
Hybrid Publicly Verifiable Computation?

James Alderman, Christian Janson, Carlos Cid, and Jason Crampton

Information Security Group, Royal Holloway, University of London
Egham, Surrey, TW20 0EX, United Kingdom

{James.Alderman, Carlos.Cid, Jason.Crampton}@rhul.ac.uk
Christian.Janson.2012@live.rhul.ac.uk

Abstract. Publicly Verifiable Outsourced Computation (PVC) allows weak devices to delegate
computations to more powerful servers, and to verify the correctness of results. Delegation and
verification rely only on public parameters, and thus PVC lends itself to large multi-user systems
where entities need not be registered. In such settings, individual user requirements may be di-
verse and cannot be realised with current PVC solutions. In this paper, we introduce Hybrid PVC
(HPVC) which, with a single setup stage, provides a flexible solution to outsourced computation
supporting multiple modes: (i) standard PVC, (ii) PVC with cryptographically enforced access
control policies restricting the servers that may perform a given computation, and (iii) a reversed
model of PVC which we call Verifiable Delegable Computation (VDC) where data is held remotely
by servers. Entities may dynamically play the role of delegators or servers as required.

Keywords Publicly Verifiable Computation, Outsourced Computation, Dual-Policy Attribute-based
Encryption, Revocation, Access Control

1 Introduction

The trend towards cloud computing means that there is a growing trust dependency on remote servers
and the functionality they provide. Publicly Verifiable Computation (PVC) [23] allows any entity to use
public information to delegate or verify computations, and lends itself to large multi-user systems that
are likely to arise in practice (as delegators need not be individually registered).

However, in such a system, the individual user requirements may be diverse and require different
forms of outsourced computation, whereas current PVC schemes support only a single form. Clients may
wish to request computations from a particular server or to issue a request to a large pool of servers;
in the latter case, they may wish to restrict the servers that can perform the computation to only
those possessing certain characteristics. Moreover, the data may be provided by the client as part of the
computation, or it may be stored by the server; and the role of servers and clients may be interchangeable
depending on the context.

Consider the following scenarios: (i) employees with limited resources (e.g. using mobile devices when
out of the office) need to delegate computations to more powerful servers. The workload of the employee
may also involve responding to computation requests to perform tasks for other employees or to respond
to inter-departmental queries over restricted databases; (ii) Entities that invest heavily in outsourced
computations could find themselves with a valuable, processed dataset that is of interest to other parties,
and hence want to selectively share this information by allowing others to query the dataset in a verifiable
fashion; (iii) database servers that allow public queries may become overwhelmed with requests, and need
to enlist additional servers to help (essentially the server acts as a delegator to outsource queries with
relevant data). Finally, (iv) consider a form of peer-to-peer network for sharing computational resources
– as individual resource availability varies, entities can sell spare resources to perform computations for
other users or make their own data available to others, whilst making computation requests to other
entities when resources run low.

Current PVC solutions do not handle these flexible requirements particularly well; although there are
several different proposals in the literature that realise some of the requirements described above, each
requires an independent (potentially expensive) setup stage. We introduce Hybrid PVC (HPVC) which

? A preliminary version of this paper appears in the proceedings of Topics in Cryptology - CT-RSA 2016,
DOI:http://dx.doi.org/10.1007/978-3-319-29485-8 9. This is the full version.

is a single mechanism (with the associated costs of a single setup operation and a single set of system
parameters to publish and maintain) which simultaneously satisfies all of the above requirements. Entities
may play the role of both delegators and servers, in the following modes of operation, dynamically as
required:

– Revocable PVC (RPVC) where clients with limited resources outsource computations on data
of their choosing to more powerful, untrusted servers using only public information. Multiple servers can
compute multiple functions. Servers may try to cheat to persuade verifiers of incorrect information or to
avoid using their own resources. Misbehaving servers can be detected and revoked so that further results
will be rejected and they will not be rewarded for their effort;

– RPVC with access control (RPVC-AC) which restricts the servers that may perform a given
computation. Outsourced computations may be distributed amongst a pool of available servers that are
not individually authenticated and known by the delegator. Prior work [1] used symmetric primitives and
required all entities to be registered in the system (including delegators) but we achieve a fully public
system where only servers need be registered (as usual in PVC);

– Verifiable Delegable Computation (VDC) where servers are the data owners and make a static
dataset available for verifiable querying. Clients request computations on subsets of the dataset using
public, descriptive labels.

We begin, in Section 2, with a summary of related work and the KP-ABE-based PVC schemes [23, 2]
on which we base our HPVC construction. In Section 3, we define the generic functionality and security
properties of HPVC. We then, in Section 4.1, discuss each supported mode of computation, and how it
fits our generic definition. To support user revocation [2], we introduce a new cryptographic primitive
called Revocable-Key Dual-policy Attribute-based Encryption (rkDPABE) in Section 4.2 and provide a
detailed construction and proof in Appendix B. In Section 4.3, we instantiate HPVC using rkDPABEand
in Section 5 we present the security proofs for our scheme. Finally, in Section 6 we conclude the paper.

2 Background and Related Work

Verifiable computation [17, 13, 27, 16, 12, 10, 23] may be seen as a protocol between a (weak) client C and
a server S, resulting in the provably correct computation of F (x) by the server for the client’s choice
of F and x. The setup stage may be computationally expensive (amortised over multiple computations)
but other operations should be efficient for the client. Some prior work used garbled circuits with fully
homomorphic encryption [17, 13] or targeted specific functions [10, 16, 12]. Chung et al. [14] introduced
memory delegation which is similar to VDC; a client uploads his memory to a server who can update and
compute a function F over the entire memory. Backes et al. [8] consider a client that outsources data and
requests computations on a data portion. The client can efficiently verify the correctness of the result
without holding the input data. Most work requires the client to know the data in order to verify [18, 9,
11, 22]. Verifiable oblivious storage [3] ensures data confidentiality, access pattern privacy, integrity and
freshness of data accesses. Work on authenticated data lends itself to verifiable outsourced computations,
albeit for specific functions only. Backes et al. [7] use privacy-preserving proofs over authenticated data
outsourced by a trusted client. Similar results are presented in [25] using public logs. It is notable that
[7] and [11] achieve public verifiability. In independent and concurrent work, Shi et al. [24] use DP-ABE
to combine keyword search on encrypted data with the enforcement of an access control policy.

Parno et al. [23] introduce Publicly Verifiable Computation (PVC) where multiple clients outsource
computations of a single function to a single server, and verify the results. Alderman et al. [2] introduce
a trusted Key Distribution Centre (KDC) to handle the expensive setup for all entities, to allow multiple
servers to compute multiple functions, and to revoke misbehaving servers. Informally, the KDC acts as
the root of trust to generate public parameters and delegation information, and to issue secret keys and
evaluation keys to servers. To outsource the evaluation of F (x), a delegator sends an encoded input σF (x)

to a server S, and publishes verification tokens. S uses an evaluation key for F to produce an encoded
output θF (x). Any entity can verify correctness of θF (x) using a verification key and learn the value of
F (x). If S cheated they may be reported to the KDC for revocation.

The constructions of [23, 2] to outsource a Boolean function, F , are based on Key-policy Attribute-
based encryption (KP-ABE), which links ciphertexts with attribute sets and decryption keys with a
policy; decryption only succeeds if the attributes satisfy the policy. For PVC, two random messages are
encrypted and linked to the input data X (represented as attributes) to form the encoded input. The

2

evaluation key is a pair of decryption keys linked to F and F (the complement function of F). Exactly
one message can be recovered, implying whether F or F was satisfied, and hence if F (X) = 1 or 0.
Ciphertext indistinguishability ensures S cannot return the other message to imply an incorrect result.

3 Hybrid Publicly Verifiable Computation

3.1 Formal Definition

To accommodate different modes of computation, we define HPVC generically in terms of parameters
ω, O, ψ and S. Depending on the mode (and which party provides the input data), O or S will encode
functions, while ω or ψ encode input data, as detailed in Section 4.1. We retain the single, trusted Key
Distribution Centre (KDC) from RPVC [2] who initialises the system for a function family F resulting in
a set of public parameters pp and a master secret key mk. For each function F ∈ F , the KDC publishes
a delegation key pkF . It also registers each entity Si that wants to act as a server by issuing a signing
key skSi . It may also update pp during any algorithm to reflect changes in the user population.

Depending on the mode, servers either compute functions O on behalf of clients, or make a dataset
ψ available for public querying. The Certify algorithm is run by the KDC to produce an evaluation key
ek(O,ψ),Si enabling Si to perform these operations. Si chooses a set of labels Li – in RPVC or RPVC-AC
modes, Li uniquely represents the function F that Si should be certified to compute; in VDC mode, Li is
a set of labels, each uniquely representing a data point contained in the dataset Di owned by Si.

1 In the
VDC setting, the server is the data owner and so Si also provides a list Fi advertising the functions that
he is willing to evaluate on his data in accordance with his own data usage policies; in RPVC settings,
Fi advertises the functions Si is certified to compute.

To request a computation of F (X) (encoded in ω or S) from Si, a delegator uses public information to
run ProbGen. He provides labels LF,X ⊆ Li describing the computation: in RPVC or RPVC-AC modes,
the delegator provides the input data X and LF,X labels the function F to be applied; in VDC mode,
the client uses the descriptive labels to choose a subset of data points X ⊆ Di, X ⊆ Dom(F) held by Si
that should be computed on. ProbGen generates an encoded input σ(ω,S) and a public verification key
vk(ω,S).

A server combines σ(ω,S) with its evaluation key to compute θF (X) encoding the result F (X). Any
entity can verify the correctness of θF (X) using vk(ω,S). Verification outputs the result y = F (X) of the
computation (if correct) and generates a token τθF (X)

which is sent to the KDC; if the token signifies that
the result was incorrectly formed then the server is revoked from performing further evaluations. This
prevents delegators wasting their (limited) resources outsourcing to a server known to be untrustworthy,
and also acts as a deterrent, especially when servers are rewarded per computation.

We now present a formal definition of all necessary algorithms for an HPVC scheme.

Definition 1. An hybrid publicly verifiable outsourced computation (HPVC) scheme for a family of
functions F comprises the following algorithms:

1. (pp,mk)
$← Setup(1λ,F): this randomised algorithm is run by the KDC to establish public parameters

pp and a master secret key mk for the system. The inputs are the security parameter λ, and the family
of functions F that may be computed;

2. pkF
$← FnInit(F,mk, pp): this randomised algorithm is run by the KDC to generate a public delegation

key, pkF , allowing entities to outsource, or request, computations of F ;

3. skSi
$← Register(Si,mk, pp): this randomised algorithm is run by the KDC to enrol an entity Si within

the system to act as a server. It generates a personalised signing key skSi ;

4. ek(O,ψ),Si
$← Certify(mode, Si, (O, ψ), Li,Fi,mk, pp): this randomised algorithm is run by the KDC

to generate an evaluation key ek(O,ψ),Si enabling the entity Si to compute on the pair (O, ψ). The
algorithm also takes as input the mode in which it should operate, a set of labels Li, a set of functions
Fi, the master secret key as well as the public parameters;

1 These descriptive labels (e.g. field names in a database) allow delegators to select data points to be used in a
computation without knowing the data values.

3

5. (σ(ω,S), vk(ω,S))
$← ProbGen(mode, (ω,S), LF,X , pkF , pp): this randomised algorithm is run by an entity

to request a computation of F (X) from Si. The inputs are the mode, the pair (ω,S) representing the
computation request, a set of labels LF,X ⊆ Li, the delegation key for F and the public parameters.
The algorithm outputs an encoded input σ(ω,S) and a verification key vk(ω,S);

6. θF (X)
$← Compute(mode, σ(ω,S), ek(O,ψ),Si , skSi , pp): this randomised algorithm is run by an entity Si

to compute F (X). The inputs are the mode, an encoded input σ(ω,S), an evaluation key ek(O,ψ),Si and
a signing key for Si. The algorithm outputs an encoded output θF (X) representing F (X);

7. (y, τθF (X)
)← Verify(θF (X), vk(ω,S), pp): this algorithm is run by any entity that wants to verify whether

the result was computed correctly or not. The inputs are the encoded output θF (X), the verification key
vk(ω,S) and the public parameters. The algorithm outputs the actual result y. If the result y corresponds
to F (x) it additionally creates a token τθF (x)

= (accept, Si) indicating that the result was correctly
computed. Otherwise, the result y corresponds to ⊥ and it creates a token τθF (x)

= (reject, Si)
indicating that the result is malformed and Si misbehaved;

8. um
$← Revoke(τθF (X)

,mk, pp): this randomised algorithm is run by the KDC inputting the token from
the verification process, the master secret key and public parameters. If τθF (X)

= (reject, Si), the
algorithm revokes all evaluation keys ek(·,·),Si of the server Si by rendering them non-functional and
thereby preventing Si from performing any further evaluations within the current system. The update
material um consists of a set of updated evaluation keys {ek(O,ψ),S′} which are issued to all servers.
Otherwise, in case τθF (X)

= (accept, Si) then the algorithm outputs ⊥ indicating that no update was
necessary.

Although not explicitly stated, the KDC may update the public parameters pp during any algorithm in
order to address any changes in the entity population.

We say that an HPVC scheme is correct if, when all algorithms are run honestly in any order and the
result is computed by a non-revoked server, the result is correct and the verification algorithm accepts
the result. We can model this as a cryptographic game between a challenger and a PPT adversary; the
adversary aims to find an encoded output (generated honestly by a non-revoked server) which either
does not encode the correct result, or which does encode the correct result yet which will not be accepted
by the verification algorithm.

The adversary is given access to a set of oracles; for each algorithm in Definition 1, we define a cor-
responding oracle which executes the corresponding algorithm on arguments provided by the adversary,
and returns the output of the algorithm to the adversary. The adversary may query the Setup oracle only
once (before making any other oracle queries), but can thereon call the remaining oracles any number of
times and in any order.

The challenger maintains two lists, LReg and LF . LReg is a list of tuples comprising server identities,
Si, and the resulting signing keys, skSi , that have been queried to the Register oracle. LF comprises
tuples of the form (Si, ψ, Li,Fi, ek(O,ψ),Si) denoting that the server Si has been queried to the Certify
oracle for the set of functions Fi and that ek(O,ψ),Si was generated. When the adversary makes a Revoke
query with a revocation token that identifies a server Si to be revoked (that is, if τθF (X)

= (reject, Si)
is given as input to the Revoke oracle), the challenger removes all entries of the form (Si, ·, ·, ·, ·, ·) (i.e.
all entries for Si for any function) from LF .

The challenger also creates and maintains a table T which records the parameters and values relating
to each computation performed through the oracle queries. T is updated in the following oracles:

– ProbGen: the challenger creates a new row in T comprising 7 components, all of which are initialised
to be empty; it then assigns X (which is either given explicitly in ω or can be found by searching
LF for the labels LF,X), F , the result F (X) (computed by the challenger itself), σ(ω,S) and vk(ω,S)
to the first 5 components;

– Compute: the challenger first searches T for all rows that contain the queried σ(ω,S) in the 4th

component and where the 6th component is empty (i.e. those rows relating to computations on
this encoded input that have not yet been performed). For each such row, r, the challenger takes
the second component (the function identifier, F̃), and checks that there exists a server identity S̃i
such that the tuple (S̃i, skS̃i) ∈ LReg (where skS̃i is that given as input to the Compute oracle) and

such that the tuple (S̃i, ·, ·,Fi, ek(O,ψ),Si) ∈ LF (where ek(O,ψ),Si is also that given as input to the

Compute oracle) and where F̃ ∈ Fi. This check ensures that there is a currently un-revoked server
(as the entries of LF for S̃i have not been removed) that holds the signing key and evaluation key

4

being used to perform the computation and which is certified for a function F̃ for which the encoded
input σF,X was generated.
The challenger then performs the Compute algorithm on the queried σ(ω,S), ek(O,ψ),Si and SKSi to
produce an output θF (X). For each of the rows r of T found above, the challenger writes θF (X) and

S̃i to the 6th and 7th components of r respectively. Thus, a row of T will only have a (non-empty)
value in the 6th component if there exists a non-revoked, certified server to perform the computation
for which σ(ω,S) was generated.

Thus, when complete, the entries of T will be of the form

(X,F, F (X), σ(ω,S), vk(ω,S), θF (X), S).

After a polynomial number of queries, the adversary will return a value θ?F (X) which it believes either
encodes an incorrect computational result or which encodes a correct computational result yet which
the Verify algorithm will reject (that is, an output for which the protocol execution will not be correct).
The challenger first performs a look up in T for all entries containing θ?F (X) in the 6th position of the

tuple, and stores any such entries as another table T̃ . Note that this means that θ?F (X) must have been

honestly generated by the Compute oracle (else it would not be in T).
For each such row, the challenger uses the 5th component (the verification key) to run Verify on θ?F (X)

to generate the output y.
The challenger first checks whether y matches the 3rd component of the row (that is, whether y is the

correct computational result F (X)). If so, it then checks whether τθF (X)
= (reject, Si), and if so it ends

the game by returning 1 to indicate that the adversary has won the game (the adversary has found a
valid encoding of a correct result, computed by a certified, non-revoked server, that the Verify algorithm
is incorrectly rejecting).

On the other hand, if y did not match the correct value of F (X), the challenger also ends the game
by returning 1 to indicate that the adversary has won the game (the adversary in this case has found an
incorrect result that was computed honestly by the algorithms).

If no row in T̃ allows the adversary to win, then the challenger outputs 0 to indicate that the adversary
has lost.

An HPVC scheme is correct if, for all PPT adversaries, the probability that the adversary wins the
game described above is 0.

