
Fully-Dynamic Verifiable Zero-Knowledge
Order Queries for Network Data

Esha Ghosh∗1, Michael T. Goodrich †2, Olga Ohrimenko‡3 and Roberto Tamassia§1

1Dept. Computer Science, Brown University
2Dept. Computer Science, U. California, Irvine

3Microsoft Research

Abstract

We show how to provide privacy-preserving (zero-knowledge) answers to order queries on
network data that is organized in lists, trees, and partially-ordered sets of bounded dimension.
Our methods are efficient and dynamic, in that they allow for updates in the ordering information
while also providing for quick and verifiable answers to queries that reveal no information besides
the answers to the queries themselves.

1 Introduction

Maintaining an ordered list of elements in a trustworthy and privacy-preserving manner has a
number of applications in network information management.
• Firewall policies are often expressed as an ordered list of rule-action pairs [16, 32], ((r1, a1), (r2, a2),
. . . , (rn, an)), where if a network packet, p, matches two rules, ri and rj , with i < j, then the
action ai should be applied, rather than the action aj . The contents and ordering of such firewall
policy lists are potentially sensitive from a security perspective, so it is desirable that external
rule-comparison queries to such a list are answered on a “need to know” basis, without revealing
other rules in the list or even the number, n, of rules in the list.

• In collaborative filtering and reputation management systems, one maintains an ordered preference
list for a set of items (e.g., products or people), based on popularity or feedback scores. Due to
the potential for feedback extortion [31], answers to queries on such lists should be limited to
reporting the preference order between two items without revealing relative orderings between
other items.

• In distributed grid computing, such as folding@home and distributed.net, incentives are provided
to the top-k most productive participants. Due to the prevalence of cheating [30], however, the
incentive service should ideally prove to a participant that she is the kth most productive without
revealing the ranking or relative ordering of the other participants.
In addition to security and privacy issues, the above applications raise interesting algorithmic

challenges, in that ordered lists tend to change over time (e.g., see [32]). Thus, we would like to
have efficient ways to dynamically maintain ordered lists so as to securely and privately answer
∗esha_ghosh@brown.edu
†goodrich@uci.edu
‡oohrim@microsoft.com
§roberto_tamassia@brown.edu

1

relative-order queries. Moreover, we are interested in solutions that are themselves implemented in
a networked, cloud-computing setting, where a data owner outsources query processing to a cloud
server, who then answers queries for a set of distributed clients.

Besides simple linear order queries, as outlined above, there are also richer order queries that
one can perform on trees and even partially-ordered sets of bounded dimension, which likewise have
security and privacy concerns in networking and network information management applications.

• XML is a common format for distributing and managing information in networked environ-
ments, but, because it is human-readable, it has security and privacy concerns [38]. Thus, we
would like to be able to perform verifiable queries on the tree structure of an XML document
so that the answer reveals no more information than can be inferred from the answer itself.

• In wireless networking applications, access control can be defined by geo-spatial location,
where access policies are defined in terms of rectangular regions [3]. Since rectangle inclusion
is a poset of bounded dimension, and access control involves sensitive policies, this work mo-
tivates the need for secure, verifiable, private methods for querying partial orders of bounded
dimension.

• In distributed computing settings, proposed general formulations for key management and
access control are based on directed acyclic graphs (DAGs) that represent posets of bounded
dimension [2].

• Finally, a broad class of firewall policies can be expressed in terms of DAGs representing
posets of bounded dimension [53]. Moreover, for several policies, the DAG is planar and thus
its associated poset has dimension 3.

These applications have security and privacy concerns that need to be addressed in a dynamic
environment where the tree (or DAG) evolves over time.
Contributions: Our contributions can be summarized as follows.

• Motivated by networking and cloud computing applications, we introduce a formal model of a
dynamic privacy-preserving authenticated data structures (DPPADS) in a three party model
where the owner outsources his data structure to a server who answers queries issued by a
set of distributed clients. The owner can at any point update the data structure. The server
answers queries in such a way that the clients (1) can verify the correctness of the answers
but (2) do not learn anything about the data structure besides what can be inferred from the
query answers (Section 4).

• We give an efficient and provably secure construction of a DPPADS for a list that supports
order queries and updates. This construction is based on standard cryptographic assumptions
and has optimal performance in all cost measures, except for a logarithmic overhead on the
query time (Section 5).

• We define a space-efficient variation of the above model and give an efficient construction for
it (Section 6).

• We present an efficient extension of DPPADS to trees and posets of bounded dimension
(Section 7).

In summary, our work provides efficient, secure and privacy-preserving mechanisms for networking
applications that rely on querying order information stored in lists, trees, or posets of bounded
dimension.

2

2 Related Work

Adding privacy to range [47], order [28] and dictionary queries on static data structures, has received
considerable attention [19, 21, 40, 43, 36, 29, 50]. In parallel, a rich body of literature has been
developed on digital signature schemes, where it is possible to generate a signature on a subdocument
of a static parent document without signer’s secret key [17, 34, 44, 45, 52, 59]. This work was
extended to support privacy of the document, where a derived signature for a subdocument reveals
no extra information about the parent document [1, 4, 55, 22]. Support for the desired notion of
privacy (also called leakage-freeness) on signatures of static structural data was addressed in [38,
15, 48, 39, 20, 51].

Recent work [49] on dynamic updates for signatures on a set supports privacy-preserving veri-
fication of only positive membership (i.e., a proof is returned only when the queried elements are
members of the given set). It extends formal definitions of security and gives methods satisfying
them for two update operation: addition of new elements and merge of two sets. In comparison,
we consider operations on lists, trees and support delete and replace operations in the three party
model. Their notion of privacy is based on an indistinguishability game as opposed to simulability
property in our definition. Our definition is not tailored to a specific data structure, while the defi-
nition in [49] cannot be easily extended to support richer data structures and queries. The authors
leave the question of efficient construction for more complex data structures as an open problem,
which we answer positively in this work.

The model of zero knowledge set (ZKS) was introduced by Micali et al. [43]. ZKS lets a prover
commit to a finite set S in such a way that, later on, she can efficiently (and non-interactively) prove
statements of the form x ∈ S or x /∈ S, without leaking any information about S beyond what has
been queried for. Hence, the size of S remains secret as well. The notion of Updatable Zero-
Knowledge Set (U-ZKS) (or, more generically, Updatable Zero-Knowledge Elementary DataBase,
U-ZK-EDB)was first proposed in [41]. This work gives two definitions of updates: transparent and
opaque. The transparent definition explicitly reveals that an update has occurred and the verifier can
determine whether previously queried elements were updated. Constructions satisfying transparent
updates are given in [41] and [18], where [18] has a better performance and uses updatable vector
commitments. The author of [41] leaves an efficient construction that supports opaque updates as
an important open problem. As we will see, our zero-knowledge definition supports opaque updates
in the three party model, which is also satisfied by our constructions.

Verifiable databases with efficient Updates (VDB), formalized in [6] is a primitive where a client
with limited resources wants to store a large database on a server so that she can later retrieve a
database record, and update a record by assigning a new value to it efficiently. The security of the
scheme guarantees that the server should not be able to tamper with any record of the database
without being detected by the client. Another related line of work on dynamic searchable symmetric
encryption (D-SSE) [35, 46] allows a client to encrypt its data and outsource in such a way that
this data can still be searched and data can be added and deleted securely. VDB and D-SSE do not
allow for public verifiability except for the VC based construction for VDB proposed in [18].

We compare privacy properties and the asymptotic complexity of our constructions with the
existing static constructions ([52, 34, 20, 15, 51, 48, 37, 28]) and updatable construction [49] in
Table 1. In Table 2, we compare our constructions with [49] based on the dynamic operations. We
show that we are the only construction that supports fully dynamic zero-knowledge updates (inserts
and deletes) and zero-knowledge queries (order and positive membership) with near optimal proof
size and complexities for all three parties. In particular, the time and space complexities for setup
and verification and space complexity of query are optimal.

3

T
ab

le
1:

C
om

pa
ri
so
n
of

th
e
effi

ci
en
cy

of
ou

r
co
ns
tr
uc

ti
on

w
it
h
ex
is
ti
ng

st
at
ic

an
d
dy

na
m
ic

co
ns
tr
uc

ti
on

s
th
at

su
pp

or
t
pr
iv
ac
y-
pr
es
er
vi
ng

qu
er
ie
s
in

th
e
th
re
e
pa

rt
y
m
od

el
.
A
ll
th
e
ti
m
e
an

d
sp
ac
e
co
m
pl
ex
it
ie
s
ar
e
as
ym

pt
ot
ic
.
N
ot
at
io
n:
n
is
th
e
lis
t
si
ze
,m

is
th
e
qu

er
y
si
ze
,k

is
th
e
se
cu
ri
ty

pa
ra
m
et
er
.
W

.l.
o.
g.

w
e
as
su
m
e
lis
t
el
em

en
ts

ar
e
k
bi
t
lo
ng

.
Fo

llo
w
in
g
th
e
st
an

da
rd

co
nv

en
ti
on

,w
e
om

it
a
m
ul
ti
pl
ic
at
iv
e
fa
ct
or

of
O

(k
)
fo
r
el
em

en
t
si
ze

in
ev
er
y
ce
ll.

A
ss
um

pt
io
ns
:
St
ro
ng

R
SA

A
ss
um

pt
io
n
(S
R
SA

);
E
xi
st
en
ti
al

U
nf
or
ge
ab

ili
ty

un
de

r
C
ho

se
n
M
es
sa
ge

A
tt
ac
k
(E

U
C
M
A
)
of

th
e
un

de
rl
yi
ng

si
gn

at
ur
e
sc
he

m
e;

R
an

do
m

O
ra
cl
e
M
od

el
(R

O
M
);
n
-E

le
m
en
t
A
gg

re
ga

te
E
xt
ra
ct
io
n

A
ss
um

pt
io
n

(n
E
A
E
);
A
ss
oc
ia
ti
ve

no
n-
ab

el
ia
n
ha

sh
fu
nc
ti
on

(A
nA

H
F
)
[n
on

-s
ta
n
d
ar
d
];
D
iv
is
io
n
In
tr
ac
ti
bl
e
H
as
h
Fu

nc
ti
on

(D
IH

F
);
n
-B

ili
ne

ar
D
iffi

e
H
el
lm

an
In
ve
rs
io
n
A
ss
um

pt
io
n
(n
B
D
H
I)
.

[5
2]

[3
4]

[2
0]

[1
5]

[5
1]

[4
8]

[3
7]

[4
9]

[2
8]

D
P
PA

L/
SE

-D
P
PA

L
Ze

ro
-k
no

w
le
dg

e
Q
ue
ry

X
X

X
X

X
X

Se
tu
p
ti
m
e

n
lo

g
n

n
n

n
2

n
2

n
n

n
n

n
St
or
ag
e
Sp

ac
e

n
n

n
n
2

n
2

n
n
2

n
n

n
O
rd
er

Q
ue
ry

ti
m
e

m
n

lo
g
n

n
m
n

m
n

n
m

in
(m

lo
g
n
,n

)
m

in
(m

lo
g
n
,n

)
(P

os
it
iv
e)

M
em

be
r

m
n

lo
g
n

n
m
n

m
n

n
m

m
in

(m
lo

g
n
,n

)
m

in
(m

lo
g
n
,n

)
Q
ue
ry

ti
m
e

O
rd
er

m
lo

g
n

lo
g
m

m
lo

g
n

n
2

m
2

m
2

m
m

m
m

V
er
ifi
ca
ti
on

ti
m
e

(P
os
it
iv
e)

M
em

be
r

m
lo

g
n

lo
g
m

m
lo

g
n

n
2

m
2

m
2

m
m

m
m

m
V
er
ifi
ca
ti
on

ti
m
e

P
ro
of

si
ze

m
m

lo
g
n

n
m

2
m

2
m

n
m

m
m

A
ss
um

pt
io
n

R
SA

R
SA

SR
SA

,
E
U
C
M
A

R
O
M
,

A
n
A

H
F

R
O
M

D
IH

F
R
O
M
,

R
O
M

D
iv
is
io
n

nE
A
E

R
SA

SR
SA

nB
D
H
I

nB
D
H
I

4

Table 2: Comparison of the efficiency of the dynamic operations of our construction with an existing
updatable construction that supports privacy-preserving queries in the three party model. All the
time and space complexities are asymptotic. Notation: n is the list size, L is the number of
insertions/deletions in a batch, M is the number of distinct elements that have been queried since
the last update (insertion/deletion), k is the security parameter. W.l.o.g. we assume list elements
are k bit long. Following the standard convention, we omit a multiplicative factor of O(k) for
element size in every cell. Assumptions: Strong RSA Assumption (SRSA); Random Oracle Model
(ROM); Division Intractible Hash Function (DIHF); n-Bilinear Diffie Hellman Inversion Assumption
(nBDHI).

