
1 Sponge func-
tion

# Function
calls

Sequential or
Parallel

(Encryption)

Sequential
2 parallel, 1
sequential

Sequential Mixed Parallel

Trapdoor
Perm.-f

RSA, Rabin Any f Any-f Any f Any-f

Max. Message
size with f

`− 3t `− 3t `− 2t Any Any

Table 1: Comparison of OAEP, OAEP+, OAEP-3R, SpAEP, OAEP-4X Here t is the security
requirements in term of number of bits. In order to break the scheme with probability 1 number
of queries required are 2t. ` is input-output size of trapdoor one way permutation f .

In Table 1, for OAEP, number of functions run in parallel during encryption is zero, both
hash function run sequentially. Similarly in the case of OAEP-3R, all three hash function calls
are sequential. OAEP+ uses three hash functions, out of which only two function calls can run
in parallel. In OAEP-4X, for messages having size less than input size of trapdoor one-way
permutation, only 4 hash function calls are required sequentially. For long messages(message size
more than input size of trapdoor one-way permutation), OAEP-4X uses 5 hash function (H1,
H2, H3, H4, G) calls and one symmetric encryption scheme (E). Initially only two hash function
calls run in parallel (H1,G) then H2 and E runs parallel, and then H3 and H4 runs sequentially.
Overall in OAEP-4X, for long messages, only two functions calls can run in parallel at instant.
From Table 1, we can clearly see that SpAEP is a simple and efficient scheme in comparison to
other schemes. Although SpAEP has t-bit extra ciphertext overhead with respect to OAEP-4X,
yet as explained earlier this is a minor concern in general applications.

One may argue that in OAEP based schemes, for final encryption and decryption, trapdoor one-
way permutation show dominance in computation time with respect to OAEP type structure.
This makes each and every scheme in-advantageous over other schemes in terms of computation
efficiency. We hope this may not be the case always or in future. Recent development in lattice
based cryptography [30, 31, 32] shows up that computation time of trapdoor function can reduce
significantly compared to existing traditional trapdoor permutation. Therefore, it is fruitful to have
OAEP type schemes that are better than existing one and compatible with latest trends.

In summary, we are proposing an asymmetric padding scheme which is more simple and efficient
in terms of structure and functionality than other existing OAEP-type schemes.
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2 Preliminaries

We discuss some preliminaries in this section.

Ideal Permutation: An permutation π is a bijective function on a finite domain D and finite
range R with D = R. An ideal permutation is a permutation chosen uniformly at random from

all the available permutations. Let D = R = {0, 1}b, then π
$←−Perm(D,D), where Perm(D,D) is

the collection of all permutations on D. Mathematically, π : D → R is a permutation, if for every
y ∈ R there is one and only one x ∈ D such that π(x) = y.

Trapdoor one way Permutation and their security: We recall the security notion of a
trapdoor one way permutation scheme. This scheme requires a trapdoor permutation generator.
This is a PPT algorithm F such that F(1`) outputs a pair of deterministic algorithms (f, f−1)
specifying a permutation and its inverse on {0, 1}`. We associate to F an evaluation time tF (·):
for all `, all (f, f−1) ∈ [F(1`)] and all C ∈ {0, 1}`, the time to compute f(C) (given f and C) is
tF (`). Note that the evaluation time depends on the setting: for example on whether or not there
is hardware available to compute f .

We will be interested in two attributes of a (possibly non-uniform) algorithm B trying to invert
F(1`)-distributed permutations; namely its running time and its success probability.

Definition 1. Let F be a trapdoor permutation generator. We say that f is a one-way trapdoor
permutation if for any efficient adversary B trying to invert F such that

AdvowtpF (B Succeeds)=Pr[(f, f−1)← F(1`); y
$←− {0, 1}` : B(f, y) = C such that f(C) = y]≤ ε,

where ε is negligible in `.

CCA, CCA2 Security: For probabilistic public key scheme (PKE), indistinguishability is de-
fined by the following experiment between an adversary A and a challenger. For schemes based
on computational security, the adversary is modeled by a probabilistic polynomial time Turing
machine, meaning that it must complete the game and output a guess within a polynomial number
of time steps. The scheme PKE comprise (G, Epk,Dsk). Secret/Private keys (pk, sk) is the gener-
ated by G and s is the auxiliary information collected by A using oracle O1. Epk(M) represents the
encryption of a message M under the public key pk and Dsk represents the decryption of ciphertext
y under secret key sk.

Experiment: Expind−atk−dPKE,A (`)

1. (pk,sk)
$←− G(1`); (M0,M1, s)← AO1(·); y ← Epk(Md);

2. d′ ← AO2(·)(M0,M1, y, s);
3. return d′;

where |M0| = |M1| and y cannot be queried to O2 oracle, and

atk=CCA-1 : O1(·) = Dsk(·) and O2(·) = Epk
atk=CCA-2 : O1(·) = Dsk(·) and O2(·) = Dsk(·)
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The scheme is IND-CCA1/IND-CCA2 [33] secure if adversary A has a non-negligible advantage
in winning (d′ = d) the above game. The definition of security we have presented here is from [34].
It is known to be equivalent to other notions, such as non-malleability [33, 35] , which is called
NM-CCA-2 in [33].

Pr[Expind−cca2−dPKE,A (`) = d | d $←− {0, 1}] ≤ negl(`) + 1
2 .

3 General View of OAEP+

In this section we provide a general view2 of the OAEP+ with f as the trapdoor one way permu-
tation in an informal way. This helps us to elaborate the basis of the design of our scheme. This
general view is shown in Figure 2, 3. It has three parts:

1. One time Authenticated Encryption (OAE): This is a one time authentication encryption
that uses a one time key R and generates an encoded message C and Tag T1 of message M .
Message will be padded to suitable length according to OAE.

2. Hash: This is a deterministic hashing algorithm. The concatenation of the outputs of OAE
with a one time key R is the input of this hashing algorithm. It outputs T2.

