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Abstract

A self-bilinear map is a bilinear map where the domain and target groups are identical. In
this paper, we introduce a self-bilinear map with auxiliary information which is a weaker variant
of a self-bilinear map, construct it based on indistinguishability obfuscation and prove that a
useful hardness assumption holds with respect to our construction under the factoring assump-
tion. From our construction, we obtain a multilinear map with interesting properties: the level
of multilinearity is not bounded in the setup phase, and representations of group elements are
compact, i.e., their size is independent of the level of multilinearity. This is the first construc-
tion of a multilinear map with these properties. Note, however, that to evaluate the multilinear
map, auxiliary information is required. As applications of our multilinear map, we construct
multiparty non-interactive key-exchange and distributed broadcast encryption schemes where
the maximum number of users is not fixed in the setup phase. Besides direct applications of
our self-bilinear map, we show that our technique can also be used for constructing somewhat
homomorphic encryption based on indistinguishability obfuscation and the Φ-hiding assumption.

Keywords: self-bilinear map, indistinguishability obfuscation, multilinear map

1 Introduction

1.1 Background

Bilinear maps are an important tool in constructions of many cryptographic primitives, such
as identity-based encryption (IBE)[8, 7, 44], attribute-based encryption (ABE) [40, 5, 28], non-
interactive zero-knowledge (NIZK) proof systems [29, 30] etc. The bilinear maps which are mainly
used in cryptography, are constructed on elliptic curve groups. In these constructions, the target
group is different from the domain groups.

This leads to the natural question: is it possible to construct a bilinear map where the domain
and target groups are identical? Such a bilinear map is called a self-bilinear map, and has previously
been studied by Cheon and Lee [14]. They showed that a self-bilinear map is useful to construct
cryptographic primitives by highlighting that it can be used for constructing a multilinear map
[9]. However, in contrast to this useful property, they also proved an impossibility result: the
computational Diffie-Hellman (CDH) assumption cannot hold in a group G of known prime order if
there exists an efficiently computable self-bilinear map on G. This is undesirable for cryptographic
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applications. The overview of the proof is as follows. Let e : G × G → G be a self-bilinear map
and g be a generator of G, then we have e(gx, gy) = e(g, g)xy = gcxy where c is an integer such that
e(g, g) = gc. Then we can compute gxy by computing c-th root of e(gx, gy) since G is a prime and
known order group.1 However, their impossibility result cannot be applied for the case that G is a
composite and unknown order group. This is the setting we focus on in this paper.

1.2 Our Contribution

In this paper, we consider a group of composite and unknown order and construct a self-bilinear
map with auxiliary information which is a weaker variant of a self-bilinear map, by using indistin-
guishability obfuscation [20]. Though our self-bilinear map with auxiliary information has a limited
functionality compared with a self-bilinear map, we show that it is still useful to construct various
cryptographic primitives. Especially, it is sufficient to instantiate some multilinear-map-based cryp-
tographic primitives such as multiparty non-interactive key exchange (NIKE), broadcast encryption
and attribute-based encryption for circuits. Our multiparty NIKE and distributed broadcast en-
cryption schemes are the first schemes where the number of users is not fixed in the setup phase.
We also show that our technique can be used for constructing a somewhat homomorphic encryption
scheme for NC1 circuits.

Applications of our self-bilinear map with auxiliary information. As applications of our
self-bilinear map with auxiliary information, we construct a multilinear map. From our construc-
tion, we obtain multiparty NIKE, distributed broadcast encryption and ABE for circuits schemes.
The details follow.

• Multilinear map. We can construct a multilinear map by iterated usage of a self-bilinear
map. Since our variant of a self-bilinear map in this paper requires auxiliary information to
compute the map, the resulting multilinear map also inherits this property. However, we show
that it is sufficient to replace existing multilinear maps in some applications which are given
below. Moreover, our multilinear map has an interesting property that existing multilinear
maps do not have: the level of multilinearity is not bounded in the instance generation phase
and representations of group elements are compact, i.e., their sizes are independent of the
level of multilinearity.

• Multiparty NIKE. We construct a multiparty NIKE scheme where the maximum number of
users is not fixed in the setup phase. In particular, the size of both the public parameters and
a public key generated by a user are independent of the number of users. The construction is
a natural extension of the Diffie-Hellman key exchange by using our multilinear map [17, 9].
We note that [11] also constructed multiparty NIKE schemes based on indistinguishability
obfuscation. However, in their schemes, the setup algorithm or key generation algorithm have
to take the number of users as input unlike ours. On the other hand, our scheme requires a
trusted setup whereas theirs does not.

• Distributed broadcast encryption. Distributed broadcast encryption is broadcast en-
cryption where a user can join the system by himself without the assistance of a (semi)
trusted third party holding a master key. We construct a distributed broadcast encryption
scheme where the maximum number of users is not fixed in the setup phase based on our

1Here, we consider only the case in which c is known. However, [14] proved that the CDH assumption does not
hold even if c is unknown as long as G is a group of known prime order.
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multiparty NIKE scheme. In particular, the size of both the public parameters and a cipher-
text overhead are independent of the number of users. We note that [11] also constructed a
distributed broadcast encryption scheme based on indistinguishability obfuscation. However,
in their scheme, the setup algorithm have to take the number of users as input unlike ours.

• ABE for circuits. We construct an ABE scheme for general circuits by using our multilinear
map. The construction is an analogue of the scheme in [21]. Note that this is not the first
ABE scheme for general circuits based on indistinguishability obfuscation since an indistin-
guishability obfuscation implies witness encryption [20], and [22] constructed ABE for circuits
based on witness encryption. We also note that Gorbunov et al. [27] constructed attribute
based encryption for circuit based on the standard learning with errors (LWE) assumption.

The above results can be interpreted as an evidence that our multilinear map can replace existing
multilinear maps in some applications since all of the above constructions are simple analogues of
known multilinear-map-based constructions.

Besides direct applications of our self-bilinear map with auxiliary information, we construct a
somewhat homomorphic encryption scheme by using a similar technique. Our somewhat homomor-
phic encryption scheme is chosen plaintext (CPA) secure, NC1 homomorphic and compact under
the Φ-hiding assumption.

Note that all known candidate constructions of indistinguishability obfuscation are far from
practical, and hence, the above constructions are mostly of theoretical interest.