[49] DPPAL SE-DPPAL
Zero-knowledge Update X X
Transparent Update X
Owner’s state size n n 1
Storage Space n n n
Insertion time L L+M L log n+M
Deletion Time L+M L log n+M
Assumption DIHF ROM, ROM,

SRSA nBDHI nBDHI

3 Preliminaries

3.1 Terminology and Cryptographic Primitives

Let k ∈ N be a security parameter. A function ν : N → R is called negligible if it approaches zero
faster than the reciprocal of any polynomial, i.e., ∀c ∈ N, ∃kc ∈ Z, s.t. ν(k) ≤ k−c for all k ≥ kc.
Then the success probability of the adversary is “too small to matter” if it is negligible in k. We
consider an adversary A which is a probabilistic polynomial time (PPT) Turing Machine running
in time polynomial in the security parameter of the scheme, i.e., poly(k). Let p be a large k-bit
prime and n = poly(k). G and G1 are multiplicative groups of prime order p. A bilinear map
e : G×G→ G1 is a map with the following properties:

1. ∀u, v ∈ G and ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab;
2. Non-degeneracy: e(g, g) 6= 1 where g is a generator of G.

Bilinear Aggregate Signature Scheme [13]: Given signatures σ1, . . . , σn on distinct messages
M1, . . . ,Mn from n distinct users u1, . . . , un, it is possible to aggregate these signatures into a
single short signature σ such that it (and the n messages) convince the verifier that the n users
indeed signed the n original messages (i.e., user i signed message Mi). We use the special case
where a single user signs n distinct messagesM1, . . . ,Mn. The security requirement of an aggregate
signature scheme guarantees that the aggregate signature σ is valid if and only if the aggregator
used all σi’s to construct it.

Definition 3.1 (P -Bilinear Diffie Hellman Inversion assumption [12]) Let s be a random
element of Z∗p and P be a positive integer. Then, for every PPT adversary A there exists a negligible
function ν(.) such that:
Pr[s

$←− Z∗p; y ← A(〈g, gs, gs2 , . . . , gsP 〉) : y = e(g, g)
1
s] ≤ ν(k).

5

3.2 Order Maintenance Problem

The order maintenance problem is the problem of maintaining a non-empty list L of records under
a sequence of the following three types of operations:

• Insert(x, y): Insert record y after record x in the list. The record y must not already be in
the list.

• Delete(x): Delete record x from the list.
• Order(x, y): Return true if x is before y in the list, otherwise return false.
Any such data structure is called order data structure(OD). OD has been a widely studied

problem in data structure literature [23, 54, 25] and has several interesting applications. Online
list labeling problem [33, 26, 24, 10, 7, 5] (also known as file maintenance problem [56, 57, 58]) is
a special case of order maintenance problem. In online list labeling, mapping from a dynamic set
of n elements is to be maintained to the integers in the universe U = [1, N) such that the order
of the elements respect the order of U . The integers, that the elements are mapped to, are called
tags. The requirement of the mapping is to match the order of the tags with the order of the
corresponding elements. The problem, which was introduced by Itai, Konheim and Rodeh [33] has
several interesting applications including cache-oblivious data structures [14, 9, 8] and distributed
resource allocation [27].

We will use the order data structure construction presented in [7] and will denote it as OD. We
will briefly describe OD and summarize its performance in the subsequent sections.

Order Data structure OD(n) Let U = [1, N] be the tag universe size and n be the number
of elements in the dynamic set to be mapped to tags from U , where N is a function of n and is
set to be a power of two. Then we consider a complete binary tree on the tags of U , where each
leaf represents a tag form the universe. Note that, this binary tree is implicit, it is never explicitly
constructed, but it is useful for the description and analysis.

At any state of the algorithm, n of the leaves are occupied, i.e., the tags used to label list
elements. Each internal node corresponds to a (possible empty) sublist of the list, namely, the
elements that have the tags corresponding to the leaves below that node. The density of a node is
the fraction of its descendant leaves that are occupied. Then overflow threshold for the density of
a node is defined as follows. Let α be a constant between 1 and 2. For a range of size 20 (leaf), the
overflow threshold τ0 is set to 1. Otherwise, for a range of size 2i, τi = τi−1

α = α−i. A range is in
overflow if its density is above its overflow threshold.

Now we are ready to describe the algorithm.
insertafter(x, y): To insert an element y after x, do the following:

• Examine the enclosing tag ranges of x.
• Calculate the density of a tag range by traversing the elements within the tag range.
• Relabel the smallest enclosing tag range that is not overflowing.
• Return the relabelled tags and the tag of y.

delete(x): Delete element x from the list and mark the corresponding tag as unoccupied.
tag(x): Returns the tag of element x.
order(x, y): Returns true if tag(x) < tag(y), and false, otherwise.
N is set to (2n)

1
1−logα so that, the algorithm can proceed as long as the number of elements in the

list is between n/2 and 2n. Hence, the algorithm needs logn
1−logα bits to represent a tag. If at any

point, the number of elements fall below n/2 or exceed 2n, the data structure is rebuilt for the new
value of n. The rebuild introduces a constant amortized overhead.

The amortized cost of insertion in this algorithm is O(log n). By adding one level of indirection,
the update time can be improved to O(1), amortized, while still keeping the query time O(1)

6

worst case. Briefly, the technique proceeds as follows: the list is represented as a list of n/ log(n+1)
sublists, with each sublist of size log(n+1). Within each sublist, elements are assigned monotonically
increasing tags. When the algorithm inserts into a sublist, if the length of the sublist, say l, becomes
at least 2 log(n+1), then the sublist is split into bl/ log(n+1)c sublists, each of size at least log(n+1).
Then each sublist is inserted into the original list of sublists. For details, please refer to [25, 7].

Theorem 3.1 [7] The data structure OD(n)
• uses O(log n) bits per tag and needs to keep track of N = O(n) tags at most and hence uses
O(n log n) bits for tags;

• performs in O(1) amortized insertion and deletion time and O(1) worst case query time;
• requires O(n) space.

4 Dynamic Privacy Preserving Authenticated Data Structure (DP-
PADS)

An Abstract Data Type (ADT) is a data structure (DS) D with two types of operations defined
on it: immutable operations Q() and mutable operations U(). Q(D, δ) takes as input a query δ
on the elements of D and returns the answer and it does not alter D. U(D, u) takes as input an
update request u (e.g., insert or delete), changes D accordingly, and outputs the modified data
structure, D′.

We present a three party model where a trusted owner generates an instantiation of an ADT,
denoted as (D, Q, U), and outsources it to an untrusted server along with some auxiliary information.
The owner also publicly releases a short digest of D. The curious (potentially malicious) client(s)
issues queries on the elements of D and gets answers and proofs from the server, where the proofs
are zero-knowledge, i.e., they reveal nothing beyond the query answer. The client can use the proofs
and the digest to verify query answers. Additionally, the owner can insert, delete or update elements
in D and update the public digest and the auxiliary information that the server holds. We also
require the updates to be zero-knowledge, i.e., an updated digest should be indistinguishable from
a new digest generated for the unchanged D.

4.1 Model

DPPADS is a tuple of six probabilistic polynomial time algorithms (KeyGen,Setup,UpdateOwner,
UpdateServer,Query,Verify). We first describe how these algorithms are used between the three
parties of our model and then give their API.

The owner uses KeyGen to generate the necessary keys. He then runs Setup to prepare D0 for
outsourcing it to the server and to compute digests for the client and the server. The owner can
update his data structure and make corresponding changes to digests using UpdateOwner. Since
the data structure and the digest of the server need to be updated on the server as well, the
owner generates an update string that is enough for the server to make the update herself using
UpdateServer. The client can query the data structure by sending queries to the server. For a
query δ, the server runs Query and generates answer. Using her digest, she also prepares a proof of
the answer. The client then uses Verify to verify the query answer against proof and the digest he
has received from the owner after the last update.
(sk, pk)← KeyGen(1k) where 1k is the security parameter. KeyGen outputs a secret key (for the

owner) and the corresponding public key pk.

7

(stateO, digest
0
C , digest

0
S)← Setup(sk, pk,D0) where D0 is the initial data structure. Setup outputs

the internal state information for the owner stateO, digests digest0C and digest0S for the client
and the server, respectively.

(stateO, digest
t+1
C ,Updt+1,Dt+1, ut)← UpdateOwner(sk, stateO, digest

t
C , digest

t
S ,Dt, ut,SIDt) where ut

is an update operation to be performed on Dt. SIDt is set to the output of a function f on
the queries invoked since the last update (Setup for the 0th update). UpdateOwner returns the
updated internal state information stateO, the updated public/client digest digestt+1

C , update
string Updt+1 that is used to update digesttS and the updated Dt+1 := U(Dt, ut).

(digestt+1
S ,Dt+1)← UpdateServer(digesttS ,Updt+1,Dt, ut) where Updt+1 is used to update digesttS to
digestt+1

S and ut is used to update Dt to Dt+1.
(answer, proof)← Query(digesttS ,Dt, δ) where δ is a query on elements of Dt, answer is the query

answer, and proof is the proof of the answer.
b← Verify(pk, digesttC , δ, answer, proof) where input arguments are as defined above. The output

bit b is set to accept if answer = Q(Dt, δ), and reject, otherwise.
We leave function f undefined and to be specified by a particular instantiation. Once selected it
remains fixed for the instantiation. This definition gives the flexibility to define the UpdateOwner
algorithm as session dependent or session independent. If UpdateOwner uses information from the
queries since the last update (we call it last session) then it is session dependent. For example, given
queries qi, . . . , qj , i ≤ j, f could be implemented as an identity function or return the cardinality
of its input, j − i + 1. If f ’s output is independent of the queries, then UpdateOwner is session
independent. Since the function is public, anybody, who has access to the (authentic) queries since
the last update, can compute it.

Our model also supports the execution of a batch of updates as a single operation, which may
be used to optimize overall performance (Section 5.3).

4.2 Security Properties

A DPPADS has three security properties: completeness, soundness and zero-knowledge.
Completeness dictates that if all three parties are honest, then for an instantiation of any ADT,
the client will always accept an answer to his query from the server. Here honest behavior implies
that whenever the owner updates the data structure and its public digest, the server updates the
DS and her digest accordingly and replies client’s queries faithfully w.r.t. the latest DS and digest.

Definition 4.1 (Completeness) For an ADT (D0, Q, U), any sequence of updates u0, u1, . . . , uL
on the data structure D0, and for all queries δ on DL:

Pr[(sk, pk)← KeyGen(1k); (stateO, digest
0
C , digest

0
S)← Setup(sk, pk,D0);

{
(stateO, digest

t+1
C ,Updt+1,Dt+1, ut)←

UpdateOwner(sk, stateO, digest
t
C , digest

t
S ,Dt, ut, SIDt);

(digestt+1
S ,Dt+1)← UpdateServer(digesttS ,Updt+1,Dt, ut);

}
0≤t≤L

(answer, proof)← Query(digestLS ,DL, δ) :

Verify(pk, digestLC , δ, answer, proof) = accept ∧ answer = Q(DL, δ)] = 1.

8

Soundness protects the client against a malicious server. This property ensures that if the server
forges the answer to a client’s query, then the client will accept the answer with at most negligible
probability. The definition considers adversarial server that picks the data structure and adaptively
requests updates. After seeing all the replies from the owner, she can pick any point of time
(w.r.t. updates) to create a forgery.

The game captures the adversarial behavior of the server. Since, given the server digest, the
server can compute answers to queries herself, it is superfluous to give her explicit access to Query
algorithm. Therefore, we set input of f to empty and SID to ⊥, as a consequence, in algorithm
UpdateOwner.

Since, given the server digest, the server can compute answers to queries herself, it is superfluous
to give Adv explicit access to Query algorithm. Therefore, we set input of f to empty and SID to ⊥,
as a consequence, in algorithm UpdateOwner.

Definition 4.2 (Soundness) For all PPT adversaries, Adv and for all possible valid queries δ on
the data structure Dj of an ADT, there exists a negligible function ν(.) such that, the probability of
winning the following game is negligible:
Setup Adv receives pk where (sk, pk) ← KeyGen(1k). Given pk, Adv picks an ADT of its choice,

(D0, Q, U) and receives the server digest digest0S for D0, where (stateO, digest
0
C , digest

0
S) ←

Setup(sk, pk,D0).
Query Adv requests a series of updates u1, u2, . . . , uL, where L = poly(k), of its choice. For every

update request Adv receives an update string. Let Di+1 denote the state of the data structure
after the (i)th update and Updi+1 be the corresponding update string received by the adver-
sary, i.e., (stateO, digest

i+1
C ,Updi+1,Di+1, ui) ← UpdateOwner(sk, stateO, digest

i
C , digest

i
S ,Di,

ui, SIDi) where SIDi = ⊥.
Response Finally, Adv outputs (Dj , δ, answer, proof), 0 ≤ j ≤ L, and wins the game if the following

holds:

answer 6= Q(Dj , δ) ∧ Verify(pk, digestjC , δ, answer, proof) = accept.

Zero-knowledge captures privacy guarantees about the data structure against a curious (mali-
cious) client. Recall that the client receives a proof for every query answer. Periodically he also
receives an updated digest, due to the owner making changes to the DS. Informally, (1) the proofs
should reveal nothing beyond the query answer, and (2) an updated digest should reveal nothing
about update operations performed on the DS. This security property guarantees that the client
does not learn which elements were updated, unless he queries for an updated element (deleted or
replaced), before and after the update.

The definition of the zero-knowledge property captures the adversarial client’s (Adv) view in two
games. In the Real game, Adv interacts with the honest owner and the honest server (jointly called
challenger), whereas in the Ideal game, it interacts with a simulator, who mimics the behavior of the
challenger with oracle access to the source list, i.e., it is allowed to query the list only with client’s
queries and does not know anything else about the list or the updates.