3. Trapdoor one way Permutation: This is a trapdoor one way permutation f : {0, 1}` →
{0, 1}`, which takes the concatenation of the outputs of OAE and Hash and produces the
final encryption.

y

Trapdoor Permutation-f

l

||
M

R

G H′ H

Hash

(C||T1) T2

OAE ⊕

l0

b

⊕

b

Figure 1: OAEP+ with f

y

bEncryption Hash

Trapdoor Permutation-f

M

l

l0

R

Authenticated

r

b

One-Time

(OAE)

(C||T1) T2

⊕

Figure 2: General View of Fig. 1

y

b
Sponge

Trapdoor Permutation-f

M

l

l0

R

r

b

(C||T1) T2

⊕

SpongeWrap
Function

Figure 3: Sponge based view of Fig. 2

Figure 1 shows OAEP+ construction with f as the trapdoor one way permutation. G,H ′ and
H are the hash functions used in OAEP+. If we map OAEP+ on our general view then the
combination of G and H ′ is OAE while H is the Hash part. G provides a kind of one time pad
encryption (OTE) to message M , H ′ provides hash tag T1 of M and H produces hash tag T2 of
OTE and tag T1.

In this work, we provide f -SpAEP as an example of this general view where the f -SpAEP
scheme uses SpongeWrap as OAE and a Sponge function as Hash part with different IV.

One can view and use our scheme in hybrid encryption model and can also utilize in key/data
encapsulation method. But in this paper we are more focused over sponge applicability in OAEP
framework.

2This informal general view helps in understanding our scheme.
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4 SpAEP-Sponge based Asymmetric Encryption Padding

SpAEP is a Sponge function based construction. SpAEP iterates a fixed permutation π : {0, 1}bi ×
{0, 1}bc → {0, 1}bi×{0, 1}bc in a exact way to the Sponge construction and SpongeWrap [22, 20, 21].

The bit length of input and output of π, called bit rate, is b = bi+bc. The term bi is called input
rate and the term bc is called capacity rate. The permutation π is the only underlying cryptographic
primitive used by SpAEP. For using SpAEP for asymmetric key setting, one can use any trapdoor
one way permutation f : {0, 1}` → {0, 1}` such as RSA. The resulting scheme is called f -SpAEP.
The output of function f is y ∈ {0, 1}` and the trapdoor of f is represented by f−1. bxcr represents
the first r bit of x or we can say it r-bit chop function. Similarly, dxe represents the last r bit of x.
See Figure 4 for graphical presentation.

SpAEP handles the arbitrary length message and π is fixed length permutation of input rate
bi. SpAEP uses a reversible padding function pad(·) to generate bi-bit length blocks. For scheme
to be compatible with f , scheme uses pad(·) to divided the message into two parts(Mn,M e).
First part should have minimum n-block message where each block is of bi-bit length such that
` = n∗bi+2r , ` ≥ bi and n ≥ 1. SpAEP process this n-block message Mn = m1|| . . . ||mn and gives
output c1|| . . . ||cn which is the input of f . SpAEP process the second part of the message M e =
mn+1|| . . . ||me and gives output Ce = cn+1|| . . . ||ce. If M e is an empty string, then Ce will also
remain as empty string. SpAEP also outputs r-bit tag T1 and T2 which is also the input of f . Final
output of the f -SpAEP will be y||Ce, where y = f(Cf = c1|| . . . ||cn||T1||T2). In case (`, bi, r) are
chosen such that n is not an integer value, then dcne|Cf |−` bits removes and append to Ce to ensure

|Cf | = `. Then Cf = c1|| . . . ||bcnc(bi−(|c[1,n]|−`)) and Ce = dcne(|c[1,n]|−`)||cn+1|| . . . ||ce. In paper we

will consider n as integer only which means |Cf | = `. Accordingly, Encryption : SpAEP −Eπf and
Decryption : SpAEP −Dπ

f−1 of f -SpAEP are described in Algorithms 1 and 2 respectively.
The encryption and decryption procedures of SpAEP use forward direction of the permutation.

Therefore we can have a permutation that is more efficient in forward direction than in inverse.
CCA2 Security of f-SpAEP3: Next we provide a formal proof of CCA2 security of f -SpAEP.
As described in Section 2, the experiment of adversary A for f -SpAEP is the following.

Experiment: Expind−cca2−dF−SpAEPπ ,A(`)

� ( f︸︷︷︸
pk

, f−1︸︷︷︸
sk

)
$←− F ;

� (M0,M1, s)← A
π(·),SpAEP−Dπ

f−1 (·);
� y∗||Ce∗ ← SpAEP − Eπf (Md); . . . one time encryption query

� d′ ← Aπ(·),SpAEP−D
π
f−1 (·)(M0,M1, y

∗||Ce∗, s);
� return d′;

where SpAEP −Dπ
f−1(·) is decryption oracle and SpAEP − Eπf (·) is encryption algo-

rithm.

3In this paper for security proof, f -SpAEP and F-SpAEPπ refer to same thing. In f−SpAEP, f and its trapdoor
f−1 is generated by F like f, f−1 ← F and F is trapdoor permutation generator.
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IV1

f
cnc2c1

. . .

R

m1 m2
mn

π π π πbi

bcIV2
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π π π π
bi

bcIV3

IV1

c1 cn
cn+1

. . .

b b b π

mn+1

π. . .

. . .

me

ce

T1

T2

ℓ
y

⊕ ⊕ ⊕ ⊕ ⊕

⊕⊕⊕⊕⊕

π⊕b b

T1T2

cn+1
. . . ce

r

˜

r

R ⊕

⊕ π

10∗1HASH

OAE 0bi−r

˜

Figure 4: SpAEP with any trapdoor one way permutation f and public invertible permutation
π : {0, 1}bi × {0, 1}bc ← {0, 1}bi × {0, 1}bc . SpAEP accepts message M and internally OAE call
pad(M)=m1|| . . . ||mn||mn+1|| . . . ||me such that n = (` − 2r)/bi, |pad(M)| ≥ (` − 2r) and each
message bock is of length bi where ` is size of trapdoor permutation-f and |R| = |T1| = |T2| = r. The
symbol ∼O represents taking r-bit output from bi-bit input. The symbol ||O represent concatenation.