3.2 Security Models

In this section we discuss the security notions we wish to achieve in our HPVC framework. In more detail,
we can achieve security in the sense of public verifiability, revocation and authorised computation.2 We
require to include some additional restrictions on the games that are placed from our current rkDPABE
primitive (which we introduce in Section B) which acts as our main building block for our HPVC
construction.

Selective Public Verifiability. In Figure 1, we define a selective notion of public verifiability. This
notion captures that no server is able to return a malformed result for a computation without being
detected.

The game begins with the adversary first selecting its challenge parameters. Note that the adversary
chooses the mode it wishes the challenge to be generated in and the respective labels necessary for this
mode. Furthermore, the adversary outputs choices for ω?, O?, ψ? and S?, despite only ω? and S? are
used to form the challenge input. This notation was used mainly for notational convenience to allow us to
define the challenge computation in terms of F and X? in line 3 or 4 depending on the mode. However,
we want to stress that this information can also be learnt from the set of labels LF,X? and the chosen
mode of computation. Thus, this notational convenience does not weaken the game since the information

2 We do not consider input privacy here, but note that a revocable dual-policy predicate encryption scheme, if
found, could easily replace our ABE scheme in Section 4.3. Security against vindictive servers and managers
can also be adapted from [2].

5

ExpsPubVerif
A

[
HPVC, 1λ,F

]
1 : (ω?,O?, ψ?, S?, LF,X? , mode)←$ A(1λ,F)

2 : (pp,mk)←$ Setup(1λ,F)

3 : if mode = VDC then (F ← S?, X? ← ψ?)

4 : else (F ← O?, X? ← ω?)

5 : pkF ←$ FnInit(F,mk, pp)

6 : (σ?, vk?)←$ ProbGen(mode, (ω?, S?), LF,X? , pkF , pp)

7 : θ? ←$ AO(σ?, vk?, pkF , pp)

8 : (y, τθ?)← Verify(θ?, vk?, pp)

9 : if (y, τθ?) 6= (⊥, (reject, S)) and (y 6= F (X?)) then

10 : return 1

11 : else return 0

Fig. 1. The selective public verifiability experiment ExpsPubVerif
A

[
HPVC, 1λ,F

]

has been already determined by the adversary’s choices.

After the adversary has chosen the parameters, the game proceeds with the challenger running Setup
to initialise the system and FnInit to return the public delegation key pkF for the chosen challenge
function. The challenger continues with running ProbGen on the challenge inputs to output a challenge
for the adversary. The adversary receives the challenge and public information and is given oracle access
to FnInit(·,mk, pp), Register(·,mk, pp), Certify(·, ·, (·, ·), ·, ·,mk, pp) and Revoke(·,mk, pp) which we denote
by O. All oracles simply run the relevant algorithm. Finally, the adversary wins the game if it is able to
create an encoded output that verifies correctly but does not encode the correct value F (X).

Definition 2. The advantage of a PPT adversary in the sPubVerif game for an hybrid publicly veri-
fiable outsourced computation scheme HPVC, for a family of functions F is defined as:

AdvsPubVerif
A,HPVC (1λ,F) = Pr

[
ExpsPubVerif

A
[
HPVC, 1λ,F

]
→ 1

]
.

We say that the hybrid publicly verifiable outsourced computation scheme HPVC is secure with respect
to selective public verifiability if for all PPT adversaries A, it holds that

AdvsPubVerif
A,HPVC (1λ,F) ≤ negl(λ).

3.3 Selective, Semi-static Revocation.

The notion of revocation requires that, if a server is detected as misbehaving, meaning that a server Si
returns a result such that the verification algorithm Verify outputs (⊥, (reject, Si)), then any subsequent
computations by Si should be rejected, even if the result may be correct.

In Figure 2, we define a selective, semi-static notion of revocation. This notion starts with the ad-
versary choosing its challenge parameters which the challenger can parse to determine F and X?. The
challenger maintains a (initially empty) list QRev of currently revoked entities as well as the current time
period t which can be incremented during Revoke oracle queries. The game proceeds with the challenger
running Setup to initialise the system and FnInit to return the public delegation key pkF for the chosen
challenge function. After this, on line 8, the adversary needs to declare (before receiving oracle access)
a list R of servers to be revoked at the time period where the challenge will be generated which we
assume will be at time period qt. The adversary is then provided with oracle access to FnInit(·,mk, pp),

6

ExpsssRevoc
A

[
HPVC, 1λ,F , qt

]
1 : (ω?,O?, ψ?, S?, LF,X? , mode)←$ A(1λ,F , qt)
2 : if mode = VDC then (F ← S?, X? ← ψ?)

3 : else (F ← O?, X? ← ω?)

4 : QRev ← ε

5 : t← 1

6 : (pp,mk)←$ Setup(1λ,F)

7 : pkF ←$ FnInit(F,mk, pp)

8 : R← A(pkF , pp)

9 : AO(pkF , pp)

10 : if (R 6⊆ QRev) then return 0

11 : (σ?, vk?)←$ ProbGen(mode, (ω?, S?), LF,X? , pkF , pp)

12 : θ? ←$ AO(σ?, vk?, pkF , pp)

13 : if ((y, (accept, S))← Verify(θ?, vkF,x? , pp) and (S ∈ R)) then

14 : return 1

15 : else return 0

OCertify(mode, Si, (O, ψ), Li,Fi,mk, pp)

1 : if (LF,X? ⊆ Li and Si /∈ R) or (t = qt and R 6⊆ QRev \ Si) then return ⊥
2 : QRev ← QRev \ Si
3 : return Certify(mode, Si, (O, ψ), Li,Fi,mk, pp)

ORevoke(τθF ′(X)
,mk, pp)

1 : t← t+ 1

2 : if (τθF ′(x) = (accept, ·)) then return ⊥

3 : if (t = qt and R 6⊆ QRev ∪ Si) then return ⊥
4 : QRev ← QRev ∪ Si
5 : return Revoke(τθF ′(X)

,mk, pp)

Fig. 2. The selective, semi-static revocation experiment ExpsssRevoc
A

[
HPVC, 1λ,F , qt

]

Register(·,mk, pp), Certify(·, ·, (·, ·), ·, ·,mk, pp) and Revoke(·,mk, pp) which we denote by O. Certify and
Revoke oracle queries are handled as specified in Figure 2. The adversary finishes its oracles query phase
(line 9) after making a polynomial number of queries q, including qt many Revoke queries, and does
not return a value other than signalling to the challenger that it may proceed with the remainder of
the game. The challenger checks that all queries made by the adversary have indeed generated a list of
currently revoked servers that is a superset of the challenge revocation list R. If this is not true, the
challenger aborts the game and the adversary loses as it was not able to choose its queries or the list R
appropriately. Otherwise, the challenger continues with the game and generates the challenge by running
ProbGen. The adversary wins the game if it outputs any result, i.e. a correct or malformed response, as
a valid result from any server that was revoked at the time of the challenge.

7

Definition 3. The advantage of a PPT adversary in the sssRevoc game for an hybrid publicly verifi-
able outsourced computation scheme HPVC, for a family of functions F is defined as:

AdvsssRevoc
A,HPVC(1

λ,F , qt) = Pr
[
ExpsssRevoc

A
[
HPVC, 1λ,F , qt

]
→ 1

]
.

We say that the hybrid publicly verifiable outsourced computation scheme HPVC is secure with respect
to selective, semi-static revocation if for all PPT adversaries A, it holds that

AdvsssRevoc
A,HPVC(1

λ,F , qt) ≤ negl(λ).

3.4 Selective Authorised Computation.

In Figure 3, we define a selective notion of authorised computation. This notion ensures that only a
server that satisfies an additional authorisation policy in the encoded input should be able to perform
a given computation on this encoded input. Thus, in contrast, a result generated by an unauthorised
server should always be rejected even if the result is correct.

ExpsAuthComp
A

[
HPVC, 1λ,F

]
1 : mode = RPVC-AC

2 : (F,X?, P, {l(F)})←$ A(1λ,F)

3 : (pp,mk)←$ Setup(1λ,F)

4 : pkF ←$ FnInit(F,mk, pp)

5 : (σ?, vk?)←$ ProbGen(RPVC-AC, (X?, P), {l(F)}, pkF , pp)

6 : θ? ←$ AO(σ?, vk?, pkF , pp)

7 : (y, τ?)← Verify(θ?, vk?, pp)

8 : if τ? 6= (reject, ·) then

9 : return 1

10 : else return 0

OCertify(RPVC-AC, Si, (F,ψ), {l(F)},Fi,mk, pp)

1 : if (ψ ∈ P) then return ⊥
2 : return Certify(RPVC-AC, Si, (F,ψ), {l(F)},Fi,mk, pp)

Fig. 3. The selective authorised computation experiment ExpsAuthComp
A

[
HPVC, 1λ,F

]

The game begins with explicitly setting the mode of computation to RPVC-AC and the adversary
chooses the parameters for the game accordingly as otherwise the parameters would not be meaningful.
Those parameters consist of a challenge function F , challenge input X?, the authorisation policy P
and the respective function labels for this mode. The game proceeds with the challenger running Setup
to initialise the system and FnInit to return the public delegation key pkF for the chosen challenge
function. It continues with the challenger running ProbGen to create the challenge for the adversary. The
adversary receives the challenge and public information and is given oracle access to FnInit(·,mk, pp),
Register(·,mk, pp), Certify(·, ·, (·, ·), ·, ·,mk, pp) and Revoke(·,mk, pp) which we denote by O. All oracles
simply run the relevant algorithm with the exception of Certify queries which are separately specified in
Figure 3. The Certify oracle returns ⊥ if the queried attribute set ψ satisfies the authorisation policy P ,
as otherwise the adversary would be able to trivially produce a valid response as an authorised entity.
The adversary wins the game if it outputs a result and token that is accepted by a verifier.

8

Table 1. Parameter definitions for different modes of computation

mode O ψ ω S
RPVC F {TS} X {{TS}}
RPVC-AC F s X P
VDC {{TO}} Di {TO} F

mode Li LF,X Fi
RPVC {l(F)} {l(F)} {F}
RPVC-AC {l(F)} {l(F)} {F}
VDC {l(xi,j)}xi,j∈Di {l(xi,j)}xi,j∈X {(F, {l(xi,j)}xi,j∈Dom(F))}F∈F

Definition 4. The advantage of a PPT adversary in the sAuthComp game for an hybrid publicly
verifiable outsourced computation scheme HPVC, for a family of functions F is defined as:

AdvsAuthComp
A,HPVC (1λ,F) = Pr

[
ExpsAuthComp

A
[
HPVC, 1λ,F

]
→ 1

]
.

We say that the hybrid publicly verifiable outsourced computation scheme HPVC is secure with respect
to selective authorised computation if for all PPT adversaries A, it holds that

AdvsAuthComp
A,HPVC (1λ,F) ≤ negl(λ).

4 Instantiating HPVC

In this section, we provide a construction of an HPVC scheme for the class NC1, which includes common
arithmetic and matrix operations. Let F be the family of Boolean formulas closed under complement
using a revocable key dual-policy ABE in a black-box manner. We construct our scheme from a novel
use of Dual-policy Attribute-based Encryption (DP-ABE) which combines Key-policy ABE (KP-ABE)
and Ciphertext-policy ABE (CP-ABE). Decryption keys are linked to an “objective” policy O and
“subjective” attribute set ψ, and ciphertexts linked to an “objective” attribute set ω and “subjective”
policy S; decryption requires both policies to be satisfied – ω ∈ O and ψ ∈ S.

Following [23], we encrypt two random messages to form the encoded input, while decryption keys
form evaluation keys; by linking these to F , F and X according to the mode, we ensure that exactly one
message can be recovered, implying whether F or F was satisfied, and hence if F (X) = 1 or 0. DP-ABE
security ensures a server cannot learn a message implying an invalid result.

The values of ω, O, ψ and S depend upon the mode, as detailed in Table 1. Two additional parameters
TO and TS “disable” modes when not required. Note that, trivially, ψ ∈ S when ψ = {TS} and S =
{{TS}}, and similarly for TO.

In this section, we first provide more details about the different modes of computation that are
supported by our HPVC scheme. Next we introduce a new cryptographic primitive which acts as our
main building block of our construction and finally we provide the concrete instantiation details.

4.1 Supporting Different Modes of Computation

RPVC. In this mode, a delegator owns some input data X and wants to learn F (X) but lacks the
computational resources to do so itself; thus, the computation is outsourced. In this setting, only the
parameters O and ω are required, and are set to be F and X respectively. The set X comprises a single
datapoint: the input data to this particular computation. The remaining parameters S and ψ are defined
in terms of the dummy parameter TS . The set of functions Fi that a server is certified for during a single
Certify operation is simply F , and the sets of labels Li and LF,X both comprise a single element l(F)
uniquely labelling F .

RPVC-AC. RPVC-AC [1] was introduced with the motivation that servers may be chosen from a pool
based on resource availability, a bidding process etc. Delegators may not have previously authenticated
the selected server, in contrast to prior models [23] where a client set up a PVC system with a single,
known server.

9

The construction of [1] used a symmetric key assignment scheme allowing only authorised entities to
derive the required keys. However, the KDC had to register all delegators and verifiers. This was due
both to the policies being enforced (e.g. to restrict the computations delegators may outsource), and to
the use of symmetric primitives – to encrypt inputs that only authorised servers can decrypt, delegators
must know the secret symmetric key. Thus, the scheme is not strictly publicly delegable as delegation
does not depend only on public information, and similarly for verification.

We retain public delegability and verifiability whilst restricting the servers that may perform a given
computation. In some sense, servers are already authorised for functions by being issued evaluation keys.
However, we believe that access control policies in this setting must consider additional factors than just
functions. The semantic meaning and sensitivity of input data may affect the policy, or servers may need
to possess specific resources or characteristics, or be geographically nearby to minimise latency. E.g. a
government contractor may, due to the nature of its work, require servers to be within the same country.

One solution could be for the KDC to issue signed attributes to each server who attaches the required
signatures to computation results for verification. In this case, a verifier must decide if the received
attributes are sufficient. We consider the delegator that runs ProbGen to “own” the computation and, as
such, it should specify the authorisation policy that a server must meet. As this is a publicly verifiable
setting, any entity can verify and we believe (i) verifiers should not accept a result that the delegator
itself would not accept, and (ii) it may be unreasonable to expect verifiers to have sufficient knowledge to
determine the authorisation policy. Of course, the delegator could attach a signed authorisation policy to
the verification key, but verifiers are not obliged to adhere to this policy and doing so creates additional
work for the verifier – one of the key efficiency requirements for PVC is that verification is very cheap.
Using DP-ABE to instantiate HPVC allows the delegator to specify the authorisation policy during
ProbGen and requires no additional work on the part of the verifier compared to standard RPVC.
Furthermore, an unauthorised server cannot actually perform the computation and hence verification
will always fail.

We use the objective parameters ω and O to compute (as for RPVC) whilst the subjective parameters
ψ and S enforce access control on the server. Servers are assigned both an evaluation key for a function
F and a set of descriptive attributes describing their authorisation rights, s ⊆ US , where US is a universe
of attributes used solely to define authorisation. ProbGen operates on both the input data X and an
authorisation policy P ⊆ 2US \ {∅} which defines the permissible sets of authorisation attributes to per-
form this computation. Servers may produce valid, acceptable outputs only if s ∈ P , i.e. they satisfy the
authorisation policy. E.g. P = (Country = UK) ∨ ((clearance = Secret) ∧ (Country = USA)) is satisfied
by s = {Country = UK, Capacity = 3TB}.

VDC. Verifiable Delegable Computation reverses the role of the data owner – a server owns a static
database and enables delegators to request computations/queries over the data. Hence, the user rela-
tionship is more akin to the traditional client-server model compared to PVC. Delegators learn nothing
more than the result of the computation, and do not need the input data in order to verify. The effi-
ciency requirement for VDC is also very different from PVC: outsourcing a computation is not merely
an attempt to gain efficiency as the delegator never possesses the input data and so cannot execute the
computation himself (even with the necessary resources). Thus, VDC does not have the stringent effi-
ciency requirement present in PVC (that outsourcing and verifying computations be more efficient than
performing the computation itself, for outsourcing to be worthwhile). Our solution behaves reasonably
well, achieving constant time verification; the size of the query depends on the function F , while the
size of the server’s response depends only on the size of the result itself and not on the input size which
may be large, particularly when querying remote databases. Future work in this area should focus on
reducing the cost of outsourcing computations.

In VDC, each entity Si that wants to act as a server owns a dataset Di = {xi,j}mij=1 comprising
mi data points. The KDC issues a single evaluation key EKDi,Si enabling Si to compute on subsets
of Di. Si publishes a list Li comprising a unique label l(xi,j) ∈ Li for each data point xi,j ∈ Di, and
a list of functions Fi ⊆ F that are (i) meaningful on their dataset, and (ii) permissible according to
their own access control policies. Furthermore, not all data points xi,j ∈ Di may be appropriate for
each function e.g. only numeric data should be input to an averaging function. Fi comprises elements
(F,
⋃
xi,j∈Dom(F) l(xi,j)) describing each function and the associated permissible inputs. Labels should

not reveal the data values themselves to preserve the confidentiality of Di.

10

Fig. 4. Example database

User ID Name Age Height

001 Alice 26 165
002 Bob 22 172

Fig. 5. Example list Fi

F Dom(F)

Average Age of record 1, Height of record 1, Age of record 2, Height of record 2
Most common value Name of record 1, Age of record 1, Height of record 1, Name of record 2, Age of

record 2, Height of record 2

Delegators may select servers and data using only these labels e.g. they may ask Si to compute F (X)
for any function F ∈ Fi on a set of data points X ⊆ Dom(F)3 by specifying labels {l(xi,j)}xi,j∈X .
Although it may be tempting to suggest that Si simply caches the results of computing each F ∈ Fi,
the number of input sets X ⊆ Dom(F) could be large, making this an unattractive solution.