Adv picks D0 and adaptively asks for queries and updates on it. Its goal is to determine if it
is talking to the real challenger or to the simulator, with non-negligible advantage over a random
guess. If Adv fails to distinguish the two, then the simulator, knowing only query answers and the
fact that some update has occurred, can simulate proofs and update the digest. Hence, the proof
units and the updated digests reveal no information (beyond the query answeror that an update
has occurred).

9

Our zero-knowledge definition is close to the opaque update definition in [41] for Updatable
Zero-Knowledge Sets where an updated client digest is indistinguishable from a fresh digest, and
old proofs are not valid after an update.

We note that here SID need not be used explicitly in the definition, since the challenger and the
simulator know all the queries and can compute f themselves.

Definition 4.3 (Zero-Knowledge) Let RealE,Adv and IdealE,Adv,Sim be defined as follows where,
wlog the adversary is assumed to ask only for valid queries and valid update requests.1

Game RealE,Adv(1
k):

Setup The challenger runs KeyGen(1k) to generate sk, pk and sends pk to Adv1. Given pk,
Adv1 picks an ADT (D0, Q, U) of its choice and receives digest0C corresponding to D0

from the real challenger C who runs Setup(sk, pk,D0) to generate them. Adv1 saves its
state information in stateA.

Query Adv2 has access to stateA and requests a series of queries {q1, q2, . . . , qM}, for M =
poly(k).
If qi is an update request: C runs UpdateOwner algorithm. Let Dt be the most recent

data structure and digesttC be the public digest on it generated by the UpdateOwner
algorithm.
C returns digesttC to Adv2.

If qi is a query: C runs Query algorithm for the query with the most recent data struc-
ture and the corresponding digest as its parameter.
C returns answer and proof to Adv2.

Response Adv2 outputs a bit b.
Game IdealE,Adv,Sim(1

k):
Setup Initially Sim1 generates a public key, i.e., (pk, stateS)← Sim1(1

k) and sends it to Adv1.
Given pk, Adv1 picks an ADT (D0, Q, U) of its choice and receives digest0C from the
simulator, Sim1, i.e., (digest0C , stateS) ← Sim1(stateS). Adv1 saves its state information
in stateA. Let F(q) be a function that takes as input a request q. If q is a query it
returns q, otherwise it returns ⊥.

Query Adv2, who has access to stateA, requests a series of queries {q1, q2, . . . , qM}, for
M = poly(k).
Sim2 is given oracle access to the most recent data structure and is allowed to query
the data structure oracle only for queries that are queried by Adv. Let Dt−1 denote
the state of the data structure at the time of qi. The simulator runs (stateS , a) ←
Sim

Dt−1

2 (1k, stateS ,F(qi)) and returns answer a to Adv2 where:
If qi is an update request: a = digesttC , the updated digest.
If qi is a query: a = (answer, proof) corresponding to the query qi.

Response Adv2 outputs a bit b.
A DPPADS E is zero-knowledge if there exists a PPT algorithm Sim = (Sim1,Sim2) s.t. for all
malicious stateful adversaries Adv = (Adv1,Adv2) there exists a negligible function ν(.) s.t.

|Pr[RealE,Adv(1
k) = 1]− Pr[IdealE,Adv,Sim(1k) = 1]| ≤ ν(k).

1This is not a limiting constraint, as we can easily force this behavior by checking if a query/update is valid in the
Real game; and set F to return an additional Boolean value indicating if the request is valid or not in the Ideal game.

10

5 Dynamic Privacy-Preserving Authenticated List

We have presented formal definitions of an abstract data structure that supports privacy and in-
tegrity in a three party model. In this section we instantiate it with a list (an ordered set of distinct
elements) and propose an efficient construction. We refer to it as dynamic privacy preserving au-
thenticated list (DPPAL).

Let L denote a list and Elements(L) denote the unordered set corresponding to L. We define
order queries on the elements of a list as δ. The query answer, answer is the elements of δ rearranged
according to their order in L, i.e., answer = πL(δ). An update operation on a list can be one of the
following:
linsertafter(x, y): Insert element x after element y ∈ L. Since no duplication is allowed, x should

be a distinct element not in the list, i.e., x /∈ L.
ldelete(x): Delete element x from L.
lreplace(x′, x): Replace element x′ ∈ L in the list with element x /∈ L.

5.1 Static Construction

The work of [28] proposes a Privacy-Preserving Authenticated List (PPAL). This construction is
static but can efficiently answer positive membership and order queries on a list. At a high level, the
construction of PPAL works as follows: every element of the static list is associated with a member
witness that encodes the rank of the element (using a component of the bilinear accumulator public
key) “blinded” with randomness. Every pair of element and its member witness is signed by the
owner and the signatures are aggregated using bilinear aggregate signature scheme (see Section 3.1)
to generate the public list digest. The client and the server receive the list digest, while the server
also receives the signatures, member witnesses and the randomness used for blinding. Given a query
from the client on a sublist of the source list, the server returns this sublist ordered as it is in the
list with a corresponding proof of membership and order. The server proves membership of every
element in the query using the homomorphic nature of bilinear aggregate signature, that is, without
owner’s involvement. The server then uses the randomness and the bilinear accumulator public key
to compute the order witness. The order witness encodes the distance between two elements, i.e.,
the difference between element ranks, without revealing anything about it.

Although this construction is very efficient for static lists, in practice, data structures are dy-
namic. A trivial way of making [28] handle, for example, insertion would require regeneration
of member witnesses and signatures following the new element, since the ranks of these elements
change. Hence an insertion would take time O(n) and grow proportionally to the list size. Dele-
tion of an element would also require O(n) time. In comparison, our dynamic construction below
achieves O(1) amortized time for every update operation.

5.2 Dynamic Construction

We use the order labeling data structure OD(n) from Section 3.2 to maintain the underlying
list L. OD(n) lets us use tags for the elements (instead of their ranks) to maintain order, thus en-
abling efficient updates. Our construction consists of instantiating algorithms of DPPADS: Setup,
UpdateOwner, UpdateServer, Query and Verify. We describe each algorithm in this section and
give pseudo-code of KeyGen in Algorithm 1 Setup in Algorithm 2, UpdateOwner in Algorithm 4,
UpdateServer in Algorithm 6, Query in Algorithm 7, and Verify in Algorithm 8. Note that build in
Algorithm 3 and refresh in Algorithm 5 are subroutines that are called within Setup and UpdateOwner
algorithms. Algorithms 1–8 use the following notation. H : {0, 1}∗ → G: full domain hash function

11

(instantiated with a cryptographic hash function); all arithmetic operations are performed using
mod p. System parameters are (p,G,G1, e, g,H), where p,G,G1, e, g are defined in Section 3. L0 is
the input list of size n = poly(k), where xi’s are distinct. OD(n) is used to generate the tags for the
list elements and supports insertafter, delete, and tag operations.

KeyGen and Setup Phase The owner executes KeyGen (Algorithm 1) and Setup (Algorithm 2) to
prepare the keys and digests before outsourcing his list L0 to the server. The owner randomly picks
s, v ∈ Z∗p and ω $←− {0, 1}∗ as part of his secret key. He then inserts the elements of L0 in an empty
order data structure O := OD(n) respecting their order in L0 and generating tag for each element.
Hence, the order induced by the tags of the elements is the list order. For every element xi ∈ L0,
the owner generates fresh randomness to blind tag(xi): ri

$←− Z∗p; he computes member witness as
txi∈L0 ← gc, where g is a generator of G and c = stag(xi)ri, and a signature σxi ← H(txi∈Lt ||xi)

v,
where H is a full domain hash function. Using the property of bilinear aggregate signatures (see
Section 3), he computes a list signature σL0 , blinded by value salt = (H(ω))v. The owner sends σL0
to the client as client digest digest0C and L0 to the server. He also sends the server a digest digest0S
which contains tag(xi), ri, txi∈L0 and σxi for every element xi ∈ L0, and gs

j
,∀j ∈ [0, n]. The owner

saves L0,O, digest0S in his state variable stateO. We note that the randomness ri allows the owner
to protect the tag of the element when it is encoded in the member witness. Similarly, salt is used
to hide the size of the list from the client when he happens to query all the elements in the list (i.e.,
if salt was not used).

Algorithm 1 (sk, pk)← KeyGen(1k), where 1k is the security parameter.

1: Generate the secret key for the owner sk = 〈s $←− Z∗p, v
$←− Z∗p, ω

$←− {0, 1}∗〉 % ω is the nonce
used to for a particular list and the public key pk = gv.

2: return (sk, pk)

Update Phase UpdateOwner (Algorithm 4) lets the owner perform update ut on his outsourced
data structure and propagate the update in the digests. The owner uses O to efficiently compute
the new tag of an element and update the tags of the elements affected by the update. Let Y be a
set of elements that were updated due to linsertafter (insertafter in O, where Y is of amortized size
O(1)). Since the member-witness and a signature of every element depends on its tag, UpdateOwner
needs to update the authentication units corresponding to elements in Y and a new element xnew,
in case ut was linsertafter or lreplace. This step is equivalent to the steps in Setup for generating
authentication units but for elements in Y and element xnew. Finally, the owner updates the list
digest signature σLt as follows: (1) replace signatures on the elements that have changed (i.e.,
elements in Y) in case of linsertafter; (2) add a signature for xnew in case of linsertafter and lreplace;
(3) remove the signature of the old element in case of ldelete or lreplace.

12

Algorithm 2 (stateO, digest
0
C , digest

0
S) ← Setup(sk, pk,L0), where L0 = {x1, . . . , xn} and xi’s are

distinct, for n = poly(k). sk, pk are the keys generated by KeyGen. Setup is executed by the owner
to prepare the digests before outsourcing his list L0 to the server.
1: Set the internal state variable stateO := 〈L0,⊥,⊥,⊥〉.
2: salt← (H(ω))v where ω is a nonce from sk.

% salt is treated as a list identifier that protects against mix-and-match attacks and from revealing
that the queried elements represent the complete list.

3: % Generate auxiliary data structure and authenticated information.
(σL0 ,O,ΣL0 ,ΩL0)← build(sk, stateO,L0)

4: stateO := 〈L0,O,∀xi ∈ L0 : (txi∈L0 , σxi , ri)〉
5: digest0C := σL0
6: digest0S := 〈pk, σL0 , 〈g, gs, gs

2
, . . . , gs

n〉,ΣL0 ,ΩL0〉
7: return (stateO, digest

0
C , digest

0
S)

Algorithm 3 (σLt ,O,ΣLt ,ΩLt) ← build(sk, stateO,Lt) where sk contains v and ω and Lt =
{x1, . . . , xn′}.
build is run by the owner to generate tags, member-witnesses and individual signatures for the
elements in Lt and to compute the list digest signature σLt .

1: % Build the order labeling data structure O to generate tag(xi) ∀xi ∈ Lt.
O := OD(n′) where |Lt| = n′

2: For every i < i ≤ n′:
3: O.insertafter(xi−1, xi).
4: For every xi ∈ Lt:
5: Pick ri

$←− Z∗p; compute member witness as txi∈L0 ← gc, where c = stag(xi)ri; compute
signature σxi ← H(txi∈Lt ||xi)

v.
6: Compute list digest signature σLt ← salt×

∏
xi∈Ltσxi , where salt = (H(ω))v.

7: ΣLt := 〈∀xi ∈ Lt : (txi∈Lt , σxi),H(ω)〉
8: ΩLt := 〈∀xi ∈ Lt : (ri, tag(xi)〉
9: return (σLt ,O,ΣLt ,ΩLt)

13

Algorithm 4 (stateO, digest
t+1
C ,Updt+1,Lt+1, ut) ← UpdateOwner(sk, stateO, digest

t
C , digest

t
S ,Lt,

ut, SIDt), where sk and stateO are as defined before; digesttC and digesttS are the client and the server
digests corresponding to Lt, respectively; Lt is the list after (t − 1)th update, ut is the update
request (either linsertafter, ldelete or lreplace); and SIDt contains all the elements that were accessed
by queries since update operation ut−1.
UpdateOwner is executed by the owner to update the outsourced list Lt with operation ut and to
refresh any elements that were accessed by the client since the last update.
1: Lt+1 := U(Lt, ut) % Update the list.
2: If n/2 ≤ |Lt+1| ≤ 2n, then:
3: Initialize Y := {} % Elements to refresh.
4: Initializeσtmp := 1 % Accumulates changes to list signature.
5: Initializexnew := ⊥ % New element to add to list.
6: If ut = linsertafter(x, y):
7: Y ← O.insertafter(x, y) % Elements whose tags changed after insertion.
8: xnew ← x
9: Else if ut = lreplace(x′, x): % Replace x′ with x, where x /∈ Lt.