Algorithm 1: Encryption:

SpAEP − Eπf (M) = y||Ce

1 Initialization:

IV1 = 0bi ,IV2 = 0bc ,IV3 = IV2⊕1,
w = IV2, x = IV1

2 Random Nonce: R
$←− {0, 1}r

3 pad(M) = m1||m2|| . . . ||me,
where |mi| = bi ∀1 ≤ i ≤ e

4 x = x⊕R||0br−r
5 for i = 1→ e do
6 (x||w) = π(x||w)
7 x = x⊕mi

8 ci = x

9 (x||w) = π(x||w); T1 = bxcr
10 x = IV1 and w = IV3
11 for i = 1→ e do
12 x = x⊕ ci
13 (x||w) = π(x||w)

14 x = x⊕ T1||0br−r
15 (x||w) = π(x||w)
16 T2 = bxcr ⊕R
17 Cf = c1||c2|| . . . ||cn||T1||T2;

Ce = cn+1|| . . . ||ce
18 y = f(Cf )
19 Return: y||Ce

Algorithm 2: Decryption:

SpAEP −Dπ
f−1(y||Ce) =M or ⊥

1 Initialization: IV1 = 0bi ,IV2 = 0bc ,IV3 = IV2⊕ 1,
w = IV3, x = IV1

2 Cf = c1||c2|| . . . ||cn||T1||T2 = f−1(y);
cn+1|| . . . ||ce = Ce

3 C ′ = c1||c2|| . . . ||cn||T1||T2||cn+1|| . . . ||ce, where
|ci| = bi, |T1| = |T2| = r for 1 ≤ i ≤ e

4 for i = 1→ e do
5 x = x⊕ ci
6 (x||w) = π(x||w)

7 x = x⊕ T1||0br−r
8 (x||w) = π(x||w); R = bxcr ⊕ T2
9 x = R||0br−r; w = IV2

10 for i = 1→ e do
11 (x||w) = π(x||w)
12 mi = x⊕ ci
13 x = ci

14 (x||w) = π(x||w); T ′1 = bxcr
15 if T1 = T ′1 then
16 if ∃ M s.t. M = unpad(m1|| . . . ||me) then
17 Return:M
18 else
19 Return: Invalid

20 else
21 Invalid.
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Theorem 1. The success probability of any adversary A for CCA2 attack in ideal permutation π
on F−SpAEPπ is

Pr[Expind−cca2−dF−SpAEPπ ,A(`) = d|d $←− {0, 1}] ≤ 1

2
+

(q − 1)q

2b+1
+
q(q + 1)

2bc
+

5qD
2r

+
qπA + qπ−1

2r

+AdvowtpF (BA Succeeds) +
(qπA + qπ−1)

min(2r, 2bc)
,

where q is the total number of (π and π−1) queries, qπ and qπ−1 are the number of π and π−1

queries, qπA is the number of π queries by A, qD is the number of decryption queries and b, bc, r
are the same as defined earlier, B is an adversary that finds the complete input Cf of trapdoor

one way permutation f given y
$←− {0, 1}` such that y = f(Cf ), without having knowledge of f−1.

Adversary B uses A as a subroutine internally. Advowtpf (BA Succeeds) is the success advantage
that a particular adversary B has in breaking the trapdoor one-way permutation f . The time and
space requirements of B are related to A as follows:

Time(B) = O(Time(A) + (qπA + qπ−1) · tf + (qπA + qπ−1 + qD) · `); (1)

Space(B) = O(Space(A) + (qπA + qπ−1) · `). (2)

Here, tf is the time required to compute f , and space is measured in the number of storage bits.

Proof. See Appendix A

5 Conclusion

We presented a new variant, SpAEP, of OAEP using Sponge constructions that does not require
hash output of arbitrary length, whereas all previous OAEP based encryption proven secure in
random-oracle model require one or more hash output of arbitrary length. Versatility of Sponge
construction helps us to reduce number of round function as compared to previous OAEP-type
schemes (OAEP, OAEP+, OAEP-3R, OAEP-4X) and in constructing KEMs that require a PKC
scheme with ability of randomness recovery. Ability of handling long messages enables the use of
SpAEP with any trapdoor one-way permutation as hybrid encryption.
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A Proof of Theorem 1

Proof. We will use Game based playing technique [36, 37]. We start from the original CCA2

game as defined in Section 2. In this proof we denote “Expind−cca2−dF−SpAEPπ ,A(`) = d | d $←− {0, 1}” by
“EXF−SpAEPπ ,A”.
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EXF−SpAEPπ ,A denote the event that A outputs d′ = d where d
$←− {0, 1}. We want to show

that | Pr[EXf−SpAEP,A]|=1
2 + negl(`). We slightly change f -SpAEP into a sequence G0, G1, . . .,

G12 such that:

Pr[EXF−SpAEPπ ,A]= Pr[EXG0,A]
Pr[EXG(i−1),A]=Pr[EXGi,A]+negl(`) ∀1 ≤ i ≤ 11

Pr[EXGi,A]= 1
2

Each game has the following functions:

� Encryption (Enc), Decryption(Dec): perform Encryption and Decryption,

� π, π−1: public invertible permutation and its inverse,

� πEnc, πDec: permutation π calls by encryption and decryption functions,

� πA, π−1A : permutation π, π−1 calls by adversary A.

Encryption, Decryption, πA and π−1A are public oracles, which are also accessible to the adversary.
In each game, the following sets are maintained: Iπ by π and π−1, IEnc by πEnc, IDec by πDec and
IA by πA and π−1A to store input-output relations.

Another set Y : {g : g ∈ {0, 1}bc} is also maintained internally by π and π−1 for storing capacity
bits. The set Y is initialized to {IV2, IV3} because IV2 is the capacity part of the input to first π
of OAE part and IV3 is the capacity part of the input to the first π of Hash part. The set Y is
updated on every call to π. Precisely, two bc-bit values are appended to Y on each π call. These
two values are the capacity bits of the inputs and output of π.

Note that q = qπ + qπ−1 , qπ = qπA + qπEnc and qD= number of decryption queries. Further, the
encryption query has (2ne+ 1) calls to πEnc.

In each of the games G0, G1, G2, G3, G4, G5 we make small incremental changes in the
permutation to make it ideal permutation. In games G6, G7, we make changes in the Decryption
oracle and make it independent of f . Finally, in games G8, G9, G10, G11, G12 we make changes
in Encryption oracle along with some changes in πA oracle to achieve that d of Md is independent
of all previous queries. We represent the Hash part of SpAEP as a function Hπ(j1, j2, j3..., ji, ji+1)
whose output J is such that

J ||∗ = πEnc(πEnc(. . . (πEnc(πEnc(j2||0bc ⊕ j1)⊕ j3||0bc)⊕ j4||0bc) . . .⊕ ji−1||0bc)⊕ ji||0bc+br−r)⊕
ji+1||0bc+br−r , where π is b-bit permutation, j1 ∈ {0, 1}b, (j2, j3, . . . ji−1) ∈ {0, 1}bi , (J, ji, ji+1) ∈
{0, 1}r and ∗ ∈ {0, 1}bc .

Game G0: This game perfectly simulates the f -SpAEP.

Pr[EXF−SpAEPπ ,A]=Pr[EXG0,A].