Technical overview. Here, we give a technical overview of our result. Our basic idea is to
avoid the impossibility result of self-bilinear maps which is explained above by considering a group
of composite and unknown order. Note that even if we consider such a group, many decisional
assumptions such as the decisional Diffie-Hellman (DDH) assumption cannot hold if there exists an
efficiently computable self-bilinear map on the group. Therefore we consider only computational
assumptions such as the CDH assumption. For a Blum integer N , we consider the group QR+

N of
signed quadratic residues [32]. On this group, we consider a self-bilinear map e : QR+

N × QR+
N →

QR+
N which is defined as e(gx, gy) := g2xy. The reason why we define it in this manner is that

we want to ensure that the CDH assumption holds in QR+
N , even if e is efficiently computable.

That is, even if we can compute e(gx, gy) = g2xy, it is difficult to compute gxy from it since the
Rabin function is hard to invert under the factoring assumption. However, given only the group
elements gx and gy, we do not know how to compute e(gx, gy) efficiently. To address this, we
introduce auxiliary information τy for each element gy ∈ QR+

N which enables us to compute a map
e(·, gy) efficiently. This leads to the notion of self-bilinear map with auxiliary information which we
introduce in this paper.

The problem is how to define auxiliary information τy which enables us to compute e(·, gy)
efficiently. The most direct approach is to define τy as a circuit that computes the 2y-th power.
However, if we define τy as a “natural” circuit that computes the 2y-th power, then we can extract
2y from τy, and thus we can compute y. This clearly enables us to compute gxy, which breaks the
CDH assumption.

A cleverer way is to define τy as a circuit that computes the ty-th power where ty = 2y ±
ord(QR+

N ).2 In this way, it seems that τy does not reveal y since ty is a “masked” value of 2y by
ord(QR+

N ) which is an unknown odd number. This idea is already used by Seurin [43] to construct
a trapdoor DDH group. Actually, he proved that even if ty is given in addition to gx and gy, it is
still difficult to compute gxy. In this way, it seems that we can construct a self-bilinear map with

2In the definition of ty, whether + or − is used depends on y. See [43] for more details.
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auxiliary information. However, this creates a problem: we do not have an efficient algorithm to
compute ty from y without knowing the factorization of N . If such an algorithm does not exist,
then we cannot instantiate many bilinear map-based primitives using the resulting map such as the
3-party Diffie-Hellman key exchange [34].

To overcome the above difficulty, we use indistinguishability obfuscation. An indistinguishability
obfuscator (iO) is an efficient randomized algorithm that makes circuits C0 and C1 computationally
indistinguishable if they have exactly the same functionality.

We observe that a circuit that computes the 2y-th power and a circuit that computes the ty-th
power for an element of QR+

N have exactly the same functionality since we have ty = 2y±ord(QR+
N ).

Therefore if we obfuscate these circuits by iO, then the resulting circuits are computationally
indistinguishable. Then we define auxiliary information τy as an obfuscation of a circuit that
computes the 2y-th power. With this definition, it is clear that τy can be computed from y efficiently,
and the above mentioned problem is solved. Moreover, τy is computationally indistinguishable from
an obfuscation of a circuit that computes the ty-th power. Therefore it must still be difficult to
compute gxy even if τy is given in addition to gx and gy.

Thus we obtain a self-bilinear map with auxiliary information on QR+
N while ensuring that the

auxiliary information does not allow the CDH assumption to be broken. Moreover, by extending
this, we can prove that an analogue of multilinear CDH assumption holds with respect to a multi-
linear map which is constructed from our self-bilinear map with auxiliary information based on iO
and the factoring assumption.

1.3 Related Work

In cryptography, bilinear maps on elliptic curves were first used for breaking the discrete logarithm
problem on certain curves [37]. The first constructive cryptographic applications of a bilinear map
are given in [34, 42, 8]. Since then, many constructions of cryptographic primitives based on a
bilinear map have been proposed.

Boneh and Silverberg [9] considered a multilinear map which is an extension of a bilinear map,
and showed its usefulness for constructing cryptographic primitives though they did not give a
concrete construction of multilinear maps. Garg et al. [18] proposed a candidate construction of
multilinear maps based on ideal lattices. Coron et al. [15] proposed another construction over the
integers. We note that some cryptanalysis on these schemes have been discussed [13, 23, 10, 16]

The notion of indistinguishability obfuscation was first proposed by Barak et al. [3]. The first
candidate construction of indistinguishability obfuscation was proposed by Garg et al. [20], followed
by many works [39, 12, 2, 1, 24]. Since then, many applications of indistinguishability obfuscation
have been proposed [41, 11, 33, 26, 19, 31, 38].

2 Preliminaries

2.1 Notations

We use N to denote the set of all natural numbers, and [n] to denote the set {1, . . . n} for n ∈ N. If

S is a finite set, then we use x
$← S to denote that x is chosen uniformly at random from S. If A is

an algorithm, we use x← A(y; r) to denote that x is output by A whose input is y and randomness
is r. We often omit r. We say that a function f(·) : N → [0, 1] is negligible if for all positive
polynomials p(·) and all sufficiently large λ ∈ N, we have f(λ) < 1/p(λ). We say f is overwhelming
if 1 − f is negligible. We say that an algorithm A is efficient if there exists a polynomial p such
that the running time of A with input length λ is less than p(λ). For two integers x 6= 0 and y, we
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say that x and y are negligibly close if |x − y|/x is negligible. For a set S and a random variable
x over S, we say that x is almost random on S if the statistical distance between the distribution
of x and the uniform distribution on S is negligible. When we treat a circuit, we use the similar
notation as in [4, 21]. For a circuit f with input length n which has v wires, We identify the set
of wires with [v] and input wires with [n], and we label the output wire by v. For a wire w which
is an output wire of a gate, we denote the first input incoming wire of the gate by A(w) and the
second incoming wire of the gate by B(w). We use λ to denote the security parameter

2.2 Indistinguishability Obfuscator

Here, we recall the definition of an indistinguishability obfuscator [20, 41].

Definition 1. (Indistinguishability Obfuscator.) Let Cλ be the class of circuits of size at most λ.
An efficient randomized algorithm iO is called an indistinguishability obfuscator for P/poly if the
following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, we have that

Pr[∀x C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

• For any (not necessarily uniform) efficient algorithm A = (A1,A2), there exists a negligible
function α such that the following holds: if A1(1λ) always outputs (C0, C1, σ) such that we
have C0, C1 ∈ Cλ and ∀x C0(x) = C1(x), then we have

|Pr[A2(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← A1(1λ)]

−Pr[A2(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← A1(1λ)]| ≤ α(λ)

Note that a candidate construction of iO that satisfies the above definition is given in [20].

