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Abstract. We explore time-memory and other tradeoffs for memory-hard functions, which are sup-
posed to impose significant computational and time penalties if less memory is used than intended. We
analyze three finalists of the Password Hashing Competition: Catena, which was presented at Asiacrypt
2014, yescrypt and Lyra2.
We demonstrate that Catena’s proof of tradeoff resilience is flawed, and attack it with a novel pre-
computation tradeoff. We show that using M4/5 memory instead of M we have no time penalties and
reduce the AT cost by the factor of 25. We further generalize our method for a wide class of schemes
with predictable memory access. For a wide class of data-dependent schemes, which addresses memory
unpredictably, we develop a novel ranking tradeoff and show how to decrease the time-memory and
the time-area product by significant factors. We then apply our method to yescrypt and Lyra2 also
exploiting the iterative structure of their internal compression functions.
The designers confirmed our attacks and responded by adding a new mode for Catena and tweaking
Lyra2.
Keywords: password hashing, memory-hard, Catena, tradeoff, cryptocurrency, proof-of-work.

1 Introduction

Memory-hard functions are a fast emerging trend which has become a popular remedy to the hardware-
equipped adversaries in various applications: cryptocurrencies, password hashing, key derivation, and more
generic Proof-of-Work constructions. It was motivated by the rise of various attack techniques, which can
be commonly described as optimized exhaustive search. In cryptocurrencies, the hardware arms race made
the Bitcoin mining [29] on regular desktops tremendously inefficient, as the best mining rigs spend 30,000
times less energy per hash than x86-desktops/laptops1. This causes major centralization of the mining
efforts which goes against the democratic philosophy behind the Bitcoin design. This in turn prevents wide
adoption and use of such cryptocurrency in economy, limiting the current activities in this area to mining
and hoarding, whith negative effects on the price. Restoring the ability of CPU or GPU mining by the use
of memory-hard proof-of-work functions may have dramatic effect on cryptocurrency adoption and use in
economy, for example as a form of decentralized micropayments [15]. In password hashing, numerous leaks of
hash databases triggered the wide use of GPUs [3,34], FPGAs [27] for password cracking with a dictionary.
In this context, constructions that intensively use a lot of memory seem to be a countermeasure. The reasons
are that memory operations have very high latency on GPU and that the memory chips are quite large and
thus expensive on FPGA and ASIC environments compared to a logic core, which computes, e.g. a regular
hash function.

Memory-intensive schemes, which bound the memory bandwidth only, were suggested earlier by Burrows
et al. [8] and Dwork et al. [17] in the context of spam countermeasures. It was quickly realized that to be a
real countermeasure, the amount of memory shall also be bounded [18], so that memory must not be easily
traded for computations, time, or other resources that are cheaper on certain architecture. Schemes that
are resilient to such tradeoffs are called memory-hard [21,30]. In fact, the constructions in [18] are so strong
that even tiny memory reduction results in a huge computational penalty.

Disadvantage of classical constructions and new schemes. The provably tradeoff-resilient superconcentra-
tors [32] and their applications in [18, 19] have serious performance problems. They are terribly slow for
modern memory sizes. A superconcentrator requiring N blocks of memory makes O(N logN) calls to F .
As a result, filling, e.g., 1 GB of RAM with 256-bit blocks would require dozens of calls to F per block
(C logN calls for some constant C). This would take several minutes even with lightweight F and is thus
intolerable for most applications like web authentication or cryptocurrencies. Using less memory, e.g., several
megabytes, does not effectively prohibit hardware adversaries.

This has been an open challenge to construct a reasonably fast and tradeoff-resilient scheme. Since the
seminal paper by Dwork et al. [18] the first important step was made by Percival, who suggested scrypt [30].

1 The estimate comes from the numbers given in [6]: the best ASICs make 232 hashes per joule, whereas the most
efficient laptops can do 217 hashes per joule.



The idea of scrypt was quite simple: fill the memory by an iterative hash function and then make a pseudo-
random walk on the blocks using the block value as an address for the next step. However, the entire
design is somewhat sophisticated, as it employs a stack of subfunctions and a number of different crypto
primitives. Under certain assumptions, Percival proved that the time-memory product is lower bounded
by some constant. The scrypt function is used inside cryptocurrency Litecoin [4] with 128 KB memory
parameter and is now adapted as an IETF standard for key-derivation [5]. scrypt is a notable example of
data-dependent schemes where the memory access pattern depends on the input, and this property enabled
Percival to prove some lower bound on adversary’s costs. However, the performance and/or the tradeoff
resilience of scrypt are apparently not sufficient to discourage hardware mining: the Litecoin ASIC miners
are more efficient than CPU miners by the factor of 100 [1].

The need for even faster, simpler, and possibly more tradeoff-resilient constructions was further empha-
sized by the ongoing Password Hashing Competition [2], which has recently selected 9 finalists out of the 24
original submissions. Notable entries are Catena [20], just presented at Asiacrypt 2014 with a security proof
based on [26], and yescrypt and Lyra2 [25], which both claim performance up to 1 GB/sec and which were
quickly adapted within a cryptocurrency proof-of-work [7]. The tradeoff resilience of these constructions has
not been challenged so far. It is also unclear how possible tradeoffs would translate to the cost

Our contributions. We present a rigorous approach and a reference model to estimate the amortized costs
of password brute-force on special hardware using full-memory algorithms or time-space tradeoffs. We show
how to evaluate the adversary’s gains in terms of area-time and time-memory products via computational
complexity and latency of the algorithm.