10: Replace x′ with x in O.
11: σtmp ← σ−1x′ % Remove a signature of the old element x′.
12: xnew ← x
13: Else if ut = ldelete(z) % Delete z, its signature and auth. info.
14: O.delete(z)

15: σtmp ← σ−1z (gvr
′
), where r′ $←− Z∗p

16: ΣUpd(+) := 〈〉 and ΣUpd(−) := 〈(tz∈Lt , σz)〉 % ΣUpd(+),ΩUpd(+) contain information of
elements to be added/replaced

17: ΩUpd(+) := 〈(r′,⊥)〉 and ΩUpd(−) := 〈(rz, tag(z))〉. % ΣUpd(−),ΩUpd(−) contain
information of elements to be deleted

18: If xnew 6= ⊥ % Generate auth. info. for new element.
19: r

$←− Z∗p
20: Generate member witness txnew∈Lt+1 ← (gs

tag(xnew)
)r.

21: Compute signature σxnew ← H(txnew∈Lt+1 ||xnew)v.
22: σtmp ← σtmpσxnew % Add a signature of new element.
23: ΣUpd(+) := 〈(txnew∈Lt+1 , σxnew)〉 and ΣUpd(−) := 〈〉.
24: ΩUpd(+) := 〈(rxnew , tag(xnew))〉 and ΩUpd(−) := 〈〉.
25: (σrefresh,∀w ∈ SIDt ∪ Y : (rw, σw))← refresh(sk, stateO,SIDt ∪ Y)
26: ΣUpd(+) := ΣUpd(+) ∪ 〈∀w ∈ SIDt ∪ Y : (tw∈Lt+1 , σw)〉
27: ΩUpd(+) := ΩUpd(+) ∪ 〈∀w ∈ SIDt ∪ Y : (rw, tag(w))〉
28: σLt+1 ← σLtσtmpσrefresh % Update signature.
29: Updt+1 := 〈σLt+1 ,⊥, 〈ΣUpd(+),ΣUpd(−)〉, 〈ΩUpd(+),ΩUpd(−)〉〉
30: Else: % Update ut significantly changed list size.
31: (σLt+1 ,O,ΣLt+1 ,ΩLt+1)← build(sk, stateO,Lt+1) % Regenerate auth. info.
32: ΣUpd(+) := 〈∀w ∈ Lt+1 : (tw∈Lt+1 , σw)〉 and ΣUpd(−) = 〈〉.
33: ΩUpd(+) := 〈∀w ∈ Lt+1 : (ri, tag(wi))〉 and ΩUpd(−) = 〈〉.
34: Updt+1 := {σLt+1 , 〈g, gs, gs

2
, . . . , gs

n′ 〉, 〈ΣUpd(+),ΣUpd(−)〉, 〈ΩUpd(+),ΩUpd(−)〉}.
35: digestt+1

C := σLt+1

36: stateO := 〈Lt+1,O, ∀xi ∈ Lt+1 : (txi∈Lt+1 , σxi , ri)〉
37: return (Lt+1, digest

t+1
C , ut,Updt+1, stateO)

14

Algorithm 5 (σrefresh,∀w ∈ W : (rw, σw))← refresh(sk, stateO,W)
refresh is run by the owner to regenerate randomness, member-witnesses and signatures for the
elements in the set W.
1: Initialize σrefresh := 1
2: For every w ∈ W:
3: σrefresh ← σrefreshσ

−1
w % Remove old signature of w.

4: Select fresh randomness rw
$←− Z∗p.

5: Regenerate the member witness: tw∈Lt+1 ← (gs
tag(w)

)rw .
6: Compute new signature σw ← H(tw∈Lt+1 ||w)v, where v is part of sk.
7: σrefresh ← σrefreshσw
8: return (σrefresh,∀w ∈ W : (rw, σw))

As described so far, UpdateOwner updates the data and authenticated information. However,
it has a viable leakage channel. Recall that an update operation changes authentication units of
elements in ut and Y. Hence, if the client accesses elements in Y, before and after the update, he will
notice that its authentication unit has changed and infer that a new element was inserted nearby.
This violates the zero-knowledge property of DPPADS: the client should not learn information
about updates to elements he did not query explicitly.

UpdateOwner achieves the zero-knowledge property as follows. We set f to be a function that
takes the client queries since the last update and returns a set of elements accessed by them;
these are the elements whose authentication units are known to the client. Given these elements
in UpdateOwner’s input SIDt, the owner can recompute the member-witnesses of each of them
using fresh randomness, update their signatures and the list digest using using the subroutine
refresh (Algorithm 5). Since the member-witnesses and signatures of the elements in SIDt are changed
independently of ut, seeing refreshed units after the update reveals no information to the client. We
define f this way for optimization. In a naive implemention, where f is defined as the a constant
function, or where SIDt is not used, the UpdateOwner algorithm has to randomize member-witnesses
and signatures for all the elements in the list.

Finally, the owner updates stateO and sends ut and authentication units (updated due to ut
and refresh) in Updt+1 to the server and updated list digest σLt+1 to the client. The server runs
UpdateServer (Algorithm 6) to propagate the update using Updt+1 to add/substitute/remove units
in her digest and ut to update the list.

Query Phase Given an order query δ, the server executes the following instantiation of Query (Al-
gorithm 7). It reorders the elements in δ according to their order in Lt, sets answer to πLt(δ) and
computes proof that consists of units to prove membership and order of elements in δ. For every
element yi ∈ δ its member witness tyj∈Lt and σyj are included in proof. Note that sending tyj∈Lt to
the client does not reveal its tag since the witness was blinded using secret randomness. The server
also has to prove that δ is indeed a part of the source list Lt. She computes the authentication
digest for L′ = Lt \ δ, denoted as λL′ . For every pair of adjacent elements yj , yj+1 in answer, the
server computes an order witness tyj<yj+1 := (gs

d
)r
′′/r′ , where d = tag(yj+1)− tag(yj) and r′ and

r′′ are randomness of yj and yj+1 and gsd is part of server’s digest.

Verification Phase Given (answer, proof), the client uses Verify (Algorithm 8) and his copy of the
list digest signature to verify answer. He checks the membership of elements in answer by using the
properties of bilinear aggregate signatures. In particular he can verify the relationship of L′ = Lt \δ

15

Algorithm 6 (digestt+1
S ,Lt+1) ← UpdateServer(digesttS ,Updt+1,Lt, ut), where ut is an update to

perform on Lt and Updt+1 contains updates on authentication information. Upon receiving update
messages ut and Updt+1 from the owner, the server executes UpdateServer to propagate the update
on her copy of list Lt and her digest digestS .

1: Update the list: Lt+1 := U(Lt, ut) where |Lt+1| = n′.
2: Parse Updt+1 as a 4-tuple: 〈σLt+1 , T ,ΣUpd,ΩUpd〉.
3: Compute ΣLt+1 : add/replace/delete elements from ΣUpd in ΣLt .
4: Compute ΩLt+1 : add/replace/delete elements from ΩUpd in ΩLt .
5: If T 6= ⊥: % ut caused regeneration of tags for all elements, hence authenticated information

needs to be replaced with new one.
6: digestt+1

S := 〈pk, σLt+1 , 〈g, gs, gs
2
, . . . , gs

n′ 〉,ΣLt+1 ,ΣLt+1〉.
7: Else % ut does not cause regeneration of tags for all elements
8: digestt+1

S := (pk, σLt+1 , 〈g, gs, gs
2
, . . . , gs

n〉,ΣLt+1 ,ΩLt+1) % where gsi ’s are from digesttS
9: return (Lt+1, digest

t+1
S)

Algorithm 7 (answer, proof) ← Query(digesttS ,Lt, δ), where δ = (z1, . . . , zm), s.t. zi ∈ Lt, , is the
queried sublist and Lt is the most recent list. Query is executed by the server to generate answer
answer to an order query on the elements of the list, δ, and a proof proof of the answer
1: answer = πLt(δ) = {y1, . . . , ym};
2: proof = 〈Σanswer,Ωanswer〉:
3: Σanswer := 〈σanswer, T, λL′〉 where L′ = Lt \ δ and:
4: σanswer ←

∏
yj∈answerσyj . % Digest signature for the query elements.

5: T = (ty1∈Lt , . . . , tym∈Lt). % Member witnesses for query elements.
6: Let S be a set of random elements without any corresponding tag, that were introduced

in ΩLt due to ldelete.
7: The member verification unit: λL′ ← H(ω) × g

∑
r∈Sr ×

∏
x∈L′H(tx∈Lt ||x) where H(ω)

comes from digesttS .
8: Ωanswer = (ty1<y2 , ty2<y3 , . . . ,tym−1<ym):
9: For every j ∈ [1,m − 1]: Let i′ := tag(yj) and i′′ := tag(yj+1), and r′ := ΩL[i′]−1 and
r′′ := ΩL[i′′]. Compute tyj<yj+1 ← (gs

d
)r
′r′′ where d = |i′ − i′′|.

10: return (answer, proof)

by knowing elements in δ and their signatures, authentic list digest signature σLt (received from the
owner) and server computed authentication digest λL′ . We note that the client cannot tell if δ is
the whole list or not, because of the blinding factor salt used in computing σLt . The client then uses
bilinear map (Section 3) to verify order witnesses. Recall that it lets him verify algebraic properties
of the exponents, i.e., that d = tag(yj+1)− tag(yj) for tyi∈Lt = gr

′stag(yj) , tyj+1∈Lt = gr
′′stag(yj+1) and

tyj<yj+1 as defined above.

5.3 Extensions

Batch updates For simplicity our construction describes the UpdateOwner algorithm for a single
update operation ut. However, UpdateOwner can be easily generalized to batch updates, where a
series of updates u1, u2, . . . , um happen together. In this case, the subroutine refresh on line 25
in Algorithm 4 needs to be called only once after all updates are performed. In this case, Y will
contain all the elements whose tags were regenerated by any of the updates u1, u2, . . . , um.

16

Algorithm 8 b← Verify(pk, digesttC , δ, answer, proof). Verify is executed by the client to verify the
integrity of an answer answer to an order query δ on the elements of the list. the verifier uses proof
to verify the answer wrt the owner’s public key pk and the most updated list digest digesttC .

1: Compute ξ ←
∏
yj∈δH(tyj∈Lt ||yj)

2: e(σanswer, g)
?
= e(ξ, pk) % Verify the answer digest is signed by the owner

3: e(σLt , g)
?
= e(σanswer, g)× e(λL′ , pk). % Verify answer is a part of the source list

4: ∀j ∈ [1,m− 1]: e(tyj∈Lt ,tyj<yj+1)
?
= e(tyj+1∈Lt , g). % Verify the returned order is correct

5: If (2), (3), (4) equalities hold, then accept. Else reject.

Hiding occurrence of an update The construction in Section 5.2 satisfies the Zero-Knowledge
property of Definition 4.3 (as we show in Section 5.5.3), i.e., the updated list digest does not reveal
any information about the update. However, if the DPPAL system is implemented such that, the
UpdateOwner algorithm is invoked only when updates to the list occur, then by the mere fact that
a list digest has changed, the client learns that an update has occurred, even though he cannot
tell which one. This leakage is beyond the scope of Definition 4.3 and, depending on the intended
application, can be tolerated. If not, we can hide the information that an update has occurred
as follows. Instead of calling UpdateOwner only when an update is required, the owner calls it
periodically. He saves update operations such that the next time he executes UpdateOwner he can
perform a batch update. If there are no updates scheduled when UpdateOwner has to be invoked,
the owner runs UpdateOwner with an empty update operation. In this case, refresh (line 25 in
Algorithm 4) is still invoked with elements that were queried since the last time UpdateOwner was
executed (information stored in SIDt). Hence, client’s digest, member witnesses and the individual
signatures of these elements are updated. Since client’s digest changes periodically independent of
the updates, he cannot distinguish a refresh from an update operation.

5.4 Efficiency Analysis

Our construction uses efficient cryptographic operations: multiplication and exponentiation in prime
order groups, and evaluation of a cryptographic hash function and bilinear map. As is standard,
we assume they take constant time. Moreover, we use at most four of these operations per element.
We also note that a member/order witness and a signature is a group element and is represented
using O(1) space2. Theorem 5.1 summarizes the security and performance of our construction.

Here we analyze the asymptotic running time and space complexity for each party.
Owner For a list of size n, the Setup algorithm instantiates OD(n) and makes n insertafter calls to

generate tags. The amortized cost of insertion is O(1) from Theorem 3.1. Generating the key
pair takes time O(1). The generation of each member-witness and signature takes time O(1)
and generating the public list digest signature involves O(n) multiplications. Therefore the
overall setup time is O(n). The space required to store the list and generate the server digest
is O(n), since each member witness and signature is a group element (and, hence, of constant
size) and from Theorem 3.1, we have, the space required to store OD(n) is O(n).3 Therefore,
the overall space required for the Setup algorithm is O(n).
We now analyze the time it takes the owner to perform an update in UpdateOwner in Algo-
rithm 4. This algorithm can be split in two parts. In the first part the owner updates the

2By standard convention, the word size is log(poly(k)) and k is the security parameter.
3Following the standard convention, in our analysis, we ignore the element representation which takes

O(log poly(k)) per element.

17

list and changes corresponding authenticated information. In the next part he refreshes the
authenticated information of all distinct elements that were queried since the last update, i.e.,
elements in SID.
The amortized cost of a single list update is O(1) (Theorem 3.1). Hence, an update of a batch
of L elements takes O(L) time. The authenticated information of elements affected by the
update, i.e., elements in Y, is update by the refresh algorithm, which takes O(1) time per
element. Since the amortized size of Y is O(1), the update takes O(1) amortized time.
Let M be the number of elements in SID. For each of these elements, the owner generates
new randomness, a member-witness and a signature, where each takes time O(1) by refresh
in Algorithm 5. Hence, the update phase requires O(L + M) time for the owner, or O(1)
amortized over the total number of elements queried or updated since the last update.