2.3 Group of Signed Quadratic Residues

Here, we recall the definition and some properties of a group of signed quadratic residues [32] that
we mainly work with in this paper. An integer N = PQ is called a Blum integer if P and Q are
distinct primes with the same length and P ≡ Q ≡ 3 mod 4 holds. Let RSAGen(1λ) be an efficient
algorithm which outputs a random `N -bit Blum integer N = PQ and its factorization (P,Q) such
that all prime factors of Φ(N)/4 = (P −1)(Q−1) are pair wise distinct and at least δ`N bit integers
for some positive constant δ like in [32]. We say that the factoring assumption holds with respect to
RSAGen if for any efficient adversary A, Pr[x ∈ {P,Q} : (N,P,Q)← RSAGen(1λ), x← A(1λ, N)] is
negligible. We define the group of quadratic residues as QRN := {u2 : u ∈ ZN ∗}. Note that QRN
is a cyclic group of order (P − 1)(Q − 1)/4 and a random element of QRN is a generator of the
group with overwhelming probability if N is output by RSAGen(1λ).

For any subgroup H ∈ Z∗N , we define its signed group as H+ := {|x| : x ∈ H} where |x|
is the absolute value of x when it is represented as an element of {−(N − 1)/2, . . . , (N − 1)/2}.
This is certainly a group by defining a multiplication as x ◦ y := |(xy mod N)| for x, y ∈ H+.
For simplicity, we often denote multiplications on H+ as usual multiplication when it is clear that
we are considering a signed group. If H is a subgroup of QRN , then H

∼
= H+ by the natural

projection since −1 /∈ QRN . In particular, QR+
N is a cyclic group of order (P − 1)(Q − 1)/4.

We call QR+
N a group of signed quadratic residues. A remarkable property of QR+

N is that it is
efficiently recognizable. That is, there exists an efficient algorithm that determines whether a given
string is an element of QR+

N or not [32].
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3 Self-bilinear Maps

In this section, we recall the definition of a self-bilinear map [14]. Next, we introduce the notion
of self-bilinear map with auxiliary information which is a weaker variant of a self-bilinear map.
Finally we define hardness assumptions with respect to a multilinear map which is constructed
from a self-bilinear map.

3.1 Definition of a Self-bilinear Map

First, we recall the definition of a self-bilinear map. A self-bilinear map is a bilinear map where
the domain and target groups are identical. The formal definition is as follows.

Definition 2. (Self-bilinear Map [14]) For a cyclic group G, a self-bilinear map e : G × G → G
has the following properties.

• For all g1, g2 ∈ G and α ∈ Z, it holds that

e(gα1 , g2) = e(g1, g
α
2 ) = e(g1, g2)α.

• The map e is non-degenerate, i.e, if g1, g2 ∈ G are generators of G, then e(g1, g2) is a
generator of G.

As shown in [14], we can construct an n-multilinear map for any integer n ≥ 2 from a self-
bilinear map e. We denote this n-multilinear map by en. This can be seen by easy induction:
suppose that an n-multilinear map en can be constructed from a self-bilinear map e, then we can
construct an (n+ 1)-multilinear map en+1 by defining

en+1(g1, . . . , gn, gn+1) := e(en(g1, . . . , gn), gn+1).

3.2 Self-bilinear Map with Auxiliary Information

We usually expect a self-bilinear map to be efficiently computable for cryptographic applications.
However, here we relax this requirement so that the map is efficiently computable only if “auxiliary
information” is given. That is, when we compute e(gx, gy), we require auxiliary information τx
for gx or τy for gy. We call this relaxed notion a self-bilinear map with auxiliary information. We
formalize it as a set of algorithms SBP = (InstGen,AIGen,Map,AIMult).

InstGen(1λ)→ params = (G, e, g) : InstGen takes the security parameter 1λ as input and outputs
the public parameters params which consists of descriptions of an efficiently recognizable cyclic
group G on which the group operation is efficiently computable and a self-bilinear map e on G
and an element g of G. We require that g is a generator of G with overwhelming probability
and that an approximation Approx(G) of ord(G) can be computed efficiently from params,
which is negligibly close to ord(G). By using g and Approx(G), we can generate an almost

uniform element h of G by taking x
$← [Approx(G)] and outputting h := gx. With a slight

abuse of notation, we often simply write h
$← G to mean the above procedure. Additionally,

params specifies sets T `x of auxiliary information for all integers x and ` ∈ N.

AIGen(params, `, x)→ τx : AIGen takes params, an integer ` ≥ 1 and an integer x ∈ [Approx(G)]
as input, and outputs corresponding auxiliary information τx ∈ T `x.
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Map(params, gx, τy)→ e(gx, gy) : Map takes params, gx ∈ G and τy ∈ ∪`∈NT `y as input and outputs
e(gx, gy). By using this algorithm iteratively, we can compute en(gx1 , . . . , gxn) if we are given
gx1 , . . . , gxn and τx1 , . . . , τxn . (Note that not all of these elements are required to evaluate the
map.)

AIMult(params, `, τx, τy)→ τx+y : AIMult takes params, `, τx ∈ T `1x , τy ∈ T `2y such that ` >

max{`1, `2} as input and outputs τx+y ∈ T `x+y.

In addition to the above algorithms, we require for SBP to satisfy the following property.

Indistinguishability of auxiliary information. We require that any efficient algorithm which is
given auxiliary information cannot tell whether it is generated by AIGen or AIMult. More formally,
for any params ← InstGen(1λ), ` ∈ N (which does not depend on λ), natural numbers `1, `2 < `,
integers x, y and z (which are polynomially bounded in λ), such that z ∈ [Approx(G)] and z ≡
x+ y mod ord(G), and auxiliary information τx ∈ T `1x and τy ∈ T `2y , the following two distributions
are computationally indistinguishable:

D1 = {τz : τz ← AIGen(params, `, z)}

D2 = {τx+y : τx+y ← AIMult(params, `, τx, τy)}.

Remark 1. A level ` of auxiliary information grows by at least 1 when AIMult is applied. One can
think of it as an analogue of a noise level in the GGH graded encoding [21]. In our construction, the
size of auxiliary information grows exponentially in a level `. Therefore an efficient algorithm can
only handle auxiliary information of a constant level. Actually, in our applications in this paper, `
is set at most 2.

Remark 2. One can also define another efficient algorithm that computes auxiliary information
for e(gx, gy) from that for gx and gy. Actually, we can easily add this algorithm to our construction
given in Sec. 4. This may be useful for some cryptographic applications. However, it is not used
in this paper, therefore we omit it for simplicity.