Then we present our tradeoff attacks on the last versions of Catena and yescrypt, and the original version
of Lyra2. Then we generalize them to wide classes of data-dependent and data-independent schemes. For
Catena we analyze the faster Dragonfly mode and show that the original security proof for it is flawed and
the computation-memory product can be kept constant while reducing the memory. For ASIC-equipped
adversaries we show how to reduce the area-time product (abbreviated further by AT) by the factor of 25
under reasonable assumptions on the architecture. The attack algorithm is then generalized for a wide class
of data-independent schemes as a precomputation method.

Then we consider data-dependent schemes and present the first generic tradeoff strategy for them, which
we call the ranking method. Our method easily applies to yescrypt and then to the second phase of Lyra2,
both taken with minimally secure time parameters. We further exploit the incomplete diffusion in the core
primitives of these designs, which reduces the time-memory and time-area products for both designs.

Altogether, we show how to decrease the time-memory product by the factor of 2 for yescrypt and the
factor of 8 for Lyra2. Our results are summarized in Table 1. To the best of our knowledge, our methods
are the first generic attacks so far on data-dependent or data-independent schemes2.

Catena-Dragonfly Generic 1-pass yescrypt Lyra2 v1

Time T = 3M T = M T = 4/3M T = 2M

Sec. 3 Sec. 5 Sec. 6 App. A

TM loss 200 1.28 2.1 8

AT loss 25 1.28 2.1 3

TM compactness 64 4 5.8 16

AT compactness 64 4 4.5 5

Table 1. Our tradeoff gains on Catena, yescrypt and Lyra2 with minimal secure parameters, 230 memory
bytes and reference hardware implementations (Section 2). TM loss is the maximal factor by which we
can reduce the time-memory product compared to the full-memory implementation. AT loss is the maximal
factor for time-area product reduction. Compactness of TM and AT is the maximal memory reduction factor
which does not increase the TM or AT, resp., compared to the default implementation.

Related work. So far there have been only a few attempts to develop tradeoff attacks on memory-hard
functions. A simple tradeoff for scrypt has been known in folklore and was recently formalized in [20]. Alwen
and Serbinenko analyzed a simplified version of Catena in [9]. Designers of Lyra2 and Catena attempted
to attack their own designs in the original submissions [20, 25]. Simple analysis of Catena has been made
in [16].

2 The full version of this paper is available at [14]



Paper outline We introduce necessary definitions and metrics in Section 2. We attack Catena-Dragonfly in
Section 3 and generalize this method in Section 4. Then we present a generic ranking algorithm for data-
dependent schemes in Section 5 and attack yescrypt with this method in Section 6. The attack on Lyra2 is
quite sophisticated and we leave it for Appendix A.

2 Preliminaries

2.1 Syntax

Let G be a hash function that takes a fixed-length string I as input and outputs tag H. We consider functions
that iteratively fill and overwrite memory blocks X[1], X[2], . . . , X[M ] using a compression function F :

X[ij ] = fj(I), 1 ≤ j ≤ s; (1)

X[ij ] = F (X[φ1(j)], X[φ2(j)], . . . , X[φk(j)]), s < j ≤ T, (2)

where φi are some indexing functions referring to some already filled blocks and fj are auxiliary hash
functions (similar to F ) filling the initial s blocks for some positive s.

We say that the function makes p passes over the memory, if T = pM . Usually p and M are tunable
parameters which are responsible for the total running time and the memory requirements, respectively.

2.2 Time-space tradeoff

Let A be an algorithm that computes G. The computational complexity C(A) is the total number of calls
to F and fi by A, averaged over all inputs to G. We do not consider possible complexity amortization over
successive calls to A. The space complexity S(A) is the peak number of blocks (or their equivalents) stored
by A, again averaged over all inputs to G. Suppose that A can be represented as a directed acyclic graph
with vertices being calls to F . Then the latency L(A) is the length of the longest chain the graph from the
input to the output. Therefore, L(A) is the minimum time needed to run A assuming unlimited parallelism
and instant memory access.

A straightforward implementation of the scheme (1) results in an algorithm with computational com-
plexity T and latency L = T and space complexity M . However, it might be possible to compute G using
less memory. According to [24], any function, that is described by Equation (1) and whose reference block
indices φj(i) are known in advance, can be computed using ck

T
log T memory blocks for some constant ck

depending on the number k of input blocks for F . Therefore, any p-pass function can be computed using
less than M = T/p memory for sufficiently large M .

Let us fix some default algorithm A of G with (C1,M1, L1) being computational and space complexities
and latency of A, respectively. Suppose that there is a time-space tradeoff given by the family of algorithms3

B = {Bq} that compute G using M1

q space for different q. The idea is to store only one of q memory blocks
on average and recompute the missing blocks whenever they are needed. Then we define the computational
penalty CB(q) as

CPB(q) =
C(Bq)

C1

and latency penalty LB(q).

LPB(q) =
L(Bq)

L1
,

2.3 Attackers and cost estimates

We consider the following attack. Suppose that G with time and memory parameters (T,M) is used as a
password hashing function with I = (P, S), where P is a secret password and S is a public salt. An attacker
gets H and S (e.g., from a database leak) and tries to recover P . He attempts a dictionary attack: given a
list L of most probable passwords, he runs G on every P ∈ L and checks the output.

Definition 1. Let Φ be a cost function defined over a space of algorithms. Let also GT,M be a hash function
with fixed algorithm A0 (default algorithm). Then GT,M is called (α,Φ)-secure if for every algorithm B for
GT,M

Φ(B) > αΦ(A).

3 As well as A, the family B admits parallel implementations.



In other words, GT,M can not be computed cheaper than by the factor of 1
α .