As an example, consider a server Si that owns the database in Table 4. The dataset Di represents this
as a set of field values for each record in turn: Di = {001,Alice, 26,165, 002, Bob, 22, 172}. Si publishes
data labels Li = {User ID of record 1, Name of record 1, Age of record 1, Height of record 1, User ID of
record 2, Name of record 2, Age of record 2, Height of record 2}. In Table 5, Fi lists the functions and
domains that Si is willing to compute. To find the average age, a delegator queries “Average” on input
X = {Age of record 1, Age of record 2}.

Possible applications for which this mode may be useful are the following:
– MapReduce [15] (or Hadoop) is a programming model for the parallel processing of large com-

putations using a cluster or grid of computers (nodes) which can take advantage of the locality of data
to decrease transmission costs. Each worker node computes a subproblem on a portion of the data and
report to a manager who combines the results. VDC enables verifiable MapReduce such that only valid
results are combined. The manager acts as the KDC to distribute evaluation keys for partitions of the
data to workers, and then requests multiple sub-problems to be solved over this partitioning.

– Verifiable queries on remote databases. Servers may also act as remote database providers and
register with a KDC to provide a verifiable querying service. Any delegator may use public information
to query any function allowed by the server (within the family allowed by the VDC scheme) on these
databases. Data is remotely stored and delegators see nothing more than the results of queries which they
are assured are correct. Alternatively, in this setting, the data owner could act as the KDC to outsource
its data to an untrusted server. Due to the public delegation and verification properties, other data users
can query the outsourced data and verify the correctness of the results. The data owner need not retain
any knowledge of the data after it has been outsourced.

– Three-party computation. Backes et al. [7] consider computations over outsourced data based
on privacy-preserving proofs over authenticated data outsourced by a trusted client. In this setting,
a trusted source produces and authenticates some data which is given to a server. Other parties can
then request computations on this data and efficiently verify the results, but learn nothing more than
the computation results and their validity. The solution of Backes et al. [7] makes use of homomorphic
MACs and succinct non-interactive arguments (SNARGs) [20]. Similar results are found in [25, 11].
In the context of VDC, the CP-ABE decryption mechanism achieves the same goal as SNARGs. The
source can be thought of as the KDC, the service provider as the computational server and the third
parties as delegators.
Backes et al. [7] considered several applications of this model. For example, trusted sensors could be
placed in client premises (e.g. a smart energy meter or a sensor placed in a car to monitor driving
habits). These sensors collect data which is authenticated (due to the trusted nature of the collection
devices) and given to the client who acts as the service provider. Because this data could be sensitive
(e.g. revealing the habits and lifestyle of the client), the service provider may be reluctant to release the
data to third parties. Nevertheless, there exist legitimate business cases that require access to compute
on the data (e.g. for billing purposes or to produce an insurance quote). Therefore, these third parties

3 In contrast to prior modes where X was a single data point, F now takes |X| inputs.

11

may request appropriate computations on the data from the service provider, and can verify that the
computation is performed correctly on the correct data.

The efficiency requirement in this setting [7] is simply that verification is more efficient than computation,
which our construction in Section 4.3 certainly meets, having constant time verification.

4.2 Revocable Dual-policy Attribute-based Encryption

Before instantiating HPVC, we first introduce a new cryptographic primitive which forms the basic
building-block of our construction. If revocation is not required then a standard DP-ABE scheme can be
used.

In the following we provide a formal definition of a revocable key dual-policy attribute-based encryption
scheme. Note that we refer to the access structure associated to a decryption key as an objective access
structure, denoted as O, and the attribute set associated with a ciphertext is referred to as an objective
attribute set, denoted as ω. Both the objective access structure and attribute set are associated with
the KP-ABE functionality. Similarly, we refer to the access structure associated with a ciphertext as a
subjective access structure, denoted as S, whereas we refer to the attribute set associated to a decryption
key as a subjective attribute set, denoted as ψ. Thus, both the subjective access structure and attribute
set are associated with the CP-ABE functionality.

An indirectly revocable key DP-ABE scheme defines the universe of attributes to be U = Uattr ∪Ul ∪
UID ∪ Utime ∪ TO ∪ TS. In more detail, Uattr is the “normal” attribute universe for describing ciphertexts
and forming access policies, Ul contains a set of attributes (disjoint from Uattr) that uniquely label each
function and each data item, Utime comprises attributes for time periods, and UID contains attributes
encoding entity identities. TO and TS are additional (“dummy”) attributes that efficiently enable the DP-
ABE scheme to either function as a KP-ABE scheme or CP-ABE scheme. In Section 4.3, we discuss in
more detail how those dummy attributes influence the execution of the different modes of computations
within our unified HPVC construction.

More formally, an indirectly revocable key DP-ABE scheme is presented in the following definition.

Definition 5. A revocable key dual-policy attribute-based encryption (rkDP-ABE) scheme consists of
the following algorithms:

– (pp,mk)
$← Setup(1λ,U) : this randomised algorithm takes as input the security parameter and the

universe of attributes U and outputs public parameters pp and master secret key mk;

– ct(ω,S),t
$← Encrypt(m, (ω,S), t, pp) : this randomised encryption algorithm inputs a message m, an

objective attribute set ω, a subjective policy S, the current time period t ∈ Utime and the public
parameters pp. It outputs a ciphertext ct(ω,S),t that is valid for time t;

– skid,(O,ψ)
$← KeyGen(id, (O, ψ),mk, pp) : this randomised key generation algorithm takes as input an

identity id ∈ UID, an objective access structure O, a subjective attribute set ψ, as well as the master
secret key mk and public parameters pp. It outputs a secret decryption key skid,(O,ψ);

– ukR,t
$← KeyUpdate(R, t,mk, pp) : this randomised algorithm takes a revocation list R ⊆ UID con-

taining the identities of revoked entities, the current time period t, as well as the master secret key
mk and public parameters pp. It outputs updated key material ukR,t which makes the decryption keys
skid,(O,ψ), for all non-revoked identities id /∈ R, functional to decrypt ciphertexts encrypted for the
time period t;

– pt ← Decrypt(ct(ω,S),t, (ω,S), skid,(O,ψ), (O, ψ), ukR,t, pp) : this decryption algorithm takes as input a
ciphertext ct(ω,S),t formed for the time period t and the associated pair (ω,S), a secret decryption key
skid,(O,ψ) for an entity id and the associated pair (O, ψ), an update key ukR,t for the current time
period t and the public parameters pp. The algorithm outputs a plaintext pt which corresponds to
the correct message m, if and only if the objective attributes ω satisfy the objective access structure
O and the subjective attributes ψ satisfy the subjective access structure S and the value of t in the
update key matches the one specified during encryption. If not, pt outputs ⊥.

Correctness of a revocable key DP-ABE scheme is defined as follows.

12

Definition 6. A revocable key DP-ABE scheme is correct if for all m ∈ M, all id ∈ UID, all R ⊆ UID,
all access structures O,S ⊆ 2Uattr \ {∅}, all attribute sets ω, ψ ⊆ Uattr and all t ∈ Utime, if ω ∈ O and
ψ ∈ S and id /∈ R, it holds that

Pr[(pp,mk)
$← Setup(1λ,U),

ct(ω,S),t
$← Encrypt(m, (ω,S), t, pp),

skid,(O,ψ)
$← KeyGen(id, (O, ψ),mk, pp),

ukR,t
$← KeyUpdate(R, t,mk, pp),

m← Decrypt(ct(ω,S),t, (ω,S), skid,(O,ψ), (O, ψ), ukR,t, pp)]

= 1− negl(λ).

Definition 5 suffices to comprehend the remainder of this paper as we shall use an rkDPABE scheme
in a black-box manner. For completeness, we give correctness and security definitions, a construction
and a security proof in the Appendix B.

4.3 Construction

In this section we provide a construction of an HPVC scheme for a family F of monotone Boolean func-
tions closed under complement using a revocable key dual-policy ABE scheme RKDPABE in a black box
manner comprising the algorithms DPABE.Setup, DPABE.Encrypt, DPABE.KeyGen, DPABE.KeyUpdate
and DPABE.Decrypt. We also use a signature scheme with algorithms Sig.KeyGen, Sig.Sign and Sig.Verify,
and a one-way function g. Let U = Uattr∪Ul∪UID∪Utime∪TO∪TS be the universe of attributes acceptable
by the revocable key dual-policy ABE scheme, formed as the union of the following sub-universes, where
Uattr consists of the attributes that form characteristic tuples for input data, Ul be a set of attributes
(disjoint from Uattr) that uniquely label each function and each data item, UID comprises attributes
representing entity identifiers, Utime comprises attributes representing time periods issued by the time
source T and finally TO and TS represent the objective dummy attribute and subjective dummy attribute
respectively.

We encode Boolean functions in terms of access structures over Uattr. Computations with n-bit outputs
can be built from n Boolean functions returning each bit in turn. We can handle negations by either
building rkDPABE from non-monotonic ABE [21] or by adding negated attributes to the universe [26].
We choose to use the latter approach and add negated attributes to Uattr. Thus, for the ith bit of a
binary input string X = x1 . . . xn, we define attributes A0

X,i and A1
X,i ∈ Uattr and X is encoded as

AX = {AjX,i ∈ Uattr : xi = j}.
In more detail, the dummy attributes TO and TS play generally a crucial role in a DP-ABE scheme as

they efficiently enable a DP-ABE scheme to function as either KP-ABE or CP-ABE [6]. For KP-ABE,
the subjective policy corresponds to S = {{TS}} and is satisfied by the subjective attribute ψ containing
the special attribute TS. Thus, S is trivially satisfied and decryption (in KP-ABE) only depends on
the objective policy and attributes. Similarly, the same holds for CP-ABE where the objective policy
corresponds to O = {{TO}} that is trivially satisfied by the objective attribute ω containing the special
attribute TO. As noted in [23, 2], we require to establish two distinct ABE schemes to overcome a possible
one-sided error in the verification stage. Thus, we initialise two distinct rkDP-ABE systems over U and
hence we define a total of four additional dummy attributes where T 0

O, T
0
S relate to the first rkDP-ABE

system, and T 1
O, T

1
S relate to the second rkDP-ABE system. As summarised in Table 1, the function

corresponds in the modes RPVC and RPVC-AC to O = F and S = {{T 0
S}}. Thus, the complement

function for those modes can be defined as O = F and S = {{T 1
S}}. Similarly, it follows for the mode

VDC that O = {{T 0
O}} and S = F , and the the complement can be defined as O = {{T 1

O}} and S = F .
Each mode operates by encrypting a pair of randomly chosen messages and issuing keys such that the
recovery of one message implies whether the encryption of a message was linked to F or F , and thus
whether F (X) = 1 or 0. Ciphertext indistinguishability ensures that an adversary cannot cheat by
returning the other message. Our HPVC scheme operates in the following way.

1. Setup, presented in Algorithm 1, first forms the attribute universe U and initialises two rkDPABE
schemes over the universe. It further creates an empty two-dimensional array LReg to list registered

13

entities, a (empty) list of revoked entities LRev as well as a time source T (e.g. a networked clock or
counter) to index update keys. The algorithm finally outputs the public parameters pp and master
secret key mk comprising of public and secret rkDPABE parameters respectively. Furthermore, the
public parameters also contain LReg and the dummy attributes enabling a client to flexibly switch
between the modes of computations by disabling certain parts of the rkDPABE scheme while the
master secret key additionally contains the list of revoked entities LRev. Note that the public pa-
rameters may be implicitly updated throughout the execution of all algorithms of an HPVC scheme
accommodating any changes in the system population.

Algorithm 1 (pp,mk)
$← Setup(1λ,F)

1 : U ← Uattr ∪ Ul ∪ UID ∪ Utime ∪ TO ∪ TS

2 : (mpk0ABE,msk
0
ABE, T

0
O, T

0
S)←$ DPABE.Setup(1λ,U)

3 : (mpk1ABE,msk
1
ABE, T

1
O, T

1
S)←$ DPABE.Setup(1λ,U)

4 : for Si ∈ UID do

5 : LReg[Si][0]← ε

6 : LReg[Si][1]← {ε}
7 : endfor

8 : LRev ← ε

9 : Initialise T

10 : pp← (mpk0ABE,mpk
1
ABE, T

0
O, T

0
S , T

1
O, T

1
SLReg,T)

11 : mk ← (msk0ABE,msk
1
ABE, LRev)

2. FnInit, presented in Algorithm 2, sets the public delegation key pkF (for all functions F) to be the
public parameters for the system (since we use public key primitives). This step is not required in
our particular construction, but we retain the algorithm for consistency with prior definitions as well
as for generality as other instantiations may require this step.

Algorithm 2 pkF
$← FnInit(F,mk, pp)

1 : pkF ← pp

3. Register, presented in Algorithm 3, creates a public-private key pair by calling the KeyGen algorithm
of the digital signature scheme. The algorithm provides the server with its own secret signature key
and updates LReg[Si][0] to store the verification key for Si. These prevent servers being impersonated
and wrongly revoked.

Algorithm 3 skSi
$← Register(Si,mk, pp)

1 : (skSig, vkSig)←$ Sig.KeyGen(1λ)

2 : skSi ← skSig

3 : LReg[Si][0]← LReg[Si][0] ∪ vkSig

4. Certify, presented in Algorithm 4, aims to generate an evaluation key ek(O,ψ),Si for a server Si. The
algorithm first adds an element (F,

⋃
l∈Li l) to the list LReg[Si][1] for each F ∈ Fi. This publicises the

computations that Si can perform (either functions in RPVC and RPVC-AC modes, or functions and
data labels in VDC). The algorithm removes Si from the revocation list, gets the current time period
from T and generates a decryption key for (O, Aψ ∪

⋃
l∈Li l) in the first DP-ABE system and Aψ is

the attribute set encoding ψ. The additional attributes for the labels l ∈ Ul ensure that a key cannot
be used to evaluate computations that do not correspond to these labels. In RPVC and RPVC-AC,
this means that a key for a function G cannot evaluate a computation request for F (X). In VDC, it

14

means that an evaluation key must be issued for a dataset Di that includes (at least) the specified
input data X. It is sufficient to include labels only on the subjective attribute set without also adding
them to the objective policy. As these labels are a security measure against a misbehaving server,
we amend the servers key but need not take similar measures against the delegator. Delegators are
then able to specify the required labels in their created subjective policy. Those labels need to be
present in the server’s key for a successful evaluation (decryption). The KDC should check that the
label corresponds to the input to ensure that a server does not advertise data he does not own. It
also generates an update key for the current time period to prove that Si is not currently revoked.
In RPVC and RPVC-AC modes, another pair of keys is generated using the second DP-ABE system
for the complement inputs.

Algorithm 4 ek(O,ψ),Si
$← Certify(mode, Si, (O, ψ), Li,Fi,mk, pp)

1 : for F ∈ Fi do

2 : LReg[Si][1]← LReg[Si][1] ∪ (F,
⋃
l∈Li

l)

3 : endfor

4 : LRev ← LRev \ Si
5 : t← T

6 : sk0ABE ←$ DPABE.KeyGen(Si, (O, Aψ ∪
⋃
l∈Li

l),msk0ABE,mpk
0
ABE)

7 : uk0LRev,t ←$ DPABE.KeyUpdate(LRev, t,msk
0
ABE,mpk

0
ABE)

8 : if (mode = RPVC) or (mode = RPVC-AC) then

9 : sk1ABE ←$ DPABE.KeyGen(Si, (O, Aψ ∪
⋃
l∈Li

l),msk1ABE,mpk
1
ABE)

10 : uk1LRev,t ←$ DPABE.KeyUpdate(LRev, t,msk
1
ABE,mpk

1
ABE)

11 : else

12 : sk1ABE ←⊥

13 : uk1LRev,t ←⊥
14 : endif

15 : ekF,S ← (sk0ABE, sk
1
ABE, uk

0
LRev,t, uk

1
LRev,t)

5. ProbGen, presented in Algorithm 5, aims to create a problem instance σ(ω,S) that the server can use
to evaluate the computation as well as preparing a verification key that enables anyone to verify the
server’s computational result. The algorithm starts with choosing messages m0 and m1 randomly
from the message space. The message m0 is encrypted with (Aω,S∧

∧
l∈LF,X l) in the first rkDPABE

system, whilst m1 is encrypted with the complement policy under either the first rkDPABE system
for VDC or the second one for RPVC and RPVC-AC depending on the chosen mode of computation.
Note that the attributes remain the same as it is the same attribute T 0

O or input data X respectively.
The algorithm also prepares a public verification key vk(ω,S). The key is simply generated by applying
a one-way function g to each randomly chosen message and also includes a copy of LReg from the
public parameters in case the list is modified between the current time period and the time of
verification.

15

Algorithm 5 (σ(ω,S), vk(ω,S))
$← ProbGen(mode, (ω,S), LF,X , pkF , pp)

1 : (m0,m1)←$M×M
2 : t← T

3 : c0 ←$ DPABE.Encrypt(m0, (Aω, S ∧
∧

l∈LF,X

l), t,mpk0ABE)

4 : if (mode = VDC) then

5 : c1 ←$ DPABE.Encrypt(m1, (Aω, S ∧
∧

l∈LF,X

l), t,mpk0ABE)

6 : else

7 : c1 ←$ DPABE.Encrypt(m1, (Aω, S ∧
∧

l∈LF,X

l), t,mpk1ABE)

8 : endif

9 : σ(ω,S) ← (c0, c1)

10 : vk(ω,S) ← (g(m0), g(m1), LReg)

6. Compute, presented in Algorithm 6, is performed by a server Si and aims to return the result of the
evaluation of a function on some input data. The algorithm attempts to decrypt both ciphertexts of
the problem instance σ(ω,S), ensuring that different modes of computation use the correct parameters.
Decryption succeeds only if the function evaluates to 1 on the input data X, i.e. the policy is satisfied.
Since F and F output opposite results on X, exactly one plaintext will correspond to a failure symbol
⊥. The server signs the results using its personal signing key. Finally, the algorithm outputs the
computational result θF (X) comprising the two plaintexts, the server id and the server’s signature
on the output.