3.3 Hardness Assumptions

For cryptographic use, we introduce some hardness assumptions. We use SBP to construct a
multilinear map, and thus our hardness assumptions are associated with a multilinear map which is
constructed from SBP. In the following, we let SBP = (InstGen,AIGen,Map,AIMult) be self-bilinear
map procedures. First, we define the multilinear computational Diffie-Hellman with auxiliary
information (MCDHAI) assumption which is an analogue of the multilinear computational Diffie-
Hellman (MCDH) assumption.

Definition 3. (MCDHAI assumption) For an integer n ≥ 2, we say that the n-MCDHAI assump-
tion holds with respect to SBP if for any efficient algorithm A,

Pr[en(g, . . . , g)Πn
i=0xi ← A(params, gx0 , . . . , gxn , τx0 . . . , τxn)]

is negligible, where params = (G, e, g)← InstGen(1λ), x0, . . . , xn ← [Approx(G)], τxi ← AIGen(params, 1, xi)
for all i = 0, 1 . . . , n.

We say that the MCDHAI assumption holds with respect to SBP if the n-MCDHAI assumption
holds with respect to SBP for any integer n which is polynomially bounded in λ.
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We also define the multilinear hashed Diffie-Hellman with auxiliary information (MHDHAI)
assumption which is an analogue of the multilinear hashed Diffie-Hellman (MHDH) assumption.

Definition 4. (MHDHAI assumption) For an integer n ≥ 2, we say that the n-MHDHAI assump-
tion holds with respect to SBP and a family of hash functions H = {H : G → {0, 1}k} if for any
efficient algorithm D,

|Pr[1← D(params, gx0 , . . . , gxn , τx0 . . . , τxn , H, T )|β = 1]

−Pr[1← D(params, gx0 , . . . , gxn , τx0 . . . , τxn , H, T )|β = 0]|

is negligible, where params = (G, e, g)← InstGen(1λ), x0, . . . , xn ← [Approx(G)], τxi ← AIGen(params, 1, xi)

for all i = 0, 1, . . . , n, β
$← {0, 1} and T

$← {0, 1}k if β = 0, and otherwise T = H(en(g, . . . , g)Πn
i=0xi).

We say that the MHDHAI assumption holds with respect to SBP and H if the n-MHDHAI assump-
tion holds with respect to SBP and H for any integer n which is polynomially bounded in λ.

Note that if the MCDHAI assumption holds with respect to SBP then the MHDHAI assumption
holds with respect to SBP and the Goldreich-Levin hardcore bit function [25].

4 Our Construction of a Self-bilinear Map

In this section, we construct a self-bilinear map with auxiliary information by giving a construction
of self-bilinear map procedures SBP. We prove that the MCDHAI assumption holds with respect
to SBP if the factoring assumption holds and there exists an indistinguishability obfuscator for
P/poly.

4.1 Construction

First we prepare some notations for circuits on QR+
N .

Notation for circuits on QR+
N . In the following, for an `N -bit RSA modulus N and an integer

x ∈ Z, CN,x denotes a set of circuits CN,x that work as follows. For input y ∈ {0, 1}`N , CN,x
interprets y as an element of ZN and returns yx where the exponentiation is done on QR+

N if
y ∈ QR+

N and otherwise returns 0`N (which is interpreted as ⊥). We define the canonical circuit
C̃N,x in CN,x in a natural way 3. For circuits C1, C2 whose output can be interpreted as elements
of QR+

N , Mult(C1, C2) denotes a circuit that computes Cmult(C1(a), C2(a)) for input a where Cmult

is a circuit that computes a multiplication for elements of QR+
N . If an input of Cmult is not a pair

of two elements in QR+
N , then it outputs 0`N .

Now we are ready to describe our construction. The construction of SBP is as follows.

InstGen(1λ)→ params = (N, g) : Run RSAGen(1λ) to obtain (N,P,Q), chooses g
$← QR+

N and
outputs params = (N, g). params defines the underlying group G := QR+

N , the self bilinear
map e(gx, gy) := g2xy and Approx(G) := (N − 1)/4. For an integer x and ` ∈ N, the set
T `x is defined as T `x = {iO(M`, CN,2x; r) : CN,2x ∈ CN,2x such that |CN,2x| ≤ M`, r ∈ {0, 1}∗},
where M` is defined later.

AIGen(params, `, x)→ τx : Take the canonical circuit C̃N,2x ∈ CN,2x, set τx ← iO(M`, C̃N,2x) and
output τx.

3There is flexibility to define the canonical circuit. However, any definition works if the size of C̃N,x is polynomially
bounded in λ and |x|.
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Map(params, gx, τy)→ e(gx, gy) : Compute τy(g
x) and output it. (Recall that τy is a circuit that

computes the 2y-th power for an element of QR+
N .)

AIMult(params, `, τx, τy)→ τx+y : Compute τx+y ← iO(M`,Mult(τx, τy)) and output it.

Definition of M`. M` represents an upper bound of the size of a circuit which is obfuscated by
iO when auxiliary information with level ` is generated (by AIGen or AIMult). It can be defined
recursively as follows. We let M1 := maxx∈[(N−1)/4]{|C̃N,2x|} and M`+1 := 2poly(M`, λ) + |CMult|
for ` ≥ 1 where poly is a polynomial that satisfies |iO(M,C)| < poly(M,λ) for any integer M and
circuit C such that |C| < M .

Indistinguishability of auxiliary information. If z ≡ x+ y mod ord(QR+
N ) holds, then CN,2z

and Mult(τx, τy) have exactly the same functionality. This can be seen by observing that CN,2z
is a circuit that computes 2z-th power, Mult(τx, τy) is a circuit that computes (2x + 2y)-th power
and we have 2z ≡ 2x + 2y mod ord(QR+

N ). Auxiliary information τz generated by AIGen is an
obfuscation of CN,2z, and τx+y generated by AIMult is an obfuscation of Mult(τx, τy). Therefore
they are computationally indistinguishable by the property of iO.

4.2 Hardness Assumptions

We prove that the MCDHAI assumption holds with respect to our construction of a self-bilinear
map if iO is an indistinguishability obfuscator for P/poly and the factoring assumption holds.
From that, we can immediately see that the MHDHAI assumption also holds with respect to our
construction if we use the Goldreich-Levin hardcore bit function [25] as H.

First, we prove that the MCDHAI assumption holds if iO is an indistinguishability obfuscator
for P/poly and the factoring assumption holds.

Theorem 1. The MCDHAI assumption holds with respect to SBPOurs if the factoring assumption
holds with respect to RSAGen and iO is an indistinguishability obfuscator for P/poly.