The cost function is more difficult to determine. We suggest evaluating amortized computing costs for a
single password trial. Depending on the architecture, the costs vary significantly for the same algorithm A.
For the ASIC-equipped attackers, who can use parallel computing cores, it is widely suggested that the costs
can be approximated by the time-area product AT [9, 11, 28, 35]. Here T is the time complexity of the used
algorithm and A is the sum of areas needed to implement the memory cells and the area needed to implement
the cores. Let the area needed to implement one block of memory be the unit of area measurement. Then
in order to know the total area, we need core-memory ratio Rc, which is how many memory blocks we can
place on the area taken by one core.

Suppose that the adversary runs algorithm Bq using M/q memory and l computing cores, thus having
computational complexity Cq = C(Bq). The running time is lower bounded by the latency Lq = L(Bq) of
the algorithm. If Lq < Cq/l, i.e. the computing cores can not finish the work in minimum time, then the
time T can be approximated by Cq/l, and the costs are estimated as follows:

ATBq
(l) =

(
lRc +

M

q

)
Cq
l

= Cq(Rc +
M

ql
)

We see that the costs drop as l increases. Therefore, the adversary would be motivated to push it to the
maximum limit Cq/Lq. Thus we obtain the final approximation of costs:

ATBq
= CqRc + Lq

M

q
. (3)

Here we assume unlimited memory bandwidth. Taking the bandwidth restrictions into account is even
more difficult, as they depends on the relative frequency of the computing core and the memory as well
as on the architecture of the memory bus. Moreover, the memory bandwidth of the algorithm depends
on the implementation and is not easy to evaluate. We leave rigorous memory bandwidth evaluation and
restrictions for the future work.

We recall that the value Rc is depends on the architecture, the function F , and the block size. To give
a concrete example, suppose that the block is 64 bytes and F is the Blake-512 hash function. We use the
following reference implementations4:

– The 50-nm DRAM [22], which takes 550 mm2 per GByte;
– The 65-nm Blake-512 [23], which takes about 0.1 mm2.

Then the core-memory ratio is 224·0.1
550 ≈ 3000. For more lightweight hash functions this ratio will be smaller.

The actual functions F in the designs that we attack are often ad-hoc and have not implemented yet in
hardware. Moreover, the numbers may change when going to smaller feature size. To make our estimates of
the attack costs architecture-independent, we introduce a simpler metric — the time-memory product TM:

TMBq
= Lq

M

q
, (4)

which for not so high computational penalties gives a good approximation of AT.
In our tradeoff attacks, we are mainly interested to compare the AT and TM costs of Bq with that of

the default algorithm A. Thus we define the AT ratio of Bq as
ATBq

ATA
, and the TM ratio of Bq as

TMBq

TMA
We note that for the same TM value the implementation with less memory is preferable, as its design

and production will be cheaper. Thus we explore how much the memory can be reduced keeping the AT or
TM costs below those of the default algorithm.

Definition 2. Tradeoff algorithms B have AT compactness q if it is the maximal q such that

ATBq
≤ ATA.

Tradeoff algorithms B have TM compactness q if it is the maximal q such that

TMBq ≤ TMA.

For the concrete schemes we take “minimally secure” values of T , i.e. those that supposed to have (α,Φ)-
security for reasonably high α. Unfortunately, no explicit security claim of this kind is present in the design
documents of the functions we consider.

4 We take low-area implementations, as possible parallelism is already taken into account.



Data-dependent and data-independent schemes. The existing schemes can be categorized according to the
way they access memory. The data-independent schemes Catena [20], Pomelo [36], Argon2i [13] computes
φ(j) independently of the actual password in order to avoid timing attacks like in [33]. Then the algorithm
B that uses less memory can recompute the missing blocks just by the time they are requested. Therefore, it
has the same latency as the full-memory algorithm, i.e. L(B) = L0. For these algorithms the time-memory
product can be arbitrarily small, and the minimum AT value is determined by the core-memory ratio.

The data-dependent schemes scrypt [30] yescrypt [31], Argon2d [13] compute φ(j) using the just computed
block: φ(j) = φ(j,Xij−1

). Then precomputation is impossible, and for each recomputing block the latency
is increased by the latency of the recomputation algorithm, so Lq > L0. There exist hybrid schemes [25],
which first run a data-independent phase and then a data-dependent one.

3 Cryptanalysis of Catena-Dragonfly

3.1 Description

Short history. Catena was first published on ePrint [20] and then submitted to the Password Hashing
Competition. Eventually the paper was accepted to Asiacrypt 2014 [21]. In the middle of the reviewing
process, we discovered and communicated the first attack on Catena to the authors. The authors have
introduced a new mode for Catena in the camera-ready version of the Asiacrypt paper, which is resistant
to the first attack. The final version of Catena, which is the finalist of the Password Hashing Competition,
contains two modes: Catena-Dragonfly (which we abbreviate to Catena-D), which is an extension to the
original Catena, and Catena-Butterfly, which is a new mode advertised as tradeoff-resistant. In this paper
we present the attack on Catena-Dragonfly, which is very similar to the first attack on Catena.

Specification. Catena-D is essentially a mode of operation over the hash function F , which is be instantiated
by Blake2b [10] in the full or reduced-round version. The functional graph of Catena-D is determined by
the time parameter λ (values λ = 1, 2 are recommended) and the memory parameter n, and can be viewed
as (λ+ 1)-layer graph with 2n vertices in each layer (denoted by Catena-D-λ). We denote the X-th vertex
in layer l (both count from 0) by [X]l. With each vertex we associate the corresponding output of the hash
function F and denote it by [X l] as well. The outputs are stored in the memory, and due to the memory
access pattern it is sufficient to store only 2n blocks at each moment. The hash function H has 512-bit
output, so the total memory requirements are 2n+6 bytes.

First layer is filled as follows

– [0]0 = G1(P, S), where G1 invokes 3 calls to F ;

– [1]0 = G2(P, S), where G2 invokes 3 calls to F

– [i]0 ← F ([i− 1]0, [i− 2]0), 2 ≤ i ≤ 2n − 1.