Algorithm 6 θF (X)
$← Compute(mode, σ(ω,S), ek(O,ψ),Si , skSi , pp)

1 : Parse σ(ω,S) as (c0, c1) and ek(O,ψ),Si as (sk0ABE, sk
1
ABE, uk

0
LRev,t, uk

1
LRev,t)

2 : d0 ← DPABE.Decrypt
(
c0, sk

0
ABE, uk

0
LRev,t,mpk

0
ABE

)
3 : if (mode = VDC) then

4 : d1 ← DPABE.Decrypt
(
c1, sk

0
ABE, uk

0
LRev,t,mpk

0
ABE

)
5 : else

6 : d1 ← DPABE.Decrypt
(
c1, sk

1
ABE, uk

1
LRev,t,mpk

1
ABE

)
7 : endif

8 : γ ←$ Sig.Sign(d0, d1, Si, skSi)

9 : θF (X) ← (d0, d1, Si, γ)

7. Verify, presented in Algorithm 7, determines whether the returned computational result is valid
or not. The algorithm first checks whether the function F is listed in LReg[S][1] to ensure that
the server that generated the computational result is authorised to compute F . If this check fails,
the result is immediately rejected. Next, the algorithm verifies the signature using the verification
key for Si stored in LReg. If correct, it applies the one-way function g to each plaintext in θF (X)

and compares the results to the components of the verification key. If either comparison results
in a match (i.e. the server successfully recovered a message), the algorithm creates an acceptance
token τθF (X)

= (accept, Si) indicating that the server indeed performed the computation correctly.
Otherwise the result is rejected, and the algorithm creates a rejection token τθF (X)

= (reject, Si)
and Si is reported for revocation. If m0 was returned then F (X) = 1 as m0 was encrypted for the
non-complemented inputs. Otherwise m1 was returned and thus F (X) = 0. Note that this algorithm
can be run by any entity since the computational result and verification key are publicly available.

16

Algorithm 7 (y, τθF (X)
)← Verify(θF (X), vk(ω,S), pp)

1 : Parse θF (x) as (d0, d1, Si, γ) and vk(ω,S) as (g(m0), g(m1), LReg)

2 : if F ∈ LReg[Si][1] then

3 : if accept← Sig.Verify ((d0, d1, Si), γ, LReg[Si][0])

4 : if g(m0) = g(d0) return (y ← 1, τθF (X)
← (accept, Si))

5 : elseif g(m1) = g(d1) return (y ← 0, τθF (X)
← (accept, Si))

6 : else return (y ←⊥, τθF (x)
← (reject, Si))

7 : endif

8 : endif

9 : endif

10 : return (y ←⊥, τθF (x)
← (reject, Si))

8. Revoke, presented in Algorithm 8, aims to revoke misbehaving servers by redistributing fresh update
keys to all non-revoked servers. The algorithm first checks whether a server Si should in fact be
revoked, i.e. whether it received as input a rejection token τθF (X)

= (reject, Si). If so, it deletes the
list LReg[Si][1] of computations that Si may perform such that the server is no longer authorised to
perform any computations within the system. Additionally, it also adds Si to the revocation list LRev,
and refreshes the time source T and samples the new time period. The algorithm then generates new
update keys for all non-revoked entities such that non-revoked keys are still functional in the new
time period and distributes them accordingly. If the algorithm receives as input an acceptance token
indicating that there is no need to revoke any server since computations were performed correctly,
it outputs ⊥.

Algorithm 8 um
$← Revoke(τθF (X)

,mk, pp)

1 : if τθF (X)
= (reject, Si) then

2 : LReg[Si][1]← {ε}
3 : LRev ← LRev ∪ Si
4 : Refresh T
5 : t← T

6 : uk0LRev,t ←$ DPABE.KeyUpdate(LRev, t,msk
0
ABE,mpk

0
ABE)

7 : if (mode = RPVC) or (mode = RPVC-AC) then

8 : uk1LRev,t ←$ ABE.KeyUpdate(LRev, t,msk
1
ABE,mpk

1
ABE)

9 : endif

10 : for S′ ∈ UID do

11 : Parse ekF,S′ as (sk0ABE, sk
1
ABE, uk

0
LRev,t−1, uk

1
LRev,t−1)

12 : ekF,S′ ← (sk0ABE, sk
1
ABE, uk

0
LRev,t, uk

1
LRev,t)

13 : endfor

14 : return um← {ekF,S′}S′∈UID
15 : else

16 : return ⊥

Theorem 1. Given an IND-sHRSS secure rkDPABE scheme for a class of monotone Boolean functions
F closed under complement, an EUF-CMA secure signature scheme and a one-way function g. Let
HPVC be the hybrid publicly verifiable outsourced computation scheme as defined in Algorithms 1–8.
Then HPVC is secure in the sense of selective public verifiability (Figure 1), and selective semi-static
revocation (Figure 2) and selective authorised computation (Figure 3).

17

5 Proofs of Security

In this section we present the full proof of Theorem 1 by providing proofs of security for the notions of
selective public verifiability, selective semi-static revocation and selective authorised computations.

5.1 Selective Public Verifiability

Lemma 1. The HPVC scheme defined by Algorithms 1–8 is secure in the sense of selective public
verifiability (Figure 1) under the same assumptions as in Theorem 1.

Proof. Suppose AHPVC is an adversary with non-negligible advantage against the selective public verifi-
ability game (Figure 1) when instantiated by Algorithms 1–8. We begin by defining the following three
games:

– Game 0. This is the selective public verifiability game as defined in Figure 1.
– Game 1. This is the same as Game 0 with the modification that in ProbGen, we no longer return

an encryption of m0 and m1. Instead, we choose another random message m′ 6= m0,m1 and, if
F (X?) = 1, we replace c1 by the encryption of m′, and otherwise we replace c0. In other words,
we replace the ciphertext associated with the unsatisfied function with the encryption of a separate
random message unrelated to the other system parameters, and in particular to the verification keys.

– Game 2. This is the same as Game 1 with the exception that instead of choosing a random message
m′, we implicitly set m′ to be the challenge input w in the one-way function game.

We show that from the adversary’s point of view Game 2 is indistinguishable from Game 0 except
with negligible probability. This means that an adversary against the selective public verifiability game
can be run against Game 2. We then finally show that if an adversary has a non-negligible advantage
against Game 2 then the adversary can invert a one-way function.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing advantage between
Game 0 and Game 1, both with parameters (HPVC, 1λ,F). Suppose otherwise, that AHPVC can
distinguish the two games with non-negligible advantage δ. We then show that it is possible to construct
an adversaryAABE that usesAHPVC as a subroutine to break the IND-sHRSS security of the (indirectly)
revocable key DP-ABE scheme formalised in Figure 6. Note that we only focus on the modes RPVC and
VDC, and the mode RPVC-AC can be seen as a special case of the mode RPVC as we can assume the
adversary being authorised to evaluate a challenge computation. We consider a challenger C playing the
IND-sHRSS game (Figure 6) with AABE, and AABE in turn acts as a challenger for AHPVC. Given the
above parameters the entities interact in the following way.

1. AHPVC declares its choice of challenge parameters (ω?,O?, ψ?,S?, LF,X? , mode) including a set of
labels LF,X? and the mode of computation mode detailing in which mode the challenge needs to be
generated.

2. AABE must send a challenge attribute set and policy (ω̃, S̃), and a challenge time period t̃ to the
challenger as AABE’s challenge input for the IND-sHRSS game of the rkDP-ABE scheme. Recall
from Table 1 that in case mode = VDC the challenge subjective policy S? corresponds to the function
F and the subjective attribute set ψ corresponds to the challenge input data X? ⊆ Di. Also following
Table 1, in case mode = RPVC the challenge objective policy O? corresponds to the function F and
the objective attribute set ω corresponds to the challenge input data X?. In either mode, the other
challenge input parameters correspond to either dummy attributes or dummy policies, and these
dummy policies are trivially satisfied by the dummy attributes (cf. Section 4.3). As usual, AABE

computes r = F (X?).
– If mode = VDC, we need to set the challenge input pair to the IND-sHRSS game of the rkDP-

ABE scheme such that the pair is not satisfied by the challenge input X? and thus need to set
S̃ to be unsatisfied.
• If r = 1: we set

ω̃ = Aω? = {TO},

and

S̃ = S? ∧
∧

lj∈LF,X?
lj = F ∧ {l(xi,j)}xi,j∈X? .

18

• If r = 0: we set

ω̃ = Aω? = {TO},

and

S̃ = S? ∧
∧

lj∈LF,X?
lj = F ∧ {l(xi,j)}xi,j∈X? .

– If mode = RPVC, then we set

ω̃ = Aω? = AX? ,

and

S̃ = S? ∧
∧

lj∈LF,X?
lj = {{TS}} ∧ {l(F)}.

Finally, AABE also sets its challenge (ω̃, S̃) for the time period t̃ = 1 for the IND-sHRSS game and
sends all challenge parameters to the challenger C.

3. C runs the DPABE.Setup algorithm to generate mpkABE,mskABE and sends
mpkABE to AABE.

4. AABE initialises its target revocation list R which is initially empty and sends it to C, and simulates
running HPVC.Setup such that the outcome is consistent with the previously generated mpkABE. If
mode = VDC, it sets mpk0ABE ← mpkABE as provided by the challenger and implicitly sets msk0ABE ←
mskABE. Note that any use of msk0ABE will be simulated using oracle calls to the challenger. If
mode = RPVC, it sets mpkrABE ← mpkABE as issued by C, and implicitly sets mskrABE ← mskABE

to be the key held by the challenger. In either case, AABE executes DPABE.Setup itself to generate
a second DP-ABE system.

5. AABE runs HPVC.FnInit as detailed in Algorithm 2.
6. AABE must generate a challenge problem instance for AHPVC as the output of HPVC.ProbGen. To

do so, AABE samples three distinct, equal length messages m0, m1 and m′ uniformly at random
from the message space. AABE provides m0 and m1 as its choice of challenge to C, and receives

back the encryption, ct?, of one of these messages (mb? for b?
$← {0, 1}, where b? is chosen by

the challenger), under the challenge attribute set and policy (ω̃, S̃) and challenge time period t̃.

More formally, ct?
$← DPABE.Encrypt(mb? , (ω̃, S̃), t̃,mpkABE). It needs to assign ct? to be one of the

ciphertexts c or c′ that form the challenge problem instance (encoded input) σF,X? using the correct

ABE system parameters. AABE chooses a random bit s
$← {0, 1} which intuitively corresponds to its

guess for the challenger’s choice of b?.

– If mode = VDC, we need to distinguish the following cases.
• If r = 1, AABE generates

c
$← DPABE.Encrypt(m′, ω̃,S? ∧

∧
lj∈LF,X?

lj , t̃,mpk
0
ABE)

and sets c′ = ct?. It also sets vk = g(m′) and vk′ = g(ms).
• If r = 0, AABE sets c = ct? and generates

c′
$← DPABE.Encrypt(m′, ω̃,S? ∧

∧
lj∈LF,X?

lj , t̃,mpk
0
ABE).

It also sets vk = g(ms) and vk′ = g(m′).
– If mode = RPVC, AABE sets c = ct? and generates

c′
$← DPABE.Encrypt(m′, ω̃,S? ∧

∧
l∈LF,X?

l, t̃,mpk1ABE).

It also sets vk = g(m′) and vk′ = g(ms).

19

Finally, AABE sets σF,X? = (c, c′) and vkF,X? = (vk, vk′, LReg).
7. AHPVC receives all outputs from the above HPVC.ProbGen algorithm, and then is provided with

oracle access to which AABE responds in the following way:

– HPVC.FnInit(·,mk, pp) and HPVC.Register(·,mk, pp) are executed as specified in Algorithms 2
and 3.

– HPVC.Certify(mode, Si, (O, ψ), Li,Fi,mk, pp) : in order to generate an evaluation key for the
queried parameters, AABE needs to request queries to the KeyGen oracle in the rkDP-ABE
game formalised in Figure 6. AABE updates first the usual list entries and then sets O′ = O and
ψ′ = Aψ∪

⋃
lj∈Li lj and requests an oracle query to the challenger for OKeyGen(Si, (O′, ψ′),mk, pp)

as specified in Figure 6. The challenger shall generate a rkDP-ABE decryption key if and only
if ω̃ /∈ O′ or ψ′ /∈ S̃ or Si ∈ R. Note that Si /∈ R is fulfilled since we chose R to be empty.
By construction, the condition ψ′ ∈ S̃ is satisfied only if the labels {lj}lj∈Li ⊇ {lk}lk∈LF,X? . As

specified above, if the labels do not satisfy this relation then ψ′ /∈ S̃ and the challenger may
generate the key, which AABE will receive as sk0ABE.
If, on the other hand, the labels do satisfy this relation then we have the following cases depending
on the chosen mode.

• If mode = VDC, then from the above relation {lk}lk∈LF,X? ⊆ {lj}lj∈Li it follows that
{l(xi,k)}xi,k∈X? ⊆ {l(xi,j)}xi,j∈Di and thus it follows that X? ⊆ Di. Thus, this means that
by the uniqueness of the labels within the system, AHPVC has requested an evaluation key
for a superset of the challenge input set X?, i.e. the set Di that contains the challenge input
set X? and possibly some more additional data points. If X? ⊆ Di, then the data set Di

must satisfy either F or F in order to satisfy S̃. However, S̃ was chosen in such a way that it
is not satisfied by X? and thus also not by Di. Hence, the challenger may generate a valid
key which AABE stores as sk0ABE.
• If mode = RPVC, then (as specified in Table 1) both sets Li and LF,X? are singleton sets.

Thus, from {lj}lj∈Li ⊇ {lk}lk∈LF,X? it follows that Li = LF,X? = {l(F)}. By the uniqueness
of the labels within the system, it then follows that O = O? which means that AHPVC has
requested an evaluation key for the challenge function F . However, in step 4, the challenger
got assigned the ABE system with master secret key mskrABE such that O? is not satisfied
by the challenge input ω̃. Therefore, also O′ is not satisfied either by the challenge input ω̃
and hence the challenger may generate a valid key which AABE stores as skrABE.

AABE needs further to make queries to a KeyUpdate oracle OKeyUpdate to the challenger in order
to obtain an update key. The challenger returns a valid key if and only if t 6= t̃ or R ⊆ QRev.
Observe that the second condition is satisfied since R = ε and hence is a subset of QRev. Hence
a challenger may generate a valid update key.
Also if mode = RPVC, then AABE additionally generates a secret key sk1−rABE by itself using the
parameters of the second DP-ABE system which it owns for the pair (O, ψ).

– HPVC.Revoke(τθF (X)
,mk, pp) : whenever a Revoke query is requested, AABE executes Algorithm 8

as specified except it requires to make a KeyUpdate oracle query to the challenger for the update
key that relates to the ABE system owned by C. If mode = RPVC, this is the key ukrLRev,t

, and if

mode = VDC, this is the key uk0LRev,t
. The challenger may create a valid update key if and only

if t 6= qt or R ⊆ QRev. Since R was defined to be an empty list and hence is a subset of QRev the
challenger may always return a valid update key.

Eventually AHPVC finishes its query phase and outputs a guess θ? which it believes to be a valid
forgery.

8. AABE parses the guess θ? as (d, d′, Si, γ). One of the values d and d′ will be ⊥ (by construction) and
we denote the other value (non-⊥) by Y . Observe that, since AHPVC is assumed to be a successful
adversary against selective public verifiability, the non-⊥ value, Y , that it will return will be the
plaintext ms since the challenge access structure was always set to be unsatisfied on the challenge
input. Thus, if g(Y) = g(ms), AABE outputs a guess b′ = s and otherwise guesses b′ = (1− s).

Notice that if s = b? (the challenge bit chosen by C in the IND-sHRSS game in Figure 1), then the
distribution of the above coincides with Game 0 since the verification key comprises g(m′) and g(ms)
where m′ and ms are the two plaintexts corresponding to the ciphertexts of the encoded input for which
AHPVC recovers exactly one. Otherwise, if s = 1− b? then the distribution coincides with Game 1 since

20

the verification key comprises the one-way function g applied to a legitimate message m′ and a random
message m1−b? that is unrelated to both ciphertexts.

Now, we consider the advantage of this constructed AABE playing the IND-sHRSS game for the
revocable key DP-ABE scheme. Recall that by assumption, AHPVC has a non-negligible advantage δ in
distinguishing between Game 0 and Game 1, that is∣∣∣Pr

[
ExpGame 0

AHPVC

[
HPVC, 1λ,F

]
→ 1

]
− Pr

[
ExpGame 1

AHPVC

[
HPVC, 1λ,F

]
→ 1

]∣∣∣ > δ

where ExpGame i
AHPVC

[
HPVC, 1λ,F

]
denotes the output of running AHPVC in Game i.

Now we derive the probability of AABE guessing b? correctly. It follows:

Pr[b′ = b?] = Pr[s = b?] Pr[b′ = b?|s = b?] + Pr[s 6= b?] Pr[b′ = b?|s 6= b?]

=
1

2
Pr[g(Y) = g(ms)|s = b?] +

1

2
Pr[g(Y) 6= g(ms)|s 6= b?]

=
1

2
Pr
[
ExpGame 0

AHPVC

[
HPVC, 1λ,F

]
→ 1

]
+

1

2
(1− Pr[g(Y) = g(ms)|s 6= b?])