Proof. For an algorithm A and an integer n (which is polynomially bounded by the security pa-
rameter), we consider the following games.

Game 1. This game is the original n-MCDHAI game. More precisely, it is as follows.

(N,P,Q)← RSAGen(1λ)

g
$← QR+

N

x0, . . . , xn
$← [(N − 1)/4]

τxi ← iO(M1, C̃N,2xi) for i = 0, . . . , n
U ← A(N, g, gx0 , . . . , gxn , τx0 . . . , τxn)

Game 1′ This game is the same as Game 1 except that x0, . . . , xn are chosen from [ord(QR+
N )].

Game 2′ This game is the same as Game 1′ except that g, x0, . . . , xn, τx0 , . . . , τxn are set differently.
More precisely, it is as follows.

(N,P,Q)← RSAGen(1λ)

h
$← QR+

N

9



g := h2

x′0, . . . , x
′
n

$← [ord(QR+
N )]

gxi := gx
′
ih for i = 0, . . . , n

(This implicitly defines xi ≡ x′i + 1/2 mod ord(QR+
N )).

τxi ← iO(M1, C̃N,2x′i+1) for i = 0, . . . , n
U ← A(N, g, gx0 , . . . , gxn , τx0 . . . , τxn)

Game 2 This game is the same as Game 2′ except that x′0, . . . , x
′
n are chosen from [(N − 1)/4].

We say that A wins if it outputs U = en(g, . . . , g)Πn
i=0xi . For i = 1, 2, we let Ti and T ′i be the

events that A wins in Game i and Game i′, respectively. What we want to prove is that Pr[T1] is
negligible. We prove it by the following lemmas.

Lemma 1. |Pr[Ti]− Pr[T ′i ]| is negligible for i = 1, 2

Proof. This follows since (N − 1)/4 is negligibly close to ord(QR+
N ). ut

Lemma 2. |Pr[T ′1]− Pr[T ′2]| is negligible if iO is an indistinguishability obfuscator for P/poly.

Proof. We consider hybrid games H0, . . . Hn+1. A hybrid game Hi is the same as Game 1′ except
that the first i auxiliary information (i.e, τx0 , . . . , τxi−1) are generated as in Game 2′. It is clear that
H0 is identical to Game 1′ and Hn+1 is identical to Game 2′. Let Si be the event that A wins in
Game Hi. It suffices to show that |Pr[Si]−Pr[Si−1]| is negligible by the standard hybrid argument.
We construct an algorithm B = (B1,B2) that breaks the security of iO for the security parameter
M1 by using A that distinguishes Hi and Hi−1.

B1(1λ): B1 runs (N,P,Q) ← RSAGen(1λ), chooses h
$← QR+

N and x0, . . . , xn
$← [ord(QR+

N )] and
sets g := h2. B1 computes x′0, . . . , x

′
n ∈ ord(QR+

N ) such that xj ≡ x′j +1/2 mod ord(QR+
N ) for

j = 0, . . . , n. (This can be computed since B1 knows the factorization of N .) Then B1 sets
C0 := C̃N,2xi−1 , C1 := C̃N,2x′i−1+1 and σ := (N,P,Q, h, g, x0, . . . , xn, x

′
0, . . . , x

′
n) and outputs

(C0, C1, σ).

B2(σ,C∗): B2 sets

τxj ←


iO(M1, C̃N,2x′j+1) if j = 0, . . . , i− 2

C∗ if j = i− 1

iO(M1, C̃N,2xj ) if j = i, . . . , n.

Then B2 runsA(N, g, gx0 , . . . , gxn , τx0 , . . . , τxn) to obtain U . If we have U = en(g, . . . , g)Πn
i=0xi ,

then B2 outputs 1, and otherwise outputs 0.

The above completes the description of B. First, we show C0 and C1 output by B1 has completely
the same functionality. Since we have xj ≡ x′j + 1/2 mod ord(QR+

N ), we have 2xj ≡ 2x′j + 1 mod

ord(QR+
N ). Therefore 2xj-th power and 2x′j + 1-th power return exactly the same value on the

group QR+
N and thus C0 and C1 have exactly the same functionality. We note that each of gxj

(j = 0, . . . , n) is distributed in QR+
N independently of each other in all hybrid games Hi for i =

0, . . . , n + 1. Therefore B generates them in exactly the same way as those are generated in the
hybrids Hi−1 and Hi. Then we can see that B perfectly simulates Hi−1 if C∗ ← iO(M1, C0) and
Hi if C∗ ← iO(M1, C1) from the view of A. If the difference between the probability that A wins
in Hi−1 and that in Hi is non-negligible, then B succeeds in distinguish whether C∗ is computed
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as C∗ ← iO(M1, C0) or C∗ ← iO(M1, C1), with non-negligible advantage, and thus breaks the
security of iO.

ut

Lemma 3. Pr[T2] is negligible if the factoring assumption holds.

Proof. Assuming that A wins in Game 2 with non-negligible probability, we construct an algorithm
B that factorizes N . This part is very similar to that in [32, 43] The construction of B is as follows.

B(N) : B chooses h′
$← Z∗N \ QR+

N , sets h := |h′2 mod N | ∈ QR+
N and g := h2 and chooses

x′0, . . . , x
′
n

$← [(N − 1)/4]. Then B sets gxi := gx
′
ih and τxi ← iO(M1, C̃N,2x′i+1) for all

i = 0, . . . , n. Then B runs A(N, g, gx0 , . . . , gxn , τx0 . . . , τxn). Let U be the output of A. Then
B computes X := Πn

i=1(2x′i+1) and v = Ug−(x′0X+(X−1)/2). (Note that X is odd and therefore
(X − 1)/2 is an integer.) Then it outputs gcd(h′, V ).

Since B perfectly simulates Game 2 from the view of A, A outputs en(g, . . . , g)Πn
i=0xi with non-

negligible probability. If it occurs, then we have

U = en(g, . . . , g)Πn
i=0xi = g2n−1Πn

i=0xi = h2nΠn
i=0xi = hx0Πn

i=12xi

= h(x′0+1/2)Πn
i=1(2x′i+1) = hx

′
0X+X/2 = hx

′
0X+(X−1)/2+1/2

where we used that xi ≡ x′i+1 holds for i = 0, . . . , n. Therefore we have V = h1/2. Since V ∈ QR+
N ,

h′ and V are distinct square roots of h in QR+
N . Therefore gcd(h′, V ) is a non-trivial factor of N . ut

Theorem 1 is proven by the above lemmas. ut
ut

The following is immediate from Theorem 1 and the Goldreich-Levin theorem.