Then 23n/4 nodes of the first layer are modified by function Γ . The details of Γ are irrelevant to our attack.

The memory access pattern at the next layers is determined by the bit-reversal permutation ν. Each
index is viewed as an n-bit string and is transformed as follows:

ν(x1x2 . . . xn) = xnxn−1 . . . x1, where xi ∈ {0, 1}.

The layers are then computed as

– [0]j = F ([0]j−1 || [2n − 1]j−1);

– [i]j = F ([i− 1]j || [ν(i)]j−1).

Thus to compute [X]l we need [ν(X)l−1]. The latter can be then overwritten5. An example of Catena-D
with λ = 2 and n = 3 is shown at Figure 1.

The bit-reversal permutation is supposed to provide memory-hardness. The intuition is that it maps any
segment to a set of blocks that are evenly distributed at the upper layer.

5 In terms of Equation (1) we could enumerate all blocks as [i]j = j|| i︸︷︷︸
n bits

so that φ(j||i) = (j − 1)||ν(i).
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Fig. 1. Catena-D-2 with n = 3. 3 layers, 8 vertices per layer.

Original tradeoff analysis. The authors of Catena-D originally provided two types of security bounds against
tradeoff attacks. Recall that Catena-D-λ can be computed with λ2n calls to F using 2n memory blocks. The
Catena-D designers demonstrated that Catena-D-λ can be computed using λS memory blocks with time
complexity6

T ≤ 2n + 2n
(

2n

2S

)λ−1
+ 2n

(
2n

2S

)λ
Therefore, if we reduce the memory by the factor of q, i.e. use only 2n

q blocks, we get the following penalty:

Pλ(q) ≈
(q

2

)λ
. (5)

The second result is the lower bound for tradeoff attacks with memory reduction by q:

Pλ(q) ≥ Ω
(
qλ
)
. (6)

However the constant in Ω() is too small (2−18 for λ = 3) to be helpful in bounding tradeoff attacks for
small q. More importantly, the proof is flawed: the result for λ = 1 is incorrectly generalized for larger λ. The
reason seems to be that the authors assumed some independence between the layers, which is apparently
not the case (and is somewhat exploited in our attack).

In the further text we demonstrate a tradeoff attack yielding much smaller penalties than Eq. (5) and
thus asymptotically violating Eq. (6).

3.2 Our tradeoff attack on Catena-D

The idea of our method is based on the simple fact that

ν(ν(X)) = X,

where X can be a single index or a set of indices. We exploit it as follows. We partition layers into segments
of length 2k for some integer k, and store the first block of every segment (first two blocks at layer 0). As
the index of such a block ends with k zeros, we denote the set of these blocks as [∗n−k0k]. We also store all
23n/4 blocks modified by Γ , which we denote by [Γ ].

Consider a single segment [AB∗k], where A is a k-bit constant, B is a n− 2k-bit constant. Then

ν([AB∗k]) = [∗kν(B)ν(A)].

Blocks [∗kν(B)ν(A)] belong to 2k segments that have ν(B) in the middle of the index. Denote the union of
these segments by [∗kν(B)∗k]. Now note that

ν([∗kν(B)∗k]) = [∗kB∗k],

and
ν(ν([∗kB∗k])) = [∗kB∗k].

Therefore, when we iterate the permutation ν, we are always within some 2k segments. We suggest the
computing strategy in Algorithm 1. At layer t we recompute 2k full segments from layers 0 to t− 2 and 2k

subsegments of length ν(A) (interpreted as a number in the binary form) at layer t− 1. Therefore, the total
cost of computing layer t is

C(t) =
∑
A

∑
B

((t− 1)22k + ν(A)2k + 2k) =

=
∑
A

((t− 1)2n + ν(A)2n−k + 2n−k) = (t− 1)2n+k + 2n+k−1 + 2n = (t− 1

2
)2n+k + 2n. (7)

6 This result is a part of Theorem 6.3 in [20].



Algorithm 1 Tradeoff for Catena-Dragonfly.

1. Compute layer 0 storing [∗n−k0k]0 and [∗n−k0k−11]0, i.e. the first two blocks of every segment.
2. Compute Γ and store all the updated blocks [Γ ] in the memory.
3. Compute layer 1 segmentwise: for each segment [AB∗k]1 recompute blocks [∗kν(B) ν(A)]0 using stored blocks

from layer 0 and [Γ ]. Store blocks [∗n−k0k]1.
4. Compute layer 2 segmentwise: for each segment [AB∗k]2 recompute 2k segments [∗kBk]0 using stored blocks

from layer 0, then use them to recompute blocks [∗kν(B) ν(A)]1 using [Γ ], then compute [AB∗k]2. Store blocks
[∗n−k0k]2.

5. Compute layer 3 segmentwise: for each segment [AB∗k]3 recompute 2k segments [∗kν(B)k]0 using stored blocks
from layer 0, then recompute 2k segments [∗kBk]1 using stored blocks from layer 1 and [Γ ], then recompute
blocks [∗kν(B) ν(A)]2, then compute [AB∗k]3. Store blocks [∗n−k0k]3.

6. Compute other layers in the similar fashion.

The total cost of computing Catena-D-λ is

2n
(
λ2

2
2k + λ+ 1

)
.

We store (t + 1)2n−k blocks as segment starting points, 23n/4 blocks [Γ ] and 22k blocks for intermediate
computations. For k = log q+log(λ+1) and q < 2n/4 we store about 2n/q blocks, so the memory is reduced
by the factor of q. This value of k yields the total computational complexity of

Cq = 2n
(
qλ2(λ+ 1)

2
+ λ+ 1

)
(8)

Since the computational complexity of the memory-full algorithm is (λ + 1)2n, our tradeoff method gives
the computational penalty

qλ2

2
+ 1.

