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Abstract. Divisible e-cash systems allow a user to withdraw a wallet containingK coins and to spend
k ≤ K coins in a single operation, respectively. Independent of the new work of Canard, Pointcheval,
Sanders and Traoré (Proceedings of PKC ’15) we present a practical and secure divisible e-cash system
in which the bandwidth of each protocol is constant while the system fulfills the standard security
requirements (especially which is unforgeable and truly anonymous) in the random oracle model. In
other existing divisible e-cash systems that are truly anonymous, either the bandwidth of withdrawing
depends on K or the bandwidth of spending depends on k. Moreover, using some techniques of the
work of Canard, Pointcheval, Sanders and Traoré we are also able to prove the security in the standard
model.
Furthermore, we show an efficient attack against the unforgeability of Canard and Gouget’s divisible
e-cash scheme (FC ’10).
Finally, we extend our scheme to a divisible e-cash system that provides withdrawing and spending
of an arbitrary value of coins (not necessarily a power of two) and give an extension to a fair e-cash
scheme.
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1 Introduction
Electronic cash (e-cash) was introduced by Chaum [Cha83] as the digital analogue of regular money.
Basically, an (offline) e-cash system consists of three parties (the bank B, user U , and merchantM) and
three protocols (Withdrawal, Spend, and Deposit). A user withdraws coins from the bank and applies the
coins to pay a merchant (without involving the bank during spending). Then, the merchant deposits the
coins to the bank.

Since electronic coins are just digital data, they can easily be duplicated, and hence spent several
times, which is called double-spending. Thus, an (offline) e-cash system needs a mechanism to detect
such a double-spending and to identify the defrauder afterwards.

From the bank’s point of view, the most important security requirement is that no one is able to
forge a valid coin or can double-spend a coin without being identified (balance). Furthermore, the bank
should be able to identify a double-spender without a third party. From the users point of view, the
most important security requirements are that honest users are anonymous (anonymity) and cannot be
accused to have performed a double-spending (exculpability).

The main challenge in designing e-cash systems is to achieve strong security requirements and high
efficiency.

1.1 Related Work

Compact E-Cash. To speed up the withdrawal phase, Camenisch, Hohenberger and Lysyanskaya
[CHL05] designed the first compact e-cash scheme, which has been modified and extended in [Wei05,
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CHL06a, ASM07, CLM07, CGT08, BCKL09, Mär15]. In such a scheme, a user can withdraw a wallet
W containing K coins and can spend each coin unlinkably. However, each coin has to be spend one by
one, which is a drawback of such systems.

Divisible E-Cash. In a divisible e-cash system, a user also withdraws a wallet W containing K coins
but then can spend k ≤ K coins together efficiently. According to this, such schemes solve the drawback
of compact e-cash. Another way of seeing divisible e-cash is that a user withdraws one coin with monetary
value K and then divides this coin to spend a coin with monetary value k ≤ K. It is common that K
resp. k is a power of two.

There are a lot of divisible e-cash systems in the literature [OO91, Oka95, CFT98, NS00, CG07,
ASM08, CG10, IL13, CPST15], but the first scheme that provides the security requirements shown
above (especially which is truly anonymous) has been proposed in [CG07]. Like in other divisible e-cash
systems, a binary tree is used to represent the wallet. Let K = 2L be the number of coins of the wallet,
then the binary tree consists of L+ 2 levels 0, . . . , L+ 1. Each node at level i, 0 ≤ i ≤ L, has monetary
value 2L−i and is related to a serial number, denoted by Si,j , which itself is related to a key κi,j for
0 ≤ j ≤ 2i − 1. The nodes at level L+ 1 have no monetary value. Each serial number can be computed
uniquely from one of its ascendants. During the withdrawal protocol, the user obtains a signature on κ0,0.
To spend a coin with monetary value 2` ≤ 2L, the user sends an unspent serial number SL−`,j and proves
in zero knowledge that SL−`,j is correctly computed from κ0,0, using expensive proofs of double discrete
logarithms and the “or” statement. This is a big drawback of the system. Additionally, due to the
system setup, it is questionable whether this system is in fact implementable (see also [ASM08, CG10]).

A practical divisible e-cash system based on bounded accumulators has been proposed in [ASM08].
The binary tree consists of L+1 levels 0, . . . , L. During the withdrawal protocol, all keys κi,0, . . . , κi,2i−1
in the same level i, 0 ≤ i ≤ L, are accumulated into an accumulator Vi. Then the user obtains L + 1
signatures, each on one accumulator. To spend a coin with monetary value 2` ≤ 2L, the user sends an
unspent serial number SL−`,j and only proves in zero knowledge that the (secret) key κL−`,j , correspond-
ing to SL−`,j , is inside the accumulator VL−`. Notice, that neither during the withdrawal protocol nor
during the spending phase the user proves any relation about the accumulator values. Hence, a malicious
user is able to withdraw a wallet containing (L+ 1)2L coins1, instead of 2L. Consequently, this system
does not fulfill the balance requirement, only a weaker statistical balance property (see Section 4.1 for
details).

This problem has been solved in [CG10]. The system is also based on bounded accumulators, but
with a new technique to prove that several revealed values are inside an accumulator. Like in [CG07], the
binary tree consists of L+ 2 levels 0, . . . , L+ 1 and the nodes at level L+ 1 have no monetary value. As
in [ASM08], during the withdrawal protocol, all keys κi,0, . . . , κi,2i−1 in the same level i, 1 ≤ i ≤ L + 1,
are accumulated into an accumulator Vi. Furthermore, all keys except of κ0,0 are accumulated into
one additional accumulator V . Then the user obtains L + 2 signatures, each on one accumulator.
To spend a coin with monetary value 2` ≤ 2L, the user sends an unspent serial number SL−`,j =
κL−`+1,2j ||κL−`+1,2j+1, corresponding to the key κL−`,j . Then the user proves in zero knowledge that
the two keys κL−`+1,2j and κL−`+1,2j+1 are inside the accumulator VL−`+1 and that all keys which can be
computed from SL−`,j are inside the accumulator V . Hence, during spending the user has to prove that
a serial number is derived from its father. Nevertheless, in Section 4.2.1 we show that every (dishonest)
user is able to withdraw a wallet containing 1.5 · 2L coins instead of 2L coins and thus breaks the
unforgeability of the system.

While the bandwidth of the spending phase in [ASM08] and [CG10] is independent of the monetary
value 2`, the bandwidth of the withdrawal protocol linearly depends on L = log(K).

Izabacène and Libert [IL13] provided the first divisible e-cash scheme which security is proven in the
standard model (rather than the random oracle model). However, their construction is rather inefficient

1In [ASM08] is said, that a dishonest user is able to withdraw a wallet containing L2L coins. However, each of the L+ 1
accumulators leads to a wallet containing 2L coins.
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(see also [CPST15]).

Fair E-Cash. Regardless of whether e-cash systems are compact or divisible, most of them provide
perfect anonymity (e.g. [CFN89, Bra94]) or computational anonymity. However, as pointed out by
von Solms and Naccache [vSN92], anonymity “can potentially lead to perfect crime”, such as perfect
blackmailing and money laundering (see also [SPC95]). To prevent perfect crime, an e-cash scheme can
be extended to a so-called fair e-cash scheme. Fair (offline) e-cash was independently introduced by
[FTY96] and [CMS96]. As an extension of an e-cash system, a fair scheme has an additional party T ,
which is referred to as trusted third party (TTP). Further, a fair scheme has two additional protocols,
named OwnerTracing, which allows tracing of suspicious spendings, and CoinTracing, which allows finding
the destination of suspicious withdrawals. Hence, T (and only T ) is able to revoke the anonymity
under a suspicious activity. Frankel, Tsiounis and Yung [FTY98] (see also [GT03]) provided an elegant
construction of fair e-cash, where T has only to publish its public key and is only involved in the two
tracing protocols if required.

1.2 Our Contribution

We combine features of the systems in [ASM08] and [CG10] to design a divisible e-cash system that
provides the standard security requirements and in which the bandwidth of each protocol is constant.
Furthermore, using some techniques of [CPST15], we are able to prove the security of the system in the
standard model, assuming that the used hash function is collision-resistant and outputs values that are
indistinguishable from uniform. The binary tree and the serial numbers are computed as in [ASM08]
(but with related hash functions), but our tree has one more level. We will refer to the K nodes in this
(L+ 1)-th level as serial keys. During the withdrawal protocol, only this K serial keys are accumulated
into one accumulator V . Hence, the user only obtains one signature on V . To spend a coin with monetary
value 2` ≤ K, the user sends an unspent serial number SL−`,j and only has to prove in zero knowledge
(with the technique presented in [CG10]) that all 2` serial keys that derive from SL−`,j are inside the
accumulator V .2 Because of the suitable computation of the binary tree, this proof is sufficient to provide
balance.

Besides, this new feature allows the construction of efficient protocols where users can withdraw and
spend arbitrary monetary values smaller than or equal to K (and not necessarily a power of two).

Finally, we present an approach how to extend our scheme to a fair e-cash system that allows owner
and coin tracing, where T has only to publish its public key and is only involved in the two tracing
protocols if required.

1.3 Organization

We discuss technical preliminaries such as mathematical assumptions and cryptographic building blocks
in the next section. In Section 3 we define the security model for divisible e-cash schemes. Section 4 gives
an overview of the divisible e-cash schemes given in [ASM08] and [CG10]. We also present an attack
against the unforgeability of the scheme in [CG10]. A detailed presentation of our new construction and
the security analysis are given in Section 5. In Section 6 we compare the efficiency of our scheme with
the underlying schemes in [ASM08] and [CG10] and with the new divisible e-cash system in [CPST15].
Three extensions of our construction are presented in Section 7. Finally we conclude in Section 8.

2We could also interpret each serial number S as a master serial number and each serial key as a serial number. Hence,
each master serial number SL−`,j would lead to 2` serial numbers.
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2 Preliminaries

2.1 Bilinear Maps

A bilinear map, also called pairing, maps two group elements to one group element. Let ê be a bilinear
map ê : G1 ×G2 → GT such that the following properties hold.

• G1 and G2 are cyclic multiplicative groups of prime order p.

• Each element of G1,G2 and GT has a unique binary representation.

• g is a generator of G1 and h is a generator of G2.

• (Bilinear:) ∀ a ∈ G1, b ∈ G2 and x, y ∈ Zp, ê (ax, by) = ê (a, b)xy.

• (Non-degenerate:) ê (g, h) 6= 1.

• The group action in G1,G2,GT and the bilinear map ê are all efficiently computable.

We call (G1,G2) a bilinear group pair. Let G := (p,G1,G2,GT , ê, g, h) be the global parameters of a
pairing.

Galbraith, Paterson and Smart [GPS06] separated different possible pairing instantiations into three
basic types:

Type-1: G1 = G2.

Type-2: G1 6= G2 but there is an efficiently computable homomorphism ψ : G2 → G1.

Type-3: G1 6= G2 and there are no efficiently computable homomorphisms between G1 and G2.

2.2 Mathematical Assumptions

The security of our construction depends on the following assumptions.

Definition 1 (Decisional Diffie-Hellman). The Decisional Diffie-Hellman (DDH) problem in G is
the following: On input a quadruple

(
g, ga, gb, gc

)
∈ G4, output 1 if gc = gab and 0 otherwise. We say

that the DDH assumption holds in G if no PPT algorithm has non-negligible advantage over random
guessing in solving the DDH problem in G.

Definition 2 (Symmetric External Diffie-Hellman [ACHdM05, AWSM07]). The Symmetric Ex-
ternal Diffie-Hellman (SXDH) assumption in (G1,G2) states that the DDH assumption holds in G1 and
G2. It implies that there are no efficiently computable isomorphisms between G1 and G2 (see [AWSM07]).

Definition 3 (q-Strong Diffie-Hellman [BB04, ASM07, Sch11]). The q-Strong Diffie-Hellman (q-
SDH) problem in (G1,G2) is the following: On input a (q+3)-tuple

(
g, gx, gx

2
, . . . , gx

q
, h, hx

)
∈ Gq+1

1 ×G2
2,

output a pair
(
g1/(x+c), c

)
∈ G1 × Z∗p. We say that the q-SDH assumption holds in (G1,G2) if no PPT

algorithm has non-negligible advantage in solving the q-SDH problem in (G1,G2).