Game G0 and Game G1: The Code for both these games is exactly same. In the permutation,
both games choose their response randomly while excluding the previous responses, in order to
satisfy the permutation property.

Pr[EXG0,A]=Pr[EXG1,A].
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Game G1 and Game G2: Both the games are same till bad occurs. The event bad occurs
when a collision over b-bit outputs of permutation π takes place. If q is the total number of queries
to π and π−1, then Pr[bad] is ≤ q(q−1)

2b+1 .

|Pr[EXG2,A]− Pr[EXG1,A]| =Pr[bad]≤ (q−1)q
2b+1 .

Game G2 and Game G3: Both the games are the same where the output of π is not checked
for collision over previous responses.

|Pr[EXG3,A] = Pr[EXG2,A]|.

Game G3 and Game G4: Both the games are the same till bad occurs. The event bad occurs
if there is a collision over c-bit output of permutation π. Pr[bad] is ≤ q(q+1)

2bc
.

|Pr[EXG4,A]− Pr[EXG3,A]|=Pr[bad]≤ q(q+1)
2bc

.

Game G4 and Game G5: Both the games are the same.

|Pr[EXG5,A] = Pr[EXG4,A]|.

Game G5 and Game G6: Both the games are same. In Game G6 only a dummy operation
of flag ← new is added in the Decryption oracle to denote a new query. The query is new in the
sense that neither the query nor any part of the query during internal calls to πDec was queried
earlier by the adversary. That is, query 6∈ IA.

|Pr[EXG6,A] = Pr[EXG5,A]|.

Game G6 and Game G7: Both the games act similarly till bad occurs. The event bad occurs
in Decryption oracle when a new query results in T1 = T ′1 (mentioned in Algorithm 2 line 15). The

bad event occurs with probability 5qD
2r +

qπA+qπ−1

2r .

|Pr[EXG7,A]− Pr[EXG6,A]|=Pr[bad]≤ 5qD
2r +

qπA+qπ−1

2r .

Let (v1||v2) = πDec(x||w), where x,v1 ∈ {0, 1}bi and w,v2 ∈ {0, 1}bc . In decryption, a input is a
new query to πDec when ((x||w), (v1||v2)) /∈ IA and old query when ((x||w), (v1||v2)) ∈ IA. If a new
query (x||w) is input to πDec during decryption, then πDec outputs v1||v2, where v2 /∈ Y . That is,
v2 is also new. Since v2 is unseen so far, it ensures that the input to the next call of π is certainly
new. Further, since v2 is new, next input x′||v2 satisfies the condition (x′||v2, ∗) /∈ IA, where ∗
stands for any b bit value. Therefore one new query makes all subsequent inputs to πDec(·) as new.
Any new query to πDec implies that a ciphertext y queried to Decryption oracle has never been
generated by the adversary. In Game G7, Decryption oracle return Invalid whenever adversary
makes such a query.

To know if a new query has been made in SpAEP Decryption oracle, we consider three check-
points, called A, B and C in Figure A. Next we explain the situation when a bad event can occur
in Game G7.
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Figure 5: f -SpAEP with three checkpoints for testing if a new query has been made.

In Hash-part, if any input before A is new, then A is also new as explained earlier. Hence a
decryption query is certainly new if A is new. In the case of checkpoints B and C, it is not possible
that B is new query and C is old query. This follows from our discussion above. Therefore we only
need to check C to determine if there is a new query in the OAE part.

During encryption, let us denote the values at checkpoints A, B and C by α,R∗||0br−r||IV2
and β respectively. Let y∗||Ce∗ be the target ciphertext and C∗ = Cf∗||Ce∗ where Cf∗ =
c∗1|| . . . ||c∗n||T ∗1 ||T ∗2 and Ce∗ = c∗n+1|| . . . ||c∗e such that y∗ = f(Cf∗).
The following cases cover all the possible cases for new query.

CASE-1 (A new, B new, C new): The bad event occurs only when tag T1 = T ′1 (shown in
Algorithm 2 and Appendix A: game G7).

(a) C 6= β: Then T1 = T ′1 implies collision of the outputs of π over r-bit value. Proba-
bility of this event is qD

2r for qD queries to Decryption oracle

(b) C=β: Then T1 = T ∗1 which means ci = c∗i for all i such that 1 ≤ i ≤ n and
R = R∗. This in turn results in T2 = T ∗2 . This leads to C = C∗, which is not
allowed because adversary can not query y∗ = f(C∗) to Decryption oracle.

CASE-2 (A new, B new, C old): This case is impossible. It is due to the fact that if B is new,
then all subsequent inputs to πDec including C are also new.

CASE-3 (A new, B old, C new): The bad event occurs only when tag T1 = T ′1 as in CASE-1.
This happens with probability qD

2r .

CASE-4 (A new, B old, C old):

(a) A6= α: B and C are old queries in this case and hence R, T1 is already known to
the adversary. T2 is also fixed due to the query y||Ce to the Decryption oracle.
Further, bπ(A)cr= R⊕T2 results in T1 = T ′1, which is a collision of output of π(A)
over r-bit value. Probability of this event is qD

2r for qD queries to the Decryption
oracle.

(b) A=α: This results in T2 = T ∗2 due to the permutation property of π. This leads to
ci = c∗i for all i such that 1 ≤ i ≤ n. If R = R∗, then y = y∗ which is not allowed.
On the other hand, if R 6= R∗ and T1 = T ′1, then the OAE part results in collision
over r-bits. This is a kind of hash collision on outputs of OAE for different inputs.
Probability of such a hash collision is

qπA+qπ−1

2r .
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CASE-5 (A old, B new, C new): The bad event occurs only when Tag T1 = T ′1 as in CASE-1,3.
This happen only with probability qD

2r .

CASE-6 (A old, B new, C old): This case is impossible. It is due the fact that if B is new, then
all the subsequent inputs to πDec including C are also new.

CASE-7 (A old, B old, C new): Same as CASE-1,3,5.

CASE-8 (A old, B old, C old): The bad event can not occur in this case.

Game G7 and Game G8: Both the games are same. Game G7 and G8 both return Invalid
when a new query is given to the Decryption oracle. In Game G8, a message M is returned only
when all the input-output relations of π, which would be possible during the encryption of M , are
already in IA. Game G8 iterates over all the possible pairs of (input,output) of π ∈ IA . This
makes the Decryption oracle independent of f .

On query y||Ce, the Decryption oracle returns a valid M only if the adversary knows the
plaintext-ciphertext pair (M,y||Ce); otherwise it returns Invalid.

|Pr[EXG8,A] = Pr[EXG7,A]|.