Since Catena is a data-independent scheme, the latency of our method does not increase. Therefore, the
time-memory product (Equation (4)) can be reduced by the factor of 2n/4. We can estimate how AT costs
evolves assuming the reference implementation in Section 2.3:

ATBq = 2n
(
qλ2(λ+ 1)

2
+ λ+ 1

)
· 3000 + (λ+ 1)2n

2n

q
.

For q = 2n/5 and λ = 2 we get

ATB
2n/5

= 2n
(

6 · 2n/5
)
· 211.5 + 3 · 29n/5.

For n = 24 (1GB of RAM) we get

ATB24.8
≈ 224+2.5+4.8+11.5 + 243.2+1.5 ≈ 244.

whereas
ATB1 = 249.5.

Therefore, we expect the time-area product dropped by the factor of about 25 if the memory is reduced by
the factor of 30. In the terms of Definition 1, Catena-D-2 is not (1/25,AT)-secure. Our tradeoff method also
have AT and TM compactness at least 2n/5 = 64.

On other architectures the AT may drop even further, and we expect that an adversary would choose
the one that maximizes the tradeoff effect, so the actual impact of our attack can be even higher.

Violation of Catena-D lower bound Our method shows that the Catena-D lower bound is wrong. If
we summarize the computational costs for λ layers, we obtain the following computational penalty for the
memory reduction by the factor of q:

CPλ(q) = O(λ3q),

which is asymptotically smaller than the lower bound Ω(qλ) (Equation (6)) from the original Catena sub-
mission [20].



3.3 Other results for Catena

Our attack on Catena can be further scrutinized and generalized to non-even segments. More details are
provided in [14] with the summary given in Table 2.

4 Generic precomputation tradeoff attack

Now we try to generalize the tradeoff method used in the attack on Catena for a class of data-independent
schemes. We consider schemes G where each memory block is a function of the previous block and some
earlier block:

X[i]← F (X[i− 1], X[φ(i)]), 0 ≤ i < T

where φ is a deterministic function such that φ(i) < i. A group of existing password hashing schemes falls
into this category: Catena [20], Pomelo [36], Lyra2 [25] (first phase). Multiple iterations of such a scheme
are equivalent to a single iteration with larger T and an additional restriction

x−M ≤ φ(x),

so that the memory requirements are M blocks.
The crucial property of the data-independent attacks is that they can be tested and tuned offline, without

hashing any real password. An attacker may spend significant time to search for an optimal tradeoff strategy,
since it would then apply to the whole set of passwords hashed with this scheme.

Precomputation method. Our tradeoff method generalizes as follows. We divide memory into segments and
store only the first block of each segment. For every segment I we calculate its image φ(I). Let φ(I) be the
union of segments that contain φ(I). We repeat this process until we get an invariant set Uk = U(I):

I︸︷︷︸
U0

→ φ(I)︸︷︷︸
U1

→ φ(φ(I))︸ ︷︷ ︸
U2

· · · → Uk.

The scheme G is then computed according to Algorithm 2.

Algorithm 2 Precomputation method

– For all segments precompute the block indices in the union chains I → U(I)
– Compute G by segment. For each segment I:

1. Compute blocks U(I) = Uk;
2. Compute blocks in Uk−1, then in Uk−2, up to U0 = I.
3. Store the first block of I in the memory.

The total amount of calls to F is
∑
i≥0 |Ui|, and the penalty to compute I is

CP (I) =

∑
i≥0 |Ui|
|I| .

How efficient the tradeoff is depends on the properties of φ and the segment partition, i.e. how fast Ui
expands. As we have seen, Catena uses a bit permutation for φ, whereas Lyra2 uses a simple arithmetic

Memory fraction Catena-D-3 Catena-D-4

Computational penalty

Our [20] Our [20]

1
2

7.4 36.2 13.8 512
1
4

15.5 252 26.6 7373
1
8

30.1 1872 52 217

1
2l

2l+1.9 23l 2l+2.8 24l+1.5

Table 2. Computation-memory tradeoff for Catena-D-3 and Catena-D-4.



function or a bit permutation [20, 25]. In both cases Ui stabilizes in size after two iterations. If φ is a more
sophisticated function, the following heuristics (borrowed from our attacks on data-dependent schemes)
might be helpful:

– Store the first T1 computed blocks and the last T2 computed blocks for some T1, T2 (usually about N/q).
– Keep the list L of the most expensive blocks to recompute and store M [i] if φ(i) ∈ L.

I = U0
U1U2

Fig. 2. Segment unions in the precomputation method.

5 Generic ranking tradeoff attack

Now we present a generic attack on a wide class of schemes with data-dependent memory addressing. Such
schemes include scrypt [30] and the PHC finalists yescrypt [31], Argon2d [13], and Lyra2 [25]. We consider
the schemes described by Equation (1) with k = 2 and the following addressing (cf. also Figure 3):

X[1] = f(I)

for 1 < i < T

ri = g(X[i− 1]);

X[i] = F (X[i− 1], X[ri]).

(9)

Here g is some indexing function. This construction and our tradeoff method can be easily generalized to
multiple functions F , to stateful functions (like in Lyra2), to multiple inputs, outputs, and passes, etc.
However, for the sake of simplicity we restrict to the construction above.

?

M [0] M [1] M [2]

M [i]
M [ri]

M [i− 1]

F F F F F F

Fig. 3. Data-dependent schemes.

Our tradeoff strategy is following: we compute the blocks sequentially and for each block X[i] decide if
we store it or not. If we do not store it, we calculate its access complexity A(i) – the number of calls needed
to recompute it as a sum of access complexities of X[i − 1] and X[ri] plus one. If we store X[i], its access
complexity is 0.