2.3 Building Blocks

Zero-Knowledge Proofs of Knowledge. A zero-knowledge proof of knowledge (PoK) is an inter-
active protocol during which a prover proves to a verifier that he knows a secret that verifies a given
relation. We need those proofs for proving statements related to knowledge of discrete logarithms con-
structed over cyclic groups of known prime order p. We follow the notation given by [CS97], for example,
PoK

{
(a, b, c) : A = ga1g

b
2 ∧ B = ga3g

c
4

}
denotes a PoK such that the prover knows the secret (a, b, c) ∈ Z3

p
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such that A = ga1g
b
2 and B = ga3g

c
4. Using the Fiat-Shamir heuristic [FS86], these proofs can be made

non-interactive and are secure in the random oracle model [BR93]. This is referred to as a signature of
knowledge (SoK) (see [CS97]). Back to the example shown above, the corresponding SoK is denoted as
SoK

{
(a, b, c) : A = ga1g

b
2 ∧ B = ga3g

c
4

}
(m), where m ∈ {0, 1}∗ is some message.

Groth-Sahai Non-interactive Proof Systems. Groth and Sahai [GS08] constructed efficient and
practical non-interactive witness-indistinguishable (NIWI) proofs and non-interactive zero knowledge
(NIZK) proofs for bilinear groups. These proof systems can be instantiated based on the SXDH assump-
tion. To design our e-cash scheme we make use of NIZK proofs of the form

m∏
i=1

ê
(
Xi,Bi

)
= 1,

m∏
i=1

ê
(
Xi,B′i

)
= ê (g, h) ,

n′∏
i=1
Ayii

m∏
i=1
Xibi

m∏
i=1

n′∏
j=1
Xiγi,jyj = T1,

where X1, . . . ,Xm ∈ G1 and y1, . . . , yn′ ∈ Zp are variables that are private to the prover and Ai, T1 ∈ G1,
Bi,B′i ∈ G2 and bi, γi,j ∈ Zp are known constants.3

For detailed information we refer to [GS08, GS10, EG14].

Bounded Accumulator. An accumulator scheme is a method for accumulating several values into
one element, called the accumulator. The notion, bounded accumulator, was introduced in [AWSM07]
as an accumulator with a limit q of values that can be accumulated. Au et al. [AWSM07] observed
that the construction due to Nguyen [Ngu05], whose security relies on the q-SDH assumption, is already
a bounded accumulator. A PoK to prove that several known values are accumulated into a secret
accumulator has been proposed in [CG10]. We briefly describe the construction.

Let (G1,G2) be a bilinear group pair with parameters G and let u0 be a generator of G1 and v0
be a generator of G2. The generation algorithm randomly selects α ∈R Z∗p and computes the ele-
ments ui = uα

i

0 and vi = vα
i

0 for 1 ≤ i ≤ q. The public parameters of the accumulator scheme are
(G, u0, . . . , uq, v0, . . . , vq). The accumulator of a set of values {x0, . . . , xq−1} ⊂ Zp \ {−α} is computed

as V = u

∏q−1
j=0(α+xj)

0 , what does not require knowledge of the secret α since the elements u0, . . . , uq
are publicly known. In the following, we will denote the accumulator of the set {x0, . . . , xq−1} as
Acc ({x0, . . . , xq−1}). Let I ⊆ {0, . . . , q − 1}. A witness WI , to prove that several values xi for i ∈ I

are accumulated in V , is computed as WI = u

∏q−1
j=0,j /∈I(α+xj)

0 . Thus, the witness and values satisfy the

equation ê (V, v0) = ê

(
WI , v

∏
j∈I(α+xj)

0

)
. Notice, that the element vI := v

∏
j∈I(α+xj)

0 can be analogously
computed as V with the elements v0, . . . , vq.

To prove non-interactively that several known values x0, . . . , xk−1 are accumulated in a secret accu-
mulator V , a user computes the corresponding witness WI and has to prove the relation

ê (V , v0) ê
(
WI , v

−1
I

)
= 1,

where v−1
I = v

−
∏k−1
j=0 (α+xj)

0 . This proof is feasible in the random oracle model and in the standard model
using the Groth-Sahai proof systems.

Special Signature Schemes. Camenisch and Lysyanskaya [CL02] presented special signature schemes
with two efficient protocols for (1) issuing a signature on a committed message and for (2) proving knowl-
edge of a message-signature pair. ESS+ is such a signature scheme and has been proposed in [ASM08]
(see also [Au09, Section 3.3]) as an extended version of ESS ([AWSM07]). It allows signing blocks of
messages m1, . . . ,mL ∈ Zp together with a group element M ∈ G1, and is secure (EUF-CMA) in the

3As shown in [EG14], NIWI proofs of the form
∏m

i=1 ê
(
Xi,B′i

)
= ê (g, h) are in fact NIZK proofs.
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generic group model under the SXDH assumption. We briefly describe the constructions of ESS and
ESS+. We start with ESS+ because ESS can be seen as a special case of ESS+.

Again, let (G1,G2) be a bilinear group pair with parameters G and additional generators gA, gB, g0,
. . . , gL ∈ G1. The secret signing key is sk = (X, y) ∈ G1 × Z∗p and the public key is pk = (Y, Z) =
(hy, ê (X,h)) ∈ G2 × GT . To sign a message m = (M,m1, . . . ,mL) ∈ G1 × ZLp , the signer randomly

selects a, b, c ∈R Z∗p and computes A = X (MgaA)c , B =
(
ggaBg

b
0g
m1
1 · · · gmLL

)1/(y+c)
and C = hc. The

signature on the message is σ = (A,B,C, a, b). Everyone can verify the equations ê (A, h) ?= Zê (MgaA, C)
and ê (B,CY ) ?= ê

(
ggaBg

b
0g
m1
1 · · · gmLL , h

)
.

To obtain a signature on a committed message m = (M,m1, . . . ,mL) ∈ G1 × ZLp , a user and the
signer perform the following issue protocol. The user randomly selects a, b′ ∈R Z∗p and computes the
perfectly hiding commitment (C1, C2) =

(
MgaA, g

a
Bg

b′
0 g

m1
1 · · · gmLL

)
. Then, the user sends C1, C2 together

with a proof of knowledge of representation of C2 to the signer. After successful verification of the proof,
the signer randomly selects b′′, c ∈R Z∗p and computes A = XCc1, B =

(
ggb

′′
0 C2

)1/(y+c)
and C = hc. After

that, the signer sends A,B,C, b′′ back to the user. Finally, the user computes b = b′ + b′′ (mod p) and
sets the signature as (A,B,C, a, b).

The ESS scheme is the same as ESS+, but we always have a = 0 rather than a ∈R Z∗p. So, there is
no need for the generators gA, gB and no need for a. Thus, ESS is slightly more efficient than ESS+,
but the element M = C1 is known to the signer.

ESS and Accumulators. The goal of ESS+ is constructing a signature scheme for signing a commit-
ted message. So, in contrast to ESS, the signer should not learn anything about M and m1, . . . ,mL. If

the element M is an accumulator V = Acc ({x0, . . . , xq−1}) = u

∏q−1
j=0(α+xj)

0 , and that is exactly the case
in [AWSM07], [ASM08], [CG10] and our new construction, we point out that there is no need for ESS+
since ESS is sufficient. To construct a divisible e-cash system, we don’t need that the bank (signer) is
able to sign a committed message on V , we just need that the bank (signer) learns nothing about V
during the withdrawal (issue) protocol.

We give a new approach. To obtain a signature, the user just computes V ∗ = V s = u
s
∏q−1
j=0(α+xj)

0 for
a random value s ∈R Z∗p and sends V ∗ instead of C1 to the signer (together with the commitment C2).
Consequently, the accumulator V is perfectly hidden. Furthermore, the user is still able to compute

a valid witness W ∗I = W s
I = u

s
∏q−1
j=0,j /∈I(α+xj)

0 . Thus, we still have ê (V ∗, v0) = ê

(
W ∗I , v

∏
j∈I(α+xj)

0

)
.

Obviously, this accumulator scheme still is a bounded accumulator, i.e. it is infeasible to output a
tuple

(
V ∗,W ∗0 , x0, . . . ,W

∗
q , xq

)
such that ê (V ∗, v0) = ê (W ∗i , v1v

xi
0 ) for all 0 ≤ i ≤ q (as defined in [Au09,

Definition 4.9]). Note, that an adversarial user can anyway compute an accumulator as V = u
s
∏q−1
j=0(α+xj)

0
for a randomly chosen s in the e-cash schemes [AWSM07], [ASM08] and [CG10].

In comparison to ESS+, the user has to store the value s instead of a. Thus, the storage space is the
same. However, the user doesn’t need to prove any relation about s. Consequently, this new approach
is slightly more efficient than using ESS+.

AGHO Signature. Abe et al. [AGHO11] designed a structure-preserving signature scheme for bilinear
groups that is secure under the SXDH assumption in the generic group model. The messages and
signatures only consists of group elements and the verification of signatures consists of evaluating pairing
product equations. So, the AGHO signature is compatible with the Groth-Sahai proof systems. In our
divisible e-cash scheme we only require signatures on elements of G1. To get an efficient scheme, we take
the rerandomizable signature scheme of [AGHO11, Section 5.3], but we interchange the elements of G1
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and G2 to obtain a signature scheme for messages in GL
1 rather than GL

2 . Under the SXDH assumption,
the signature scheme is still secure ([Gro15]).

Let (G1,G2) be a bilinear group pair with parameters G. The secret key is sk = (x, y1, . . . , yL) ∈
ZL+1
p and the public key is pk = (X,Y1, . . . , YL) = (gx, hy1 , . . . , hyL) ∈ G1 × GL

2 . To sign a message
m = (M1, . . . ,ML) ∈ GL

1 , the signer randomly selects r ∈R Z∗p and computes A = hr, B = Ax and

C =
(
gM−y1

1 · · ·M−yLL

)1/r
. The signature on the message is σ = (A,B,C). Everyone can verify the

equations ê (X,A) ?= ê (g,B) and ê (C,A) ê (M1, Y1) · · · ê (ML, YL) ?= ê (g, h).
For rerandomization, choose r′ ∈R Z∗p and compute the rerandomized signature (A′, B′, C ′) =(

Ar
′
, Br′ , C1/r′

)
.

To design our e-cash scheme, we just require messages for small L and don’t need to hide this
messages. Thus, in the random oracle model, we can either use the ESS or the AGHO signature scheme.
However, we require compability with Groth-Sahai proof systems in the standard model. Consequently,
we can’t use ESS and so we (have to) use the AGHO signature scheme in the standard model. Hence,
we also use this signature scheme in the random oracle model.

Furthermore, in the random oracle model, we observed that there is a more efficient method than
generating a SoK to prove the relation ê (V , v0) = ê

(
WI , vI

)
as proposed in [CG10]. A user has just

to compute V ′ = V 1/r and W ′ = W
1/r
I for a randomly chosen number r ∈R Z∗p. Everyone can verify

ê (V ′, v0) = ê (W ′, vI). However, the user has to prove knowledge of r with the result that an extractor
is able to extract V and WI . Thus, if the user anyway has to prove possession of a signature on the
message V , the user can just generate a SoK to prove possession of a signature on the message V ′r
(which is fully compatible with the AGHO signature scheme).

ElGamal Encryption. ElGamal [ElG85] proposed an encryption scheme which is semantically secure
under the DDH assumption (see [TY98]).

The key pair is (pk, sk) = ((g, g1) , x) ∈ G2 × Z∗p such that g1 = gx for a group G with prime order
p. To encrypt a message m ∈ G under pk, randomly choose r ∈R Zp and compute the ciphertext
c = (c1, c2) = (gr,mgr1). The decryption is m = c2/c

x
1 . We use the ElGamal encryption scheme to

extend our e-cash system to a fair e-cash scheme.