=
1

2
Pr
[
ExpGame 0

AHPVC

[
HPVC, 1λ,F

]
→ 1

]
+

1

2

(
1− Pr

[
ExpGame 1

AHPVC

[
HPVC, 1λ,F

]
→ 1

])
=

1

2

(
Pr
[
ExpGame 0

AHPVC

[
HPVC, 1λ,F

]
→ 1

]
− Pr

[
ExpGame 1

AHPVC

[
HPVC, 1λ,F

]
→ 1

]
+ 1
)

>
1

2
(δ + 1)

Hence,

AdvAABE >

∣∣∣∣Pr[b′ = b?]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2

Since δ is assumed non-negligible, δ
2 is also non-negligible. If AHPVC has advantage δ at distinguishing

these games then AABE can win the IND-sHRSS game with non-negligible probability. Thus since we
assumed the ABE scheme to be IND-sHRSS secure, we conclude that AHPVC cannot distinguish Game
0 from Game 1 with non-negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is to simply set the value of m′ to no
longer be random but instead to correspond to the challenge w in the one-way function inversion game.
We argue that the adversary has no distinguishing advantage between these games since the new value
is independent of anything else in the system except the verification key g(w) and hence looks random
to an adversary with no additional information (in particular, AHPVC does not see the challenge for the
one-way function as this is played between C and AABE).

Final Proof. We now show that using AHPVC in Game 2, AABE can invert the one-way function g – that
is, given a challenge z = g(w) AABE can recover w. Specifically, during HPVC.ProbGen, AABE chooses
the messages as follows:

21

– if F (X?) = 1, we implicitly set m1 to be w and the corresponding verification key component to
be z = g(w). We randomly choose m0 from the message space and compute the remainder of the
verification key as usual.

– if F (X?) = 0, we implicitly set m0 to be w and set the verification key component to z = g(w). m1

is chosen randomly from the message space and the remainder of the verification key computed as
usual.

Now, since AHPVC is assumed to be successful, it will output a forgery comprising the plaintext that was
encrypted under the unsatisfied function (F or F) that evaluates to 0. By construction, this will be w
(and the adversary’s view is consistent since the verification key is simulated correctly using z). AABE

can therefore forward this result to C in order to invert the one-way function with the same non-negligible
probability that AHPVC has against the selective public verifiability game.

We conclude that if the rkDP-ABE scheme is IND-sHRSS secure and the one-way function is hard-to-
invert, then the HPVC as defined by Algorithms 1–8 is secure in the sense of selective public verifiability.

5.2 Selective, Semi-static Revocation

Lemma 2. The HPVC scheme defined by Algorithms 1–8 is secure in the sense of selective, semi-static
revocation (Figure 2) under the same assumptions as in Theorem 1.

Proof. In this proof, we aim to perform a reduction from the the selective, semi-static revocation game
(Figure 2) to the IND-sHRSS security of the underlying revocable key DP-ABE scheme (Figure 6).
We wish the prove this reduction by achieving a contradiction and therefore we assume that AHPVC

is an adversary with non-negligible probability against the selective, semi-static revocation game when
instantiated by Algorithms 1–8, and making qt Revoke queries. We show that we can construct an
adversary AABE that uses AHPVC as a sub-routine to break the IND-sHRSS security of the indirectly
revocable key DP-ABE scheme. Note that as in the previous proof, we only focus on the modes RPVC
and VDC, and the mode RPVC-AC can be seen as a special case of the mode RPVC as we can assume
the adversary being authorised to evaluate a challenge computation. Let C be a challenger playing the
IND-sHRSS game with AABE, and AABE acts as a challenger for AHPVC.

1. ARPVC declares its choice of challenge input parameters
(ω?,O?, ψ?,S?, LF,X? , mode) for a challenge computation F (X?) including a set of labels LF,X? and
the mode of computation mode detailing in which mode the challenge needs to be generated.

2. AABE initialises an (empty) list QRev of currently revoked entities and sets the current time period
t = 1. Next, AABE needs to form its own challenge input for the IND-sHRSS game. AABE sets its
challenge for the time period t̃ = qt, and it forms ω̃ = Aω? and S̃ = S? ∧

∧
lj∈LF,X? lj . Finally, it

sends (t̃, (ω̃, S̃)) to the challenger.
3. C runs the DPABE.Setup algorithm to generate mpkABE,mskABE and sends
mpkABE to AABE.

4. AABE simulates running HPVC.Setup such that the outcome is consistent with the previously gener-
ated mpkABE from C. It executes the algorithm as detailed with the exception of line 2, since msk0ABE

and mpk0ABE were already generated by the challenger.
5. AABE runs HPVC.FnInit as detailed in Algorithm 2.
6. AHPVC chooses a challenge revocation list R, which AABE forwards to C.
7. AHPVC is provided with oracle access to which AABE responds in the following way:

– HPVC.FnInit(·,mk, pp) and HPVC.Register(·,mk, pp) are executed as specified in Algorithms 2
and 3.

– Queries of the form HPVC.Certify(mode, Si, (O, ψ), Li,Fi,mk, pp) are handled by AABE by run-
ning the Certify oracle as specified in Figure 2. AABE executes Algorithm 4 as detailed except
lines 6 and 7, as these rely on the master secret key msk0ABE held by the challenger. In order to
simulate line 6, AABE requires to make a KeyGen oracle query of the form OKeyGen(Si, (O, Aψ ∪⋃
lk∈Li lk),msk0ABE,mpk

0
ABE). The challenger responds by running the KeyGen oracle as detailed

in Figure 6 which returns a valid key if and only if ω̃ /∈ O or Aψ ∪
⋃
lk∈Li lk /∈ S̃ or Si ∈ R.

Now if (Aψ ∪
⋃
lk∈Li lk /∈ S̃) is fulfilled then the challenger can return a valid decryption key. By

22

construction, we observe that the condition ψ ∈ S̃ is satisfied only if {lk}lk∈Li ⊇ {lj}lj∈LF,X? .
By the uniqueness of the label within the system this implies LF,X? ⊆ Li. However, in this case,
the first condition in the “if” statement in the Certify oracle in Figure 2 is satisfied and thus
AABE would have returned ⊥ without querying KeyGen if Si /∈ R to avoid certifying AHPVC for
the challenge computation. If (Aψ ∪

⋃
lk∈Li lk ∈ S̃) is satisfied at the point of making a KeyGen

query, then Si ∈ R, and thus the challenger can respond to all queries made to it during this
phase with a valid key.

In order to simulate line 7, AABE makes a query to the challenger of the form
OKeyUpdate(QRev, t,msk

0
ABE,mpk

0
ABE). Here the challenger responds as detailed in Figure 6 which

returns a valid update key if and only if t 6= t̃ or R ⊆ QRev. Recall that AABE chose t̃ = qt, and
at the point of calling the KeyUpdate oracle, the list of currently revoked entities corresponds to
QRev ← QRev \ Si. Therefore, if the challenger returns ⊥ in response to this query, then AABE

would already have returned ⊥ as a response to the Certify oracle (Figure 2) as a result of the
second condition in the “if” statement. Hence, for all queries made to the challenger, a valid
update key is returned.

– Queries of the form HPVC.Revoke(τθF (X?)
,mk, pp) are handled by AABE by running the Revoke

oracle as specified in Figure 2. In order to simulate running the algorithm, AABE executes Al-
gorithm 8 with the exception of line 6. Here AABE is required to make KeyUpdate oracle calls
to the challenger of the form OKeyUpdate(QRev, t,msk

0
ABE,mpk

0
ABE). Note that the Revoke oracle

in Figure 2 returns ⊥ if t = qt and R 6⊆ QRev \ Si. This corresponds directly to the conditions
that C cannot form a valid update key through a KeyUpdate oracle call (Figure 6) since t = t̃
and R 6⊆ QRev. However, since Si was already removed from the list of currently revoked entities
QRev, C can form a valid update key and AABE can simulate the remainder of the algorithm.

8. Eventually (after qt Revoke queries), AHPVC finishes the query phase. AABE checks if AHPVC has
made suitable Revoke queries. If there exists an entity in R that is not currently revoked (listed in
QRev), it returns 0 and aborts immediately.

9. AABE must now generate a challenge for AHPVC. AABE chooses three distinct, equal length messages
m0,m1 and m′ uniformly at random from the message space. It then sends m0 and m1 to C as

its choice of challenge for the IND-sHRSS game. C chooses a random bit b?
$← {0, 1} and returns

ct?
$← ABE.Encrypt(mb? , ω̃,S? ∧

∧
lj∈LF,X? lj , t̃,mpk

0
ABE). AABE sets c = ct? and generates depend-

ing on the chosen mode the second ciphertext. If mode = VDC, then c′
$← ABE.Encrypt(m′, ω̃,S? ∧∧

lj∈LF,X? lj , t̃,mpk
0
ABE). In case mode = RPVC, then c′

$← ABE.Encrypt(m′, ω̃,S?∧
∧
lj∈LF,X? lj , t̃,mpk

1
ABE).

Finally, AABE forms the challenge problem instance σ? = (c, c′). AABE selects a bit s
$← {0, 1} and

forms the verification key as vk? = (g(ms), g(m′), LReg). Note that s intuitively corresponds to
AABE’s guess for b?.

10. AHPVC receives the resulting parameters from ProbGen and is again provided with oracle access.
These queries are handled in the same way as previously, and eventually AHPVC outputs its guess
θ?.

11. Let Y be the non-⊥ plaintext returned in θ?. If g(Y) = g(ms), AABE guesses b′ = s. Else, AABE

guesses b′ = 1− s.

If g(Y) = g(m′), AABE makes a random guess b′ = b̃
$← {0, 1} since AHPVC did not forge a result for

either m0 or m1 and therefore is of no use for AABE in order to break the IND-sHRSS game.

23

Now we consider the advantage of AABE playing the IND-sHRSS game. By assumption, AHPVC has
a non-negligible advantage δ against the selective, semi-static revocation game. It follows

Pr[b′ = b?] = Pr[b′ = b?|s = b?] Pr[s = b?] + Pr[b′ = b?|1− s = b?] Pr[1− s = b?]

+ Pr[b′ = b?|b̃ = b?] Pr[b̃ = b?]

= Pr[g(Y) = g(ms)|s = b?] Pr[s = b?]

+ Pr[g(Y) 6= g(ms)|1− s = b?] Pr[1− s = b?]

+ Pr[g(Y) = g(m′)|b̃ = b?] Pr[b̃ = b?]

=
1

2
Pr[g(Y) = g(ms)|s = b?] +

1

2
Pr[g(Y) 6= g(ms)|1− s = b?]

+
1

2
Pr[g(Y) = g(m′)|b̃ = b?]

=
1

2

(
Pr[g(Y) = g(ms)|s = b?] + (1− Pr[g(Y) = g(ms)|1− s = b?])

+ Pr[g(Y) = g(m′)|b̃ = b?]
)

=
1

2

(
Pr[g(Y) = g(ms)|s = b?]− Pr[g(Y) = g(ms)|1− s = b?]

+ Pr[g(Y) = g(m′)|b̃ = b?] + 1
)

=
1

2
(δ + 1).

Hence,

AdvAABE >

∣∣∣∣Pr[b′ = b?]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2
.

Since δ is non-negligible, δ2 is also non-negligible. If AHPVC has advantage δ at breaking the selective,
semi-static revocation game then AABE can win the IND-sHRSS game with non-negligible probability.
However, since the indirectly revocable key DP-ABE scheme was assumed to be IND-sHRSS secure,
such an adversary AHPVC cannot exist. Therefore, we conclude that if the revocable key DP-ABE scheme
is IND-sHRSS secure then HPVC as instantiated by Algorithms 1–8 is secure in the sense of selective,
semi-static revocation.

5.3 Selective Authorised Computation

Lemma 3. The HPVC scheme defined by Algorithms 1–8 is secure in the sense of selective authorised
computation (Figure 3) under the same assumptions as in Theorem 1.

Proof. In this proof, we aim to perform a reduction from the selective authorised computation game
(Figure 3) to the IND-sHRSS security of the underlying revocable key DP-ABE scheme (Figure 6).
We wish to prove this reduction by achieving a contradiction and therefore we assume that AHPVC is
an adversary with non-negligible probability against the selective authorised computation game when
instantiated by Algorithms 1–8. We show that we can construct an adversary AABE that uses AHPVC as
a subroutine to break the IND-sHRSS security of the indirectly revocable key DP-ABE scheme. Note
that the notion of selective authorised computation is only meaningful as long as the system is run in
the RPVC-AC mode. Let C be a challenger playing the IND-sHRSS game with AABE, and AABE acts
as a challenger for AHPVC.

1. AHPVC begins by declaring its choice of challenge input parameters for the RPVC-AC mode consisting
of F , X?, the authorisation policy P and the function label {l(F)}.

24

2. AABE needs to form its own challenge input for the IND-sHRSS game. Thus, AABE sets its challenge
for the time period t̃ = 1, and it forms ω̃ = AX? and S̃ = P ∧ {l(F)}. Finally, it sends (t̃, (ω̃, S̃)) to
the challenger.

3. C runs the DPABE.Setup algorithm to generate mpkABE,mskABE and sends
mpkABE to AABE.

4. AABE simulates running HPVC.Setup such that the outcome is consistent with the previously gen-
erated mpkABE from C. It executes the algorithm as detailed with the exception of line 2, since
msk0ABE and mpk0ABE were already generated by the challenger. AABE chooses an empty list of
currently revoked entities R and sends it to the challenger.

5. AABE runs HPVC.FnInit as detailed in Algorithm 2.

6. AABE must now generate a challenge for AHPVC. AABE chooses three distinct, equal length messages
m0,m1 and m′ uniformly at random from the message space. It then sends m0 and m1 to C as

its choice of challenge for the IND-sHRSS game. C chooses a random bit b?
$← {0, 1} and returns

ct?
$← ABE.Encrypt(mb? , ω̃, P ∧{l(F)}, t̃,mpk0ABE). AABE sets c = ct? and generates itself the second

ciphertext by encrypting m′ as c′
$← ABE.Encrypt(m′, ω̃, P ∧{l(F)}, t̃,mpk1ABE). Finally, AABE forms

the challenge problem instance σ? = (c, c′). AABE selects a bit s
$← {0, 1} and forms the verification

key as vk? = (g(ms), g(m′), LReg). Note that s intuitively corresponds to AABE’s guess for b?.

7. AHPVC receives the resulting parameters from ProbGen and is provided with oracle access to which
AABE responds in the following way:

– HPVC.FnInit(·,mk, pp) and HPVC.Register(·,mk, pp) are executed as specified in Algorithms 2
and 3.

– Queries of the form HPVC.Certify(RPVC-AC, Si, (F,ψ), {l(F)},Fi,mk, pp) are handled by AABE

by running the Certify oracle as specified in Figure 3. In case the queried set of subjective at-
tributes ψ satisfy the challenge authorisation policy then AABE returns ⊥. Otherwise, AABE

executes Algorithm 4 as detailed with the exception in lines 6 and 7, as these rely on the master
secret key msk0ABE held by the challenger. In order to simulate line 6, AABE requires to make
a KeyGen oracle query of the form OKeyGen(Si, (F,Aψ ∪

⋃
lk∈Li lk),msk0ABE,mpk

0
ABE). The chal-

lenger responds by running the KeyGen oracle as detailed in Figure 6 which returns a valid key if
and only if ω̃ /∈ O or Aψ ∪

⋃
lk∈Li lk /∈ S̃ or Si ∈ R. However, for the query to have been made to

KeyGen, AABE must not have returned ⊥ in the Certify oracle request in Figure 3 and therefore
ψ /∈ P , and hence ψ /∈ S̃. Therefore, the challenger can always return a valid decryption key
sk0ABE.

In order to simulate line 7 in the Certify algorithm, AABE makes a query to the challenger of the
form OKeyUpdate(QRev, t,msk

0
ABE,mpk

0
ABE). Here the challenger responds as detailed in Figure 6

which returns a valid update key if and only if t 6= t̃ or R ⊆ QRev. Since R was initially chosen to
be empty and thus R ⊆ QRev for any QRev. Therefore, the challenger can create a valid update
key.

– Queries of the form HPVC.Revoke(τθF (X?)
,mk, pp) are handled by AABE executing Algorithm 8

with the exception of line 6. Here AABE is required to make KeyUpdate oracle calls to the chal-
lenger of the form OKeyUpdate(QRev, t,msk

0
ABE,mpk

0
ABE). The challenger returns a valid update

key through a KeyUpdate oracle call (Figure 6) if and only if t 6= t̃ or R ⊆ QRev. Since R was
initially chosen to be empty and thus R ⊆ R for any R and in particular LRev. Therefore, the
challenger can always create a valid update key.

8. Eventually AHPVC finishes its oracle query phase and outputs its guess θ? which corresponds to the
result of F (X?) protected by an authorisation policy P . Note that AHPVC never received a key for
a set of authorisation attributes s ∈ P .

9. As θ? should appear valid, by construction it should contain a non-⊥ plaintext which we denote by
Y . If g(Y) = g(ms), AABE guesses b′ = s. Else, AABE guesses b′ = 1− s.
If g(Y) = g(m′), AABE makes a random guess b′ = b̃

$← {0, 1} since AHPVC did not forge a result for
either m0 or m1 and therefore is of no use for AABE in order to break the IND-sHRSS game.

25

Now we consider the advantage of AABE playing the IND-sHRSS game. By assumption, AHPVC has
a non-negligible advantage δ against the selective authorised computation game. It follows

Pr[b′ = b?] = Pr[b′ = b?|s = b?] Pr[s = b?] + Pr[b′ = b?|1− s = b?] Pr[1− s = b?]

+ Pr[b′ = b?|b̃ = b?] Pr[b̃ = b?]

= Pr[g(Y) = g(ms)|s = b?] Pr[s = b?]

+ Pr[g(Y) 6= g(ms)|1− s = b?] Pr[1− s = b?]

+ Pr[g(Y) = g(m′)|b̃ = b?] Pr[b̃ = b?]