Game G8 and Game G9: We start incremental changes in Encryption oracle from Game G9.
In G8, R∗ is generated randomly. In G9, R∗ is computed using the value of randomly generated c∗i
(1 ≤ i ≤ e) and T ∗1 , T

∗
2 . The value of R∗ is calculated via HπEnc(IV, c∗1, c

∗
2, . . . , c

∗
e, T

∗
1 )⊕ T ∗2 . Since

π is an ideal permutation and T ∗2 is a random value, R∗ will also be random. Therefore, G8 and
G9 are same.

|Pr[EXG9,A] = Pr[EXG8,A]|.

Game G9 and Game G10: In the game G10, R∗ is generated in same way as in G9. In
Encryption oracle, π is a ideal permutation which results in random c∗i (1 ≤ i ≤ n). Therefore, in
G10, the values of ci for all i are replaced by random values c∗i . Similarly T1 is replaced with T ∗1 .
Due to initial random R∗, T2 = T ∗2 . Both games G9 and G10 will behave the same way until
‘Bad’. The Bad event occurs when the adversary queries R∗||0br−r||IV2 to πA or receives response
R∗||0br−r||IV2 from πA−1 . In G10, R∗ is calculated using C∗, unlike C using the R∗ as in G9. In
G9, relation between c1, c2, . . . , ce is generated by R∗. However, relation between c∗1, c

∗
2, . . . , c

∗
e does

not exist in G10. This gap in the relation can be exploited by the adversary if adversary queries
R∗||0br−r||IV2 to πA or receives response R∗||0br−r||IV2 from πA−1 .

|Pr[EXG10,A]− Pr[EXG9,A]| =Pr[Bad].

Game G10 and Game G11: Both the games are same. In game G10, C∗ = C. In G11,
Encryption oracle replaces C∗ with randomly generated C, without calling πEnc. Both games G10
and G11 return a random y∗||Ce = f(Cf∗ = Cf )||Ce. The Bad event in G10 takes place in G11 as
Bad1.

|Pr[EXG11,A] = Pr[EXG10,A]|, Pr[Bad]=Pr[Bad1].
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Game G11 and Game G12: Game G12 is the final game of adversary A. From G11, a random
y is the output of Encryption oracle and C is unknown to adversary independent of Mb. Therefore,
if a random C is given to the A in G12, then R∗ will be unknown to the adversary. Bad1 event in
G10 is same as Bad2 in G11.

|Pr[EXG12,A] = Pr[EXG11,A]|, Pr[Bad1]=Pr[Bad2].

If a random C is given to the A in G12, then R∗ will be unknown to the adversary and C will
be independent of d of Md Therefore,

|Pr[EXG12,A] = 1
2 .

Given a target ciphertext y, Adversary BA uses A as a black box, while A uses G12.
A detailed description of the games and adversary B is given in Appendix B. The probability

of Bad2 is as follows.

Pr[Bad2] = Pr[R∗||0br−r||IV2 is queried to (πA or π−1A )]

= Pr[(R∗||0br−r||IV2 is queried to (πA or π−1A )) ∧ (IEnc ⊂ IA)]

+ Pr[(R∗||0br−r||IV2 is queried to (πA or π−1A )) ∧ (IEnc 6⊂ IA)].

(IEnc ⊂ IA) implies that all the input-output relations of πEnc are also known to the adversary A
via set IA. Therefore A knows all c∗i for 1 ≤ i ≤ e and T ∗1 . Moreover, the adversary A learns T ∗2 if
it is allowed to query R∗||0br−r||IV2.

Given y||Ce, if R∗||0br−r||IV2 is queried to (πA or π−1A ), then it reveals C completely. Therefore,

Pr[Bad2] = Advowtpf (BA) + Pr[(R∗||IV2 is queried to (πA or π−1A )) ∧ (IEnc 6⊂ IA)].

IEnc 6⊂ IA implies that one of the inputs to HπEnc() is unknown to the adversary A. It results in
unknown output value from HπEnc(). Since T2 is already random therefore R∗ remains unknown
and random to A. Therefore, R∗||IV2 query to πA is equivalent to random guessing of R∗.

Pr[Bad2]=Advowtpf (BA)+
(qπA+qπ−1 )

min(2r,2c) .

From Definition 1 if f is trapdoor one-way permutation, then Advowtpf (BA) ≤ negl.
The time and space complexities mentioned in Equation 1 and 2 are easy to verify.
This completes the proof of Theorem 1.
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B Games

Game G0: Initialise Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 = 0bi IV2 = 0bc , IV3 =
IV2 ⊕ 1

On Encryption-Query Md(d
$←− {0, 1})

1. Random Nonce: R
$←− {0, 1}r

2. pad(M) = m1||m2|| . . . ||me, where
|mi| = bi ∀1 ≤ i ≤ e

3. x = x⊕R||0br−r
4. for i = 1→ e do

(x||w) = π(x||w)
x = x⊕mi

ci = x

5. (x||w) = π(x||w); T1 = bxcr
6. x = IV1 and w = IV3
7. for i = 1→ e do

x = x⊕ ci
(x||w) = π(x||w)

8. x = x⊕ T1||0br−r
9. (x||w) = π(x||w)

10. T2 = bxcr ⊕R
11. Cf = c1||c2|| . . . ||cn||T1||T2
12. Ce = cn+1|| . . . ||ce
13. y = f(Cf )
14. Return: y||Ce

On Decryption-Query y||Ce

1. Cf = c1||c2|| . . . ||cn||T1||T2 = f−1(y);
cn+1|| . . . ||ce = Ce

2. C = c1||c2|| . . . ||cn||T1||T2||cn+1|| . . . ||ce,
where |ci| = bi, |T1| = |T2| = r for 1 ≤ i ≤ e

3. for i = 1→ e do
x = x⊕ ci
(x||w) = π(x||w)

4. x = x⊕ T1||0br−r
5. (x||w) = π(x||w); R = bxcr ⊕ T2
6. x = R||0br−r; w = IV2
7. for i = 1→ e do

(x||w) = π(x||w)
mi = x⊕ ci
x = ci

8. (x||w) = π(x||w); T ′1 = bxcr
9. if T1 = T ′1 then

if ∃ M s.t. M = unpad(m1|| . . . ||me)
then

Return:M
else

Return: Invalid

else
Invalid.