3 Syntax
Let K = 2L be the size of a wallet and let λ be the security parameter. A divisible e-cash system can
be defined by the following polynomial time algorithms and protocols between the bank B, the user U
and the merchantM:

• Setup
(
1λ, L

)
is a probabilistic algorithm that outputs the system parameters sp. In the following,

1λ and sp are implicitly in the input of all algorithms and protocols.

• BKeyGen() is a probabilistic algorithm that outputs a key pair (pkB, skB) for B. An empty database
D is set up.

• UKeyGen() is a probabilistic algorithm that outputs a key pair (pkU , skU ) for U . A merchant M
executes the same algorithm to get (pkM, skM).

• Withdrawal [U (pkB, skU ,K)↔ B (skB, pkU ,K)] is a protocol where U withdraws a wallet W con-
taining K coins.

• Spend [U (pkB, pkM, skU ,W, ts, k)↔M (pkB, skM, ts, k)] is a protocol where U spends a coin coin
from the wallet W with monetary value k. U outputs an updated wallet W ′ and M outputs the
coin coin. ts denotes the time stamp of the transaction.
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• Deposit [M (pkB, skM, coin)↔ B (skB, pkM)] is a protocol where M deposits a coin coin. If it
concerns a double-spending, B executes the Identify algorithm. Otherwise, B outputs 1 and stores
the coin coin in the database D.

• Identify(coin, coin′) is a deterministic algorithm that outputs the public key pkU of a fraudulent
user or merchant.

• VerifyGuilt(pkB, pkU , coin, coin′) is a deterministic algorithm that outputs 1 if the two coins are valid
and the output of Identify(coin, coin′) is pkU , and 0 otherwise.

For correctness, we require that whenever an honest user obtains a walletW from B, an honest merchant
shall accept the coin coin fromW. Whenever an honest merchant obtains a coin coin, the deposit of coin
will be accepted by the honest bank.

3.1 Security Definitions

We first informally describe the security requirements of a divisible e-cash system.

• Balance guarantees that no collusion of users and merchants can deposit more coins than they
have withdrawn from the bank without being identified.
Thus, like in [ASM07, AWSM07], balance implies unforgeability and identification of double-
spenders as defined in [CG07, CG10].

• Anonymity guarantees that no collusion of users, merchants and the bank can link a spent coin
(that has not been double-spent) to other coins from the same wallet or can link a spent coin
to its corresponding withdrawal protocol. We want that this property even holds if the user has
double-spent some coins.

• Strong Exculpability guarantees that no collusion of users, merchants and the bank can falsely
accuse an honest user from having double-spent a coin that he has not double-spent, even if the
user has double-spent some other coins.
This requirement corresponds to the strong exculpability definition in [CHL05, CHL06b] and the
non-frameability definition in [Tro06]. However, in Section 3.1.1 we will explain that the formal
definition in [CHL06b] has a mistake and that the formal definition in [Tro06] is not usable for
divisible e-cash systems.

For a formal definition of security, we use a game-based approach. To ensure strong security proper-
ties, the adversary has more capabilities than in existing e-cash schemes (especially regarding anonymity).
These capabilities are modeled by arbitrary and adaptive queries to the following oracles.

• OU . This oracle allows the adversary to add an honest or corrupted user in the system. IfA supplies
a public key pkA, the oracle stores pkA in the set of corrupted users UA. Else, OU runs UKeyGen,
stores the key pair (pkU , skU ) in the set of honest users UH and sends pkU to the adversary.

• OWB . This oracle allows the adversary to withdraw money from the bank. The adversary supplies
a public key pkA ∈ UA and performs a Withdrawal protocol with the honest bank to obtain a wallet
W.

• OWU . This oracle allows the adversary to perform a Withdrawal protocol with an honest user
pkU ∈ UH of the adversary’s choice. After successful execution, an entry (i,Wi, pkU ,K) is added
in a set UW and the counter i is then incremented by 1.
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• OWU ,B. This oracle allows the adversary to instruct an execution of Withdrawal protocol between an
honest user pkU ∈ UH of the adversary’s choice and the honest bank. An entry (i,Wi, pkU ,K) is
added in the set UW and the counter i is incremented by 1.

• OSU . This oracle allows the adversary to perform a Spend protocol with an honest user pkU ∈ UH to
obtain a coin coin with a legal monetary value k from a wallet Wi of the adversary’s choice (such
that the wallet Wi can spend a coin with monetary value k without over-spending the wallet).
That is, the adversary chooses an index i such that (i,Wi, pkU , $i) ∈ UW and a monetary value
k ≤ $i. The adversary also chooses the merchant pkM ∈ UH ∪ UA and the time stamp ts. After
successful execution, the entry (i,Wi, pkU , $i) is updated to (i,W ′i, pkU , $i − k), where W ′i is the
updated wallet. Further, an entry (pkU , coin) is added in a set Ucoin.

• OS?U . This oracle is the same as OSU , but the adversary is allowed to choose k > $i and to force
the user pkU to over-spend his wallet Wi, i.e. the user has to double-spend some coins. If the
adversary chooses k > $i, first the state information of the wallet Wi is reset such that it is the
same as it was before any coins were spent (see [CHL06b, Definition of (strong) Exculpability]).

• OH . In the random oracle model, this oracle allows the adversary to ask for the values of the hash
functions at any time it wants in the following games.

Definition 4. (Game Balance)

• (Initialization Phase.) The challenger C takes a sufficiently large security parameter λ and runs
Setup and BKeyGen to generate the system parameters sp and the key pair (pkB, skB). C sends sp
and pkB to A.

• (Probing Phase.) The adversary A can perform a polynomially bounded number of queries to the
oracles OU ,OWB ,OWU ,B and OSU . Let qW be the number of OWB queries and k? be the monetary value
A obtains from OSU .

• (End Game Phase.) The adversary A outputs q tuples (coinj , pkj , tsj , kj) for 1 ≤ j ≤ q such that
each coinj is a valid coin of monetary value kj, spent to merchant pkj ∈ UH∪UA at time tsj and such
that (pkj , tsj) 6= (pkj′ , tsj′) for all j 6= j′. The adversary A wins the game if

∑q
j=1 kj > KqW + k?

and Identify on any input coin, coin′ ∈ {coin1, . . . , coinq} does not output any pkA ∈ UA.

The advantage of A is defined as the probability that A wins.

Definition 5. (Game Anonymity)

• (Initialization Phase.) The challenger C takes a sufficiently large security parameter λ and runs
Setup to generate the system parameters sp. C sends sp to A. The adversary returns a public key
pkB.

• (Pre-Challenge Phase.) The adversary A can perform a polynomially bounded number of queries
to the oracles OU ,OWU and OS?U .

• (Challenge Phase.) The adversary A chooses two different indices i0, i1 such that (i0,W0, pk0, $0),
(i1,W1, pk1, $1) ∈ UW (where pk0 = pk1 is allowed), a merchant pkM ∈ UH ∪ UA, a time stamp
ts and a legal monetary value k ≤ min{$0, $1} as challenge (such that both wallets W0,W1 can
spend a coin with monetary value k without over-spending the wallet). The challenger C randomly
chooses b ∈R {0, 1} and performs the Spend protocol as user pkb with wallet Wb to spend a coin
with monetary value k to merchant pkM.
After that, both entries get updated to (i0,W ′0, pk0, $0 − k) resp. (i1,W ′1, pk1, $1 − k), as if each of
both wallets currently has spent a coin of monetary value k.
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• (Post-Challenge Phase.) The adversary A can perform a polynomially bounded number of queries to
the oracles OU ,OWU ,OSU and OS?U , but the oracle OS?U cannot be asked on indices i0, i1. (Otherwise
A can force the user pkb to over-spend the wallet Wb that was used for challenge and can easily
deduced which index was used during the challenge phase.)

• (End Game Phase.) The adversary A outputs a bit b′ and wins the game if b′ = b.

The advantage of A is defined as the probability that A wins minus 1/2.

Definition 6. (Game Strong Exculpability)

• (Initialization Phase.) The challenger C takes a sufficiently large security parameter λ and runs
Setup to generate the system parameters sp. C sends sp to A. The adversary returns a public key
pkB.

• (Probing Phase.) The adversary A can perform a polynomially bounded number of queries to the
oracles OU ,OWU and OS?U .

• (End Game Phase.) The adversary A outputs (pkU , coin, coin′) such that (pkU , coin) /∈ Ucoin or
(pkU , coin′) /∈ Ucoin for pkU ∈ UH . The adversary A wins the game if VerifyGuilt on input
(pkB, pkU , coin, coin′) outputs 1.

The advantage of A is defined as the probability that A wins.

Definition 7. A divisible e-cash system is secure if no PPT adversary A can win in Game Balance,
Game Anonymity and Game Strong Exculpability with non-negligible advantage.

3.1.1 Comparison of different Security Definitions

First, we explain why we require a new formal definition for strong exculpability.

• The formal definition in [CHL06b] has the mistake, that the following fact is not ruled out by this
definition: A user applies one serial number for two different spendings (hence, the user double-
spends this serial number), but the adversary successfully accuses the user of using this serial
number for more than two spendings.

• The formal definition in [Tro06] is not usable for divisible e-cash systems because the following
fact is not ruled out by this definition: A user double-spends a coin with monetary value k, but
the adversary successfully accuses the user of double-spending a coin with monetary value greater
than k.

Thus, the fact that “strong exculpability means that a guilty user would only be responsible for the coins
that he indeed double-spent, i.e., his guilt can be quantified and he can be punished according to guilt”
([CHL06b]) is not achieved due to the definitions in [CHL06b] and [Tro06].

In [Tro06], Trolin pointed out that many security definitions do not rule out a corrupt bank cheating
a user. Trolin argued that the withdrawal protocol should include a mechanism to solve the scenario
that the bank claims that a user had withdrawn a wallet, but the user denies this. So, we require a
security property that guarantees that no collusion of users, merchants and the bank can falsely accuse
an honest user from having withdrawn a wallet that he has not withdrawn.

This property is called exculpability in [Tro06]. In [CG07], Canard and Gouget argued that this
property is implied by the (weak) exculpability property of [CHL06b, CG07]. But this statement is
false. As an example we take the divisible e-cash system in [ASM08]. This system fulfills the (weak)
exculpability property (see [ASM08]). But during the withdrawal protocol, the user does not have
to prove knowledge of his secret key. Thus, a corrupt bank can easily perform the users role in the
withdrawal protocol and falsely accuse an honest user from having withdrawn a wallet. Moreover, a
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corrupt bank can easily perform the users role in the withdrawal protocol and falsely accuse an honest
user from trying to cheat (see InspectionRoutine in [ASM08] for more details). So, an honest user is found
dishonest and has to pay a fine to the corrupt bank.

Nevertheless, it seems that each e-cash scheme that fulfills the following two conditions guaran-
tees that no collusion of users, merchants and the bank can falsely accuse an honest user from having
withdrawn a wallet:

1. During the Withdrawal protocol, a user generates a signature with respect to his public key pkU .
So, in the random oracle model, the user can easily generate a signature of knowledge instead of
an interactive proof of knowledge (see Section 2.3).

2. The bank can’t compute the secret key skU . Consequently, the Identify algorithm has to compute
the public key pkU rather than the secret key skU (such as in [AWSM07]).

If these two conditions are fulfilled, only the user with knowledge of the secret key skU can perform a
withdrawal protocol with respect to the public key pkU .

Now, we have a solution for the scenario that the bank claims that a user had withdrawn a wallet, but
the user denies this. If this scenario occurs, the bank has to publish its view of the withdrawal protocol.
Everybody can check that the user indeed had withdrawn a wallet. Furthermore, it is a solution for the
scenario that a corrupt bank doesn’t send a valid signature to the user (see [Tro06, Section 3]). Because
each view of the withdrawal protocol has to include a valid signature, the user obtains this signature.

Besides, since the bank has to store its views of withdrawal protocols, the e-cash system slightly
becomes auditable in the sense of [STS99a, STS99b].