=
1

2
Pr[g(Y) = g(ms)|s = b?] +

1

2
Pr[g(Y) 6= g(ms)|1− s = b?]

+
1

2
Pr[g(Y) = g(m′)|b̃ = b?]

=
1

2

(
Pr[g(Y) = g(ms)|s = b?] + (1− Pr[g(Y) = g(ms)|1− s = b?])

+ Pr[g(Y) = g(m′)|b̃ = b?]
)

=
1

2

(
Pr[g(Y) = g(ms)|s = b?]− Pr[g(Y) = g(ms)|1− s = b?]

+ Pr[g(Y) = g(m′)|b̃ = b?] + 1
)

=
1

2
(δ + 1).

Hence,

AdvAABE >

∣∣∣∣Pr[b′ = b?]− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2
.

Since δ is non-negligible, δ2 is also non-negligible. If AHPVC has advantage δ at breaking the selective
authorised computation game then AABE can win the IND-sHRSS game with non-negligible probability.
However, since the indirectly revocable key DP-ABE scheme was assumed to be IND-sHRSS secure,
such an adversary AHPVC cannot exist. Therefore, we conclude that if the revocable key DP-ABE scheme
is IND-sHRSS secure then HPVC as instantiated by Algorithms 1–8 is secure in the sense of selective
authorised computations.

6 Conclusion

We have introduced a hybrid model of Publicly Verifiable Outsourced Computation to support flexible
and dynamic interactions between entities. Entities may request computations from other users, restrict
which entities can perform computations on their behalf, perform computations for other users, and
make data available for queries from other users, all in a verifiable manner.

Our instantiation, built from a novel use of DP-ABE, captures prior models of PVC [23, 2], extends
RPVC-AC [1] to the public key setting to allow truly public delegability and verifiability, and introduces
a novel form of ABE-based verifiable computation in the form of VDC. In follow up work, we have
investigated VDC further with regards to searching on remote databases.

ABE was developed to enforce read-only access control policies, and the use of KP-ABE in PVC was
a novel and surprising result [23]. A natural question to ask is whether other forms of ABE can similarly
find use in this context. Our use of all possible modes of ABE provides an affirmative answer to this
question.

DP-ABE has previously attracted relatively little attention in the literature, which we believe to be
primarily due to its applications being less obvious than for the single-policy ABE schemes. Whilst KP-

26

and CP-ABE are generally considered in the context of cryptographic access control, it is unclear that
the policies enforced by DP-ABE are natural choices for access control. Thus an interesting side-effect
of this work is to show that additional applications for DP-ABE do exist.

Acknowledgements

We thank Martin R. Albrecht and Naomi Farley for useful discussions and comments.
The first author gratefully acknowledges partial funding by the European Commission under project
H2020-644024 ”CLARUS”, and support from BAE Systems Advanced Technology Centre.
This research was partially sponsored by US Army Research laboratory and the UK Ministry of Defence
under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the US Army Research Laboratory, the U.S. Government, the UK Ministry of Defense, or
the UK Government. The US and UK Governments are authorised to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation hereon.

References

1. J. Alderman, C. Janson, C. Cid, and J. Crampton. Access control in publicly verifiable outsourced computa-
tion. In Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security,
ASIA CCS ’15, pages 657–662, New York, NY, USA, 2015. ACM.

2. J. Alderman, C. Janson, C. Cid, and J. Crampton. Revocation in publicly verifiable outsourced computation.
In D. Lin, M. Yung, and J. Zhou, editors, Information Security and Cryptology, volume 8957 of Lecture Notes
in Computer Science, pages 51–71. Springer International Publishing, 2015.

3. D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable oblivious storage. In H. Krawczyk, editor,
Public-Key Cryptography - PKC 2014, volume 8383 of Lecture Notes in Computer Science, pages 131–148.
Springer Berlin Heidelberg, 2014.

4. N. Attrapadung and H. Imai. Attribute-based encryption supporting direct/indirect revocation modes. In
M. Parker, editor, Cryptography and Coding, volume 5921 of Lecture Notes in Computer Science, pages
278–300. Springer Berlin Heidelberg, 2009.

5. N. Attrapadung and H. Imai. Dual-policy attribute based encryption. In M. Abdalla, D. Pointcheval, P.-A.
Fouque, and D. Vergnaud, editors, Applied Cryptography and Network Security, volume 5536 of Lecture Notes
in Computer Science, pages 168–185. Springer Berlin Heidelberg, 2009.

6. N. Attrapadung and H. Imai. Dual-policy attribute based encryption: Simultaneous access control with
ciphertext and key policies. IEICE Transactions, 93-A(1):116–125, 2010.

7. M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK: nearly practical and privacy-preserving
proofs on authenticated data. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, pages 271–286. IEEE Computer Society, 2015.

8. M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on outsourced data. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, CCS ’13,
pages 863–874, New York, NY, USA, 2013. ACM.

9. E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions from rams to delegatable succinct
constraint satisfaction problems: Extended abstract. In Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science, ITCS ’13, pages 401–414, New York, NY, USA, 2013. ACM.

10. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets. In
P. Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer Science,
pages 111–131. Springer, 2011.

11. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct non-
interactive arguments of knowledge, and back again. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS ’12, pages 326–349, New York, NY, USA, 2012. ACM.

12. D. Catalano, D. Fiore, R. Gennaro, and K. Vamvourellis. Algebraic (trapdoor) one-way functions and their
applications. In TCC, pages 680–699, 2013.

13. S. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive verifiable computation. In A. Sahai,
editor, Theory of Cryptography, volume 7785 of Lecture Notes in Computer Science, pages 499–518. Springer
Berlin Heidelberg, 2013.

14. K.-M. Chung, Y. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In P. Rogaway, editor, Advances in
Cryptology - CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 151–168. Springer
Berlin Heidelberg, 2011.

27

15. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

16. D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix computations,
with applications. In T. Yu, G. Danezis, and V. D. Gligor, editors, the ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 501–512. ACM, 2012.

17. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to
untrusted workers. In T. Rabin, editor, Advances in Cryptology - CRYPTO 2010, volume 6223 of Lecture
Notes in Computer Science, pages 465–482. Springer Berlin Heidelberg, 2010.

18. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs without
PCPs. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, 32nd An-
nual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 626–645. Springer,
2013.

19. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control
of encrypted data. In Proceedings of the 13th ACM Conference on Computer and Communications Security,
CCS ’06, pages 89–98, New York, NY, USA, 2006. ACM.

20. S. Micali. CS proofs. In Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on,
pages 436–453. IEEE, 1994.

21. R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-monotonic access structures.
In Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS ’07, pages
195–203, New York, NY, USA, 2007. ACM.

22. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In A. Sahai, editor, Theory of
Cryptography, volume 7785 of Lecture Notes in Computer Science, pages 222–242. Springer Berlin Heidelberg,
2013.

23. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: Verifiable computation
from attribute-based encryption. In R. Cramer, editor, Theory of Cryptography, volume 7194 of Lecture Notes
in Computer Science, pages 422–439. Springer Berlin Heidelberg, 2012.

24. J. Shi, J. Lai, Y. Li, R. H. Deng, and J. Weng. Authorized keyword search on encrypted data. In M. Kutylowski
and J. Vaidya, editors, Computer Security - ESORICS 2014 - 19th European Symposium on Research in
Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings, Part I, volume 8712 of Lecture
Notes in Computer Science, pages 419–435. Springer, 2014.

25. J. van den Hooff, M. F. Kaashoek, and N. Zeldovich. Versum: Verifiable computations over large public logs.
In G. Ahn, M. Yung, and N. Li, editors, Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 1304–1316. ACM, 2014.

26. B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure real-
ization. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors, Public Key Cryptography - PKC
2011 - 14th International Conference on Practice and Theory in Public Key Cryptography, Taormina, Italy,
March 6-9, 2011. Proceedings, volume 6571 of Lecture Notes in Computer Science, pages 53–70. Springer,
2011.

27. L. F. Zhang and R. Safavi-Naini. Private outsourcing of polynomial evaluation and matrix multiplication
using multilinear maps. In M. Abdalla, C. Nita-Rotaru, and R. Dahab, editors, Cryptology and Network
Security - 12th International Conference, CANS 2013, Paraty, Brazil, November 20-22. 2013. Proceedings,
volume 8257 of Lecture Notes in Computer Science, pages 329–348. Springer, 2013.

A Preliminaries

In this section, we provide tools used in instantiating an ABE scheme as we introduce a new ABE scheme
in Appendix B.

Linear Secret Sharing Schemes Secret sharing is a basic and fundamental cryptographic tool that
enables a secret s to be shared amongst a set of entities in such a way that all authorised sets of entities
can combine their individual share in order to reconstruct the secret value s. For example, any k out
of the n entities may form an authorised set and thus are able to reconstruct the secret value. Any
set of entities that does not form an authorised set cannot learn more than their individual shares and
thus cannot reconstruct the secret s. A secret sharing scheme is linear if the reconstruction operation
is a linear function of the shares. We provide a definition of an access structure which is a collection of
satisfying sets of a Boolean formula.

28

Definition 7. Let P = {P1, P2, . . . , Pn} be a set of parties (or attributes). A collection A ⊆ 2P is
monotone if for all B,C we have that if B ∈ A and B ⊆ C then C ∈ A. An access structure (respectively,
monotonic access structure) is a collection (respectively, monotone collection) A ⊆ 2P \ {∅}. The sets in
A are called the authorised sets and the sets not in A are called unauthorised sets.

A linear secret sharing scheme can be defined as follows [26].

Definition 8. Let P be a set of parties. Let M be a matrix of size l × k. Let π : {1, . . . , l} → P be a
function that maps a row to a party for labelling. A secret sharing scheme Π for access structure A over a
set of parties P is a linear secret-sharing scheme (LSSS) in Zp and is represented by (M,π) if it consists
of two polynomial-time algorithms:

– Mv
$← Share(s, (M,π)): this randomised algorithm takes as input s ∈ Zp which is to be shared and

the LSSS (M,π). It randomly chooses y2, . . . , yk ∈ Zp and sets v = (s, y2, . . . , yk). It outputs Mv as
a vector of l shares. The share λπ(i) := Mi · v belongs to party π(i), where we denote Mi as the ith
row in M .

– {(i, µi)}i∈I ← Recon(S, {λπ(i)}π(i)∈S , (M,π)): this algorithm takes as input an authorised set S ∈
A, the set of shares for this set {λπ(i)}π(i)∈S and the LSSS (M,π). Let I = {i : π(i) ∈ S}. It
outputs reconstruction constants {(i, µi)}i∈I such that the secret can be linearly reconstructed as
s =

∑
i∈I µi · λπ(i).

Note that the set {(µi)}i∈I can be found in polynomial-time in the size of M [26].

In Appendix B, we will require the following important fact [26]:

Proposition 1. Let (M,π) be a LSSS for access structure A over a set of parties P, where M is a
matrix of size l × k. For any authorised set S ∈ A, the target vector (1, 0, . . . , 0) is in the span of
I = {i : π(i) ∈ S}. For all unauthorised sets S /∈ A, the target vector is not in the span of I, and there
exists a polynomial time algorithm that outputs a vector w = (w1, . . . , wk) ∈ Zkp such that w1 = −1 and
for all i ∈ I it holds that Mi · w = 0.

In Appendix B, we make use of Lagrange interpolation as the reconstruction algorithm for LSSSs.
The reconstruction procedure can be defined following Attrapadung and Imai [4] in the following way.

Definition 9. For i ∈ Z and S ⊆ Z, the Lagrange basis polynomial is defined as ∆i,S(z) =
∏
j∈S,j 6=i

z−j
i−j .

Let f(z) ∈ Z[z] be a dth degree polynomial. If |S| = d+ 1, from a set of d+ 1 points {(i, f(i))}i∈S, one
can reconstruct f(z) as

f(z) =
∑
i∈S

f(i) ·∆i,S(z).

In Appendix B, we especially use the interpolation for a first degree polynomial. In particular, let f(z)
be a first degree polynomial, one can obtain f(0) from two points (i1, f(i1)), (i2, f(i2)) where i1 6= i2 by
computing

f(0) = f(i1)
i2

i2 − i1
+ f(i2)

i1
i1 − i2

.

Bilinear Maps and Hardness Assumptions Most ABE schemes are instantiated over groups with
efficiently computable bilinear maps. Thus, we review the notions of bilinear maps and the hardness
assumption on which we base the security of our revocable DP-ABE scheme in Section B. We follow the
formalisation in [4, 5].

Definition 10. Let G and GT be multiplicative groups of order p, and let g be a generator of G. A
bilinear map is a map e : G×G→ GT such that:

1. e is bilinear: for all u, v ∈ G and a, b ∈ Z we have e(ua, vb) = e(u, v)ab

2. e is non-degenerate: e(g, g) 6= 1

29

We say that G is a bilinear group if the group action in G can be computed efficiently and there exists
GT for which e : G×G→ GT is efficiently computable.

Definition 11. Let G be a bilinear group of prime order p. The decisional q-bilinear Diffie-Hellman
exponent problem (q-BDHE) in G is stated as follows. Given a vector(

g, h, ga, g(a
2), . . . , g(a

q), g(a
q+2), . . . , g(a

2q), Z
)
∈ G2q+1 ×GT

as input, determine whether Z = e(g, h)a
q+1

. We write gi to denote ga
i ∈ G. Let

yg,a,q = (g1, . . . , gq, gq+2, . . . , g2q). An algorithm A that outputs b ∈ {0, 1} has advantage ε in solving
the decisional q-BDHE problem in G if

|Pr[A
(
g, h,yg,a,q, e(gq+1, h)

)
→ 0]− Pr[A(g, h,yg,a,q, Z)→ 0]| ≥ ε,

where the probability is over the random choices of generators and groups g, h ∈ G, a ∈ Zp, Z ∈ GT ,
and the randomness of A. We refer to the distribution on the left as PBDHE and the one on the right as
RBDHE. The decisional q-BDHE assumption holds in G if no polynomial-time A has a non-negligible
advantage in solving the problem.

Terminology for Binary Trees A binary tree is a directed, rooted tree in which each node has at
most two children such that there exists a unique path from the root to each node. Let L = {1, . . . , n} be
the set of leaves of a complete binary tree. Let X be the set of node names via some systematic naming
order. For a leaf i ∈ L, let Path(i) ⊂ X be the set of nodes on the path from node i to the root (including
i and the root). For R ⊆ L, let Cover(R) ⊂ X be defined as follows. First mark all the nodes in Path(i)
if i ∈ R. Then Cover(R) is the set of all unmarked children of marked nodes. It can be shown to be the
minimal set that contains no node in Path(i) if i ∈ R but contains at least one node in Path(i) if i /∈ R.

B Revocable Dual-policy Attribute-based Encryption

Dual-policy attribute-based encryption was introduced by Attrapadung and Imai [6] and conjunctively
combines KP-ABE and CP-ABE such that both the secret decryption key and the ciphertext comprise an
access structure and an attribute set. The same authors [4] have also introduced the notion of revocation
in ABE schemes which have been used to construct a revocable PVC scheme which can revoke misbehav-
ing servers from the system. Recall that the notion of revocation supports two different modes, namely
direct revocation and indirect revocation. The former notion enables a client to specify a revocation list
at the point of encryption such that periodic re-keying is not necessary but the encryptors must have
the knowledge of the specific (current) revocation list. On the other hand, indirect revocation requires
a time period to be specified at the point of encryption and needs an authority that issues update key
material at each time period in order to enable entities to update their key to stay functional during
the time period. In [2], Alderman et al. have focused on the mode of indirect revocation, mainly as it
minimises the client’s workload as she is not required to maintain a synchronised revocation list. This
mode is implemented in the KP-ABE setting by amending the policy including an entity identifier and
by embedding the current time period into the ciphertext. Update keys are issued only to non-revoked
entities at each time period. Note that only the combination of a secret key with an update key for a time
period forms a functional evaluation key that is able to decrypt a ciphertext formed using the time period.

In this part, we aim to implement a revocation mechanism for a DP-ABE scheme. However, in this
context, we are able to embed the revocation mechanism into the KP-ABE functionality or the CP-
ABE functionality. Recall that decryption in DP-ABE is only successful if and only if both attribute sets
satisfy their corresponding access structure. Thus, in order to prevent the decryption functionality to be
successful, it suffices that at least one attribute set does not satisfy the corresponding access structure.
The formal definition of a revocable DP-ABE scheme using indirect revocation in the key-policy was
already stated in Section 4.2. Here we discuss the required security model as well as provide a concrete
construction and respective security proof.

30

B.1 Security Model

The security model for a rkDP-ABE scheme is a natural extension of the IND-sHRSS security notion
for an indirectly revocable KP-ABE scheme and the security notion is presented in Figure 6.

ExpIND-sHRSS
A

[
RKDPABE , 1λ,U

]
1 : (t?, (ω?, S?))←$ A(1λ,U)

2 : (pp,mk)←$ Setup(1λ,U)

3 : R←$ A(pp)

4 : (m0,m1)←$ AO
KeyGen(·,·,mk,pp)KeyUpdate(·,·,mk,pp)(R, pp)

5 : if (|m0| 6= |m1|) then return 0

6 : b←$ {0, 1}
7 : ct? ←$ Encrypt(mb, t

?, (ω?, S?), pp)

8 : b′ ← AO
KeyGen(·,(·,·)mk,pp),OKeyUpdate(·,·,mk,pp)(ct?, R, pp)

9 : if b′ = b then

10 : return 1

11 : else return 0

OKeyGen(id, (O, ψ),mk, pp)

1 : if ((ω? ∈ O) and (ψ ∈ S?) and (id /∈ R)) then

2 : return ⊥
3 : else KeyGen(id, (O, ψ),mk, pp)

4 : return skid,(O,ψ)

OKeyUpdate(R, t,mk, pp)

1 : if (t = t?) and (R 6⊆ R) then

2 : return ⊥
3 : else KeyUpdate(R, t,mk, pp)

4 : return ukR,t

Fig. 6. The IND-sHRSS experiment ExpIND-sHRSS
A

[
RKDPABE , 1λ,U

]

Definition 12. The advantage of a PPT adversary in the IND-sHRSS game for a revocable key DP-
ABE construction RKDPABE is defined as:

AdvIND-sHRSS
A,RKDPABE(1

λ) = Pr
[
ExpIND-sHRSS

A
[
RKDPABE , 1λ,U

]
→ 1

]
− 1

2
.