Server The Query algorithm, takes time O(min{m log n, n}) with O(n) preprocessing as in [28]
and space O(n), where the list size is between n/2 and 2n.
For every update that the owner makes, the server runs the UpdateServer algorithm. This
algorithm requires the server to update the list and update authenticated information (i.e.,
randomness, member-witnesses, signatures) that has changed due to the changes in the list.
The server updates the list in time O(L) where L is the number of elements in a batch update.
Updating authenticated information takes time proportional to the size of the update string
Upd that the server receives from the owner, i.e., the output of UpdateOwner. Recall that the
number of elements to update is O(L+M) whereM is the number of elements in SID. Hence,
the overall update time is O(L + M), or O(1) amortized over the total number of elements
queried or updated since the last update.

Client The client requires O(1) space to store digestC and pk.
Verify computes a hash for each element in the query δ, and then checks the first two equalities
using bilinear map. This requires O(m) computation, where m is the size of the query. In
the last step Verify checks O(m) bilinear map equalities which takes time O(m). Hence the
overall verification time of the client is O(m). During the query phase, the client requires
O(m) space to store its query and its response with the proof for verification.

5.5 Security Analysis

In order to show that our construction of DPPAL in Section 5.2 is secure we need to show that it sat-
isfies completeness (Definition 4.1), soundness (Definition 4.2) and zero-knowledge (Definition 4.3)
properties.

5.5.1 Proof of Completeness

If all the parties are honest, all the equations in Verify (in Algorithm 8) evaluate to true. This is
easy to see just by expanding the equations as follows:

Lemma 5.1 The DPPAL scheme in Section 5 satisfies completeness in Definition 4.1.

Proof We will expand all the equality checks in the verification algorithm (Algorithm 8).
Equation e(σanswer, g)

?
= e(ξ, pk = gv): Let answer = {y1, . . . , ym} = πLt(δ) and L′ = Lt \ δ then

e(σanswer, g) =e(
∏

y∈answer
σy, g) = e(

∏
y∈answer

H(ty∈Lt ||y)v, g) =

e(
∏

y∈answer
H(ty∈Lt ||y), gv) = e(ξ, gv).

18

Equation e(σLt , g)
?
= e(σanswer, g)× e(λL′ , pk = gv): We start with the right hand side. Let L0 be

the initial list and u0, . . . , ut−1 be the sequence of updates that resulted in the most recent list, Lt.
Let S be a set of random elements introduced in ΩLt for ui’s that were ldelete (S is empty in case
of no delete operations).

e(σanswer, g)× e(λL′ , gv)

= e(
∏

y∈answer
H(ty∈Lt ||y)v, g)× e(H(ω)× g

∑
r∈S r ×

∏
x∈L′
H(tx∈Lt ||x), gv)

= e(
∏

y∈answer
H(ty∈Lt ||y), gv)× e(H(ω)× g

∑
r∈S r ×

∏
x∈L′
H(tx∈Lt ||x), gv)

= e(H(ω)v × gv
∑
r∈S r ×

∏
x∈Lt
H(tx∈Lt ||x)v, g) = e(σLt , g).

Equation e(tyj∈Lt ,tyj<yj+1)
?
= e(tyj+1∈Lt , g): Let i′ = tag(yj) and i′′ = tag(yj+1) and r′ = ΩL[i′]−1

and r′′ = ΩL[i′′].

e(tyj∈Lt , tyj<yj+1) = e(gs
i′ (r′)−1

, gs
i′′−i′r′′r′) = e(g, g)s

i′′−i′+i′r′′r′(r′)−1

= e(g, g)s
i′′r′′ = e(gs

i′′r′′ , g) = e(tyj+1∈Lt , g).

This concludes our the proof of completeness.

5.5.2 Proof of Soundness

Let n be the size of the initial list L0 that Adv picks. Since Adv is allowed to make poly(k) number
of update requests, the list can grow to the size polynomial in n. Let P/2 be the maximum size
that the list can grow to. We prove soundness of the DPPAL scheme in Section 5.2 by reduction
from the P -Bilinear Diffie Hellman (P -BDHI) assumption (see Definition 3.1 for details).

To the contrary of the Soundness Definition 4.2, let us assume that the malicious server, Adv,
requests a series of updates, u0, . . . , ul and then produces a forgery answer on a Li where Li =
U(U(. . . (U(L0, u0), u1) . . .), ui−1). That is, Adv produces a non-trivial sublist δ = {x1, x2, . . . , xm},
where m ≥ 2, such that answer 6= πLi(δ) and corresponding order proof is accepted by the client,
i.e., by algorithm Verify. Since |δ| > 1, there exists at least one inversion pair (xi, xj) in answer
where i, j ∈ [1,m]. Let us assume, wlog, xi < xj is the order in Li. This implies xj < xi is the
forged order for which Adv has successfully generated a valid proof, i.e., e(txj∈L, txj<xi) = e(txi∈L, g)
was verified by Verify since it accepted the corresponding proof. We show we can construct a PPT
adversary A that successfully solves the P -BDHI Problem [12] by invoking Adv and using its forged
witness txj<xi . This in turn contradicts the assumption. Below we present a formal reduction.

Lemma 5.2 If P -Bilinear Diffie Hellman assumption holds, then DPPAL scheme in Section 5
satisfies soundness in Definition 4.2.

Proof We construct a PPT adversary A that successfully solves the P-BDHI Problem [12], if he
can invoke Adv who can forge a proof that passes Verify in Algorithm 8.

Algorithm A is given the public parameters (p,G,G1, e, g,H) and T = 〈g, gs, gs2 , . . ., gsP 〉,
where P = poly(k).
Setup A first executes the steps in Algorithm 1 with the following changes. In line 1, A only picks

sk = 〈v $←− Z∗p, ω
$←− {0, 1}∗〉 and sets pk = gv and sends pk to Adv. Given pk, let L0 be the

original list picked by Adv and n be its size.

19

A proceeds as follows. In order to compute the member-witnesses (as in Algorithm 2),
A uses its input tuple T to get the gs

tag(.) components. Finally, A returns digest0S :=
〈v, σL0 , 〈g, gs, gs

2
, . . . , gs

n〉,ΣL0 ,ΩL0〉 to Adv, where n = |L0|.
Query For an update request, ut on Lt, A runs UpdateOwner in Algorithm 4 with the following

changes. Since the game is concerned with updates only, and no order query is generates,
SIDt is empty and so in line 25, refresh is called with parameter Y instead of SIDt ∪ Y.
Subsequently, SIDt ∪ Y is replaced with Y in steps 26 and 27. Recall that A uses its input
tuple T to (re-)compute member witnesses. Finally, Updt+1 is returned to Adv.

Response Finally Adv outputs a forged order answer for some non-trivial sublist, δ = {x1, x2, . . . , xm}
on list Lj . As discussed before, let (xi, xj) be an inversion pair such that xi < xj is the order
in Lj and tag(xi) < tag(xj). This implies xj < xi is the forged order for which Adv has

successfully generated a valid proof txj<xi = (gs
(tag(xi)−tag(xj))

)
rxir

−1
xj .

Now A outputs e(txj<xi , (gs
tag(xj)−tag(xi)−1

)
rxi
−1rxj

) = e(g, g)
1
s . A inherits success probability of Adv,

therefore if Adv succeeds with non-negligible advantage, so does A. Hence, a contradiction.

5.5.3 Proof of Zero-Knowledge

Lemma 5.3 The DPPAL scheme in Section 5 satisfies zero-knowledge in Definition 4.3.

Proof We define the simulator Sim = (Sim1, Sim2) from Definition 4.3 as follows. Sim has access
to the system parameters, (p,G,G1, e, g,H).
Setup Sim1 picks v $←− Z∗p, ω

$←− {0, 1}∗ and publishes pk = gv and sends it to Adv1 and keeps
sk = 〈v, ω〉 as the secret key. Given pk, Adv1 picks a list of his choice L. Sim1 picks a random
element g1

$←− G and sends digest0C := gv1 to Adv1.
Query For every query Sim2 receives F(q) as input informing it whether q is an update or an

order query. In order to simulate consistent answers to the queries, it maintains a table of
its previous answers (in the order of their arrival). Sim2 simulates a reply to each query as
follows.
If F(q) = ⊥ (i.e., q is an update request):

• Sim2 picks a random r
$←− Z∗p and inserts F(q), r in the table.

• Sim2 computes digest
′
C ← (gv1)(grv) and returns digest

′
C .

If F(q) = q (i.e., q is an order query):
• Let q = (x1, . . . , xm). Sim2 makes an oracle call to the most recent list, L to get the

current order of the elements in L. Let us call it answer = πL(q) = {y1, y2, . . . , ym}.
• For each yi ∈ answer, Sim2 sets the randomness ri as follows. It finds the most

recent query that included y. If this query was an update Sim2 uses the random
element r corresponding to this row in the table. If the most recent query on y was
an order query and there was no update query (on y or other elements) after that,
then Sim2 uses the same randomness as he used last time. Otherwise, Sim2 picks a
fresh random element r′ $←− Z∗p and inserts F(q), x, r′ to the table.

• Sim2 computes the member witness as tyi∈L := gri and computes σyi ← H(tyi∈L||yi)
v.

• Sim2 sets σanswer :=
∏
yi∈answerσyi and λL′ := g1/

∏
yi∈answerH(tyi∈L||yi).

• For every pair of elements yi, yi+1 in answer, Sim2 computes tyi<yi+1 ← gri+1/ri .
• Finally, Sim2 returns (answer, proof), where proof = 〈Σanswer,Ωanswer〉, Σanswer =
〈σanswer, T, λL′〉, T = (ty1∈L, . . . , tym∈L) and Ωanswer = (ty1<y2 , ty2<y3 , . . . ,tym−1<ym).

20

We now argue that Sim produces a sequence of answers that is identically distributed to the
one produced by the real challenger (i.e., the owner and the server). We consider each phase.
During the Setup Sim1 produces initial digest digest0C and pk. v is a random element picked
exactly as the owner does in Figure 2. The client list digest computed by the owner in Figure 2,
has at least one multiplicative random element from the group G and g1 is picked randomly
by Sim1. Therefore digest0C and pk are distributed identically as in the real experiment. (This
follows from a simple argument. Let x, y, z ∈ Z∗p where x is a fixed element and z = xy. Then
z is identically distributed to y in Z∗p. In other words, if y is picked with probability γ, then
so is z. The same argument holds for elements in G and G1.)
For an update request, we want to show that the client receives a list digest signature in
digestC that is indistinguishable from a random element in the same space (i.e., that is how
Sim2 performs an update). We argue that a signature after the update is a product of the
signature before the update multiplied by at least one random element from the group. If this
is the case then the result of this product, i.e., the new signature, is distributed identically to
a random element from the same group (following the argument above).
If u is linsertafter or lreplace, then at least one member witness gets added or refreshed (line 20,
Algorithm 4). Then the signature of the corresponding new or updated element is hashed using
H (line 21, Algorithm 4). Then element’s signature is used to update the old signature which
corresponds to the multiplication by a random value since H is viewed as a random oracle
(line 28, Algorithm 4). If u is ldelete, then the old signature is updated explicitly in the
construction by adding fresh randomness (line 15, Algorithm 4).
For an order query, we need to show that all the units of proof = 〈Σanswer, Ωanswer〉 are
distributed identically in both games. Notice that all the components of Σanswer and Ωanswer

have a multiplicative random group element. Sim2 generates the components as random group
elements. Therefore, following the same argument, as for signatures, all the units of proof =
〈Σanswer, Ωanswer〉 are distributed identically in both games.
Now we need to show that Adv’s views before and after updates are identical. The signature
and member-witness for an element touched by some previous query before an update, and by
some query after the update gets refreshed in the real game. Sim2 also refreshes the signature
and member-witness for every element touched by the queries before and after an update. The
refresh is done identically in both cases. So in Adv’s view, the signature and member-witness
before and after an update are identically distributed in both the games. This concludes our
proof that the DPPAL scheme presented in Section 5.2 is simulatable and the Zero-Knowledge
is perfect.

Theorem 5.1 The dynamic privacy-preserving authenticated list (DPPAL) construction of Sec-
tion 5 satisfies the security properties of DPPADS including completeness, soundness (under the
P -BDHI assumption [12]) and zero-knowledge in the random oracle model (inherited from [13]).
The construction has the following performance, where n is the list size, m is the query size, L is
the number of updates in a batch and M is the number of distinct elements that have been queried
since the last update:

• The owner uses O(n) time and space for setup, and keeps O(n) state;
• In the update phase the owner sends a message of size O(L+M) to the server and a message
of size O(1) to the client;

• The update phase requires O(L + M) time for the owner and the server, or O(1) amortized
over the number of elements queried or updated since the last update;

• The server uses O(n) space and performs the preprocessing in O(n) time;
• The server computes the answer to a query and its proof in time O(min{m log n, n});

21

• The proof size is O(m);
• The client verifies the proof in O(m) time and space.