4 Divisible E-Cash Schemes

4.1 ASM Scheme

In [ASM08], Au et al. suggest a divisible e-cash scheme (see also [Au09, Section 5.5]). The main building
blocks are the bounded accumulator and the ESS+ signature scheme presented in Section 2.3. Each user
is in possession of a key pair (pkU , skU ) ∈ G1 × Z∗p. To withdraw a wallet containing K = 2L coins, the
user randomly selects a key root κ0,0 ∈R Z∗p and generates a binary tree with L + 1 levels as shown in
Figure 1, where g is a generator of the group G1 and H0, H1 : {0, 1}∗ → Z∗p are two secure cryptographic
hash functions.

κ0,0 ∈R Z∗p

κ1,0 = H0 (gκ0,0)

κ2,0 = H0 (gκ1,0) κ2,1 = H1 (gκ1,0)

κ1,1 = H1 (gκ0,0)

κ2,2 = H0 (gκ1,1) κ2,3 = H1 (gκ1,1)

Figure 1: Binary tree in [ASM08] for L = 2

The Withdrawal protocol corresponds to L+1 executions of the issue protocol of ESS+ on L+1 mes-
sages mi = (Vi, skU ), where Vi = Acc({κi,0, . . . , κi,2i−1}) is the accumulator of the 2i keys κi,0, . . . , κi,2i−1
in level i. The user sends the commitments of the messages to the bank and with probability 1/2, the
bank asks U to open the commitments and to reveal the whole binary tree. The bank checks whether all
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values are honestly generated. If U is found dishonest, a fine is deducted from his account. Otherwise,
the withdrawal protocol is repeated from the beginning. If B does not ask U to reveal the binary tree,
the bank generates the corresponding L + 1 ESS+ signatures σ1, . . . , σL+1. Thus, this e-cash system
only fulfills a weak statistical balance property.

To spend a coin of value 2`, the user chooses an unused key κL−`,j at level L− `. Then, U computes
a serial number S = g

κL−`,j
S and a security tag T = pkUg

RκL−`,j
T , where R ∈ Z∗p is a hash value and gS , gT

are random generators of G1. Now, the user generates a signature of knowledge to prove that

1. S and T are computed correctly,

2. the key κL−`,j is inside the accumulator VL−`, and

3. the user is in possession of a signature σL−` on message (VL−`, skU ).

The main drawback of this scheme is that it only fulfills a weak statistical balance property.

4.2 CG Scheme

In [CG10], Canard and Gouget present a divisible e-cash scheme that solves the problem of [ASM08].
The system is also based on ESS+ and bounded accumulators, but with a new technique to prove that
several revealed values are inside an accumulator. To withdraw a wallet containing K = 2L coins,
the user randomly selects a key root κ0,0 ∈R Z∗p and generates a binary tree with L + 2 levels as
κi+1,2j = g

κi,j (mod q)
0 and κi+1,2j+1 = g

κi,j (mod q)
1 for 0 ≤ i ≤ L and 0 ≤ j ≤ 2i − 1, where g0, g1 are

generators of the subgroup Gq of Z∗p of order q, where q divides p− 1.
The Withdrawal protocol corresponds to L + 2 executions of the issue protocol of ESS+ on L + 2

messages m0 = (V, skU , s) and mi = (Vi, s, i) for 1 ≤ i ≤ L+ 1, where V = Acc({κ1,0, . . . , κL+1,2L+1−1})
is the accumulator of the whole binary tree except of κ0,0 and each Vi = Acc({κi,0, . . . , κi,2i−1}) is the
accumulator of the 2i keys κi,0, . . . , κi,2i−1 in level i. Next, the bank and the user interact using the
ESS+ protocol in order to get the signatures σ0, . . . , σL+1. But here is a slight flaw in [CG10]. According
to [CG10], the user sends the accumulators to the bank and then B produces the commitments. But,
since the computation of the accumulators is deterministic, the bank can compute all accumulators after
a user has spent a coin of value 2L and thus B easily breaks the anonymity of the system. Hence, the
user has to produce the commitments and has to send the commitments instead of the accumulators to
the bank (as described in the ESS+ signature generation protocol in [ASM08, Appendix A] or in Section
2.3). Thus, each accumulator is perfectly hidden.

To spend a coin of value 2`, the user chooses an unused key κL−`,j at level L− `. Then, U computes
a serial number S = κL−`+1,2j ||κL−`+1,2j+1 = gκL−`,j0 ||gκL−`,j1 and a security tag T = pkUg

RκL−`,j
T , where

R ∈ Z∗p is a hash value and gT is random generator of G1. Now, the user sends S, T to the merchant and
generates a signature of knowledge to prove that

1. S and T are computed correctly (this is a proof of equality of discrete logarithms in groups of
distinct known prime order),

2. the keys κL−`+1,2j , κL−`+1,2j+1 and all their descendants are inside the accumulator V (hence, the
merchant has to compute all descendants of S),

3. the keys κL−`+1,2j and κL−`+1,2j+1 are inside the accumulator VL−`+1,

4. the user is in possession of a signature σ0 on message (V, skU , s), and

5. the user is in possession of a signature σL−`+1 on message (VL−`+1, s, L− `+ 1).
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4.2.1 Forgeability of [CG10]

In this section we present an attack against the balance property, resp. against the unforgeability
property defined in [CG10]. The following Figure 2 shows the generation of the binary tree and the
accumulators for L = 2.

Figure 2: Binary tree and accumulators in [CG10] for L = 2

The keys in level 1, 2 and 3 are inside the accumulators V1, V2 and V3, respectively. Further, all keys
in level 1, 2 and 3 are inside the accumulator V . After computing the accumulators, the user produces
the perfectly hiding commitments and sends the commitments to the bank. As a consequence, there
is no chance for the bank to check whether or not the binary tree and the accumulators are generated
honestly.

Now we present the attack to withdraw a wallet containing 1.5 · 2L coins for every L ≥ 2. First,
generate two independent binary trees, each with L + 2 levels. We denote the keys of the first tree
as κi,j and of the second tree as κ′i,j for 0 ≤ i ≤ L + 1 and 0 ≤ j ≤ 2i − 1. Then, compute the
accumulator VL+1 = Acc

({
κL+1,0, . . . , κL+1,2L+1−1

})
with the keys of the first tree and the accumulators

Vi = Acc
({
κ′i,0, . . . , κ

′
i,2i−1

})
with the keys of the second tree for 1 ≤ i ≤ L. Especially, the two keys κ′2,0

and κ′2,1 are inside the accumulator V2. The accumulators V1, V3, . . . , VL will not be used for generating
coins and they could also be computed in another way. Finally, compute the accumulator

V = Acc
({

κL+1,0, . . . , κL+1,2L+1−1

}
∪
L+1⋃
i=2

{
κ′i,0, . . . , κ

′
i,2i−1−i

})
.

Thus, V is the accumulator of the 2L+1 keys κL+1,0, . . . , κL+1,2L+1−1 in level L+ 1 of the first tree and
all 2L+1 − 2 descendants of κ′1,0 of the second tree. Since each accumulator is perfectly hidden, no one
can detect this attack. The following Figure 3 shows the attack for L = 2.

The blackened nodes corresponds to the keys that can be used to generate valid coins. Hence, we
can use the 2L keys κL,0, . . . , κL,2L−1 to generate 2L valid coins with monetary value 1 and can use the
key κ′1,0 to generate a valid coin with monetary value 2L−1 = 0.5 · 2L. Consequently, we can produce
valid coins with monetary value 1.5 ·2L instead of 2L and thus we break the unforgeability of the scheme.
Notice, that this is not the best attack but an example that works for all L ≥ 2.

To prevent this attack, the bank can ask the user to reveal the whole binary tree and to open the
commitments during the withdrawal protocol just as in [ASM08]. Consequently, the system will only
fulfill statistical balance. Another approach is that during spending the user has to prove that each
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Figure 3: Attack against the unforgeability of [CG10] for L = 2

descendant from the serial number S = κL−`+1,2j ||κL−`+1,2j+1 is inside the corresponding accumulator
and that the user is in possession of an appropriate signature. As a consequence, the computational
costs and the bandwidth of the spending phase will linearly depend on `.

5 Our Construction

5.1 High Level Description

As said in Section 1.2, we combine features of the systems in [ASM08] and [CG10] to design the new
divisible e-cash scheme. The binary tree and the serial numbers are computed as in [ASM08], but we use
related hash functions and our binary tree has one more level. Let g be a generator of a cyclic group G1
and let H0 and H1 two hash functions with H0 (m) := H (m||0) and H1 (m) := H (m||1) for m ∈ {0, 1}∗,
where H is a secure cryptographic hash function H : {0, 1}∗ → Z∗p. To generate the binary tree, the user
randomly selects a key root κ0,0 ∈R Z∗p and computes the keys of the tree as κi+1,2j = H0 (gκi,j ) and
κi+1,2j+1 = H1 (gκi,j ) for 0 ≤ i ≤ L − 1, 0 ≤ j ≤ 2i − 1. Then, U computes the K so called serial keys
κj := κL+1,j = H (gκL,j ) for 0 ≤ j ≤ K − 1. Figure 4 illustrates the construction of a binary tree with
L = 2.

κ0,0 ∈R Z∗p

κ1,0 = H0 (gκ0,0)

κ2,0 = H0 (gκ1,0)

κ0 := κ3,0 = H (gκ2,0)

κ2,1 = H1 (gκ1,0)

κ1 := κ3,1 = H (gκ2,1)

κ1,1 = H1 (gκ0,0)

κ2,2 = H0 (gκ1,1)

κ2 := κ3,2 = H (gκ2,2)

κ2,3 = H1 (gκ1,1)

κ3 := κ3,3 = H (gκ2,3)

Figure 4: Construction of a binary tree (L = 2)

When a node key κi,j is used, none of the descendant and ancestor nodes of κi,j can be used, and no
node can be used more than once.

Unlike the schemes in [ASM08] and [CG10], during the withdrawal protocol, only the K serial keys
κ0, . . . , κK−1 are accumulated into one accumulator V . Thus, if the user just randomly selects the K
serial keys κ0, . . . , κK−1 ∈R Z∗p instead of generating the binary tree, we will get a compact e-cash scheme
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related to the one in [AWSM07]. To get a compact e-cash scheme that is secure in the standard model
under the q-SDH and SXDH assumption, the user randomly selects K keys κL,0, . . . , κL,K−1 ∈R Z∗p of
level L and then computes each serial key as before as κi := κL+1,i = H (gκL,i) for 0 ≤ i ≤ K − 1.
However, with the use of the binary tree we can design an efficient divisible e-cash system. At the end
of the withdrawal protocol, the user obtains one AGHO signature σ on message (V, pkU ).

To spend a coin with monetary value 2` ≤ 2L, the user chooses the unused key κL−`,j0 at level
L − ` with smallest index j0. Then, U computes a serial number S = gκL−`,j0 and a security tag
T = pkUg

RκL−`,j0
1 , where R ∈ Z∗p is a hash value (see also Section 7.4) and g1 is a random generator of

G1. Now, the user sends S, T to the merchant and generates a signature of knowledge to prove that

1. S and T are computed correctly,

2. the k (known) serial keys κL+1,kj0 , . . . , κL+1,kj0+k−1 are inside a secret accumulator V (with the
technique presented in [CG10]), and

3. the user is in possession of a signature σ on message (V, pkU ).

5.2 A new Divisible E-Cash Scheme

Setup. Let (G1,G2) be a bilinear group pair with parameters G for some λ bit prime p. Let g1, u0 be
random generators of G1 and v0 be a random generator of G2. The algorithm generates the elements
u1, . . . , uK ∈ G1 and v1, . . . , vK ∈ G2 with ui = uα

i

0 and vi = vα
i

0 of the accumulator scheme. Let
H : {0, 1}∗ → Z∗p be a secure cryptographic hash function. Define hash functions H0 and H1 as H0 (m) :=
H (m||0) and H1 (m) := H (m||1) for m ∈ {0, 1}∗. If we are in the standard model, a common reference
string crs = (g, g2, g3, g4, h, h1, h2, h3) ∈ G4

1×G4
2 for the Groth-Sahai proofs system in the SXDH setting is

also generated.4 The system parameters are sp = (p,G1,G2,GT , ê, crs, g, g1, u0, . . . , uK , h, v0, . . . , vK , H).
This parameters could also include the element ê (g, h) ∈ GT . Since the random number α ∈ Z∗p is no
longer needed, it should be deleted (see also [AWSM07, ASM08]).