We say that the revocable key DP-ABE scheme is secure in the sense of indistinguishability against
selective-target with semi-static query attack (IND-sHRSS) if for all PPT adversaries A, it holds that

AdvIND-sHRSS
A,RKDPABE(1

λ) ≤ negl(λ).

B.2 Construction of a rkDP-ABE scheme

Our revocable DP-ABE scheme will be based on a combination of DP-ABE [6], which itself is a combi-
nation of CP-ABE [26] and KP-ABE [19], and an ABE scheme supporting revocation [4]. We represent

31

a subjective access structure S by a linear secret sharing scheme (LSSS) which we denote by (M,ρ) and
represent an objective access structure O as a LSSS denoted by (N, π).

Let Us and Uo be the universe of subjective and objective attributes respectively. The objective at-
tribute universe comprises disjoint sub-universes N , T ,M and UID referring to standard ABE attributes,
time periods, messages and entity identities respectively. UID is set to be the set of leaves in a complete
binary tree X = {1, . . . , n}. Without loss of generality, we assume that T ∩X = ∅ (e.g. by using a collision
resistant hash function and using distinct prefixes to map elements from T and X). The attribute set
for the rkDP-ABE scheme is defined to be U = Us ∪ Uo. Let us define m to be the maximum size of
a subjective attribute set assigned to a key, i.e. we restrict |ψ| 6 m, and similarly define n to be the
maximum size of an objective attribute set associated with a ciphertext, i.e. |ω| 6 n. Furthermore, we
denote the maximum number of rows of a subjective access structure matrix M to be ls,max. Now let
m′ = m+ ls,max − 1 and n′ = n− 1. Finally, let d be the maximum of |Cover(R)| for all R ⊆ UID, where
Cover(R) is defined as in Section A. We construct each algorithm of the rkDPABE scheme as follows:

1. Setup(1λ,U): The algorithm picks random exponents γ, α ∈ Zp and a generator g ∈ G. It defines
three functions Fs : Zp → G, Fo : Zp → G and P : Zp → G by randomly choosing h0, . . . , hm′ ,
q1, . . . , qn′ , u1, . . . , ud and setting

Fs(x) =

m′∏
j=0

hx
j

j , Fo(x) =

n′∏
j=0

qx
j

j , P (x) =

d∏
j=0

ux
j

j . (1)

The public parameters are defined as

pp = (g, e(g, g)γ , gα, h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud).

For each node label x ∈ X in the tree, it randomly chooses ax ∈ Zp and rx ∈ Zp to define a first
degree polynomial fx(z) = axz + αrx + γ. The master key is mk = (γ, α, {ax, rx}x∈X).

2. Encrypt(m, (ω,S), t, pp): The encryption algorithm takes as input a LSSS access structure (M,ρ) for
the subjective policy S and an objective attribute set ω ⊂ Uo. Denote the dimensions of M as ls× ks
matrix. The algorithm randomly chooses values s, y2, . . . , yks ∈ Zp and sets u = (s, y2, . . . , yks). It
computes λi = Mi · u (for i = 1, . . . , ls), where Mi is the vector corresponding to the ith row of M .

The ciphertext is then computed as ct(ω,S),t = (C,C(1), {C(2)
k }k∈ω, {C

(3)
i }i=1,...,ls , C

(4)), where

C = m · (e(g, g)γ)s, C(1) = gs,

C
(2)
k = Fo(k)s, C

(3)
i = gαλiFs(ρ(i))−s,

C(4) = P (t)s.

Intuitively, C masks the message by a group element in the target group of the bilinear map formed
from the master secret γ and an encryption secret s (to randomise the encryption procedure). De-
cryption will have to compute this mask to recover the message.

C(1) provides the encryption secret s. C
(2)
k embeds each attribute in the objective set ω into the

ciphertext, incorporating the encryption secret s such that attributes from prior ciphertexts cannot

be combined with this encryption. Similarly, C
(3)
i embeds the subjective policy S into the ciphertext

using the shares of s divided according to S, i.e. s is shared over the set of attributes such that
any set of attributes that satisfies S can reconstruct the encryption secret s. Finally, C(4) links the
encryption secret (and hence this particular ciphertext) to the specified time period t such that an
update key for t is required to decrypt the ciphertext; this enables the revocation mechanism.

3. KeyGen(id, (O, ψ),mk, pp): The key generation algorithm takes as input a LSSS access structure
(N, π) for the objective policy O and a subjective attribute set ψ ⊂ Us. Let the dimensions of N be
denoted by lo × ko. The algorithm also takes an identity id ∈ UID which is a leaf in the binary tree.

For all x ∈ Path(id), the algorithm shares fx(1) using the LSSS (N, π). To do so, it randomly chooses
zx,2, . . . , zx,ko ∈ Zp and sets vx = (fx(1), zx,2, . . . , zx,ko). For i = 1, . . . , lo, it calculates the share
σx,i = Ni · vx, where Ni is the vector corresponding to the ith row of N .

32

The algorithm then randomly chooses rx,1, . . . , rx,lo ∈ Zp and rx ∈ Zp for all x ∈ Path(id), and
outputs the private key

skid,(N,π) = ((D
(1)
x,i , D

(2)
x,i)x∈Path(id),i=1,...,lo , (Dx, {D(3)

k }k∈ψ)x∈Path(id)),

where

Dx = grx , D
(1)
x,i = grx,i ,

D
(2)
x,i = gσx,iFo(π(i))rx,i , D

(3)
k = Fs(k)rx .

Intuitively, rx and rx,i for each x ∈ Path(id) randomises the key for the user id so that users may

not collude. Dx and D
(1)
x,i allow use of these random key values during decryption. D

(2)
x,i embeds the

shares of fx(1) = ax + αrx + γ such that only the authorised sets according to O may reconstruct

fx(1). Finally, D
(3)
k embeds the attributes in ψ with the randomness chosen for this particular key.

By linking these parameters to the path in a tree, only users for whom a valid update key has been
issued (i.e. the non-revoked users) will be able to make use of these parameters to compute fx(1)
for a node x; fx(1) is required as it contains the master secret γ which is used to cancel with the
ciphertext component C to recover the message.

4. KeyUpdate(R, t,mk, pp): The algorithm first computes Cover(R) to find a minimal node set that
covers U \ R. For each x ∈ Cover(R), it randomly chooses rx ∈ Zp and sets the update key as

ukR,t =
{
U

(1)
x , U

(2)
x

}
x∈Cover(R)

, where

U (1)
x = gfx(t)P (t)rx , U (2)

x = grx .

Intuitively, each update key component is randomised by rx and linked to a particular node x in the
tree (covering only non-revoked users). P (t) embeds the current time period which will match with
the ciphertext component C(4). We also embed a point of the polynomial fx(t); given this point, and

the point fx(1) (which can be recovered from the decryption key components D
(2)
x,i given a satisfying

set of objective attributes ω), one can perform Lagrange interpolation to recover the point fx(0)
which will yield use of the master secret γ to cancel with the ciphertext component C.

5. Decrypt(ct(ω,S),t, (ω,S), skid,(O,ψ), (O, ψ), ukR,t, pp): The decryption algorithm takes as an input the
ciphertext ct(ω,S),t which contains a subjective access structure (M,ρ) for S and a set of objective
attributes ω, and a decryption key skid,(N,π) which contains a set of subjective attributes ψ and an
objective access structure (N, π) for O. Suppose that ψ satisfies (M,ρ), the set ω satisfies (N, π),
and that id /∈ R (so that decryption is possible).

Let Is = {i : ρ(i) ∈ ψ} and Io = {i : π(i) ∈ ω}. The algorithm computes sets of reconstruction
constants {(i, µi)}i∈Is and {(i, νi)}i∈Io using the LSSS reconstruction algorithm. Since id /∈ R, the
algorithm also finds a node x such that x ∈ Path(id) ∩ Cover(R). Finally, it computes the following

C ·

∏
i∈Is

(
e
(
C

(3)
i , Dx

)
· e
(
C(1), D

(3)
ρ(i)

))µi
(∏

j∈Io

(
e
(
D

(2)
x,j ,C

(1)
)

e
(
C

(2)

π(j)
,D

(1)
x,j

))νj) t
t−1 (

e
(
U

(1)
x ,C(1)

)
e
(
C(4),U

(2)
x

)) 1
1−t

= m.

We verify the correctness of the decryption as follows. Let us write the decryption computation as

C · C
′

K , where K = (K ′)
t
t−1 (K ′′)

1
1−t , and then consider each part in turn. Intuitively, C ′ is similar to

a standard ABE decryption operation to match attributes to policies, whilst K ′ and K ′′ combine the
two components of a functional decryption key (namely, a secret key and an update key) and perform a
Lagrange interpolation to form a group element e(g, g)s(γ+αrx) = e(g, g)sγ · e(g, g)sαrx . The second part

33

of this product will be the result of computing C ′ whilst the first will cancel with C to leave only m.

C ′ =
∏
i∈Is

(
e
(
C

(3)
i , Dx

)
· e
(
C(1), D

(3)
ρ(i)

))µi
=
∏
i∈Is

(
e
(
gαλiFs(ρ(i))−s, grx

)
· e (gs, Fs(ρ(i))rx)

)µi
=
∏
i∈Is

(
e (g, g)

αλirx · e (g, Fs(ρ(i)))
−rxs · e (g, Fs(ρ(i)))

rxs
)µi

= e(g, g)αrx
∑
i∈Is µiλi

= e(g, g)αrxs.

In the above expression, the second equality follows by substituting the values from the construction; the
third equality follows from the properties of bilinear maps; the fourth equality simply moves the product
into the exponent; and the final equality follows from the reconstruction constants of the LSSS, namely
that

∑
i∈Is µiλi = s.

K ′ =
∏
j∈Io

 e
(
D

(2)
x,j , C

(1)
)

e
(
C

(2)
x,π(j), D

(1)
x,j

)
νj

=
∏
j∈Io

(
e (gσx,jFo(π(j))rx,j , gs)

e (Fo(π(j))s, grx,j)

)νj

=
∏
j∈Io

(
e (g, g)

σx,js · e (g, Fo(π(j)))
rx,j ,s

e (g, Fo(π(j)))
rx,j ,s

)νj
= e (g, g)

s
∑
j∈Io νjσx,j = e(g, g)sfx(1).

In the above expression, the second equality follows directly from the construction; the third one fol-
lows from the properties of bilinear maps; the fourth equality stems from moving the product into the
exponent; and the last one follows from the set of LSSS reconstruction constants with

∑
j∈Io νjσx,j =

fx(1) = ax + αrx + γ.

K ′′ =
e
(
U

(1)
x , C(1)

)
e
(
C(4), U

(2)
x

) =
e
(
gfx(t)P (t)rx , gs

)
e (P (t)s, grx)

=
e (g, g)

fx(t)s · e (g, P (t)rxs)

e (g, P (t)rxs)

= e(g, g)fx(t)s

Then, it follows

K = (K ′)
t
t−1 (K ′′)

1
1−t =

(
e(g, g)sfx(1)

) t
t−1
(
e(g, g)fx(t)s

) 1
1−t

= (e(g, g)s)
fx(1)

t
t−1+fx(t)

1
1−t

Notice that fx(1) t
t−1 +fx(t) 1

1−t is in fact a Lagrange interpolation for the two points (1, fx(1)), (1, fx(t))

for the first degree polynomial fx. Thus, fx(1) t
t−1+fx(t) 1

1−t = fx(0) = αrx+γ. Hence,K = e(g, g)s(αrx+γ).
Combining all of these results, we obtain the result of the decryption operation

C · C
′

K
= m · e(g, g)sγ · e(g, g)αsrx

e(g, g)s(αrx+γ)
= m · e(g, g)sγ · e(g, g)αsrx

e(g, g)sγ · e(g, g)αsrx
= m.

B.3 Security Proof

Theorem 2. The rkDPABE construction is secure with respect to indistinguishability against selective-
target with semi-static query attack (IND-sHRSS), as specified in Figure 6, assuming that the decisional
q-BDHE problem is hard.

The proof follows from a combination of [4] and [5] with some adjustment in the simulation of the
private keys. We show that if an adversary can win the IND-sHRSS game with advantage ε with a
challenge subjective access structure matrix of size l?s × k?s , then a simulator with advantage ε in solving
the decisional q-BDHE problem can be constructed, where m+ k?s 6 q.

34

Proof. Suppose, to achieve a contradiction with Theorem 2, that there exists an adversary A that has an
advantage ε in attacking the rkDPABE scheme. We build a simulator B that solves the decisional q-BDHE
problem (see Definition 11) in G. Recall that we abbreviate ga

j

by gj . The simulator B is given a random
q-BDHE challenge (g, h,yg,a,q, Z) where yg,a,q = (g1, . . . , gq, gq+2, . . . , g2q) and Z is either e(gq+1, h) or
a random element in G1. B acts as the challenger for A in the IND-sHRSS game as follows.

1. A begins by selecting its challenge parameters (t?, ω?,S?) where S? is represented by a LSSS (M?, ρ?).
Let the matrix M? be of size l?s × k?s , where m+ k?s ≤ q and let l?s = ls,max and |ω?| = n.

2. B now simulates running Setup for the rkDPABE scheme, and embeds the challenge policy into the

public parameters. It first chooses γ′
$← Zp, sets gα = g1 = ga, and implicitly defines γ = γ′ + aq+1

by defining

e(g, g)γ = e(g1, gq) · e(g, g)γ
′

= e
(
ga, ga

q
)
· e (g, g)

γ′

= e(g, g)γ
′+aq+1

.

It then must define the polynomials Fs, Fo and P (as in [4] and [5]). To define Fs, B begins by
defining Fs(x) = gp(x), where p is a polynomial in Zp[x] of degree m + l?s − 1 which is implicitly
defined in the following manner. It chooses k?s + m + 1 polynomials p0, . . . , pk?s+m in Zp[x], each of
degree m+ l?s − 1, such that for all x = ρ?(i) for some i (i.e. all x in the image of ρ?, of which there
are exactly l?s since ρ? is an injective mapping):

pj(x) =

{
M?
i,j for j ∈ [1, k?s]

0 for j ∈ [k?s + 1, k?s +m]
(2)

The polynomial p0 is chosen randomly, and for all other x (not in the image of ρ?), pj is defined ran-
domly by randomly choosing values at m other points. By writing the coefficients of each polynomial

as pj(x) =
∑m+l?s−1
i=0 pj,i · xi, one can define the polynomial p(x) to be

p(x) =

k?s+m∑
j=0

pj(x)aj . (3)

Then, B sets hi =
∏k?s+m
j=0 g

pj,i
j for i ∈ [0,m+ l?s − 1]. Finally, as we assumed l?s = ls,max, note that

m′ = m+ ls,max − 1 = m+ l?s − 1,

Fs(x) =

m′∏
i=0

hx
i

i

=

m′∏
i=0

k?s+m∏
j=0

g
pj,i
j

xi

=

m′∏
i=0

k?s+m∏
j=0

gpj,ia
j

xi

= g
∑k?s+m

j=0

∑m′
i=0 pj,ix

iaj

= g
∑k?s+m

j=0 pj(x)a
j

= gp(x).

The first equality in the above expression follows from equation (1) whilst the second follows by the

above definition of hi. The third equality is obtained by definition of gj = ga
j

and the last one follows
by equation (3).

To define Fo, B randomly picks a polynomial f ′(x) =
∑n−1
j=0 f

′
jx
j in Zp[x] of degree n − 1. It then

defines f(x) =
∏
k∈ω?(x − k) =

∑n−1
j=0 fjx

j (which can be computed entirely from ω?); note that

35

f(x) = 0 if and only if x ∈ ω?. It defines qj = g
fj
q g

f ′j for j = [0, n− 1]. Using the above we can finally
compute

Fo(x) =

n−1∏
j=0

q
(xj)
j

=

n−1∏
j=0

gfjq · gf
′
j

xj

= g
∑n−1
j=0 fjx

j

q · g
∑n−1
j=0 f

′
jx
j

= gf(x)q gf
′(x).

To define P , B defines

p̂(y) = yd−1 · (y − t?) =

d∑
j=0

p̂jy
j .

This ensures p̂(t) = 0 if and only if t = t? for t ∈ T , and that for x ∈ X , p̂(x) 6= 0 since we assumed
T ∩ X = ∅.
B then randomly picks a degree d polynomial ρ(y) =

∑d
j=0 ρjy

j in Zp[x] and lets uj = (ga)p̂jgρj for
j = 0, . . . , d. Thus we can compute

P (y) =

d∏
j=0

uy
j

j

=

 d∏
j=0

(ga)p̂jgρj

yj

= (ga)
∑d
j=0 p̂jy

j

g
∑d
j=0 ρjy

j

= (ga)p̂(y)gρ(y). (4)

The public key pk for the rkDP-ABE scheme is defined to be

pk = (g, e(g, g)γ , gα, h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud),

which is given to A. Note that the randomness of the q-BDHE challenge
(g, h,yg,a,q, Z) and the independently chosen randomness used in the construction of the polyno-
mials pj , f

′, and ρ ensure the public parameters are distributed as expected.
3. A declares its list R and is then given oracle access to the KeyGen and KeyUpdate functions. Let
XR = {x ∈ Path(id) : id ∈ R}. For each node label x ∈ X in the tree, B randomly chooses a′x ∈ Zp
and implicitly defines

ax =

{
a′x − αrx − γ if x ∈ XR
a′x −

αrx−γ
t? if x /∈ XR

(5)

Hence,

fx(1) = ax + αrx + γ = a′x − αrx − γ + αrx + γ = a′x if x ∈ XR (6)

fx(t?) = axt
? + αrx + γ = (a′x −

αrx − γ
t?