The storing heuristic rule is the crucial element of our strategy. The idea is to store the block if A(ri) is
too high.

Our ranking tradeoff method works according to Algorithm 3 (Figure 4).
Here w, s and l are parameters, and we usually set l = 3s. The computational complexity is computed

as
C =

∑
i

A(ri).

We also compute the latency L(i) of each block as L(i) = max(L(ri), L(i − 1)) + 1 if we do not store X[i]
and L(i) = 0 if we store it. Then the total latency is

L =
∑
i

Li.



Algorithm 3 Ranking method

1. Split the memory into segments of s blocks;
2. Keep the sorted list L of the T/l highest access complexities, initialize it with all zeros;
3. Temporarily store last w blocks.
4. Compute blocks sequentially. For block X[i], if X[ri] is missing, recompute it.
5. If X[i] is the starting block of the segment, we store it and set A(i) = 0;
6. If X[i] is not the starting block of the segment, but A(ri) ∈ L, we store X[i] and set A(i) = 0;
7. If X[i] is not the starting block of the segment, and A(ri) /∈ L, we do not store X[i] and set A(i) = A(ri) +

A(i− 1) + 1.

We implemented our attack and tested it on the class of functions described by Equation (9). For fixed
w and s the total number of calls to F and the number of stored blocks is entirely determined by indices
{ri}. Thus we do not have to implement a real hash function, and it is sufficient to generate ri according
to some distribution, model the computation as a directed acyclic graph, and compute C and L for this
graph. We made a number of tests with uniformly random ri (within the segment [0; i] and T = 212) and
different values of w and s. Then we grouped C and L values by the memory complexity and figured the
lowest complexities for each memory reduction factor. These values are given in Table 3.

1 T

top-T/l

stored stored

stored

Fig. 4. Outline of the ranking tradeoff method.

Memory fraction (1/q) 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

Computation penalty CP (q) 1.59 2.98 7.3 16.6 57.5 180 635 3340 213.2

Latency penalty LP (q) 1.56 2.55 4 5.8 8.7 11.6 15.4 21.1 24.8

AT ratio 0.78 0.85 1.02 1.16 1.45 1.69 2.04 2.97 4.24

TM ratio 0.78 0.85 1.02 1.16 1.45 1.65 1.9 2.34 2.48

Segment length s 3 5 8 10 13 16 18 21 23

Window size w
M

0.06 0.01 0.01 0 0 0 0 0 0

Table 3. Computational, latency, AT (for Rc = 3000 and M = 224), and TM penalties for the ranking
tradeoff attack on generic data-dependent schemes.

We conclude that generic 1-pass data-dependent schemes with random addressing are (0.75, AT )- and
(0.75, TM)-secure using our ranking method. Both AT and TM ratios exceed 1 when q ≥ 4, so both the
AT- and the TM-compactness is about 4.



6 Cryptanalysis of yescrypt

6.1 Description

yescrypt [31] is another PHC finalist, which is built upon scrypt and is notable for its high memory filling
rate (up to 2 GB/sec) and a number of features, which includes custom S-boxes to thwart exhaustive search
on GPU, multiplicative chains to increase the ASIC latency, and some others. yescrypt is essentially a family
of functions, each member activated by a combination of flags. Due to the page limits, we consider only one
function of the family.

Here we consider the yescrypt setting where flag yescrypt RW is set, there is no parallelism, and no ROM
(in the further text – just yescrypt). It operates on 1024-byte memory blocks X[1], X[2], . . . , X[M ]. The
scheme works as follows:

X[1]← F ′(I);

X[i]← F (X[i− 1]⊕X[φ(i)]), 1 < i ≤M ;

Y ← X[M ];

Y ← X[Y mod M ])← F (Y ⊕X[Y (mod M)]),M < i ≤ T.
Here F and F ′ are compression functions (the details of F ′ are irrelevant for the attack). Therefore, the
memory is filled in the first M steps and then (T −M) blocks are updated using the state variable Y . Here
φ(i) is the data-dependent indexing function: it takes 32 bits of X[i− 1] and interprets it as a random block
index among the last 2k blocks, where 2k is the largest power of 2 that is smaller than i.

Transformation F operates on 1024-byte blocks as follows:

– Blocks are partitioned into 16 64-byte subblocks B0, B1, . . . , B15.
– New blocks are produced sequentially:

Bnew0 ← f(Bold0 ⊕Bold15 );

Bnewi ← f(Bnewi−1 ⊕Boldi ), 0 < i < 16.

The details of f are irrelevant to our attack.

6.2 Tradeoff attack on yescrypt

Our crucial observation is that there is no diffusion from the last subblocks to the first ones. Thus if we
store all B0, we break the dependencies between consecutive blocks and the subblocks can be recomputed
from B1 to B15 with pipelining (Figure 5). Suppose that the block X[i] is computed with latency L(i), i.e.
its computation tree has L(i) levels if measured in F . However, if we consider the tree of f , then the actual
latency of X[i] is L(i) + 15 instead of expected 16L(i) if measured in calls to f .

The tradeoff strategy is given in Algorithm 4.

Algorithm 4 Tradeoff attack on yescrypt.
1. Start the ranking tradeoff method with some parameters w, s;
2. Store B0 of each block;
3. If X[i] needs the missing block X[ri]:

(a) Compute B0 of X[i] using one call to f , as all previous B0 are stored;
(b) Compute B1.
(c) While B1 is recomputed, start recomputing B2, as it needs exactly the same subblocks used in the recom-

putation of B1. This adds latency of one call to f .
(d) Compute Bi for all other i.