BKeyGen. The bank generates an AGHO signature key pair (pkB, skB) = ((X,Y1, Y2), (x, y1, y2)) and
publishes pkB. Further, B sets up a database D. The bank can also publish the element ê (g, Y2) ∈ GT .
In that case, the element Y2 ∈ G2 is not required in the random oracle model.

UKeyGen. To join the system, a user randomly selects a secret u ∈R Z∗p and computes the public key
as pkU := U = gu. The bank stores pkU as the unique identity of U in its database and the user stores
the key pair (pkU , skU ) = (U, u).

Withdrawal. To withdraw a wallet containing K = 2L coins, the user and the bank perform the
interactive Withdrawal protocol (see Figure 5), after they have authenticated each other.

Step 1: The user randomly selects a key root κ0,0 ∈R Z∗p and computes the keys of the tree and the K
serial keys as described in Section 5.1. The keys κ1,0, . . . , κL,K−1 (all keys except of κ0,0) and the
serial keys κ0, . . . , κK−1 are stored in two lists, K0 and K1, resp. Next, U accumulates all serial

keys by computing V = u
s
∏K−1
j=0 (α+κj)

0 for a random number s ∈R Z∗p and sends V to the bank.

Step 2: The bank randomly chooses r ∈R Z∗p and computes an AGHO signature A = hr, B = Ax, C =
(g · V −y1 · U−y2)1/r. Then, B sends A,B,C to U . (In the negligible case C = 1 the bank generates
a new signature.)

4g and h are elements of crs. So, we need only six additional generators.
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Step 3: The user verifies the signature and stores the wallet W = (K0,K1, κ0,0, s, V,A,B,C).
Remark 1. It is possible to achieve a wallet complexity of O(λ + K) instead of O(λ ·K) by not
storing the lists K0 and K1, but storing a K-bit string, that represents the used serial keys, and
recomputing the binary tree from the key root κ0,0 during each spending.
Remark 2. To achieve the security property mentioned in [Tro06] (see also Section 3.1.1), the
user also sends a weak BB signature σ′ = u

1/(u+H(U ||V ))
0 to the bank, where the element hu ∈ G2

is also a part of the user public key pkU . The bank then stores its view of the protocol view =
(pkU , V, σ′, A,B,C). It is also possible that the bank only stores (pkU , V, σ′) and computes another
valid AGHO signature (A′, B′, C ′) in the case that the bank has to prove that the user indeed had
withdrawn a wallet (as discussed in Section 3.1.1).
Remark 3. As already said, we get a compact e-cash scheme, if the user just randomly chooses the
L-th level of the binary tree and then computes the serial keys as described.

U (sp, pkB, skU ,K) B (sp, skB, pkU ,K)

κ0,0, s ∈R Z∗p
Compute binary tree and lists K0,K1

V = u
s
∏K−1
j=0 (α+κj)

0
V−−−−−−−−−−−−−−−−→

r ∈R Z∗p
A = hr

B = Ax

C = (g · V −y1 · U−y2)1/r

A,B,C←−−−−−−−−−−−−−−−−
ê (X,A) ?= ê (g,B)
ê (C,A) ê (V, Y1) ê (g, Y2)u ?= ê (g, h)

W = (K0,K1, κ0,0, s, V,A,B,C)

Figure 5: Withdrawal protocol

Spend. To spend a coin of monetary value k = 2` ≤ 2L, the user and the merchant perform the
Spend protocol (see Figure 6). First, the user and the merchant agree on transaction information which
includes the monetary value k = 2`, the time ts and the public key of the merchant pkM. Then, both
parties compute the hash value R = H (pkM||ts||k). Each merchant is allowed to perform only one spend
protocol at that time ts.5

Step 1: The user chooses the unused key κL−`,j0 ∈ K0 in level L− ` with smallest j0. Let κ := κL−`,j0
and I := {kj0, . . . , kj0 + k − 1}. Then, U computes the serial number as S = gκ and the security
tag as T = UgRκ1 . Next, U computes the witness of the serial keys κkj0 , . . . , κkj0+k−1 as WI =

u
s
∏K−1
j=0,j /∈I(α+κj)

0 . (If k = 2` = 2L = K, the witness WI is computed as WI = us0.) Now, U has to
prove that S and T are computed correctly, that all k serial keys κkj0 , . . . , κkj0+k−1 are accumulated
in some V , and that he knows an AGHO signature on the message (V,U). So, the user generates
a proof Φ as follows:

5That is in the interest of the merchant. Otherwise, a user could double-spent a coin to a merchant at the same time.
Thus, the merchant possibly obtains two identical coins. As a consequence, the bank only will accept one of these coins
because it seems that the merchant tries to deposit the same coin twice.
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• Random Oracle Model: The user randomly chooses r′, r1, r2 ∈R Z∗p, computes the elements
A′ = Ar

′
, B′ = Br′ , C ′′ = C1/(r′r1), V ′ = V 1/r2 ,W ′ = W

1/r2
I and generates the following

signature of knowledge:

Π = SoK
{

(u, κ, r1, r2) : S = gκ ∧ T = gugRκ1 ∧

ê (g, h) = ê
(
C ′′, A′

)r1 ê
(
V ′, Y1

)r2 ê (g, Y2)u
} (
S, T,A′, C ′′, V ′, R

)
.

The proof is Φ = (A′, B′, C ′′, V ′,W ′,Π).
• Standard Model: As in [CPST15], the user randomly chooses skots ∈R Z∗p, sets pkots =
hskots ∈ G2 and computes µ = u

1/(u+H(pkots))
0 ∈ G1. Then, the user generates a reran-

domized signature (A′, B′, C ′) =
(
Ar
′
, Br′ , C1/r′

)
for a random number r′ ∈R Z∗p. Next,

the user generates Groth-Sahai commitments to u, κ ∈ Zp (2 elements of G2 each) and to
U,C ′, V,WI , µ ∈ G1 (2 elements of G1 each). Let Com include all these commitments. Then,
U generates the following NIZK proof π that the committed values satisfy:

gκ = S ∧ gu
(
gR1

)κ
= T ∧ guU−1 = 1 ∧ µuµH(pkots) = u0 ∧

ê (V , v0) ê
(
WI , v

−1
I

)
= 1 ∧ ê

(
C ′, A′

)
ê (V , Y1) ê (U, Y2) = ê (g, h) .

The proof of the first two equations consists of 1 element of G1 each. The proof of the third
and fourth equations consists of 2 elements of G1 and 4 elements G2 each. The proof of the
fifth and sixth equations consists of 2 elements of G2 each.

Next, the user computes the BB one-time signature η = g
1

skots+H(S||T ||A′||B′||Com||π||R) ∈ G1 (as
in [CPST15]). The proof is Φ = (pkots, A′, B′,Com, π, η).

The user sends S, T along with the proof Φ to the merchant.
Finally, the user deletes the key κL−`,j0 and all its ancestors and descendants in K0 (or updates
the stored K-bit string). The updated wallet is W ′ = (K′0,K1, κ0,0, s, V,A,B,C), where K′0 is the
updated list.

Step 2: The merchant computes the k = 2` serial keys κj for j ∈ I :=
{

2`j0, . . . , 2`j0 + 2` − 1
}
from

the serial number S. Then, the merchant verifies the proof Φ as follows:

• Random Oracle Model: The merchant checks if ê (X,A′) ?= ê (g,B′), if ê (V ′, v0) ?=

ê (W ′, vI), where vI = v

∏
j∈I(α+κj)

0 , and if the signature of knowledge Π is valid.

• Standard Model: The merchant checks if ê
(
η, pkotshH(S||T ||A′||B′||Com||π||R)

) ?= ê (g, h), if

ê (X,A′) ?= ê (g,B′) and if π is valid.

If the proof Φ is valid, the merchant accepts the payment and stores the coin coin = (k, S, T,R,Φ, ts).

Deposit. The merchant sends a coin coin = (k, S, T,R,Φ, ts) to the bank. The bank checks R ?=
H (pkM||ts||k) to verify that pkM is the real merchant. Then, the bank computes the k = 2` serial
keys κL+1,2`j0 , . . . , κL+1,2`j0+2`−1 from the serial number S and verifies Φ (as the merchant during spend
protocol). After successful verification, the bank checks if at least one of the serial keys is already in
its database D. If so, the bank runs the identification algorithm Identify to identify the double-spender.
Else, B adds coin and the k serial keys in D.
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U (sp, pkB, pkM, skU ,W, ts, k) M (sp, pkB, skM, ts, k)

R = H (pkM||ts||k) R = H (pkM||ts||k)
Choose unused κ := κL−`,j0 ∈ K0
S = gκ

T = UgRκ1
Generate proof Φ (see text above)

S, T,Φ−−−−−−−−−−−−−−−−→
Verify Φ

W ′ = (K′0,K1, κ0,0, r, V,A,B,C) coin = (k, S, T,R,Φ, ts)

Figure 6: Spend protocol

Identify. Let coin = (k, S, T,R,Φ, ts) and coin′ = (k′, S′, T ′, R′,Φ′, ts′) be the coins where a double
spending occurred and pkM the merchant who deposits a coin. The bank checks if R ?= R′. If so, the
merchant pkM tries to deposit the same coin twice since the hash function H is collision-resistant. Else,
B computes the public key of the double-spender as follows:

• If k = 2` = 2`′ = k′, then we have S = S′ and hence the same key κ has been used in T and T ′.
Thus, B computes the public key of the double-spender as(

TR
′

T ′R

)1/(R′−R)

=
(
UR

′
gRR

′κ
1

URgRR
′κ

1

)1/(R′−R)

=
(
UR

′−R
)1/(R′−R)

= U.

• If k = 2` 6= 2`′ = k′, without loss of generality, assume ` > `′. Consequently, S′ is a descendant
from S. Hence, B computes the key κ′ with S′ = gκ

′ and T ′ = UgR
′κ′

1 from the serial number S.
Thus, B computes the public key of the double-spender as

T ′

gR
′κ′

1
= UgR

′κ′
1

gR
′κ′

1
= U.

VerifyGuilt. The bank publishes the two double-spent coins and the identity U of the double-spender.
Everyone can verify the two coins and execute Identify to verify that U is the double-spender.

5.3 Security Analysis

We have the following theorems for our new compact and divisible e-cash systems.

Theorem 1. In the random oracle model, our compact and our divisible e-cash system are secure under
the q-SDH assumption and the SXDH assumption.

Theorem 2. In the standard model, assuming that the hash function H is collision-resistant and the
output of H is indistinguishable from the uniform distribution, our divisible e-cash system is secure under
the q-SDH assumption and the SXDH assumption.

Theorem 3. In the standard model, assuming that the hash function H is collision-resistant, our com-
pact e-cash system is secure under the q-SDH assumption and the SXDH assumption.

Proof. We prove Strong Exculpability, Balance and Anonymity.

18



Strong Exculpability. Let A be a PPT adversary. We show that the advantage of A in winning
Game Strong Exculpability is negligible under the q-SDH assumption, by constructing a reduction R
acting as challenger C. As in [CPST15], we distinguish the proof in the random oracle model from the
one in the standard model.

• Random Oracle Model: The adversary A has to output an honest user pkU ∈ UH and two
valid coins coin = (k, S, T,R,Φ, ts) and coin′ = (k′, S′, T ′, R′,Φ′, ts′) such that (pkU , coin) /∈ Ucoin
or (pkU , coin′) /∈ Ucoin. Hence, at least one of this coins was not produced by R. Both coins
contain a signature of knowledge, which involves proving knowledge of the user secret skU of an
honest user pkU ∈ UH . Thus, A only wins the game, if it fakes the knowledge of T resp. T ′ which
involves knowledge of u = logg U , what is negligible under the discrete logarithm assumption and
consequently negligible under the q-SDH assumption.

• Standard Model: As in [CPST15], there are two kinds of attacks:

– Type-1 Attack: pk′ots is one of the keys used by R to answer a OSU query.
– Type-2 Attack: pk′ots was not used by R to answer OSU queries.