)t? + αrx + γ = a′xt
? if x /∈ XR (7)

To simulate KeyGen queries for an objective access structure (N, π), a subjective attribute set ψ and
an identity id, we consider the following cases:
– (ω? ∈ O) and (id ∈ R) :

For each x ∈ Path(id), note that since id ∈ R, x ∈ XR. Hence, from (6), B can compute fx(1) for
all x ∈ Path(id). B can therefore compute the key components precisely as in the construction
by sharing the value of fx(1).

36

– (ω? /∈ O) and (id ∈ R) :

For each x ∈ Path(id), note that, since id ∈ R, x ∈ XR. Hence, from (6), B can compute fx(1)
for all x ∈ Path(id).

B randomly chooses rx ∈ Zp. It then lets Dx = grx , and for all k ∈ ψ lets D
(3)
k = Fs(k)rx as in

the construction. Recall that the dimensions of N are lo × ko. Since ω? does not satisfy N for
this case of the query, and by Proposition 1, there exists a vector ax = (a1, . . . , ako) ∈ Zkop such
that a1 = −1 and Ni · ax = 0 for all i where π(i) ∈ ω?.

B randomly chooses z′x,2, . . . , z
′
x,ko
∈ Zp and defines v′x = (0, z′x,2, . . . , z

′
x,ko

). It then implicitly
defines a vector vx = −(a′x)ax + v′x (by using (2)) which will be used for creating the share
of fx(1) = γ + αrx + ax (note that the first element of vx is indeed fx(1) by (6)), as in our
construction.

Now, for all i such that π(i) ∈ ω?, B randomly chooses rx,i ∈ Zp and computes D
(1)
x,i = grx,i and

D
(2)
x,i = gNi·v′xFo(π(i))rx,i

= gNi·(vx+(a′x)ax)Fo(π(i))rx,i

= gNi·vxFo(π(i))rx,i ,

where the last equality holds because Ni · ax = 0. Note that σx,i = Ni · vx in our construction

and hence D
(2)
x,i is of valid form.

For all other i, where π(i) /∈ ω?, B randomly chooses r′x,i ∈ Zp. Observe that

Ni · vx = Ni · (−(a′x)ax + v′x)

= Ni · (v′x − (a′x)ax)

Note that, unlike [5], due to our definition of ax, we do not have a term in aq+1 here, and B can

generate D
(2)
x,i = gNi·vxFo(π(i))rx,i and D

(1)
x,i = grx,i .

– (ψ /∈ S?) and (id /∈ R) :

For each x ∈ Path(id), B does the following. Since ψ does not satisfy M?, by Proposition 1, there

exists a vector wx = (w1, . . . , wk?s) ∈ Zk
?
s
p such that w1 = −1 and Mi · wx = 0 for all i where

ρ(i) ∈ ψ?. Now, by our definition of pj(x) in (2), we have that (p1(x), . . . , pk?s (x))·(w1, . . . , wk?s) =
0.

B then computes one possible solution of variables wk?s+1, . . . , wk?s+m for the system of |ψ| equa-
tions: for all x ∈ ψ

(p1(x), . . . , pk?s+m(x)) · (w1, . . . , wk?s+m) = 0,

which is possible as |ψ| 6 m.

B then randomly chooses r′x ∈ Zp and implicitly defines

rx = r′x + w1

(
t?

t? − 1

)
· αq + w2

(
t?

t? − 1

)
· αq−1 + · · ·+

+ wk?s+m

(
t?

t? − 1

)
· αq−(k

?
s+m)+1

37

by setting the key Dx = gr
′
x
∏k?s+m
k=1 (gq+1−k)wk(

t?

t?−1) = grx . Then, since γ = γ′ + αq+1 and as
x /∈ XR, we have

fx(1) = γ + αrx + ax

= γ′ + αq+1 + αrx + ax

= γ′ + αq+1 + αrx + a′x −
αrx − γ
t?

= γ′ + a′x +
γ

t?
+ αq+1 + (α(

t? − 1

t?
))rx

= γ′ + a′x +
γ

t?
+ αq+1 +

(
α

(
t? − 1

t?

)(
r′x + w1

(
t?

t? − 1

)
· αq

+w2

(
t?

t? − 1

)
· αq−1 + · · ·+ wk?s+m

(
t?

t? − 1

)
· αq−(k

?
s+m)+1

))
= γ′ + a′x +

γ

t?
+ αq+1 + α

(
t? − 1

t?

)
r′x + w1α

q+1 + w2α
q

+ · · ·+ wk?s+mα
q−(k?s+m)+2

= γ′ + a′x +
γ

t?
+ α

(
t? − 1

t?

)
r′xw2α

q + · · ·+ wk?s+mα
q−(k?s+m)+2,

where the αq+1 term in γ has cancelled out using Proposition 1 and the third equality followed
from using equation (5). The simulator now randomly chooses zx,2, . . . , zx,ko ∈ Zp and implicitly
lets the vector
vx = (γ + αrx + ax, zx,2, . . . , zx,ko) as in the construction.

B also randomly chooses rx,1, . . . , rx,lo ∈ Zp and computes for i = 1, . . . , lo the key D
(1)
x,1 = grx,i .

The other keys are computed in the following way. We have

D
(2)
x,i =

gγ′+a′x+ γ
t? · gr

′
x

1

k?s+m∏
k=2

(gq−k+2)wk

Ni,1

·
ko∏
j=2

gNi,jzjFo(π(i))rx,i

which can be computed since gq+1 is not required and, by collecting the exponents, it can be

verified that D
(2)
x,i = gNi·vx · Fo(π(i))ri .

Recall that (p1(k), . . . , pk?s+m(k)) · (w1, . . . , wk?s+m) = 0 for all k ∈ ψ.

D
(3)
k = Dp0(k)

x

k?s+m∏
j=1

gr′xj ∏
k∈[1,k?s+m],k 6=j

(gq+1−k+j)
wk

pj(k)

= (grx)p0(k)
k?s+m∏
j=1

(grx)α
jpj(k)

=

k?s+m∏
j=0

(grx)pj(k)α
j

= (grx)
∑k?s+m

j=0 pj(k)α
j

= (grx)p(k) = Fs(k)rx ,

where the second equality holds by observing that

D
(3)
k = D

(3)
k (gq+1)(p1(k),...,pk?s+m(k))·(w1,...,wk?s+m)

since (gq+1)(p1(k),...,pk?s+m(k))·(w1,...,wk?s+m) = (gq+1)0 = 1 (see [5]).
– (ω? /∈ O) and (ψ ∈ S?) and (id /∈ R) :

For each x ∈ Path(id), B randomly chooses rx ∈ Zp. It then lets Dx = grx , and for all k ∈ ψ
lets D

(3)
k = Fs(k)rx as in the construction. Recall that the dimensions of N are l0 × k0. Since

38

ω? does not satisfy N for this case of the query, and by Proposition 1, there exists a vector
ax = (a1, . . . , ako) ∈ Zkop such that a1 = −1 and Ni · ax = 0 for all i where π(i) ∈ ω?.
B randomly chooses z′x,2, . . . , z

′
x,ko
∈ Zp and defines v′x = (0, z′x,2, . . . , z

′
x,ko

). It then implicitly

defines a vector vx = −(a′x −
αrx−γ
t? + αrx + γ)ax + v′x which will be used to create the share

of fx(1) = γ + αrx + ax (note that the first element of vx is indeed fx(1) by (5)), as in our
construction.
Now, for all i such that π(i) ∈ ω?, B randomly chooses rx,i ∈ Zp and computes D

(1)
x,i = grx,i and

D
(2)
x,i = gNi·v′xFo(π(i))rx,i = gNi·vxFo(π(i))rx,i ,

where the last equality holds because Ni · ax = 0. Note that σx,i = Ni · vx in our construction

and hence D
(2)
x,i is of the valid form.

For all other i, where π(i) /∈ ω?, B randomly chooses r′x,i ∈ Zp. Observe that

Ni · vx = Ni ·
(
−
(
a′x −

αrx − γ
t?

+ αrx + γ

)
ax + v′x

)
= Ni ·

(
−
(
a′x −

αrx − (γ′ + aq+1)

t?
+ αrx + (γ′ + aq+1)

)
ax + v′x

)
= Ni ·

(
v′x −

(
a′x + γ′

(
1

t?
+ 1

))
ax

)
+

(
rx

(
1

t?
− 1

)
Ni · ax

)
α

−
((

1

t?
+ 1

)
Ni · ax

)
aq+1

contains a term in aq+1 and hence we cannot compute this value (as aq+1 is the gap in the
q-BDHE game). Instead, we will use the rx,i term in Fo(π(i))rx,i to cancel the unknown value

aq+1. B implicitly defines rx,i = r′x,i −
a(1
t?

+1)Ni·ax

f(π(i)) . To do so, it defines

D
(2)
x,i = g

(
rx(1

t?
−1)Ni·ax−(1

t?
+1)Ni·axf

′(π(i))

f(π(i))

)
1

· gNi·(v′x−(a′x+γ
′(1
t?

+1)))axFo(π(i))r
′
x,i .

To see that D
(2)
x,i is valid, we observe

D
(2)
x,i = g

(1
t?

+1)Ni·ax

q+1 ·D(2)
x,i · g

−(1
t?

+1)Ni·ax

q+1

= g
(1
t?

+1)Ni·ax

q+1 · grx(
1
t?
−1)Ni·ax

1 · gNi·(v′x−(a
′
x+γ

′(1
t?

+1)))ax

·

(
g
−(1

t?
+1)Ni·ax

q+1 g
−(1

t?
+1)Ni·axf

′(π(i))

f(π(i))

1

)
· Fo(π(i))r

′
x,i

= gNi·vx

(
gf(π(i))q gf

′(π(i))
)−a(1

t?
+1)Ni·ax

f(π(i)) · Fo(π(i))r
′
x,i

= gNi·vx · Fo(π(i))
−a(1

t?
+1)Ni·ax

f(π(i)) · Fo(π(i))r
′
x,i

= gNi·vx · Fo(π(i))rx,i ,

where the second last equality follows from equation (4).
B also defines

D
(1)
x,i = gr

′
x,ig

−(1
t?

+1)Ni·ax

f(π(i))

1 = grx,i .

Note that f(π(i)) 6= 0 since π(i) /∈ ω?, and so D
(1)
x,i and D

(2)
x,i are well defined.

To simulate KeyUpdate queries for time period t and revocation list R, we consider the following
cases:

39

– t = t? and R ⊆ R:
For each x ∈ Cover(R), B chooses a random rx ∈ Zp and computes U

(1)
x = (ga

′
xt
?

)P (t?)rx and

U
(2)
x = grx . Both keys are valid since R ⊆ R and thus for all x ∈ Cover(R) we have x /∈ XR.

Hence, by (7), fx(t?) = a′xt
?.

– t 6= t?:
For each x ∈ Cover(R), B chooses a random r′x ∈ Zp
• If x ∈ Cover(R) ∩ XR, it defines

U (1)
x = (ga

′
x)t(gγ

′
)(1−t)(g

r′x
1)(1−t)g

− ρ(t)(1−t)
p̂(t)+1−t

q P (t)r
′
x

U (2)
x = (gr

′
x)(gq)

− 1−t
p̂(t)+1−t

Note that p̂(t) 6= 0 for t 6= t? so this is well defined. We claim that these keys look valid

according to the construction with implicit randomness rx = r′x −
aq(1−t)
p̂(t)+1−t .

Note that, in this case, x ∈ XR and hence by (5)

fx(t) = axt+ αrx + γ = (a′x − αrx − γ)t+ αrx + γ

= a′xt+ αrx(1− t) + γ′(1− t) + aq+1(1− t).

Then,

U (1)
x

(1)
= gfx(t)P (t)rx

(2)
= ga

′
xt+arx(1−t)+γ

′(1−t)+aq+1(1−t)gap̂(t)rxgρ(t)rx

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)garx(1−t)gap̂(t)rxgρ(t)rx

(3)
= ga

′
xtgγ

′(1−t)ga
q+1(1−t)ga(1−t)r

′
xg−a(1−t)Bgap̂(t)r

′
x

g−ap̂(t)Bgρ(t)r
′
xg−ρ(t)B

(4)
= ga

′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg−a(1−t)Bg−ap̂(t)Bg−ρ(t)B

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg−ρ(t)Bg−Ba((1−t)+ap̂(t))

(5)
= ga

′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
x

g
−ρ(t)

(
aq(1−t)
p̂(t)+1−t

)
(ga)

−
(
aq(1−t)
p̂(t)+1−t

)
((1−t)+p̂(t))

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg
−ρ(t)

(
aq(1−t)
p̂(t)+1−t

)
(ga)

−(aq(1−t))

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg
−ρ(t)

(
aq(1−t)
p̂(t)+1−t

)
g−a

q+1(1−t)

= ga
′
xtgγ

′(1−t)P (t)r
′
xga(1−t)r

′
xg
−ρ(t)

(
aq(1−t)
p̂(t)+1−t

)

= (ga
′
x)t(gγ

′
)(1−t)(g

r′x
1)(1−t)g

− ρ(t)(1−t)
p̂(t)+1−t

q P (t)r
′
x .

Note that equality (1) follows by construction and (2) uses fx(t) from above and equation
(4). Equality (3) follows by replacing rx with r′x−B and equality (4) follows from using (4).

Equality (5) is valid by using B = aq(1−t)
p̂(t)+1−t .

Then,

U (2)
x = grx = gr

′
xg−

aq(1−t)
p̂(t)+1−t

= (gr
′
x)(gq)

− 1−t
p̂(t)+1−t .

Hence, these keys look valid according to the construction.
• If x ∈ Cover(R) \ XR, it defines

U (1)
x = (ga

′
x)t(gγ

′
)(

t
t?

+1)(g
r′x
1)(1−

t
t?

)g
−
ρ(t)(1+ t

t?
)

p̂(t)+1− t
t?

q P (t)r
′
x

40

U (2)
x = (gr

′
x)(gq)

−
1+ t

t?

p̂(t)+1− t
t?

In this case, by (5), ax = a′x −
αrx−γ
t? . By a similar argument as above, these keys look valid

according to the construction with implicit randomness rx = r′x −−
aq(1+ t

t?
)

p̂(t)+1− t
t?

.

4. A selects two messages m0 and m1. B chooses b
$← {0, 1} and creates a ciphertext C = mb · Z ·

e(h, gγ
′
), C(1) = h, and for k ∈ ω? we write C

(2)
k = hf

′(x). We write h = gs for some unknown s. The
simulator then chooses random elements y′2, . . . , y

′
k?s
∈ Zp and lets y′ = (0, y′2, . . . , y

′
k?s

). It defines

C
(3)
i = (g1)M

?
i ·y
′ · (gs)−p0(ρ?(i)) for i = 1, . . . , l′s and C(4) = (gs)ρ(t

?), to implicitly share the secret s
via the vector

vx = (s, sα+ y′2, sα
2 + y′3, . . . , sα

k′s−1 + y′k′s).

We claim that if Z = e(gq+1, h) then the created ciphertext is a valid challenge. The validity of
C(1) = h = gs comes from the implicit definition of h. To see that C is valid, recall that γ = γ′+aq+1.
Then,

C = mb · Z · e(h, gγ
′
) = mb · e(gq+1, h) · e(h, gγ

′
) = mb · e(g, g)sa

q+1

· e(g, g)sγ
′

= mb · e(g, g)s(γ
′+aq+1) = mb · e(g, g)sγ .

For all k ∈ ω?, we defined f(k) such that f(k) = 0, and hence

C
(2)
k = hf

′(k) = (gs)f
′(k) = (gf(k)q gf

′(k))s = Fo(k)s.

For i = 1, . . . , l′s, we have

C
(3)
i = (g1)M

?
i ·y
′
· (gs)−p0(ρ

?(i))

= (gα)M
?
i ·y
′
k?s∏
j=1

gM
?
i,jsα

j

· (gs)−p0(ρ
?(i))

k?s∏
j=1

(gs)−M
?
i,jα

j

= gαM
?
i ·vx · (gs)−p(ρ

?(i)) = gαM
?
i ·vx · Fs(ρ?(i))−s,

Finally, since p̂(t?) = 0, we have C(4) = (gs)ρ(t
?) = ((ga)p̂(t

?)gρ(t
?))s = P (t?)s.

5. The challenge ciphertext is given to A along with oracle access which is handled as in Step 3.
6. A eventually outputs b′ ∈ {0, 1} as its guess of b. If b = b′ then B outputs 1 to guess that Z =
e(gq+1, h). Otherwise, B outputs 0 to guess that Z is random.

If (g, h,yg,a,q, Z) is sampled from RBDHE then Pr[B(g, h,yg,a,q, Z) → 0] = 1
2 since A was given a

malformed challenge and hence can only guess the value of b. On the other hand if (g, h,yg,a,q, Z) is
sampled from PBDHE then we formed a valid challenge ciphertext and, as A is assumed to have non-
negligible advantage ε in the IND-sHRSS game, |Pr[B(g, h,yg,a,q, Z) → 0] − 1

2 | ≥ ε. It follows that B
has advantage at least ε in solving q-BDHE problem in G. However, we assumed that this problem is
hard, so an adversary with non-negligible advantage in the IND-sHRSS game cannot exist. ut

41