6 Space Efficient DPPADS (SE-DPPADS)

The model of Section 4 assumes the owner himself updates his data structure and sends information
to the server to propagate the changes. Hence, the owner is required to keep the most recent version
of Dt and any associated auxiliary information. Since this may not be ideal for an owner with small
memory requirement, we propose a model that is space efficient and relies on an authenticated data
structure (ADS) protocol executed between the owner and the server.

An ADS protocol is incorporated in the space efficient model as follows. The owner keeps a short
digest (ideally of O(1) size) of the data structure and its auxiliary information. He then outsources
the data structure as well as any auxiliary information to the server. To perform an update ut, the
owner requests the server to update the data structure and to send back any part that has changed
due to the update (ideally, proportional to the size of the update). Since the server can be malicious,
the owner also requests a proof that the information he receives is authentic, i.e., the update was
performed correctly. Then the owner incorporates the update in authenticated information for the
server and digest for the client. (Note that the server cannot perform these updates since she does
not have the secret key.) The owner updates his local digest in order to verify authenticity of future
updates.

6.1 Space Efficient DPPADS (SE-DPPADS) Model

The original model in Section 4 remains the same except for the UpdateOwner that is split into
two algorithms. The first algorithm, UpdateDS, is executed by the server. It updates Dt, extracts
auxiliary information and computes the proof for the owner. The second algorithm, VerifyUpdate, is
executed by the owner to verify the authenticity of the server’s output. If the verification succeeds,
the owner generates an update string for the server and a new digest for the client.

We describe UpdateDS and VerifyUpdate below.
(Dt+1, auxt, auxprooft) ← UpdateDS(Dt, ut, digesttS) where ut is an update operation to be per-

formed on Dt and digesttS is the corresponding server digest. auxt is the auxiliary information
generated by the server that contains any part of Dt that has changed due to the update ut,
along with its associated authentication information from digesttS (generated by owner during
setup or update). auxprooft is the proof of authenticity of auxt and Dt+1 is the updated DS,
i,e., Dt+1 := U(Dt, ut).

(stateO, digest
t+1
C ,Updt+1)← VerifyUpdate(sk, stateO, digest

t
C , auxt, auxprooft, ut, SIDt) where sk is

the secret key of the owner, stateO is the internal state variable of the owner, digesttC is the
client digest corresponding to DS Dt and SIDt is set to the output of a function f on the
queries invoked since the last update (Setup for the 0th update). auxprooft, auxt and ut are as
defined above. auxprooft is used to verify the authenticity of auxt. If it verifies, auxt is used
to generate an update string Updt+1 for the server, an updated digest digestt+1

C for the client,
and the state variable stateO is updated. If the authenticity of auxt does not verify, then the
algorithm VerifyUpdate outputs (⊥,⊥,⊥) and stops.

6.2 Security Properties

We need to accommodate the new interaction between the owner and the server only in the com-
pleteness and the soundness definitions. The zero-knowledge definition for updates and queries

22

remains the same as in Definition 4.3, since this change in the model is opaque from the client’s per-
spective. In other words, the client’s view is exactly the same in both DPPADS and SE-DPPADS,
regardless of how the update phase is implemented.

The new completeness definition describes the following. If all three parties are honest, then
for any ADT, the owner accepts auxiliary information about an update as returned by the server
using UpdateDS; and the client accepts an answer and a proof to his query as returned by the server
using Query. We note that this definition augments Definition 4.1 to capture the verification step
performed by the owner during the update phase.

To this end, we define a predicate checkAux(D, digestS , u, aux) that takes a data structure D,
the corresponding server digest digestS , an update request u, and auxiliary information aux. If aux
contains the portion of D that changes due to update u, along with the relevant portion of digestS ,
then checkAux outputs 1 and it outputs 0, otherwise. We note that this predicate is not part of the
model and is not executed by any of the participating parties. It is merely used to express correctness
of aux w.r.t. a DS D, its corresponding authentication information digestS , and an update u.

Definition 6.1 (Completeness) For an ADT (D0, Q, U), any sequence of updates u0, u1, . . . , uL
on the data structure D0, and for all queries δ on DL:

Pr[(sk, pk)← KeyGen(1k); (stateO, digest
0
C , digest

0
S)← Setup(sk, pk,D0);

{
(Dt+1, auxt, auxprooft)← UpdateDS(Dt, ut, digesttS);

(stateO, digest
t+1
C ,Updt+1)← VerifyUpdate(sk, stateO, digest

t
C , auxt, auxprooft, ut,SIDt);

(digestt+1
S ,Dt+1)← UpdateServer(digesttS ,Updt+1,Dt, ut);

}
0≤t≤L

{
(DL+1, auxL, auxproofL)← UpdateDS(DL, uL, digestLS) :

VerifyUpdate(sk, stateO, digest
L
C , auxL, auxproofL, uL,SIDL) = (stateO, digest

L+1
C ,UpdL+1)

∧ checkAux(DL, digestLS , u, auxL) = 1
}
∧{

(answer, proof)← Query(digestLS ,DL, δ) :

Verify(pk, digestLC , δ, answer, proof) = accept ∧ answer = Q(DL, δ)
}

] = 1

The new soundness definition protects the client as well as the owner against a malicious
server (Adv in the definition). Recall that Definition 4.2 considered only the former case since the
update phase was performed by a trusted party: the owner. The additional protection ensures that
if the server forges the auxiliary information for an update request from the owner, the owner will
accept it with at most negligible probability.

Definition 6.2 (Soundness) For all PPT adversaries, Adv and for all possible valid queries δ on
the data structure Dj of an ADT, there exists a negligible unction ν(.) such that, the probability of
winning the following game is negligible:
Setup Adv is given pk where (sk, pk) ← KeyGen(1k). Given pk, Adv picks an ADT of its choice,

(D0, Q, U) and receives the server digest digest0S for D0, where where (stateO, digest
0
C , digest

0
S)←

Setup(sk, pk,D0).
Query Adv requests a series of updates u1, u2, . . . , uL, where L = poly(k), of his choice. For

0 ≤ t ≤ L, the following steps are executed.

23

1. Adv runs UpdateDS. Let (Dt+1, auxt, auxprooft) ← UpdateDS(Dt, ut, digesttS). Out-
puts auxt and proofauxt are sent to the challenger.

2. The challenger runs VerifyUpdate. Let (stateO, digest
t+1
C ,Updt+1)← VerifyUpdate(sk, stateO,

digesttC , auxt, auxprooft, ut,SIDt) where SIDt = ⊥. Updt+1 is sent back to Adv.
Response Finally, Adv outputs at least one of the following:

• (Dj , u, aux, auxproof), 0 ≤ j ≤ L;
• (Dj , δ, answer, proof), 0 ≤ j ≤ L.

Adv wins the game if the following holds:

{checkAux(Dj , digestjS , u, aux) = 0 ∧ VerifyUpdate(sk, stateO, u, aux, auxproof, digest
j
S ,⊥) 6= (⊥,⊥,⊥)} ∨

{answer 6= Q(Dj , δ) ∧ Verify(pk, digestjC , δ, answer, proof) = accept}.

Recall that VerifyUpdate returns (⊥,⊥,⊥) only when auxiliary information is not verified.

6.3 Space Efficient DPPAL

The construction for DPPAL presented in Section 5 can be adapted to the space efficient model by us-
ing an authenticated version of the order data structure, AOD = (setupAOD, proveAOD, verifyAOD),
instantiated below.

6.3.1 Authenticated Order Data Structure

We give an instantiation of an authenticated version of the order data structure, AOD = (setupAOD,
proveAOD, verifyAOD) based on Merkle Hash Tree (MHT) [42]. We will use this construction as a
black box for our space efficient DPPAL construction. AOD is executed between the trusted owner
and the untrusted server. The owner generates a digest and authenticated information of the order
data structure O using setupAOD. He keeps the digest and sends authenticated information and O
to the server. Given an update operation, the server runs proveAOD using O and authenticated
information to generate the reply and a proof. The owner executes verifyAOD to verify that the
reply was authentic w.r.t. his order data structure and to update his digest.

We sketch an instantiation of each algorithm of AOD here.
setupAOD: For a given O = OD(n), this algorithm builds a Merkle Hash Tree (MHT) [42] on the

tag space of O, which is of size 2n. For each tag, the corresponding leaf of the MHT stores
the list element associated with this tag, if any, and ⊥ otherwise. setupAOD returns rootO:
the root of the MHT which represents the digest information for O.

proveAOD: AOD supports four queries and authenticates them as follows:
tag(x): The proof returns the element x at leaf tag(x) and the authentication path auth(tag(x))

of the MHT. Recall that auth of a leaf in MHT is a sequence of siblings of every node on
the path from the leaf to the root.

delete(x): The proof returns the element x at leaf tag(x) and the authentication path, auth(tag(x)),
in the MHT.

replace(x′, x): The proof returns the element x′ at leaf tag(x′) and the authentication path,
auth(tag(x′)), in the MHT.

inserafter(x, y): The proof of this operation is slightly more involved. Let Y ← O.insertafter(x, y).
The server returns Y and w, auth(tag(w)) for all w (possibly empty) in the smallest tag
range that is not overflowing (i.e., has room for a new element) and tag(x). It also returns
a tag to be assigned to y, tag(y), and auth(tag(y)).

verifyAOD: The verification involves two steps: (1) check the portion of O that has changed due
to the update is indeed the correct portion that needed to be changed, and (2) the returned

24

portion of O is authentic. The verification involves verifying the authentication paths auth of
the returned tag values. Recall that in MHT it is done by hashing the returned value with
its sibling, then hashing the result with the sibling of the parent, and so on till the hash of
the root is computed. The verification succeeds if this value equals rootO. The owner can
use standard MHT verification for each operation except for insertafter(x, y). In this case, the
owner has to verify that the tag range returned by the server is indeed the smallest tag range
that needed to be relabeled for the insert operation. In particular, the correct range has the
following properties: it is the smallest tag range that encloses tag(x) and it is not in overflow
in O (i.e., the density of the range is above the threshold as described in Section 3).
Before going through verification of Y and the tag range, we recall that an enclosing range of
tag(x) can be computed using tag(x) and n, the size of the original list. The first enclosing
tag range is just tag(x). The next enclosing tag range consists of all the leaves in the subtree
rooted at the parent of tag(x) (i.e., if tag(x) is odd, then this enclosing tag range consists of
integers between tag(x)−1 and tag(x), and integers between tag(x)+1 and tag(x), otherwise).
This corresponds to the tag range at level 21 of the implicit full binary tree over the universe of
tags [0, N], where N is set to 2n in our implementation. The next enclosing tag range consists
of all the leaves in the subtree rooted at the parent of the parent of tag(x) and so on. Thus
all the enclosing tag ranges can be enumerated by walking up the implicit binary tree until
the smallest range not in overflow is found. The verification steps are given in Algorithm 9.
Note that an insertion or deletion might cause the number of elements in the list to become less
than n

2 or greater than 2n. This will require rebuild of O and the underlying tree. In this case,
the server has to return the whole MHT and the owner can verify the correctness by checking
number of leaves that are assigned to elements in the MHT using their authentication paths.
We describe the verification steps when the insertion does not cause rebuild in Algorithm 9.

Security and Efficiency: The security of theAOD presented above follows from the security of
MHT and properties of the relabeling algorithm of OD. For a single leaf, MHT returns a proof

Algorithm 9 Verification of insertafter(x, y) operation.

1: % Let l and u be the leftmost and rightmost points of the current tag range enclosing tag(x), and l′

and u′ be the leftmost and rightmost points of the previous (smaller) tag range enclosing tag(x).

2: Set l′ := −1, u′ := −1, and parent to be a parent of tag(x).
3: while (parent 6= ⊥) % enclosing range rooted at parent is still in the tree
4: Let l and u be the leftmost and rightmost leaves of the range enclosed by parent.
5: for every tag i in range [l, u]/[l′, u′] % exclude elements processed in smaller tag ranges
6: Find element (possibly empty) corresponding to tag i among w’s returned by the server.
7: If not found, return reject.
8: Verify this element using the corresponding auth path.
9: If not verified, return reject.

10: Remember the old tag range as: l′ := l and u′ := u.
11: if (tag range [l, u] is not in overflow) % there is an unoccupied tag in this range
12: Verify the authenticity of tag(y) using auth(tag(y)).
13: If verified, return accept. Otherwise, reject.
14: Set parent to the parent node of old parent.
15: % Insert caused a rebuild of the underlying tree.

25

of size O(log n) since it returns a node for every level in the tree. The size of Y is of amortized
size O(1), hence, proveAOD and verifyAOD require O(log n) amortized time for every query.

6.3.2 DPPAL Construction

In the setup, the owner executes Setup in Algorithm 2 and calls setupAOD with order data struc-
ture O as input to generate the digest of AOD. The owner’s state stateO now only stores the digest
of AOD and the list digest digest0C instead of the list L0, O and associated authenticated information.
As before, the owner sends digest0C to the client, while digest0S is augmented to contain authenticated
information of AOD.

The update phase is changed as follows. UpdateOwner in Algorithm 4 is split between two
algorithms: UpdateDS, executed by the server, and VerifyUpdate, executed by the owner. Informally
this split proceeds as follows. Given an update request ut from the owner, the server runs UpdateDS.
This algorithm updates Lt and O and returns to the owner elements that were changed during the
update, their tags and signatures, and a tag of the new element in case of linsertafter and lreplace.
UpdateDS also returns proofs of authenticity of her output computed using proveAOD.