As in [CPST15], a Type-1 attack is negligible under the security of the one-time signature scheme
and thus negligible under the q-SDH assumption. So, we only have to consider a Type-2 attack.
The reduction R gets the global parameters G = (p,G1,G2,GT , ê, g, h) and a q-SDH challenge(
g, gx, gx

2
, . . . , gx

qS , h, hx
)
as input, where q = qS is the bound on the number of OSU queries.

The reduction R randomly chooses generators g1 ∈R G1, v0 ∈R G2 and generates a common
reference string crs for the soundness setting such that R knows the related discrete logarithms
of the elements in G2 (i.e. let (h, h1, h2, h3) ∈ G4

2 be the part of crs, then R randomly chooses
a, b ∈R Z∗p and computes h1 = ha, h2 = hb, h3 = hab). Further, R randomly selects 1 ≤ i∗ ≤ qU ,
where qU is the bound on the number of OU queries. The reduction honestly generates qS key

pairs
(
pk(1)

ots, sk
(1)
ots

)
, . . . ,

(
pk(qS)

ots , sk
(qS)
ots

)
and sets u0 := g

r′
∏qS
i=1

(
x+H

(
pk(i)
ots

))
for a randomly chosen

r′ ∈R Z∗p.
The reduction R sends sp′ := (p,G1,G2,GT , ê, crs, g, g1, u0, h, v0) to the adversary. To show that
the knowledge of the secret number α doesn’t help A to win the game, it is allowed to generate
u1, . . . , uK ∈ G1 and v1, . . . , vK ∈ G2. Further, the adversary generates pkB = (X,Y1, Y2).
Each OU query will be simulated honestly by R to add honest user and merchants for i 6= i∗.
Otherwise, R will set pk∗U := gx. Further, each OWU query and each OS∗U query on pkU 6= pk∗U
will be simulated honestly by R. For the j-th OWU query on pk∗U , the reduction computes µ =

g
r′
∏qS
i=1,i 6=j

(
x+H

(
pk(i)
ots

))
which verifies µ = u

1/
(
x+H

(
pk(j)
ots

))
0 . Then, R computes S, T,A′, B′ hon-

estly and generates all commitments and the NIZK proof π honestly, which is possible since R
has only to know the elements hx, hx2 = (hx)b and hx3 = (hx)ab (see [GS10]). Finally, R computes
η = g

1
skots+H(S||T ||A′||B′||Com||π||R) .

The adversary A outputs an honest user pkU ∈ UH and two valid coins coin = (k, S, T,R,Φ, ts)
and coin′ = (k′, S′, T ′, R′,Φ′, ts′). As explained above, at least one coin was not produced by R. If
pkU 6= pk∗U the reduction aborts. Else, R extracts from the proof π of the forged coin an element
µ = u

1/(x+H(pkots))
0 , where H (pkots) /∈

{
H
(
pk(1)

ots

)
, . . . ,H

(
pk(qS)

ots

)}
, since we consider a Type-2

attack. Thus, R can break the q-SDH assumption for q = qS (as in [BB08]) since R will not abort
with probability 1/qU .

Consequently, the adversary can only create a valid coin corresponding to an honest user pkU ∈ UH with
negligible probability under the q-SDH assumption. (This statement will be used to prove balance.)
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Balance. Let A be a PPT adversary, let qW be the number of OWB queries, q′W be the number of OWU ,B
queries and k? be the monetary value A obtains from OSU . We show that the advantage of A in winning
Game Balance is negligible under the q-SDH assumption and the SXDH assumption, by constructing a
reduction R acting as challenger C.

The reduction R gets the global parameters G = (p,G1,G2,GT , ê, g, h), the public parameters of
the accumulator scheme (u0, . . . , uK , v0, . . . , vK), the generator g1 ∈ G1 and the public key of AGHO
signature scheme (X,Y1, Y2) as input. In the standard model, the reduction R generates a common
reference string crs for the soundness setting.

Then, R sets sp := (p,G1,G2,GT , ê, crs, g, g1, u0, . . . , uK , h, v0, . . . , vK) and pkB := (X,Y1, Y2) and
sends the simulated parameters sp, pkB to the adversary.

Each OU query will be simulated honestly by R to add honest user and merchants. For each
OWB query, R invokes the AGHO signing oracle to obtain an AGHO signature (A,B,C) on the mes-
sage (V,U) and sends (A,B,C) to A. For each OWU ,B query, R acts like the honest user, invokes the
AGHO signing oracle to obtain an AGHO signature (A,B,C) on the message (V,U), stores an en-
try (i,Wi = (K0,K1, κ0,0, s, V,A,B,C), pkU ,K) in the set UW and increases the counter i by 1. For
each OSU query, R honestly computes the coin coin and updates the corresponding entry to (i,W ′i =
(K′0,K1, κ0,0, s, V,A,B,C), pkU , $i − k). Let Coins be the set of all coins spent by honest users.

Finally, A outputs q valid coins coin1, . . . , coinq with monetary value at least KqW + k? + 1. The
reduction R generates all corresponding serial keys. Let Coins∗ := {coin1, . . . , coinq} \ Coins be the set
of all coins that are generated by the adversary A. For each such coin coini ∈ Coins∗, the reduction R
extracts the elements Ui, C ′i, Vi,WI,i as follows:

• Random Oracle Model: The reduction extracts the values ui, κi, r1,i, r2,i ∈ Zp (this is possible
due to the proof of knowledge property of Π in the random oracle model). Then, R computes
Ui := gui , C ′i := (C ′′i )r1,i , Vi := (V ′i )r2,i and WI,i := (W ′i )

r2,i .

• Standard Model: The reduction extracts the elements Ui, C ′i, Vi,WI,i, µi from the Groth-Sahai
commitments (this is possible due to the perfect soundness of the Groth-Sahai proof systems).

Next, R stores an entry ((Vi, Ui), (A′i, B′i, C ′i)) in a list LSign and an entry (Vi,WI,i, κi,0, . . . , κi,ki−1) in a
list LAcc, where κi,0, . . . , κi,ki−1 are the ki serial keys of the coin coini. Under the q-SDH assumption, we
have Ui ∈ UH for any i only with negligible probability (see Strong Exculpability). Consequently, none
of the messages (Vi, Ui) ∈ LSign was signed during a OWU ,B query.
A wins the game either if (1) all serial keys are unique or if (2) some of the serial keys are duplicated

but the Identify algorithm does not output any pkA ∈ UA. We will discuss both cases separately.
(1). Since A only obtains k? serial keys from OSU , A has to produce another KqW + 1 serial keys.

Each of the qW OWB queries only gives A one signature on one accumulator. As a consequence, A only
obtained qW signatures on at most qW accumulators V1, . . . , VqW , where each accumulator gathers at
most K serial keys. Hence, A obtained at most KqW valid serial keys from OWB . Thus, to produce
more than KqW unique serial keys, A either (1) has to forge an AGHO signature on a new message
(V ?, U?) such that V ? /∈ {V1, . . . , VqW } or (2) at least one of the accumulators V ′ ∈ {V1, . . . , VqW } is an
accumulator of more than K serial keys. Consequently, R can output a forged message signature pair
((V ?, U?) , (A?, B?, C?)) ∈ LSign and hence breaks the security of the AGHO signature scheme, or can
output an accumulator V ′ together with more than K serial keys and witnesses (all values are stored
in LAcc) which prove that all serial keys are inside the accumulator and hence breaks the security of
the bounded accumulator scheme (like in [ASM08] and [CG10]), which only happens with negligible
probability under the SXDH assumption and the q-SDH assumption, resp.

(2). Let coin = (k, S, T,R,Φ, ts) and coin′ = (k′, S′, T ′, R′,Φ′, ts′) be two double-spent coins and pkM
resp. pk′M be the corresponding merchant. Since we demand (pkM, ts) 6=

(
pk′M, ts′

)
and the values R

and R′ are the output of a collision-resistant hash function, they shall be different. Similarly, A shall
not know different serial numbers that lead to the same serial key (otherwise A has found a collision of
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the hash function H). So, if the security tags are correctly computed as T = UgRκ1 and T ′ = UgR
′κ′

1
regarding to the serial numbers S = gκ and S′ = gκ

′ , the correct identity U ∈ UA will be computed by
Identify. The two security tags are the only valid tags to accompany serial numbers. To deviate from
these valid tags, A has to forge an AGHO signature on a new message (V ?, U?) such that U? /∈ UA.
Consequently, R can output a forged message signature pair ((V ?, U?) , (A?, B?, C?)) ∈ LSign and hence
breaks the security of the AGHO signature scheme, which only happens with negligible probability under
the SXDH assumption.

Thus, A only wins the game with negligible probability under the SXDH assumption and the q-SDH
assumption.

Anonymity. Let A be a PPT adversary. We show that the advantage of A in winning Game
Anonymity is negligible under the DDH assumption in G1 (what is replaced by the SXDH assump-
tion), by constructing a reduction R acting as challenger C.

Let (G1,G2) be a bilinear group pair with parameters G. The reduction gets G and a DDH instance
(ga, gb, gc) ∈ G3

1 as input. The task of R is to decide whether gc = gab or not.
The reduction R randomly chooses generators u0 ∈R G1, v0 ∈R G2 and defines g1 := ga. In the

standard model, R also generates a common reference string crs for the witness-indistinguishability
setting. The reduction R sends sp′ := (p,G1,G2,GT , ê, crs, g, g1, u0, h, v0) to the adversary. To show
that the knowledge of the secret number α doesn’t help A to win the game, it is allowed to generate
u1, . . . , uK ∈ G1 and v1, . . . , vK ∈ G2. Further, the adversary generates pkB = (X,Y1, Y2).

For each oracle query, the reduction just behaves like the honest party.
Assume, the adversary chooses two indices i0, i1 for challenge such that pk0 6= pk1. For the challenge

spending, the reduction randomly chooses U ∈R {pk0, pk1} and defines S := gb and T := U (gc)R.
Next, R randomly chooses r′ ∈R Z∗p and computes the perfectly simulated elements A′ = (A∗)r

′
and

B′ = (B∗)r
′
, where (A∗, B∗, C∗) is any valid signature which R obtained from OWU (and R must have

obtained at least one valid pair (A∗, B∗)). Finally, R perfectly simulates the proof Φ as follows:

• Random Oracle Model: The reduction R randomly chooses r1, r2 ∈R Z∗p and computes the

perfectly simulated elements C ′′ = gr1 ,W ′ = ur2
0 , V

′ = u
r2
∏k−1
j=0 (α+κj)

0 , where κ0, . . . , κk−1 are the
k serial keys computed from S. Further, R perfectly simulates the signature of knowledge Π. In
the random oracle model, the serial number S cannot be linked to other serial numbers (except its
ancestors and descendants). Hence, the simulation of S is perfect in the random oracle model for
a random number b =: κ (since no double-spending occurs).

• Standard Model: The reduction R perfectly simulates π and computes pkots, η honestly. In the
standard model, the simulation of S is indistinguishable from a real serial number, if the output
of H is indistinguishable from the uniform distribution.

• Compact E-Cash: The reduction R perfectly simulates Φ as in the random oracle model or in
the standard model. For the compact e-cash scheme, the simulation of S is perfect in both models
since it is possible that the user has chosen b during the withdrawal protocol.

If gc = gab, the security tag T = UgabR = UgRκ1 is perfectly simulated. If gc is just a random element
in G1, we can interpret it as gc = gab+δ for an unknown, random number δ ∈R Z∗p. Hence, the security
tag looks like T = UgabR+δR = U ′gRκ1 for a random user U ′ := UgRδ. Thus, using the adversary as a
black-box, R can solve the DDH problem.

It follows, that if the adversary chooses pk0 = pk1 for challenge, the advantage of A will be negligible
(it will be equal to zero in the random oracle model).
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6 Efficiency Analysis
Table 1 compares the general efficiency of the e-cash schemes in [ASM08], [CG10], [CPST15] and our
new construction (each implemented in the random oracle model) for withdrawing a monetary value of
K = 2L and spending and depositing a monetary value of k = 2`. This table can be seen as an extension
of [CG10, Table 1] and [CPST15, Figure 5], but only with schemes in the random oracle model. First, we
note that in [CPST15] the (K(L+ 1)) elements g̃s 7→f ∈ G2 (see [CPST15] for details) must be contained
in the public system parameters sp, because otherwise the guilt of double-spenders can’t be verified.