If the missing block is recomputed by a tree of depth D, then the latency of the new block is D + 16
measured in calls to f , or D

16 + 1 if measured in calls to F . This number should be compared to the latency
D+1 if we had not exploited the iterative structure of F . Thus if the ranking method gives the total latency
L (measured in F ), the actual latency should be L+15

16 .
For the smallest secure parameter (T = 4M/3) we get the final computational and latency penalties

as well as AT and TM penalties are given in Table 4 (1/16-th of each block is added to the attacker’s
memory). We conclude yescrypt is only (0.45, AT )- and (0.45, TM)-secure, whereas the AT compactness is
4 and the TM compactness is 6. Since this numbers are worse than for generic 1-pass schemes, our attack
clearly signals of a vulnerability in the design of BlockMix. We expect that our attack becomes inefficient
for T = 2M and higher.



Memory 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

Computation penalty CP (q) 1 2.9 26 1135 219 − − −
Latency penalty LP (q) 1 1.1 1.4 2 3.5 6.3 11.1 17.5

TM ratio 1 0.55 0.47 0.5 0.75 1.05 1.59 2.19

AT ratio 1 0.55 0.46 0.7 95 − − −

Table 4. Computational, latency, AT (for Rc = 3000 and M = 224), and TM penalties for the ranking
tradeoff attack on yescrypt mode of operation with 4/3 passes, using the iterative structure of F .

Depth D Depth D

Delay D Delay 1

Depth D

Delay 1
calls to f

Fig. 5. Pipelining the block computation in yescrypt: only the first subblock is computed with delay D.

7 Future work

Our tradeoff methods apply to a wide class of memory-hard functions, so our research can be continued in
the following directions:

– Application of our methods to other PHC candidates and finalists: Pomelo [36] and the modified Lyra2.
– Set of design criteria for the indexing functions that would withstand our attacks.
– New methods that directly target schemes that make multiple passes over memory or use parallel cores.
– Design a set of tools that helps to choose a proof-of-work instance in various applications: cryptocur-

rencies, proofs of space, etc.

8 Conclusion

Tradeoff cryptanalysis of memory hard functions is a young, relatively unexplored and complex area of
research combining cryptanalytic techniques with understanding of implementation aspects and hardware
constraints. It has direct real-world impact since its results can be immediately used in the on-going arms
race of mining hardware for the cryptocurrencies.

In this paper we have analyzed memory-hard functions Catena-Dragonfly and yescrypt. We show that
Catena-Dragonfly is not memory-hard despite original claims and the security proof by the designers’, since
a hardware-equipped adversary can reduce the attack costs significantly using our tradeoffs. We also show
that yescrypt is more tradeoff-resilient than Catena, though we can still exploit several design decisions to
reduce the time-memory and the time-area product by the factor of 2.

We generalize our ideas to the generic precomputation method for data-independent schemes and the
generic ranking method for the data-dependent schemes. Our techniques may be used to estimate the attack
cost in various applications from the fast emerging area of memory-hard cryptocurrencies to the password-
based key derivation.
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A Cryptanalysis of Lyra2 v1

A.1 Description of Lyra2 v1

Lyra2 [25] is a PHC finalist, notable for its high memory filling rate (up to 1 GB/sec). Very recently, Lyra2
has been significantly changed for the second round of the competition. This section describes the original
submission to PHC [25], Lyra2 v1 (just Lyra2 in the further text).

Lyra2 is a hybrid hashing scheme, which uses data-independent addressing in the first phase and data-
dependent addressing in the second phase. Lyra2 operates on blocks of 768 bits (96 bytes) each, and fills the
memory with 2n · C such blocks, where n and C are parameters, and C is by default set to 128 [25, p.39].
In this paper we use C = 128. The entire memory is represented as a (2n × C)-matrix M , and we refer to
its components as rows and columns. Rows are denoted by M [i].

Lyra2 has two main phases: the single-iteration Setup phase, where the memory is addressed data-
independently, and the multiple-iteration Wandering phase, where the memory is addressed data-dependently.
The number T of iterations in the Wandering phase can be as low as 1, and we take this value in our analysis.

Setup phase. The first phase fills rows sequentially from M [0] to M [2n − 1] as follows:

M [0],M [1]← f(Password,Salt);

for i from 2 to 2n − 1

M [i]← F (M [i− 1],M [φ(i)]);

M [φ(i)]←M [φ(i)]⊕←−−M [i].

Here φ(i) = 2k − i, where 2k is the smallest power of 2 that is not smaller than i,
←−−
M [] stands for the left

rotation of each 768-bit word by 32 bits, and G is a cryptographic hash function.
The following details of F are relevant to our attack:

– Function F is stateful: it operates on the 1024-bit state S, which is preserved between rows.
– Function F (X,Y ) processes columns Xi, Yi of X and Y sequentially. The internal state undergoes C

rounds (similarly to the duplex-sponge construction [12]), where in round i column Zi of the output Z
is produced as follows:

S ← S ⊕Xi ⊕ Yi;
S ← P (S);

Zi ← 768 least sign. bits of (S).

Here P is a single round of the Blake2b internal permutation [10]. We do not exploit any specific property
of P . Thus F can be seen as a duplex-sponge instantiated with a Blake2b round function.

We remind the reader that Z is used not only to produce a new row M [i] but also to overwrite the row
M [2k − i].

Wandering phase. The Wandering phase transforms the blocks produced in the Setup phase. First, it
reverses the ordering. Then it operates similarly to the Setup phase, but the second input block to F is
taken pseudo-randomly:

for i from 1 to 2n − 1

ri ← g(M [i− 1], i− 1);

M [i]←M [i]⊕ F (M [i− 1],M [ri]);

M [ri]←M [ri]⊕
←−−−−−−−−−−−−−
F (M [i− 1],M [ri]).