Theorem 2. The MHDHAI assumption holds with respect to SBPOurs and the Goldreich-Levin
hardcore bit function if the factoring assumption holds with respect to RSAGen and iO is an indis-
tinguishability obfuscator for P/poly.

5 Applications of Our Self-bilinear Map

In Sec. 4, we constructed a self-bilinear map with auxiliary information. In this section, we con-
struct a multilinear map, multiparty NIKE, distributed broadcast encryption and ABE for circuits
by using it.

Multilinear map. Here, we consider a multilinear map which is constructed from a self-bilinear
map with auxiliary information. As shown in Sec. 3.1 we can construct a multilinear map by
iterated usage of a self-bilinear map. However, if we use a self-bilinear map with auxiliary in-
formation as a building block, then the resulting multilinear map has a restricted functionality:
we need auxiliary information to compute the map. Similarly to self-bilinear map with auxiliary
information, we formalize a multilinear map with an auxiliary information as a set of algorithms
MMP = (MInstGen,MAIGen,MMap,MAIMult) and a set R of integers. Actually, this is the almost
the same as the definition of SBP, we give a concrete formalization again for completeness.
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MInstGen(1λ)→ params : InstGen takes the security parameter 1λ as input and outputs the public
parameters params which consists of descriptions of an efficiently recognizable cyclic group
G on which the group operation is efficiently computable and a n-multilinear map en : G ×
· · ·×G→ G for any n ≥ 2 and an element g of G. We require that g is a generator of G with
overwhelming probability and that an approximation Approx(G) of ord(G) can be computed
efficiently from params, which is negligibly close to ord(G). By using g and Approx(G), we

can generate an almost uniform element h of G by taking x
$← [Approx(G)] and outputting

h := gx. With a slight abuse of notation, we often simply write h
$← G to mean the above

procedure. Additionally, params specifies sets T `x of auxiliary information for all integers x
and ` ∈ N.

MAIGen(params, `, x)→ τx : AIGen takes params, level ` and an integer x ∈ R as input, and outputs
corresponding auxiliary information τx ∈ T `x.

MMap(params, gx1 , . . . , gxn , τx1 , . . . , τxn−1)→ en(gx1 , . . . , gxn) : MMap takes params, gx1 , . . . , gxn ∈
G and τxi ∈ ∪`∈NT `xi for all i ∈ [n− 1] as input and outputs e(gx1 , . . . , gxn).

MAIMult(params, `, τx, τy)→ τx+y : MAIMult takes params, `, τx ∈ T `1x , τy ∈ T `2y such that ` >

max{`1, `2} as input and outputs τx+y ∈ T `x+y.

In addition to the above algorithms, we require for MMP to satisfy the following property.

Indistinguishability of auxiliary information. We require that any efficient algorithm which
is given auxiliary information cannot tell whether it is generated by MAIGen or MAIMult. More
formally, for any params ← MInstGen(1λ), ` ∈ N (which does not depend on λ), natural numbers
`1, `2 < `, integers x, y and z (which are polynomially bounded in λ), such that z ∈ R and z ≡
x+ y mod ord(G), and auxiliary information τx ∈ T `1x and τy ∈ T `2y , the following two distributions
are computationally indistinguishable:

D1 = {τz : τz ← MAIGen(params, `, z)}

D2 = {τx+y : τx+y ← MAIMult(params, `, τx, τy)}.

It is clear that we can construct MMP from SBP: All algorithms of MMP except MMap
can be exactly the same as the corresponding algorithm of SBP, and MMap can be constructed by
an iterated usage of Map of SBP. The MCDH and MHDH assumption with respect to MMP is
defined similarly as those with respect to SBP, and it is clear that if the MCDH (resp. MHDH)
assumption holds with respect to SBP, then the MCDH (resp. MHDH) assumption holds with
respect to MMP which is constructed from SBP.

In spite of the limitation that it requires auxiliary information to compute the map, a mul-
tilinear map with auxiliary information is sufficient to replace existing multilinear maps in some
applications. Moreover, our multilinear map has interesting properties that existing multilinear
maps do not have: the level of multilinearity is not bounded in the instance generation phase and
representations of group elements are compact, i.e., their sizes are independent of the level of mul-
tilinearity. By this property, cryptographic primitives which are constructed from our multilinear
map inherit these properties too.

Multiparty NIKE. Here, we construct a multiparty NIKE scheme. The main idea of our construc-
tion is to use our multilinear map (with auxiliary information) for the ”multiparty” Diffie-Hellman
key exchange [17, 9].
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First, we formally define multiparty NIKE and its security. A multiparty NIKE scheme consists
of the three algorithms (Setup,Publish,KeyGen). Setup takes the security parameter 1λ as input
and outputs the public parameters PP.4 Publish takes the public parameters PP and outputs a
public key pk and a secret key sk. KeyGen takes the public parameters PP, a secret key sk and
a set of public keys {pkj}j=1,...,n as input, and outputs a `K-bit derived key K. For correctness,
we require that we have K1 = K2 = . . . = Kn, where PP ← Setup(1λ), (pki, ski) ← Publish(PP),
Ki := KeyGen(PP, ski, {pkj}j=1,...,n) for i = 1, . . . , n. We say that a multiparty NIKE scheme
is statically secure if for any integer n which is polynomial in the security parameter, for any
efficient adversary A, |Pr[b

$← A(PP, {pki}i=1,...,n,Kb)]− 1/2| is negligible, where PP← Setup(1λ),

(pki, ski) ← Publish(PP) for i = 1, . . . , n, K1 := KeyGen(PP, ski, {pkj}j=1,...,n), K0
$← {0, 1}`K and

b
$← {0, 1}.
Our construction of multiparty NIKE scheme is as follows. Let H be a family of hash functions.

SetupNIKE(1λ) : SetupNIKE runs params = (G, e, g) ← InstGen(1λ) and chooses H
$← H. It outputs

PP = (params, H) as the public parameter.

PublishNIKE(PP): It chooses x ← [Approx(G)] and sets τx ← AIGen(params, 1, x). It sets pk :=
(gx, τx) and sk := x, and outputs (pk, sk).

KeyGenNIKE(PP, sk, {pkj}j=1,...,n) : Let i be the index such that sk corresponds to pki, xi := sk and
(gxj , τxj ) := pkj for j ∈ [n]. Without loss of generality, we assume that i 6= 1. It computes
recursively as follows. It first sets k1 := gx1 . For j = 2, . . . , n, it computes

kj :=

{
Map(params, kj−1, τxj ) if j 6= i
kxii−1 if j = i.