On π-Query m, where m ∈ {0, 1}b

1. let (x||w) = m, where x ∈ {0, 1}r,
w ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return v

3. v
$←− {0, 1}b

4. if ∃ m′ s.t (m′, v)∈ Iπ, then

v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ}, where

∗ ∈ {0, 1}b
5. Iπ = Iπ

⋃
{(m, v)}

6. return v;

On π−1-Query v = {v1||v2}. where
v1 ∈ {0, 1}r, v2 ∈ {0, 1}c, v ∈ {0, 1}b

1. if (m, v)∈ Iπ then return m

2. m
$←− {0, 1}b

3. if ∃ v′ s.t (m, v′)∈ Iπ, then

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ}, where

∗ ∈ {0, 1}b
4. Iπ = Iπ

⋃
{(m, v)}

5. return m;

On πEnc-Query m, where m ∈ {0, 1}b

1. v = π(m)
2. IEnc = IEnc

⋃
{(m, v)}

3. return v;

On πDec-Query m, where m ∈ {0, 1}b

1. v = π(m)
2. IDec = IDec

⋃
{(m, v)}

3. return v;

On πA-Query v, where m ∈ {0, 1}b

1. v = π(m)
2. IA = IA

⋃
{(m, v)}

3. return v;

On π−1A -Query v, where v ∈ {0, 1}b

1. m = π−1(v)
2. IA = IA

⋃
{(m, v)}

3. return v;

Figure 6: Game G0
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Game G1 and Game G2 : Initialise Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 =
0bi IV2 = 0bc , IV3 = IV2 ⊕ 1

On Encryption-Query Md(d
$←− {0, 1})

Same as Game 0

On Decryption-Query y||Ce
Same as Game 0

On π-Query m,where m ∈ {0, 1}b

1. let (x||w)=m,where x ∈ {0, 1}r, w ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return v

3. v
$←− {0, 1}b

4. if ∃ m′ s.t (m′, v)∈ Iπ, then bad←true and

v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ} , where

∗ ∈ {0, 1}b
5. Iπ = Iπ

⋃
{(m, v)}

6. return v;

On π−1-Query v, where v ∈ {0, 1}b

1. let (v1||v2)=m,where v1 ∈ {0, 1}r,
v2 ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return m

3. m
$←− {0, 1}b

4. if ∃ v′ s.t (m, v′)∈ Iπ, then bad←true and

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ} , where

∗ ∈ {0, 1}b
5. Iπ = Iπ

⋃
{(m, v)}

6. return m;

On πEnc-Query m, where m ∈ {0, 1}b
Same as Game 0

On πDec-Query m, where m ∈ {0, 1}b
Same as Game 0

On πA-Query m, where m ∈ {0, 1}b
Same as Game G0

On π−1A -Query v, where v ∈ {0, 1}b
Same as Game0

Figure 7: Game G1 and Game G2

Game G3 and Game G4 : Initialise Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 =
0bi IV2 = 0bc , IV3 = IV2 ⊕ 1, Y = {IV2, IV3}

On Encryption-Query Md(d
$←− {0, 1})

Same as Game G0

On Decryption-Query y||Ce
Same as Game G0

On π-Query m, where m ∈ {0, 1}b

1. let (x||w)=m,where x ∈ {0, 1}r, w ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return v

3. v1||v2
$←− {0, 1}b,where v1 ∈ {0, 1}r,

v2 ∈ {0, 1}c,
4. if v2 ∈ Y

⋃
{w}, then bad←true and

v2
$←− {0, 1}c \ Y

⋃
{w}

5. Iπ = Iπ
⋃
{(m, v1||v2)} and Y = Y

⋃
{v2, w}

6. return v = v1||v2;

On π−1-Query v. where v ∈ {0, 1}b

1. let (v1||v2)=v,where
v1 ∈ {0, 1}r, v2 ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return m

3. m′||m′′ $←− {0, 1}b,where m′ ∈ {0, 1}r,
m′′ ∈ {0, 1}c,

4. if m′′ ∈ Y
⋃
{v2}, then bad←true and

m′′
$←− {0, 1}c \ Y

⋃
{v2}

5. Iπ = Iπ
⋃
{(m′||m′′, v)} and

Y = Y
⋃
{m′′, v2}

6. return m = m′||m′′;

On πEnc-Query m, where m ∈ {0, 1}b
Same as Game 0

On πDec-Query m, where m ∈ {0, 1}b
Same as Game 0

On πA-Query m, where m ∈ {0, 1}b
Same as Game G0

On π−1A -Query v, where v ∈ {0, 1}b
Same as Game0

Figure 8: Game G3 and Game G4
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Game G5 Initialise Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 = 0bi , IV2 = 0bc , IV3 = IV2 ⊕ 1, Y =
{IV2, IV3}

On Encryption-Query Same as Game G0 On Decryption-Query Same as G0

On π-Query m, where m ∈ {0, 1}b
1. let (x||w)=m,where x ∈ {0, 1}r, w ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return v

3. v1||v2
$←− {0, 1}b,where v1 ∈ {0, 1}r, v2 ∈ {0, 1}c,

4. if v2 ∈ Y
⋃
{w}, then v2

$←− {0, 1}c \ Y
⋃
{w}

5. Iπ = Iπ
⋃
{(m, v1||v2)} and Y = Y

⋃
{v2, w}

6. return v = v1||v2;

On π−1-Query v. where v ∈ {0, 1}b
1. let (v1||v2)=v,where v1 ∈ {0, 1}r, v2 ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return m

3. m′||m′′ $←− {0, 1}b,where m′ ∈ {0, 1}r,
m′′ ∈ {0, 1}c

4. if m′′ ∈ Y
⋃
{v2}, then m′′

$←− {0, 1}c \ Y
⋃
{v2}

5. Iπ = Iπ
⋃
{(m′||m′′, v)} and Y = Y

⋃
{m′′, v2}

6. return m = m′||m′′;
On πEnc-Query m, where m ∈ {0, 1}b
Same as Game 0

On πDec-Query m, where m ∈ {0, 1}b
Same as Game 0

On πA-Query m,where m ∈ {0, 1}b Same as G0
On π−1

A -Query v, where v ∈ {0, 1}b Same as
Game0

Figure 9: Game G5�� ��Game G6 and Game G7 : Initialise Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 = 0bi IV2 =

0bc , IV3 = IV2 ⊕ 1, Y = {IV2, IV3}

On Encryption-Query Same as G0
On π-Query Same as G5
On π−1-Query Same as G5
On πEnc-Query Same as Game 0
On πA-Query Same as Game G0
On π−1