Here g truncates the first input to the least significant 32 bits and xores with the second input. All indices
are computed modulo 2n.

A.2 Tradeoff attack on the Setup and Wandering phases of Lyra2

Our strategy for the Setup phase is similar to the one for Catena. Again, we exploit the properties of the
indexing function φ.



Let us denote a segment of rows {M [i],M [i + 1], . . . ,M [j]} by M [i : j]. Consider a, b such that 2k−1 <
a < b < 2k. Then

φ([a : b]) = [(2k − b) : (2k − a)].

Thus to construct a single segment we need another segment of the same length. This suggests the following
strategy for computing 2n rows in the Setup phase.

1. First 2n−l rows M [0], . . . ,M [2n−l − 1] for some l > 0 (parameter of the attack).
2. We split rows from M [2n−l] to M [2n − 1] into segments of length q for some q < 2n−l. Store the entire

state S at the start of each segment.

Then to compute segment M [a : a+ q−1], 2k−1 < a < 2k we have to compute M [φ(a : a+ q−1)], which
has been updated when computing segments between 2k−2 and 2k−1. Eventually we reach the stored 2n−l

rows. To compute M [a : a+ q − 1], 2k−1 < a < 2k we need to compute a segment in the interval [2i : 2i+1]
for each n− l < i < k (Figure 6).

Let us figure out the memory reduction and the computational overhead of this procedure. We store 2n−l

first rows and 2n

96q rows for starting state in each segment, then a segment of length q during recomputation.

For segments between rows M [2n−l] and M [2n−l+1] we need 1 call to F per row, as there is no recomputation.
For segments between rows M [2n−l+1] and M [2n−l+2] we need 2 calls to F per row, and so on. In general,
we make

(k − n+ l)q (10)

calls to F to compute a segment of length q between row indices 2k and 2k+1. For the entire Setup phase
we spend

2n−l︸︷︷︸
M [0:2n−l−1]

+ 2n−l︸︷︷︸
M [2n−l:2n−l+1−1]

+2 · 2n−l+1 + 3 · 2n−l+2 + · · ·+ l2n−1 ≤ (l − 0.5)2n

calls to F . The memory requirements are 2n−l + q+ 2n

96q , which reaches the minimum of 2n−l + 2n/2−4.5 for

q = 2n/2−5.5.
To summarize, our tradeoff algorithm B has computational penalty (l − 0.5) if the memory is reduced

by the factor of 2l (Table 5).

a

2k − b

2k−1

q

2n−l

updated blocks
Indices of

Time

b

2k − a

Fig. 6. Computing segment of length q with precomputation method in the Setup phase of Lyra2.

Memory fraction Computational penalty [25]

1/4 1.5 2
1/8 2.5 4

2−l l − 0.5 2l−1

Table 5. Computational-memory tradeoff for the Setup phase of Lyra2: our method and designers’ analysis.



Access complexity of a single row. In the next phase we will need to calculate the cost of recomputing
a single row rather than a segment. To compute a single row, we need to recompute (l − 0.5) segments on
average, so the average recomputation complexity is:

A = q(l − 0.5). (11)

Tradeoff attack on the Wandering phase of Lyra2 with T = 1.
We apply the ranking method to the Wandering phase of Lyra2. Since Lyra2 updates two rows at once,

its penalties are higher than in generic data-dependent schemes and are given in Table 6.

Memory fraction 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
10

1
12

1
16

Computation penalty 2.7 10.4 75 1071 214 2n 2n 2n 2n 2n

Depth penalty 2.4 4.8 8.9 15.4 23.8 35.7 49 83 124 193

Table 6. Average computational and depth penalties for the ranking method on the Wandering phase of
Lyra2, without exploiting the row pipelining.

A.3 Tradeoff for the full Lyra2 with T = 1

Memory partition. To run the attack on the full Lyra2 with fraction 1/l of memory, we have to split the
available memory between Setup and Wandering phases. Suppose that we allocate fraction α of memory for
the Setup phase and fraction β of memory for the Wandering phase. Let PS(α) be the penalty of running the
Setup phase with fraction α, PR(α) be the average access complexity of a single row from the Setup phase
run with fraction α (Eq. (11)), and PW (β) be the penalty of running the Wandering phase with fraction β
(Table 6). Then the total memory reduction will be α + β. To estimate the time penalty, we note that in
our tradeoff for the Wandering phase, each recomputation requests as many rows from the Setup phase as
many hash calls is made in the Wandering phase. Therefore, the total time penalty would be estimated as

P (α+ β) =
PS(α)2n + PR(α)PW (β)2n

2n+1
,

as we construct 2 · 2n blocks in two phases.

Exploiting iterative compression function Similarly to the attack on yescrypt we can exploit the fact that
Lyra2 produces blocks of a row columnwise. Therefore, we have to make D calls to P to compute the first
column of the block, whereas computation of other columns can be pipelined: the second column of the
deepest tree level can be computed simultaneously with the first column of one level higher. To compute
all 128 columns, we spend time needed to compute D + 128 columns only, so the actual latency penalty is
1 +D/128. Therefore, the total latency penalty can be calculated as follows:

D(α+ β) =
DS(α) + DR(α)+DW (β)

128 + 1

2
,

where DS(α) = 1 − (logα)/256 is the average latency penalty in the Setup phase, DR(α) = − logα − 0.5
is the average latency penalty for accessing the row from the Setup phase, and DW (β) is the depth penalty
for the Wandering phase given in Table 6.

The results are given in Table 7. We conclude that Lyra2 is only (0.33, AT )-secure and (0.1, TM)-secure.
The AT compactness is 4 and the TM compactness is 16.Thus Lyra2 v1 is more susceptible to tradeoff
attacks compared to yescrypt.
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