Cryptology ePrint Archive: Report 2015/254

Tornado Attack on RC4 with Applications to WEP \& WPA

Pouyan Sepehrdad and Petr Susil and Serge Vaudenay and Martin Vuagnoux

Abstract: In this paper, we construct several tools for building and manipulating pools of biases in the analysis of RC4. We report extremely fast and optimized active and passive attacks against IEEE 802.11 wireless communication protocol WEP and a key recovery and a distinguishing attack against WPA. This was achieved through a huge amount of theoretical and experimental analysis (capturing WiFi packets), refinement and optimization of all the former known attacks and methodologies against RC4 stream cipher in WEP and WPA modes. We support all our claims on WEP by providing an implementation of this attack as a publicly available patch on Aircrack-ng. Our new attack improves its success probability drastically. Our active attack, based on ARP injection, requires 22500 packets to gain success probability of 50\% against a 104-bit WEP key, using Aircrack-ng in non-interactive mode. It runs in less than 5 seconds on an off-the-shelf PC. Using the same number of packets, Aicrack-ng yields around 3\% success rate. Furthermore, we describe very fast passive only attacks by just eavesdropping TCP/IPv4 packets in a WiFi communication. Our passive attack requires 27500 packets. This is much less than the number of packets Aircrack-ng requires in active mode (around 37500), which is a huge improvement. Deploying a similar theory, we also describe several attacks on WPA. Firstly, we describe a distinguisher for WPA with complexity 2^{42} and advantage 0.5 which uses 2^{42} packets. Then, based on several partial temporary key recovery attacks, we recover the full 128-bit temporary key of WPA by using 2^{42} packets. It works with complexity 2^{96}. So far, this is the best key recovery attack against WPA. We believe that our analysis brings on further insight to the security of RC4.

Category / Keywords: secret-key cryptography / RC4, WEP, WPA, Stream Ciphers, WiFi

Date: received 17 Mar 2015

Contact author: pou sepehrdad at gmail com

Available format(s): PDF | BibTeX Citation

Version: 20150319:073340 (All versions of this report)

Short URL: ia.cr/2015/254

Discussion forum: Show discussion | Start new discussion


[ Cryptology ePrint archive ]