A -Query Same as Game0
On πDec-Query Same as Game 0

On Decryption-Query y||Ce

1. Cf = c1||c2|| . . . ||cn||T1||T2 = f−1(y); cn+1|| . . . ||ce = Ce

2. C = c1||c2|| . . . ||cn||T1||T2||cn+1|| . . . ||ce, where
|ci| = bi, |T1| = |T2| = r for 1 ≤ i ≤ n

3. x = IV1; w = IV3;flag ← old
4. for i = 1→ e do

x = x⊕ ci
if 6 ∃ v s.t. (x||w, v) ∈ IA then

set flag ← new

(x||w) = πDec(x||w)
5. if 6 ∃ v s.t. (x⊕ T1||w, v) ∈ IA then

set flag ← new

6. (x||w) = πDec((x⊕ T1||0br−r)||w)
7. R = bxcr = v1 ⊕ T2||0br−r; w = IV2

8. for i = 1→ n do
if 6 ∃ v s.t. (x||w, v) ∈ IA then

set flag ← new

(x||w) = πDec(x||w)
mi = x⊕ ci
x = ci

9. if 6 ∃ v s.t. (x||w, v) ∈ IA then
set flag ← new

10. (x||w) = πDec(x||w),T ′1 = bxcr
11. if T1 = T ′1 and flag ← new then

bad←true�� ��Return:M Return: Invalid

12. if T1 = T ′1 and flag ← old then
if ∃ M s.t. M = unpad(m1|| . . . ||me) then

Return:M
else

Return: Invalid

else
Invalid.

Figure 10: Game G6 and Game G7
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Game G8: Initialise Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 = 0bi IV2 = 0bc , IV3 =

IV2 ⊕ 1, Y = {IV2}, R∗
$←− {0, 1}r#

"

 

!

Game G9: Initialise Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 = 0bi IV2 = 0bc , IV3 =

IV2 ⊕ 1, Y = {IV2}, R∗
$←− {0, 1}r

C∗
$←− {0, 1}e∗bi+2r, Let C∗ = c∗1||c∗2|| . . . ||c∗n||T ∗1 ||T ∗2 ||c∗n+1|| . . . ||c∗e, where |c∗[1,...,e]| = bi, |T ∗[1,2]| = r

R∗||∗ = πEnc(πEnc(. . . (πEnc(πEnc(c
∗
1||0bc ⊕ IV ) ⊕ c∗2||0bc) ⊕ c∗3||0bc) . . . ⊕ c∗e||0bc) ⊕ T ∗1 ||0bc+br−r) ⊕

T ∗2 ||0bc+br−r

On Encryption-Query Md(d
$←− {0, 1})

1. pad(M) = m1||m2|| . . . ||me, where
|mi| = bi ∀1 ≤ i ≤ e

2. x = x⊕R||0br−r
3. for i = 1→ e do

(x||w) = π(x||w)
x = x⊕mi

c∗i = x

4. (x||w) = π(x||w); T ∗1 = bxcr
5. x = IV1 and w = IV3
6. for i = 1→ e do

x = x⊕ c∗i
(x||w) = π(x||w)

7. x = x⊕ T ∗1 ||0br−r
8. (x||w) = π(x||w)
9. T ∗2 = bxcr ⊕R

10. Cf∗ = c∗1||c∗2|| . . . ||c∗n||T ∗1 ||T ∗2
11. Ce∗ = c∗n+1|| . . . ||c∗e
12. y∗ = f(Cf∗)
13. Return: y∗||Ce∗

On Decryption-Query y||Ce

1. w0 = IV2;
2. If ∃ pad(M)=m1||m2|| . . . ||me, R, after

x0 = R||0br−r ⊕ IV1 such that
(x0||w0, v11 ||v21) ∈ IA,
(xn||wn, v1e+1 ||v2e+1) ∈ IA,
((z1e+1

⊕G)||u2e+1
,z1e+2

||z2e+2
)∈ IA,

f(c1|| . . . ||ce||bv1e+1
cr||T2) = y, where

G = bv1e+1
cr||0br−r, T2 = bz1e+2

cr ⊕R
then return M
else Return Invalid

On π-QuerySame as Game G5

On π−1-Query Same as Game G5

On πEnc-Query m, where m ∈ {0, 1}b

On πA-Query m, where m ∈ {0, 1}b

1.
�� ��if m = R∗||0br−r||IV2 bad← true

2. v = π(m)
3. IA = IA

⋃
{(m, v)}

4. return v;

On π−1A -Query v, where v ∈ {0, 1}b

1. m = π−1(v)

2.
�� ��if m = R∗||0br−r||IV2 bad← true

3. IA = IA
⋃
{(m, v)}

4. return v;

Figure 11: Game G8

Following special notations is begin used during Game G8, G9, G10, G11, G12 and BA in decryption
oracle:

1. During OAE part of SpAEP, we represent input-output relation of π’s subsequent calls for
pad(M) = m1|| . . . ||me by (v1i+1 ||v2i+1) = π(xi||wi), where xi = v1i⊕{mi}, wi = v2i 0 ≤ i ≤ e,
v10 = IV1,m0 = R, w0 = IV2, v1i , xi ∈ {0, 1}r and v2i , wi ∈ {0, 1}c. Then ci will represent
mi ⊕ v1i , here 1 ≤ i ≤ e.

2. Input-output relation of π’s subsequent call during Hash part of SpAEP will be represented as
follows: (z1i+1||z2i+1) = π(u1i ||u2i),u1i = ci ⊕ z1i , u2i = z2i ,where 1 ≤ i ≤ (e+ 2), u21 = IV3,
z11 = IV1, ce+1 = T1, ce+2 = R
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Game G10: Initialise Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 = 0bi IV2 = 0bc , IV3 =

IV2 ⊕ 1, Y = {IV2, IV3}, C∗
$←− {0, 1}e∗bi+2r, Let C∗ = c∗1||c∗2|| . . . ||c∗n||T ∗1 ||T ∗2 ||c∗n+1|| . . . ||c∗e, where

|c∗[1,...,e]| = bi, |T ∗[1,2]| = r

R∗||∗ = πEnc(πEnc(. . . (πEnc(πEnc(c
∗
1||0bc ⊕ IV ) ⊕ c∗2||0bc) ⊕ c∗3||0bc) . . . ⊕ c∗e||0bc) ⊕ T ∗1 ||0bc+br−r) ⊕

T ∗2 ||0bc+br−r

On Encryption-Query Md(d
$←− {0, 1})