Finally, it outputs K := H(kn) as its derived key.

Remark 3. If we instantiate H by the Goldreich-Levin hardcore function, then the output length
of H is 1-bit, and therefore the length of a key derived by the above NIKE scheme is only 1-bit. A
scheme for multi-bit keys can be obtained by running our scheme in parallel. Alternatively, one can
use variant of our map which is based on the idea of the Blum-Blum-Shub pseudo-random number
generator [6]. The details are given in Appendix A.

The correctness can be seen easily since a derived key K for a set S of users satisfies K =
H(en−1(g, . . . , g)Πn

j=1xj ) where {(gxj , τxj )}j=1,...,n and {xj}j=1,...,n are public keys and secret keys
of users in S.

The security of our NIKE scheme is as follows.

Theorem 3. This multiparty NIKE scheme is statically secure if the MHDHAI assumption holds
with respect to the underlying SBP and H.

This is clear from the definitions of the MHDHAI assumption and the static security of mul-
tiparty NIKE. Thus if we use our construction of SBP given in Section 4, then this multiparty
NIKE scheme is statically secure if the factoring assumption holds and iO is an indistinguishability
obfuscator for P/poly.

4We do not include the number of users in the input of Setup. This means that the number of users is unbounded
in the setup phase.
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Comparison to [11] Boneh and Zhandry [11] also constructed a multiparty key exchange scheme
based on an indistinguishability obfuscation, whose construction is totally different from ours. Our
scheme is superior to their scheme in regard to the size of public parameter: it is O(1) in our
scheme whereas it is O(poly(n)) in their scheme where n is the number of users. Moreover, in their
scheme, the number of users is fixed in setup phase whereas it is not in our scheme. On the other
hand, their scheme has a useful property ours does not have. In their scheme, Publish can be run
independently of Setup. This property enable one to make the scheme“no setup” by letting the
“master user” publish the public parameter in addition to his own public key. We note that in their
“no setup” scheme, a “master user” has to know the number of users before publishing his public
parameter unlike usual multiparty NIKE schemes. Actually, this is not allowed in our formulation
because KeyGen does not take the number of users as input. We also note that our scheme is based
on slightly stronger assumption than they are. That is, ours is based on the factoring assumption
and the existence of an indistinguishability obfuscation whereas theirs is based on the existence of
a one-way function and an indistinguishability obfuscation. Thus, these schemes are incomparable.

Distributed broadcast encryption. It is known that a multiparty NIKE scheme can be con-
verted to a distributed broadcast encryption scheme [9, 11], where a user can join the system by
himself without the assistance of a (semi) trusted third party holding a master key.

The conversion is very simple: The setup algorithm runs SetupNIKE(1λ) to obtain PP and
publishes it. A user who wants to join the system runs PublishNIKE(PP) to obtain (pk, sk), publishes
pk as his public key and keeps sk as his secret key. A sender who wants to send a message M to a
set S of users plays the role of a user of the underlying NIKE, shares a derived key K with users
in S and encrypts M to obtain a ciphertext Ψ by a symmetric key encryption scheme using the
key K. A ciphertext consists of S, the sender’s public key and Ψ. It is proven that the resulting
broadcast encryption scheme is CPA secure if the underlying multiparty NIKE scheme is statically
secure. See [11] for more detail.

In our scheme, as in the multiparty NIKE scheme, all algorithms can be run independently of
the number of users. In particular, the size of both the public parameters and a ciphertext overhead
are independent of the number of users. This is the first distributed broadcast encryption scheme
with this property. Note that [11] also constructed distributed broadcast encryption schemes based
on indistinguishability obfuscation. However, in their schemes, the setup algorithm takes the num-
ber of users as input and a public parameter depends on the number of users unlike ours.

Attribute based encryption for circuits. Here, we construct an attribute based encryption
scheme for general circuits. Our construction is an analogue of [21].

First define attribute-based encryption (ABE) and its security. An ABE scheme consists of
four algorithms (Setup,Enc,KeyGen,Dec). Setup takes the security parameter 1λ, the length n of
the index as input and upper bound d of circuit depth, and outputs the public parameters PP
and a master secret key MSK. Enc takes the public parameters PP , an index x ∈ {0, 1}n and a
message M as input, and outputs a ciphertext CT . KeyGen takes a master secret key MSK and
a circuit f with a single output gate, and outputs a secret key SK. Dec takes a secret key SK
and a ciphertext CT as input, and outputs a message M or ⊥. For correctness, we require that for
all M , x ∈ {0, 1}n and f with depth lower than d such that f(x) = 1, Dec(SK,CT ) = M always
holds, where (PP,MSK)← Setup(1λ, n, d), SK = KeyGen(MSK, f) and CT = Enc(PP, x,M).

Next, we define the security of ABE. Here, we only define the selective security since we only
consider it in this paper. For an adversary A, we consider the following game between A and a
challenger. A first declares the target index x∗. Then the challenger computes (PP,MSK) ←
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Setup(1λ) and gives PP to A. Then A declares M0 and M1. The challenger chooses b
$← {0, 1}

and computes CT ← Enc(PP, x∗,Mb). Then it gives CT to A. In the game, A can query a circuit
f such that f(x∗) = 0 for key generation oracle, and the oracle returns KeyGen(MSK, f) to A.
Finally, A outputs b′. We say that A wins if b′ = b. We say that an ABE scheme is selectively
secure if for any efficient adversary A, tha probability that A wins is negligibly close to 1/2.

It is known that any general Boolean circuit can be converted to an equivalent monotone
layered Boolean circuit [21]. Therefore we only consider ABE for monotone layered circuits. Here,
monotone circuit is a circuit where all gates are either AND or OR gates of two inputs, and layered
circuit is a circuit where a gate at depth j receive both of its inputs from wires at depth j−1. Then
we give our construction of an ABE scheme. Let H be a family of hash functions H : G→ {0, 1}`H .

Setup(1λ, n, d): It runs params = (G, e, g)← InstGen(1λ) and chooses α← [Approx(G)], h1, . . . , hn
$←

G and H
$← H. Then it outputs PP := (params, H, ed+1(g, . . . , g)α, h1, . . . , hn) and MSK :=

(α, PP ).

Enc(PP, x ∈ {0, 1}n,M ∈ {0, 1}`H ): It chooses s ← [Approx(G)], sets τs ← AIGen(params, 1, s)
and CT := (M ⊕H((ed+1(g, . . . , g)α)s), τs, h

s
i for all i such that xi = 1), and outputs CT .