[ASM08] [CG10] [CPST15] Our Construction
G + pkCom + G + pkCom + G + pkCom + G + pkCom +

sp pk(1)
Acc20

+ · · · + pk(1)
Acc2L

pk(2)
Acc21

+ · · · + pk(2)
Acc2L+1

2 pkTreeL
+ pk(K)

Acc2L

+ pk(4K−2)
Acc2L+2−2

(K(L+ 1)) G2

pkB pkSign pkSign (L+ 2) pkSign + pkSign
(2K − 1) |Sign|

(2K − 2) E + (4K − 2) E + (2K − 1) E +
Withdrawal 2 (Acc20 + · · · + Acc2L ) 1 Acc21 + · · · + 1 Acc2L+1 1 Acc2L +
Computations + 1 Acc22+L−2 +
User + (2L+ 2) Com + (L+ 2) Com + 1 Com +

SoK {(L+ 1) Com} + SoK {(L+ 2) Com} + SoK {1 Com} +
(L+ 1) VerifySign (L+ 2) VerifySign 1 VerifySign 1 VerifySign

Withdrawal (K − 1) E +
Computations 1 Acc20 + · · · + 1 Acc2L

Bank + VerifySoK + VerifySoK + VerifySoK +
(L+ 1) Sign (L+ 2) Sign 1 Sign 1 Sign

(2L+ 2) |Com| + (L+ 2) |Com| + 1 |Com| + 1 |Acc| +
Withdrawal (L+ 1) |OpenCom| +
Transfer size |SoK| + |SoK| + |SoK| +

(L+ 1) |Sign| (L+ 2) |Sign| 1 |Sign| 1 |Sign|
Binary Tree (2K − 2) |p| (4K − 2) |p| K-bit string (3K − 2) |p|
Wallet 1 |p| + (L+ 1) |Acc| 2 |p| + (L+ 2) |Acc| 1 |p| 2 |p| + 1 |Acc|

+ (L+ 1) |Sign| + (L+ 2) |Sign| + 1 |Sign| + 1 |Sign|
2 E + 1 WitK/k−1 + 1 E + 1 Wit2K/k−2 + 1 E + 1 ME + 2 E + 1 WitK−k +

Spend 1 Wit4(K−k) +
Computations SoK

{
2 E + 1 Acc

?(1) SoK
{

3 E∗ + 1 Acc(2) + SoK{2 E SoK
{

2 E + 1 Acc(k)

User 1 Acc(4k−2) +
+ 1 Sign

}
+ 2 Sign

}
+ 2 Sign} + 1 Sign

}
Spend (4k − 4) E + (2k − 2) E +
Computations 1 Acc∗2 + 1 Acc∗4k−2 + 1 Acc∗k +
Merchant VerifySoK VerifySoK VerifySoK VerifySoK
Spend 2 G1 + 2 Gq + 1 G1 + 2 G1 + 2 G1 +
Transfer size |SoK| |SoK| |SoK| |SoK|
Deposit (4k − 4) E + (2k − 2) E +
Computations VerifySoK + 1 Acc∗2 + 1 Acc∗4k−2 + VerifySoK + 1 Acc∗k +
Bank (2k − 2) E VerifySoK K Pair VerifySoK
coin ∈ D k G1 + |Spend| k Gq + |Spend| K GT + |Spend| k |p| + |Spend|
Identify ` = `′ 1 ME 1 ME 1 ME + (# + 2) P 1 ME
Identify ` > `′ (`− `′) E (`− `′) E 1 ME + (# + 2) P (`− `′) E

Table 1: General efficiency of [ASM08], [CG10], [CPST15] and our new construction

Whereas in our new system (and also in [ASM08] and [CPST15]) p can be e.g. a 256 bit prime, due
to the generation method of the binary tree in [CG10], we have to take q as 256 and p as 3, 072 bit prime
for an equivalent level of security in [CG10].6 As a consequence, the bit length of the group elements in

6See http://www.nsa.gov/business/programs/elliptic_curve.shtml
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[CG10] is much larger.
We used the following abbreviations: pkCom refers to a public key of a commitment scheme, pkSign

to a public key of a signature scheme, pkTreeL to a public key of a public binary tree with L levels,
and pk(j)

Acci to a public key of a bounded accumulator scheme, where i is the bound of values that can
be accumulated and j is the limit of values, for which a user wants to prove that they are inside an
accumulator. Using the Nguyen accumulator scheme (see Section 2.3), each pk(j)

Acci contains i elements in
G1 and j elements in G2. E denotes an exponentiation, ME an multi-based exponentiation, P a pairing
computation, Com a commitment computation, Sign a signature computation, Acci an accumulator
computation with i values inside the accumulator, Witi a witness computation with i values inside the
witness, and Acc∗i an accumulator computation with i values inside the accumulator, where Acc∗i has
to be computed by the merchant and the bank (possibly in another group as an accumulator Acci) to
verify the signature of knowledge. VerifySign refers to the computation cost to verify a signature and
VerifySoK to the computation cost to verify a signature of knowledge (SoK). SoK {Com} denotes the
cost of a SoK to prove the correct computation of a commitment, SoK {E} the cost of a SoK to prove
equality of discrete logarithms, SoK {E∗} the cost of a SoK to prove equality of discrete logarithms in
groups of different order, SoK

{
Acc?(1)

}
the cost of a SoK to prove that one secret value is inside a secret

accumulator, SoK
{

Acc(i)
}
the cost of a SoK to prove that i known values are inside a secret accumulator,

and SoK {Sign} the cost of a SoK to prove possession of a valid signature. We denote the number of all
users by #.

Random Oracle Model Standard Model
[CPST15] Our work [CPST15] Our work

sp G4K+3
1 ×GK(L+1)+1

2 GK+3
1 ×GK+2

2 ×GT G4K+7
1 ×GK(L+1)+4

2 GK+6
1 ×GK+5

2 ×GT
Bits 6,832,388 791,301 6,834,955 793,611
pkB G4K−2

1 ×G2K+4L+4
2 G1 ×G2 ×GT G4K−2

1 ×G2K+4L+7
2 G1 ×G2

2 ×GT
Bits 2,125,354 1,794 2,126,893 2,307
skB Zp Z3

p Z4
p Z3

p

Bits 256 768 1,024 768
Withdrawal G7

1 × Z6
p G2

1 ×G2
2 G8

1 ×G2 × Z4
p G2

1 ×G2
2

Bits 3,335 1,540 3,593 1,540
User 8 ME + 2 P 2, 049 ME + 4 P 6 ME + 7 P 2, 049 ME + 4 P
Bank 5 ME 3 ME 7 ME 3 ME
Binary Tree K-bit string Z3K−2

p K-bit string Z3K−2
p

Bits 1,024 785,920 1,024 785,920
Wallet G1 × Z3

p G2
1 ×G2

2 × Z2
p G2

1 ×G2 × Zp G2
1 ×G2

2 × Z2
p

Bits 1,025 2,052 1,283 2,052
Spend G10

1 ×G2 × Z20
p G5

1 ×G2
2 × Z5

p G39
1 ×G41

2 G19
1 ×G19

2

Bits 8,203 3,591 31,056 14,630
User 24 ME + 8 P 10 ME + 2 P 81 ME 40 ME
Merchant 16 ME + 9 P 66 ME + 6 P 2 ME + 164 P 65 ME + 75 P
Deposit G10

1 ×G2 × Z21
p G5

1 ×G2
2 × Z6

p G39
1 ×G41

2 × Zp G19
1 ×G19

2 × Zp
Bits 8,459 3,847 31,312 14,886
Bank 16 ME + 1, 033 P 66 ME + 6 P 2 ME + 1, 188 P 65 ME + 75 P
coin ∈ D G10

1 ×G2 ×GKT × Z21
p G5

1 ×G2
2 × Zk+6

p G39
1 ×G41

2 ×GKT × Zp G19
1 ×G19

2 × Zk+1
p

Bits 1,057,035 12,039 1,079,888 23,078

Table 2: Efficiency comparison between [CPST15] and our new construction

Table 2 shows the efficiency of specific implementations of [CPST15] and our new construction in
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the random oracle model and the standard model.7
The bit lengths of the group elements (|G1| = 257, |G2| = 513, |GT | = 1, 024 ) for a Type-3 pairing

are taken from [CHKM09, CHM10]. As an example, we take K = 2L = 210 and k = 2` = 25.
The naive computation of an accumulator Acci requires i (single-based) exponentiations and i mul-

tiplications. However, this is seen as one multi-based exponentiation (like in [ASM08, Au09]) because a
multi-base exponentiation takes a similar time as a single-base exponentiation (see [QWDFZ11, BGR98]).

If the bank only stores a 256-bit hash value of each serial number in [CPST15], the storage space of
each coin coin ∈ D will be reduced to 270, 603 bits (see [CPST15, Remark 5]). Furthermore, we remark
that the system in [CPST15] can also make use of the rerandomizable AGHO signature scheme. In
addition, it seems that during the withdrawal protocol no proof of knowledge is required as long as the
user authenticates himself to the bank and the element U1 (and its correct computation) is known to
the bank. (Each user could send pkU , U1 to the bank and prove the correct computation via a PoK to
open an account.)

7 Extensions

7.1 Arbitrary Wallet Sizes

We can modify the withdrawal protocol such that the user can withdraw an arbitrary monetary value
K? ≤ K = 2L, without increasing the complexity of the system. The main idea is the following: Each user
is able to accumulate up to K values into an accumulator V . This leads to a wallet containing up to K
serial keys. To withdraw a wallet with monetary value K? ≤ K, the bank has to make sure, that only K?

serial keys are accumulated in V . Thus, U accumulates K? ≤ K serial keys κ0, . . . , κK?−1 as before but

then has to set κK? = · · · = κK−1 := 0 as invalid keys. Thus, we have V = u
s
∏K?−1
j=0 (α+κj)

∏K−1
j=K? (α+0)

0 =

u
s
∏K?−1
j=0 (α+κj)αK−K

?

0 . To convince B that U accumulates only K? ≤ K serial keys, U computes the

witness WI = u
s
∏K?−1
j=0 (α+κj)

0 (that is the usual witness for I = {K?, . . . ,K − 1}) and sends WI to the
bank, which checks that ê (V, v0) = ê (WI , vK−K?), where 0 ≤ K −K? ≤ K and hence vK−K? is public.
Since the accumulator scheme is bounded, there can only be K? valid serial keys κ0, . . . , κK?−1 6= 0
accumulated into V . Note, that since the hash function H maps to Z∗p, the case κj = 0 for a serial key
can’t occur.

There are two options to generate the binary tree. Note, that each value K? ≤ 2L can be uniquely
split into K? = 2L1 + · · ·+ 2Ln with L ≥ L1 > · · · > Ln ≥ 0, i.e. n = O(log(K?)) is just the number of
1’s in the binary representation of K?.

1. As before, the user randomly chooses κ0,0 and generates the whole binary tree. After that, U
deletes the serial keys κK? , . . . , κK−1 and all of theirs ancestors. Thus, the user gets n binary trees
of levels L1, . . . , Ln.

2. The user directly generates n binary trees of levels L1, . . . , Ln.

The list K0 contains
∑n
i=1

(
2Li+1 − 2

)
= 2

∑n
i=1 2Li−2n ≤ 2K−2 keys and the list K1 contains K? ≤ K

serial keys. Hence, if the user stores all keys, the storage space of both options is the same. However,
the second method only requires

∑n
i=1

(
2Li+1 − 1

)
= 2

∑n
i=1 2Li − n ≤ 2K − 1 exponentiations.