1. pad(M) = m1||m2|| . . . ||me, where
|mi| = bi ∀1 ≤ i ≤ e

2. x = x⊕R∗||0br−r
3. for i = 1→ e do

(x||w) = π(x||w)
x = x⊕mi

ci = x

4. (x||w) = π(x||w); T1 = bxcr
5. x = IV1 and w = IV3
6. for i = 1→ e do

x = x⊕ ci
(x||w) = π(x||w)

7. x = x⊕ T1||0br−r
8. (x||w) = π(x||w)
9. T2 = bxcr ⊕R

10. c1 = c∗1, . . . , ce = c∗e, T1 = T ∗1 , T2 = T ∗2
11. Cf = c1||c2|| . . . ||cn||T1||T2
12. Ce = cn+1|| . . . ||ce
13. y = f(Cf )
14. Return: y||Ce

On Decryption-Query y||Ce
Same as Game G8

On π-Query m Same as Game G5

On π−1-Query v Same as Game G5

On πEnc-Query m Same as G0

On πA-Query m, where m ∈ {0, 1}b

1. if m = R∗||0br−r||IV2 bad← true
2. v = π(m)
3. IA = IA

⋃
{(m, v)}

4. return v;

On π−1A -Query v, where v ∈ {0, 1}b

1. m = π−1(v)
2. if m = R∗||0br−r||IV2 bad← true
3. IA = IA

⋃
{(m, v)}

4. return v;

Figure 12: Game G10

Game G11: Initialise Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 = 0bi IV2 =

0bc , IV3 = IV2 ⊕ 1, Y = {IV2, IV3}, C∗
$←− {0, 1}e∗bi+2r, Let C∗ = c∗1|| . . . ||c∗n||T ∗1 ||T ∗2 ||c∗n+1|| . . . ||c∗e,

where |c∗[1,...,e]| = bi, |T ∗[1,2]| = r

R∗||∗ = πEnc(πEnc(. . . (πEnc(πEnc(c
∗
1||0bc ⊕ IV ) ⊕ c∗2||0bc) ⊕ c∗3||0bc) . . . ⊕ c∗e||0bc) ⊕ T ∗1 ||0bc+br−r) ⊕

T ∗2 ||0bc+br−r

On Encryption-Query Md(d
$←− {0, 1})

1. Cf = c∗1||c∗2|| . . . ||c∗n||T ∗1 ||T ∗2
2. Ce = c∗n+1|| . . . ||c∗e
3. y = f(Cf )
4. Return: y||Ce

On Decryption-Query y||Ce
Same as Game G8
On π-Query m, where m ∈ {0, 1}b
Same as Game G5
On π−1-Query v. where v ∈ {0, 1}b
Same as Game G5

On πEnc-Query m, where m ∈ {0, 1}b
1. v = π(m)
2. IEnc = IEnc

⋃
{(m, v)}

3. return v;

On πA-Query m, where m ∈ {0, 1}b
1. if m = R∗||0br−r||IV2 bad← true
2. v = π(m)
3. IA = IA

⋃
{(m, v)}

4. return v;

On π−1A -Query v, where v ∈ {0, 1}b

1. m = π−1(v)
2. if m = R∗||0br−r||IV2 bad← true
3. IA = IA

⋃
{(m, v)}

4. return v;

Figure 13: Game G11
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Game G12: Initialise Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 = 0bi IV2 = 0bc , IV3 =

IV2 ⊕ 1, Y = {IV2, IV3}, Given y∗||Ce∗ $←− {0, 1}e∗bi+2r, Cf∗ = f−1(y∗),
Let C∗ = Cf∗||Ce∗, where Cf∗ = c∗1||c∗2|| . . . ||c∗n||T ∗1 ||T ∗2 , Ce∗ = c∗n+1|| . . . ||c∗e
R∗||∗ = πEnc(πEnc(. . . (πEnc(πEnc(c

∗
1||0bc ⊕ IV ) ⊕ c∗2||0bc) ⊕ c∗3||0bc) . . . ⊕ c∗e||0bc) ⊕ T ∗1 ||0bc+br−r) ⊕

T ∗2 ||0bc+br−r

On Encryption-Query Md(d
$←− {0, 1})

1. Return: y||Ce = f(Cf∗)||Ce∗;
On Decryption-Query y||Ce
Same as Game G8

On π-Query m, where m ∈ {0, 1}b
Same as Game G5

On π−1-Query v. where v ∈ {0, 1}b
Same as Game G5

On πEnc-Query m, where m ∈ {0, 1}b

1. v = π(m)
2. IEnc = 1IEnc

⋃
{(m, v)}

3. return v;

On πA-Query m, where m ∈ {0, 1}b

1. if m = R∗||IV2 bad← true
2. v = π(m)
3. IA = IA

⋃
{(m, v)}

4. return v;

On π−1A -Query v, where v ∈ {0, 1}b

1. m = π−1(v)
2. if m = R∗||IV2 bad← true
3. IA = IA

⋃
{(m, v)}

4. return v;

Red Color text shown hidden/unknown from
Game

Figure 14: Game G12

Adversary BA: Given y||Ce $←− {0, 1}e∗bi+2r, where y ∈ {0, 1}`. Find Cf such that f−1(Cf ) = y.

Adversary A: Initialise Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 = 0bi IV2 =
0bc , IV3 = IV2 ⊕ 1, Y = {IV2, IV3},

On Encryption-Query Md(d
$←− {0, 1})

by A

1. Return: y||Ce;

On Decryption-Query y||Ce
by A
Same as Game G8

On π-Query m, where m ∈ {0, 1}b
by A
Same as Game G5

On π−1-Query v. where v ∈ {0, 1}b
by A
Same as Game G5

On πEnc-Query m, where m ∈ {0, 1}b

1. v = π(m)
2. IEnc = 1IEnc

⋃
{(m, v)}

3. return v;

On πA-Query m, where m ∈ {0, 1}b

1. v = π(m)
2. IA = IA

⋃
{(m, v)}

3. return v;

On π−1A -Query v, where v ∈ {0, 1}b

1. m = π−1(v)
2. IA = IA

⋃
{(m, v)}

3. return v;

Finalization: if ∃R, T1, T2 such that ((R||0br−r ⊕ IV1)||IV2, v11 ||v21), (xe||we, T1||P ||v2e+1
), ((z1e+1

⊕
T1||00

br−r

)||u2e+1 , (T2 ⊕ R)||P ||z2e+2) ∈ IA and f(c1|| . . . ||cn||T1||T2) = y, then return Cf =
(c1|| . . . ||cn||T1||T2), where P ∈ {0, 1}br−r

Figure 15: Adversary BA
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