Given the updated content and a corresponding proof from UpdateDS, the owner executes
VerifyUpdate which first invokes verifyAOD to verify that the server returned the correct tags that
correspond to the update. The owner also verifies the signatures. If the verification passes, then
parts of the UpdateOwner (Algorithm 4) that involve generation of fresh randomness, member wit-
nesses and new signatures on the elements are executed. Finally, VerifyUpdate updates the state
variable, stateO, the updated digests for O and the list. It outputs the new list digest and an update
string for the server. The server updates her digest as in Section 5.

The algorithms UpdateServer, Query and Verify in Section 5 remain unchanged.

Security: The completeness and soundness of this space efficient DPPAL construction follow from
the security of the underlying AOD and DPPAL construction of Section 5. Zero-knowledge follows
from server-client protocol of Section 5.

Efficiency: This construction improves the performance of update phase in Section 5. The space
complexity for the owner is O(1) since he keeps a digest of O. Update phase incurs log n multi-
plicative cost due to a hash based AOD construction. We highlight below the changes in efficiency
as compared to Theorem 5.1.

Theorem 6.1 The space efficient dynamic privacy-preserving authenticated list construction has
the following performance, where n is the list size, L is the number of updates in a batch and M is
the number of distinct elements that have been queried since the last update:

• The owner uses O(n) time and space for setup, and keeps O(1) state;
• The update phase requires one round of interaction between the owner and the server where
they exchange a message of size (L log n+M);

• The update phase requires O(L log n + M) time for the owner and the server, or O(log n)
amortized over the number of queried or updated elements.

7 Dynamic Privacy-Preserving Authenticated Tree (DPPAT)

In this section, we propose another instantiation of DPPADS: a fully dynamic privacy-preserving
tree, DPPAT, where the ADT is a rooted ordered tree instead of a list. In particular, we first
discuss in detail how a tree can be uniquely represented using two lists. Then, we show that

26

order queries and dynamic operations on a tree can be translated into dynamic operations on those
two lists. Given this list representation of a tree, it becomes easy to instantiate a DPPAT using
instantiations of DPPAL as described in Section 5 or 6. As a consequence, the security properties
of the resulting DPPAT construction follow from the security properties of the underlying DPPAL
scheme as discussed in Section 5.5 or Section 6.3.2.

Data structure: Let T be a rooted tree of non-repeated elements where each vertex, or node,
stores an element. Recall that a rooted tree is a connected, undirected, acyclic graph where one
node is designated as root. We implicitly consider each edge as a directed edge and all the edges
are directed away from the root. We denote each element as a binary string {0, 1}∗. Two nodes in
a tree can be related in exactly one of the following ways:
Above/below: A node x is above a node y if x is an ancestor of y.
Left/right: If two nodes x and y are not related by ancestry relation, then one is to the left of the

other (they may or may not be siblings) with respect to their lowest common ancestor (LCA).
In the example in Figure 1a, node F is to the left of node H, and node E is to the right of node K.

Tree Representation via L-Order and R-Order: We define two recursive traversal patterns
for traversing a (non-empty) rooted tree:
Left to right traversal (L-Order): Start from the root. At node u do the following: (1) Process

node u; (2) Recursively traverse its subtrees in left to right order.
Right to left traversal (R-Order): Start from the root. At node u do the following: (1) Process

node u; (2) Recursively traverse its subtrees in right to left order.
See Figure 1a for an example of the above traversals.

From the theory of Partial Orders it is well known that a rooted tree T can be uniquely rep-
resented as two lists, L-OrderT and R-OrderT (Lemma 7.1). Following the standard definition,
rank(L, x) is a function that associates a natural number to every element x of a list L such that
rank(L, x) < rank(L, y) if x precedes y is the list, L.

Lemma 7.1 [11] Given the L-Order and the R-Order ordering of a rooted tree, the relation between
two nodes x and y of the tree is uniquely determined by their relative orders in L-Order and R-Order:
A node x is above a node y iff rank(L-Order, x) < rank(L-Order, y) and rank(R-Order, x) <

rank(R-Order, y).
A node x is to the left of a node y w.r.t. their lowest common ancestor iff rank(L-Order, x) <

rank(L-Order, y) and rank(R-Order, x) > rank(R-Order, y).

By Lemma 7.1, we see that the relation between any two nodes in a rooted tree can be uniquely
represented using order relations on two lists. We will discuss how the order queries and updates on
a tree translate to order queries on its representative lists L-Order and R-Order in the subsequent
sections. Given that, a DPPAT scheme can be instantiated with the DPPAL schemes we described
in Sections 5.5 or 6.3.2.

7.1 Tree Preliminaries

In this section we recall some standard terminologies for trees (Definition 7.1 and Definition 7.2)
and introduce new terminology (Definition 7.3 and Definition 7.4) that we would need in order to
express order queries on a tree.

27

A

B C D E

H I J

M N

P

K L

O

GF

(a)

B J

K L

O

G

(b)

Figure 1: (a) A tree T with L-Order = {A,B, F,G,H,K,O,L,C,D,E, I,M, P,N, J} and
R-Order = {A,E, J, I,N,M,P,D,C,B,H,L,K,O,G, F}. (b) A forest Fδ = (V (Fδ), E(Fδ))
induced on T by δ = {B, J,G,K,O,L}, where V (Fδ) = {B, J,G,K,O,L} and E(Fδ) =
{(B,G), (B,K), (B,L), (K,O)}).. The dotted node is a dummy node that expresses the left to
write order between the subtrees rooted at node B and J .

Definition 7.1 (Short-circuiting two vertices) We define the following operation as short cir-
cuiting two vertices: given two vertices u, v ∈ V (T), if there is a directed path from u to v in T ,
then replace the path with a directed edge from u to v.

Definition 7.2 (Induced forest) Given a set of vertices, δ = {v1, . . . , vm} ∈ V (T), we define the
forest Fδ = (V (Fδ), E(Fδ)) induced by δ as follows:

• Set V (Fδ) := {v1, . . . , vm} and initialize E(Fδ) := ∅.
• ∀vi, vj ∈ V (Fδ), if edge (vi, vj) ∈ E(T), then add that edge to the forest, i.e., E(Fδ) :=
E(Fδ) ∪ (vi, vj).

• ∀vi, vj ∈ V (Fδ), if there exists a directed path from vi to vj in T , then short circuit vi, vj
in Fδ, i.e., E(Fδ) := E(Fδ) ∪ (vi, vj).

See Figure 1b for an example.

Definition 7.3 (Order Representation of a tree) We define the representative set Rep(T) for
a tree T = (V (T), E(T)) recursively, as follows:

• Initialize Rep(T) := ∅.
• Explore T in breadth-first search (BFS) order starting at the root and augment each v ∈ V (T)
with its BFS level number 0, 1, . . . , h(T) where h(T) is the height of T .

• Now update Rep(T) as follows: for level i, 1 ≤ i ≤ h(T)− 1:
– Rep(T) := Rep(T) ∪ (u, v, 0) where (u, v) ∈ E(T) and u has level i− 1, v has level i.
– Rep(T) := Rep(T)∪ (u1, u2, 1)∪ (u2, u3, 1)∪ . . .∪ (ul−1, ul, 1) where u1, . . . , ul are nodes

at level i ordered as follows: let u1, . . . , uj be the children of node w. Here, the children
nodes, u1, . . . , uj are arranged according to the total order induced by their parent w.

Let LCA(a, b) denote the lowest common ancestor of nodes a and b.

28

Claim 7.1 Let T = (V (T), E(T)) be a rooted tree and a, b, c, x1, x2 ∈ V (T) where x1 = LCA(a, b)
and x2 = LCA(b, c). Then LCA(a, c) = LCA(x1, x2).

Proof If possible, let LCA(x1, x2) = x3, LCA(a, c) = x4 and x3 6= x4. Since x3 is an ancestor of
both x1 and x2, therefore x3 is an ancestor of both a and c. By definition, x4 is also an ancestor
of both a and c. Therefore either x3 is an ancestor of x4 or x4 is an ancestor of x3. But since
x4 = LCA(a, c), it must be the case that x3 is an ancestor of x4. This, in turn, implies that x4 is
an ancestor of x1 (since x1 and x4 are ancestors of a, and x3 is an ancestor of x1 and x4) and x2
(similarly). Therefore x4 is lower that x3 and this contradicts the fact that x3 = LCA(x1, x2). Hence
x3 = x4.

Observation 7.1 Let Fδ be the forest induced on tree T by a subset of its vertices δ. Let T1, T2, . . . , Tk
be the components of Fδ and r1, r2, . . . , rk be the root vertices of these trees, respectively. Then:

• For each pair of root vertices ri, rj, either ri is to the left or to the right of rj w.r.t. their LCA
in the source tree T ;

• If ri is to the left of rj w.r.t. their LCA in T , then ∀u, v where u ∈ Ti, v ∈ Tj, u is to the left
of v w.r.t. their LCA in T ;

• By Claim 7.1 and the fact that tree is planar, it follows that the left/right relation w.r.t. LCA
induces a total order on r1, r2, . . . rk.

Definition 7.4 (Order Representation of a forest) We define the representative set Rep(F)
for a forest F = (V (F), E(F)) recursively, as follows:

• Initialize Rep(F) := ∅.
• Let F = T1, T2, . . . , Tk be the trees of the forest and let r1, r2, . . . , rk be their roots ordered
as per the left/right relation. Update Rep(F) := Rep(F) ∪ (r1, r2, 1) ∪ (r2, r3, 1) ∪ . . . ∪
(rk−1, rk, 1). Note that order between any two roots can be inferred given the k − 1 pair-
wise orders (r1, r2), (r2, r3), . . . , (rk−1, rk) by transitivity of the left/right relation w.r.t. LCA
as discussed in Observation 7.1.

• Then, for each Ti, 1 ≤ 1 ≤ k, update Rep(F) := Rep(F) ∪ Rep(Ti).

Note that Rep(F) denotes the partial order induced by T on the vertices of the forest, V (Fδ).

Lemma 7.2 Let T be a tree and Fδ be the forest induced by a subset of vertices of T , δ. Then, the
order between each pair of vertices x, y ∈ δ is inferrable from Rep(Fδ).

Proof For any pair of vertices x, y ∈ V (Fδ), there are two possible cases:
Case 1: x, y belong to the same component of the forest, say Ti. We can split this case further:

• x, y are related through ancestory: Wlog, assume that x is an ancestor of y and let
x, v1, v2, . . . , vl, y be the path from x to y in Ti. By construction of Rep(Ti), for every
parent child pair vp, vc ∈ V (Ti), (vp, vc, 0) ∈ Rep(Ti). Therefore, (x, v1, 0), (v1, v2, 0), . . . ,
(vl−1, vl, 0) ∈ Rep(Ti) and hence the order between x and y is inferrable by transitivity.

• x and y are related as left/right w.r.t. LCA(x, y). Wlog, assume that x is to the left
of y w.r.t. LCA(x, y). If x and y are siblings, then (x, y, 1) ∈ Rep(Ti) by construction.
Otherwise, let x be in the subtree rooted at rx and y be in the subtree rooted at ry, s.t.,
rx and ry are children of LCA(x, y). Therefore, by construction, (rx, ry, 1) ∈ Rep(Ti) and
therefore the order between x and y is inferrable from the tuple (rx, ry, 1) ∈ Rep(Ti).

Hence, the order between x, y ∈ Ti is inferrable from Rep(Ti) ⊆ Rep(Fδ).

29

Case 2: x, y belong to different components of the forest, say x ∈ Ti and y ∈ Tj , i 6= j. In this
case, the order between x and y is the same as the order between the corresponding roots
of Ti and Tj (as discussed in Observation 7.1). Since the order between every pair of roots
of the component trees is inferrable from Rep(Fδ), the order between x, y is also inferrable
from Rep(Fδ).

Lemma 7.3 Let T be a tree and Fδ be the forest induced by a subset of vertices of T , δ. Then, the
size of Rep(Fδ) is O(|δ|).

Proof Let Fδ consist of k components: T1, T2, . . . , Tk. We can compute the size of Rep(Ti), 1 ≤ i ≤
k, as follows. Consider a node of Ti at level j of the BFS order and the number of tuples in Rep(Ti)
it has in common with nodes at level j or above. Each such node participates in at most three
tuples in Rep(Ti): one tuple with its parent (at BFS level j−1) and at most two tuples with its two
siblings (the one on its left and the one on its right, both at BFS level j). Then, the total number
of tuples in Rep(Ti) is 3(|V (Ti)| − 1), since the root is included in the tuples of its children.

Rep(Fδ) includes Rep(Ti) for every tree and k−1 tuples for the roots of adjacent trees. Therefore,
|Rep(Fδ)| = (k−1)+

∑
1≤i≤k 3(|V (Ti)|−1). Since |V (T1)|+ |V (T2)|+ . . .+ |V (Tk)| = |δ| and k ≤ |δ|,

|Rep(Fδ)| = O(|δ|).