Table 3 shows the costs of the modified Withdrawal protocol in comparison to the normal protocol.
7The [CPST15] scheme is implemented in the random oracle model with AGHO signature [AGHO11] to instantiate

signature scheme Σ0 and BBS+ signature [ASM06] to instantiate signature scheme Σ1; not the non-anonymous scheme in
[CPST15, Appendix A.2].
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costs of modified Withdrawal protocol
Withdrawal Transfer size + G1

Bits + 257
User + 1 ME
Bank + 2 P

Table 3: Costs of the modified withdrawal protocol

7.1.1 Security Analysis

Obviously, this modification doesn’t have any effect on the security properties. By sending the witness
WI , the user proves that there are at most K? ≤ K values inside the accumulator V . Thus, the balance
property is still fulfilled. Further, anonymity is still fulfilled since the bank can compute the witness WI

by itself as WI = V 1/αK−K? , if the bank knows α, which is is allowed in Game Anonymity. Hence, the
element WI can’t help the adversary A to win the game and consequently there is no need for hiding
WI .

7.2 Coins with Arbitrary Monetary Value

We can modify the spend protocol such that the user can spend an arbitrary monetary value k, which
is much more efficient than performing the (normal) spend protocol several times. As above, each value
k ≤ K can be uniquely split into k = 2`1 + · · · + 2`n with L ≥ `1 > · · · > `n ≥ 0, where we have an
upper bound n ≤ L for k ≤ 2L. To spend a coin of arbitrary monetary value k, the user chooses n
unused keys κL−`1,j1 , . . . , κL−`n,jn ∈ K0, each with smallest index ji for 1 ≤ i ≤ n. Let κi := κL−`i,ji
for all 1 ≤ i ≤ n. Then, the user computes n serial numbers Si = gκi and n appropriate security tags
Ti = UgRκi1 for 1 ≤ i ≤ n. But, U has only to compute one witness WI and to generate one proof Φ:

• Random Oracle Model: The user randomly chooses r′, r1, r2 ∈R Z∗p, computes the elements
A′ = Ar

′
, B′ = Br′ , C ′′ = C1/(r′r1), V ′ = V 1/r2 ,W ′ = W

1/r2
I and generates the following signature

of knowledge:

Π = SoK
{

(u, κ1, . . . , κn, r1, r2) : S1 = gκ1 ∧ · · · ∧ Sn = gκn ∧

T1 = gugRκ1
1 ∧ · · · ∧ Tn = gugRκn1 ∧

ê (g, h) = ê
(
C ′′, A′

)r1 ê
(
V ′, Y1

)r2 ê (g, Y2)u
} (
S1, . . . , Sn, T1, . . . , Tn, A

′, C ′′, V ′, R
)
.

• Standard Model: The user generates pkots, A′, B′, C ′, µ like in Section 5. Next, the user generates
Groth-Sahai commitments to u, κ1, . . . , κn ∈ Zp (2 elements of G2 each) and to U,C ′, V,WI , µ ∈ G1
(2 elements of G1 each). Finally, U generates the following NIZK proof π that the committed values
satisfy:

gκ1 = S1 ∧ · · · ∧ gκn = Sn ∧ gu
(
gR1

)κ1 = T1 ∧ · · · ∧ gu
(
gR1

)κn
= Tn ∧ guU−1 = 1 ∧

µuµH(pkots) = u0 ∧ ê (V , v0) ê
(
WI , v

−1
I

)
= 1 ∧ ê

(
C ′, A′

)
ê (V , Y1) ê (U, Y2) = ê (g, h) .

The proof of the first 2n equations consists of 1 element of G1 each. The rest of the proof is the
same as in Section 5.

The corresponding k serial keys κL+1,j can be computed from the n serial numbers S1, . . . , Sn. If the proof
is valid, the merchant accepts the payment and stores the coin coin = (k, S1, . . . , Sn, T1, . . . , Tn, R,Φ, ts).
In terms of space complexities, this is up to about 4.6, resp. 7.1 times more efficient than performing
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the normal spend protocol n times (for n→∞) in the random oracle model, resp. the standard model.
Furthermore, the number of pairings in this new protocol is constant and thus independent of n in the
random oracle model (see also Table 4).

Random Oracle Model normal Spend protocol modified Spend protocol
k1 = 2`1 , . . . , kn = 2`n k = 2`1 + · · ·+ 2`n

Spend G5n
1 ×G2n

2 × Z5n
p G3+2n

1 ×G2 × Z4+n
p

Bits 3, 591n 2, 821 + 770n
n = 2 7, 182 4, 361
n = L = 10 35, 910 10, 521
User 10n ME + 2n P (6 + 4n) ME + 2 P
Merchant

(
2n+ 2

∑n
i=1 2`i

)
ME + 6n P

(
2 + 2

∑n
i=1 2`i

)
ME + 6 P

Standard Model normal Spend protocol modified Spend protocol
Spend G19n

1 ×G19n
2 G15+4n

1 ×G17+2n
2

Bits 14, 630n 12, 576 + 2, 054n
n = 2 29, 260 16, 684
n = L = 10 146, 300 33, 113
User 40n ME (34 + 6n) ME
Merchant

(
n+ 2

∑n
i=1 2`i

)
ME + 75n P

(
3− 2n+ 2

∑n
i=1 2`i

)
ME + (61 + 14n) P

Table 4: Efficiency of the modified Spend protocol

7.2.1 Security Analysis

The security properties balance and strong exculpability follows directly from the scheme and the proofs
in Section 5. So, we only have to analyze anonymity.

The reduction R behaves like in Section 5, except for the challenge spending. Here, R randomly
chooses r1, . . . , rn ∈R Z∗p, defines Si := gbgri and Ti := U (gc)R (ga)Rri for 1 ≤ i ≤ n and perfectly
simulates the proof Φ.

7.3 Fair Divisible E-Cash

Independent of the above extensions, we can modify the system to get a fair e-cash system which provides
very efficient owner tracing while all protocols remain unchanged in the random oracle model. To achieve
owner tracing, the trusted third party T only has to know the discrete logarithm logg g1 =: z as its secret
key (T can perform the Setup algorithm such that T knows z). So, the key pair (pk, sk) = ((g, g1) , z) is
an ElGamal key pair. Further, the pair

(
SR, T

)
=
(
gRκ, UgRκ1

)
forms exactly an ElGamal encryption

of the user public key U . Thus, to trace the owner of a coin coin = (k, S, T,R,Φ, ts), T verifies the proof
Φ and decrypts the ciphertext

(
SR, T

)
to obtain the plaintext U = T/SRz.

To ensure owner tracing in the standard model, we could use simulation-sound extractable NIZK
proofs ([Gro06]).

To achieve coin tracing, one of the following variations of the methods proposed in [CHL05] or [Au09,
Section 5.6] can be used.

All variations have in common, that t ∈ Z∗p is a number which is generated randomly by the user
and the bank, sings by the bank and only known to the user. Thus, during the withdrawal protocol,
the user randomly chooses t′ ∈ Z∗p, computes C1 = gt

′ ∈ G1 and sends C1 to the bank. The bank

randomly chooses r, t′′ ∈ Z∗p, computes A = hr, B = Ax, C =
(
g · V −y1 · U−y2 ·

(
C1g

t′′
)−y3

)1/r
and

sends A,B,C, t′′ to the user who sets t := t′ + t′′ (mod p).
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Further, T needs an additional key pair (pkT , skT ) for a semantically secure encryption scheme.

1. The variation of [CHL05] is the following. Instead of verifiably encrypting the value t under his own
public key, U verifiably encrypts t under pkT . During Spend protocol, U computes the tracing tag
analogously to the serial number in [CHL05] as Tt = Vrf (t, J), where Vrf (t, J) denotes a verifiable
random function on input a wallet counter J with respect to seed t (see [CHL05, CHL06b] for
details).

2. Au [Au09] proposed another approach based on the idea of traceable signatures. As above, U
verifiably encrypts t under pkT during Withdrawal protocol. But in the spending phase, U generates
a random one time tag Q ∈ G1 and computes the tracing tag as Tt = Qt. After decrypting t,
everyone can verify Tt

?= Qt.

3. We’ll give a third solution. Instead of using a verifiable encryption scheme we can use the efficient
ElGamal encryption with a proof of knowledge. During Withdrawal protocol, U generates an ElGa-
mal encryption of the message ht ∈ G2 under pkT , which is secure under the SXDH assumption,
and proves its correctness (using a standard proof of knowledge about discrete logarithms). The
tracing tag is computed as in [Au09] as Tt = Qt, but to trace a coin, now everyone can test the
equation ê (Tt, h) ?= ê

(
Q, ht

)
after decrypting ht.

7.3.1 Security Analysis

We just informally sketch the security and won’t give a formal security definition for fair e-cash schemes.
Compared to Section 5, A can ask for user and coin tracing in Game Strong Exculpability and Game
Anonymity with the restriction that A is not allowed to ask for owner tracing regarding the challenge
coin and not allowed to ask for coin tracing regarding the challenge indices i0, i1.

Thus, compared to Section 5, R now has to simulate T ’s role of the owner tracing protocol in Game
Strong Exculpability and Game Anonymity (without knowledge of logg g1 in Game Anonymity):

• If coin was generated by R, it simply outputs U .

• Else, R extracts u in the random oracle model and outputs U = gu (or extracts U if we use
simulation-sound extractable NIZK proofs).

Hence, the owner tracing mechanism doesn’t have any effect on the security properties.
To simulate T ’s role of the coin tracing protocol, R generates (pkT , skT ) and hence is able to answer

each query honestly. Thus, the coin tracing mechanism doesn’t have any effect on the strong exculpability
property. So again, we only have to analyze anonymity.

The first variation is secure under the security of the used verifiable encryption scheme and the
verifiable random function (see [CHL06b]). The second variation is secure under the security of the
verifiable encryption scheme and the DDH assumption (see [Au09, Section 5.6]).

Our third solution is secure, if the ElGamal encryption scheme with message space G2 is semantically
secure and if the tracing tag Tt ∈ G1 is indistinguishable from a random element inG1. Both requirements
hold under the SXDH assumption.

7.4 Remarks on Hash Value R

As seen in the security proofs, there is no need for defining R = H (pkM||ts||k) as the output of a hash
function H : {0, 1}∗ → Z∗p. We only require the following two properties:

1. 0 < R < p,

2. R is unique for each coin, except with negligible probability.
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Clearly, each time stamp ts and each monetary value k ≤ K = 2L can be represented as a bit string
ts ∈ {0, 1}n and k ∈ {0, 1}L+1 for (small) numbers n,L ∈ N.

Assuming that each merchant pkM has an additional, unique, public identity ID ∈ {0, 1}n′ for n′ ∈ N
such that ID||1n+L+1 < p, where 1n+L+1 denotes the bit string 111 · · · 111 of length (n+L+ 1). So, if p
is a λ bit prime, ID can be a bit string of length n′ = λ− (n+ L+ 2).

Thus, we can define R as the concatenation R = ID||ts||k. Hence, we have 0 < R < p and R =
ID||ts||k 6= ID′||ts′||k′ = R′ if (ID, ts) 6=

(
ID′, ts′

)
(and thus (pkM, ts) 6=

(
pk′M, ts′

)
) as required.

As a consequence, there is no need for storing the public key pkM, the time stamp ts and the monetary
value k, since these information are contained in R.

8 Conclusion
We presented a divisible e-cash system in which the bandwidth of each protocol is constant while the
system fulfills the standard security requirements in the random oracle model and in the standard model.
Furthermore, we proposed a modified withdrawal protocol that allows to withdraw an arbitrary monetary
value K? ≤ K and a modified spend protocol that allows the spending of an arbitrary monetary value
k ≤ K?. Finally, we showed an efficient approach to provide owner tracing by a trusted third party
without changing any protocol in the random oracle model.

Independent of our new divisible e-cash system, we presented an attack against the unforgeability of
the divisible e-cash scheme in [CG10] and suggested two possible preventions. However, these preventions
either lead to a less secure or to a less efficient scheme.

Besides, we gave a new formal definition of strong exculpability, because the given definitions in
[CHL06b] and [Tro06] don’t fulfill the mentioned intention in [CHL05, CHL06b]. Furthermore, we
showed that, contrary to the assertion in [CG07], the exculpability requirement defined in [Tro06] is not
implied by the security definition in [CHL06b, CG07] and we mentioned the conditions to guarantee this
requirement.
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