7.2 Order Queries on Trees

An order query on a tree T of distinct elements is defined as follows: given a pair of query elements
(x, y) of T , the server returns the pair with its elements rearranged according to their order in T
along with a bit b indicating the relationship between x and y. If b = 0, then the returned order
of x, y indicates that x, y are in the above/below relationship. Otherwise, if b = 1, then the returned
order of x, y indicates that x, y are in the left/right relationship w.r.t. their lowest common ancestor.
For example, if y is an ancestor of x in T , then the pair (y, x, 0) is returned as an answer. If y is to
the left of x, w.r.t. their lowest common ancestor, then (y, x, 1) is returned as an answer.

For generality, the data structure also supports batch order query. Given a non-trivial set of
query elements δ, i.e., |δ| ≥ 2, the server returns the forest induced by δ, Fδ = (V (Fδ), E(Fδ)), and
its representative set Rep(Fδ) (as defined in Definition 7.3).

The server proves authenticity of his answers to order queries by providing a proof of its answer.
The proof consists of pairwise orders of the form (x, y, b). Recall that, for a query of size two only
one such tuple is returned, while for a larger query a sequence of tuples is returned in Rep(Fδ).
A proof for each tuple in Rep(Fδ) is computed using the result in Lemma 7.1. For the order
(x, y, 0) the server returns two proofs: {rank(L-Order, x) < rank(L-Order, y) and rank(R-Order, x) <
rank(R-Order, y)}. Likewise, for the order (x, y, 1) she returns two proofs, {rank(L-Order, x) <
rank(L-Order, y) and rank(R-Order, y) < rank(R-Order, x). In order to compute the proofs of order
of x, y in L-Order and R-Order, the server uses DPPAL version of L-Order and R-Order.

Example Consider the tree in Figure 1a and a query δ = {B, J,G,K,O,L}. Then the server
returns the induced forest in Figure 1b and Rep(Fδ) where Rep(Fδ) = {(B, J, 1), (B,G, 0), (B,K, 0),
(B,L, 0), (G,K, 1), (K,L, 1), (K,O, 0)}. He also returns a proof for every order in Rep(Fδ). The
proof of order includes two permutations of δ:

• δ′ = {B,G,K,O,L, J} (elements of δ permuted according to their order in L-Order);
• δ′′ = {J,B, L,K,O,G} (elements of δ permuted according to their order in R-Order).

and a proofs of each order:
(B,J,1): {(rank(L-Order, B) < rank(L-Order, J)) ∧ (rank(R-Order, B) > rank(R-Order, J))};

30

(B,G,0): {(rank(L-Order, B) < rank(L-Order, G)) ∧ (rank(R-Order, B) < rank(R-Order, G))};
(B,K,0): {(rank(L-Order, B) < rank(L-Order,K)) ∧ (rank(R-Order, B) < rank(R-Order,K))};
(B,L,0): {(rank(L-Order, B) < rank(L-Order, L)) ∧ (rank(R-Order, B) < rank(R-Order, L))};
(G,K,1): {(rank(L-Order, G) < rank(L-Order,K)) ∧ (rank(R-Order, G) > rank(R-Order,K))};
(K,L,1): {(rank(L-Order,K) < rank(L-Order, L)) ∧ (rank(R-Order,K) > rank(R-Order, L))};
(K,O,0): {(rank(L-Order,K) < rank(L-Order, O)) ∧ (rank(R-Order,K) < rank(R-Order, O))}.

7.3 Dynamic Operations on Trees

DPPAT can support link, cut and replace on a tree T . It does so by making the following constant
number of update queries to the DPPAL representations of L-OrderT and R-OrderT (formalized in
Lemma 7.4):
link(v, w): Insert new node v /∈ T by making v a child of w ∈ T , if w was a leaf. Using DPPAL

this can be done as: L-OrderT .linsertafter(v, w) and R-OrderT .linsertafter(v, w).
link(v, w, x): If w is not a leaf in T , the third argument x specifies a child of w; due to the link, v

becomes a child of w in T , succeeding x. Using DPPAL: L-OrderT .linsertafter(v, xright) and
R-OrderT .linsertafter(v, yleft), where y is the sibling to the right of x, xright is the rightmost
node of the subtree rooted at x and yleft is the leftmost node of the subtree rooted at y.

cut(v): Delete a leaf node v ∈ T by disconnecting v from its parent in T . Using DPPAL:
L-OrderT .ldelete(v) and R-OrderT .ldelete(v).

replace(v′, v): Replace the content of node v′ with new content v (v is not content of T). Using
DPPAL: L-OrderT .lreplace(v′, v) and R-OrderT .lreplace(v′, v).

Lemma 7.4 All the dynamic operations for a Dynamic Privacy-Preserving Authenticated Tree (DP-
PAT) can be implemented using one call on the L-Order and one call on the R-Order representing
the tree.

We summarize the security properties and efficiency of our DPPAT scheme in Theorem 7.1.

Theorem 7.1 A dynamic privacy-preserving authenticated tree (DPPAT) can be implemented using
a DPPAL. This scheme satisfies the security properties of a DPPADS: completeness (Definition 4.1),
soundness (Definition 4.2) and zero-knowledge (Definition 4.3). The runtime, space, and message
size for every party is proportional to the corresponding runtime, space, and message size in the
DPPAL scheme.

Proof We showed in Lemma 7.1 that a tree can be completely and uniquely represented using two
lists: L-Order and R-Order. We then showed in Lemma 7.2 that the answer and proof size for
an order query on a tree, is proportional to the size of the query. The initial generation of two
lists involves traversing the tree twice which takes time proportional to the size of the tree and,
hence, does not add any additional overhead for the owner. By Lemma 7.4, each dynamic operation
on a DPPAT can be implemented using one call on each of L-Order and R-Order. Completeness,
soundness and zero-knowledge of the DPPAT construction follow from DPPAL security properties
(as proved in Theorem 5.1).

Remark: The technique used for DPPAT can be further extended to d-dimensional Partial Orders
(POs) for some constant d. The extension relies on the unique intersection of d total ordered lists
of a PO. Hence, the dynamic privacy-preserving version can be implemented using d DPPALs (e.g.,
a tree is a PO with d = 2).

31

8 Acknowledgment

This research was supported in part by the National Science Foundation under grant CNS–1228485.

References

[1] Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on
authenticated data. In: TCC (2012)

[2] Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key management
for access hierarchies. ACM Trans. Inf. Syst. Secur. (2009)

[3] Atallah, M.J., Blanton, M., Frikken, K.B.: Efficient techniques for realizing geo-spatial access
control. In: ASIACCS (2007)

[4] Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New privacy
definitions and constructions. In: ASIACRYPT (2012)

[5] Babka, M., Bulánek, J., Cunát, V., Koucký, M., Saks, M.: On online labeling with polynomially
many labels. In: ESA (2012)

[6] Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets.
In: CRYPTO (2011)

[7] Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified algorithms
for maintaining order in a list. In: ESA (2002)

[8] Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious b-trees. SIAM J. Comput.
(2005)

[9] Bender, M.A., Duan, Z., Iacono, J., Wu, J.: A locality-preserving cache-oblivious dynamic
dictionary. J. Algorithms (2004)

[10] Bird, R.S., Sadnicki, S.: Minimal on-line labelling. Inf. Proc. Let. (2007)

[11] Birkhoff, G.: Lattice theory, vol. 25. American Mathematical Soc. (1967)

[12] Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption without random
oracles. In: EUROCRYPT (2004)

[13] Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures
from bilinear maps. In: EUROCRYPT (2003)

[14] Brodal, G.S., Fagerberg, R., Jacob, R.: Cache oblivious search trees via binary trees of small
height. In: SODA (2002)

[15] Brzuska, C., Busch, H., Dagdelen, Ö., Fischlin, M., Franz, M., Katzenbeisser, S., Manulis, M.,
Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable signatures for tree-structured
data: Definitions and constructions. In: ACNS (2010)

[16] Bukhatwa, F., Patel, A.: Effects of ordered access lists in firewalls. In: IADIS WWW/Internet
International Conference (2004)

32

[17] Camacho, P., Hevia, A.: Short transitive signatures for directed trees. In: CT-RSA (2012)

[18] Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC (2013)

[19] Catalano, D., Fiore, D., Messina, M.: Zero-knowledge sets with short proofs. In: EUROCRYPT
(2008)

[20] Chang, E.C., Lim, C.L., Xu, J.: Short redactable signatures using random trees. In: CT-RSA
(2009)

[21] Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commitments with
applications to zero-knowledge sets. In: EUROCRYPT (2005)

[22] Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures: Complex
unary transformations and delegatable anonymous credentials. IACR ePrint Archive (2013)

[23] Dietz, P.F.: Maintaining order in a linked list. In: STOC (1982)

[24] Dietz, P.F., Seiferas, J.I., Zhang, J.: A tight lower bound for on-line monotonic list labeling.
In: SWAT (1994)

[25] Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: STOC (1987)

[26] Dietz, P.F., Zhang, J.: Lower bounds for monotonic list labeling. In: SWAT (1990)

[27] Emek, Y., Korman, A.: New bounds for the controller problem. In: DISC (2009)

[28] Ghosh, E., Ohrimenko, O., Tamassia, R.: Verifiable member and order queries on a list in
zero-knowledge. IACR ePrint Archive Report 2014/632 (2014)

[29] Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L., Vasant, S., Ziv, A.: NSEC5: Provably
preventing DNSSEC zone enumeration. ePrint Archive, Report 2014/582

[30] Goodrich, M.T.: Pipelined algorithms to detect cheating in long-term grid computations. The-
oretical Computer Science (2008)

[31] Goodrich, M.T., Kerschbaum, F.: Privacy-enhanced reputation-feedback methods to reduce
feedback extortion in online auctions. In: CODASPY (2011)

[32] Hamed, H., Al-Shaer, E.: Dynamic rule-ordering optimization for high-speed firewall filtering.
In: ASIACCS (2006)

[33] Itai, A., Konheim, A.G., Rodeh, M.: A sparse table implementation of priority queues. In:
Akko (1981)

[34] Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes. In: CT-
RSA (2002)

[35] Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In: FC
(2013)

[36] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their
applications. In: ASIACRYPT (2010)

33

[37] Kundu, A., Atallah, M.J., Bertino, E.: Leakage-free redactable signatures. In: CODASPY
(2012)

[38] Kundu, A., Bertino, E.: Structural signatures for tree data structures. PVLDB (2008)

[39] Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Int. J. Inf. Sec.
(2013)

[40] Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge
sets with short proofs. In: TCC (2010)

[41] Liskov, M.: Updatable zero-knowledge databases. In: ASIACRYPT (2005)

[42] Merkle, R.C.: A certified digital signature. In: CRYPTO (1989)

[43] Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS (2003)

[44] Micali, S., Rivest, R.L.: Transitive signature schemes. In: CT-RSA (2002)

[45] Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme based on
bilinear maps. In: ASIACCS (2006)

[46] Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via blind storage.
In: IEEE Symp. on Security and Privacy (2014)

[47] Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs for generalized queries on a
committed database. In: ICALP (2004)

[48] Poehls, H.C., Samelin, K., Posegga, J., De Meer, H.: Length-hiding redactable signatures from
one-way accumulators in O(n). Tech. Rep. MIP-1201, FIM. University of Passau (2012)

[49] Pöhls, H.C., Samelin, K.: On updatable redactable signatures. In: ACNS (2014)

[50] Prabhakaran, M., Xue, R.: Statistically hiding sets. In: CT-RSA (2009)

[51] Samelin, K., Poehls, H.C., Bilzhause, A., Posegga, J., De Meer, H.: Redactable signatures for
independent removal of structure and content. In: ISPEC (2012)

[52] Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: ICISC (2001)

[53] Tapdiya, A., Fulp, E.: Towards optimal firewall rule ordering utilizing directed acyclical graphs.
In: ICCCN (2009)

[54] Tsakalidis, A.K.: Maintaining order in a generalized linked list. Acta Inf. (1984)

[55] Wang, Z.: Improvement on Ahn et al.’s RSA P-homomorphic signature scheme. In: Se-
cureComm (2012)

[56] Willard, D.E.: Maintaining dense sequential files in a dynamic environment (extended ab-
stract). In: STOC (1982)

[57] Willard, D.E.: Good worst-case algorithms for inserting and deleting records in dense sequential
files. In: ACM SIGMOD (1986)

[58] Willard, D.E.: A density control algorithm for doing insertions and deletions in a sequentially
ordered file in good worst-case time. Inf. Comp. (1992)

[59] Yi, X.: Directed transitive signature scheme. In: CT-RSA (2006)

34

	Introduction
	Related Work
	Preliminaries
	Terminology and Cryptographic Primitives
	Order Maintenance Problem

	Dynamic Privacy Preserving Authenticated Data Structure (DPPADS)
	Model
	Security Properties

	Dynamic Privacy-Preserving Authenticated List
	Static Construction
	Dynamic Construction
	Extensions
	Efficiency Analysis
	Security Analysis
	Proof of Completeness
	Proof of Soundness
	Proof of Zero-Knowledge

	Space Efficient DPPADS (SE-DPPADS)
	Space Efficient DPPADS (SE-DPPADS) Model
	Security Properties
	Space Efficient DPPAL
	Authenticated Order Data Structure
	DPPAL Construction

	Dynamic Privacy-Preserving Authenticated Tree (DPPAT)
	Tree Preliminaries
	Order Queries on Trees
	Dynamic Operations on Trees

	Acknowledgment