KeyGen(MSK, f): It chooses r1, . . . , rv
$← [Approx(G)] and sets KH := ed(g, . . . , g)α−rv where v

is the number of wires of f . Next, it generates key component for each wire of f as follows.

• Input Wire: If w is an input wire (i.e., depth is 1), then it chooses zw
$← [Approx(G)]

and sets Kw := grwh−zww and τzw ← AIGen(params, 2, zw). We let (Kw, τzw) be the key
component for wire w.

• OR Gate: If w is an output wire of an OR gate with depth j, then it chooses aw, bw
$←

[Approx(G)] and setsKw,1 := ej(g, . . . , g)rw−awrA(w) , Kw,2 := ej(g, . . . , g)rw−bwrB(w)τaw :=
AIGen(params, 2, aw) and τbw := AIGen(params, 2, bw). We let (Kw,1,Kw,2, τaw , τbw) be
the key component for wire w.

• AND Gate: If w is an output wire of an AND gate with depth j, then it chooses aw, bw
$←

[Approx(G)] and sets Kw := ej(g, . . . , g)rw−awrA(w)−bwrB(w) ,τaw := AIGen(params, 2, aw)
and τbw := AIGen(params, 2, bw). We let (Kw, τaw , τbw) be the key component for wire w.

It outputs SK which consists of description of f , KH and key components for each wire.

Dec(PP, SK,CT ): Let SK be a secret key corresponding to f and CT be a ciphertext corre-
sponding to x. We can correctly decrypt it if f(x) = 1. First, it computes E′ := e(gs,KH) =
ed+1(g, . . . , g)s(α−rv) by using τs. Then it computes as follows for all wires from wires with
lower depth.

• Input Wire: Let w be an input wire. If xw=1 holds, then it computes Ew := e(gs,Kw)e(gzw , hsw) =
e(gs, grwh−zww )e(gzw , hsw) = e(g, g)srw by using τs and τzw .

• OR gate: Let w be an output wire of an OR gate with depth j. If fw(x) = 1 holds,
then it works as follows. In this case we have fA(w) = 1 or fB(w) = 1. If we have
fA(w) = 1, then it computes Ew := e(gaw , EA(w))e(g

s,Kw,1) = e(gaw , ej(g, . . . , g)srA(w))
e(gs, ej(g, . . . , g)rw−awrA(w)) = ej+1(g, . . . , g)srw by using τaw and τs. If we have fA(w) 6=
1, (in this case, we have fB(w) = 1,) then it computes Ew := e(gbw , EB(w))e(g

s,Kw,2)
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= e(gbw , ej(g, . . . , g)srB(w))e(gs, ej(g, . . . , g)rw−bwrB(w)) = ej+1(g, . . . , g)srw by using τbw
and τs.

• AND gate: Let w be an output gate of an AND gate with depth j. If fw(x) = 1 holds,
i.e, we have fA(w) = 1 and fB(w) = 1, then it works as follows. It computes Ew :=

e(EA(w), g
aw)e(EB(w), g

bw)e(gs,Kw) = e(ej(g, . . . , g)srA(w) , gaw)e(ej(g, . . . , g)srB(w) , gbw)

e(gs, ej(g, . . . , g)rw−awrA(w)−bwrB(w)) = ej+1(g, . . . , g)srw by using τaw , τbw and τs.

If f(x) = 1 holds, then for output wire v with depth d, it can compute Ev = ed+1(g, . . . , g)srv .
Next, it computes E′′ := E′Ev = ed+1(g, . . . , g)s(α−rv)ed+1(g, . . . , g)srv = ed+1(g, . . . , g)sα.
Finally, it outputs M := CM ⊕H(E′′).

The correctness of the scheme is already checked in the above description. The security of the
scheme is as follows.

Theorem 4. Our ABE scheme is selectively secure if the MHDHAI assumption holds with respect
to the underlying multilinear map and H.

Proof. We construct an algorithm D that breaks the d+ 1-MHDHAI assumption by using A that
breaks the ABE scheme. The construction of D is as follows. We note that the label of an instance
of the MHDHAI problem is different from that in Definition 3 for notational convenience.

D(params, gs, gc1 , . . . , gcd+1 , τs, τc1 , . . . , τcd+1
, H, T ):

Setup. Let x∗ = (x∗1, . . . , x
∗
n) be a target input declared by A. D sets α := Πd+1

i=1 ci. Then
it can computes ed+1(g, . . . , g)α by iterated usage of Map by using τc1 , . . . , τcd+1

. It chooses

yi
$← [Approx(G)] for i = 1, . . . , n, and sets

hi :=

{
gyi if x∗i = 1
gyi+c1 if x∗i = 0

and PP := (params, H, ed+1(g, . . . , g)α, h1, . . . , hn). Then it gives PP to A.

Challenge Ciphertext. For messages M0,M1 which are declared by A, D chooses b
$←

{0, 1}, and sets CT := (Mb ⊕ T, τs, (gs)yi for i ∈ [d+ 1] such that x∗i = 1). It gives CT to A
as a challenge ciphertext.

Key Generation. For A’s key query f such that f(x∗) = 0, D computes as follows for all
wires from wires with lower depth.

• Input Wire Let w be an input wire. If x∗w = 1, then D chooses zw, rw
$← [Approx(G)],

and computes Kw := grwh−zww and τzw := AIGen(params, 2, zw). If x∗w = 0, then it

chooses ηw, νw
$← [Approx(G)], and computes zw := c2 + νw, rw := c1c2 + ηw, Kw :=

g−c2yw+ηw−(yw+c1)νw and τzw := AIMult(params, 2, τc2 ,AIGen(G, 1, νw)).

• OR Gate: Let w be an output wire of an OR gate with depth j. If fw(x∗) = 1, then

D chooses aw, bw
$← [Approx(G)] and computes Kw,1 := ej(g, . . . , g)rw−awrA(w) , Kw,2 :=

ej(g, . . . , g)rw−bwrB(w) , τaw := AIGen(params, 2, aw) and τbw := AIGen(params, 2, bw).

If fw(x∗) = 0, then it chooses ψw, φw, ηw
$← [Approx(G)], sets aw := cj+1 + ψw, bw :=
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cj+1 + φw and rw := Πj+1
i=1 ci + ηw, and computes

Kw,1 := ej(g, . . . , g)ηw−ψwηA(w)−cj+1ηA(w)−ψwΠj
i=1ci

Kw,2 := ej(g, . . . , g)ηw−φwηB(w)−cj+1ηB(w)−φwΠj
i=1ci

τaw := AIMult(params, 2, τcj+1 ,AIGen(params, 1, ψw))

τbw := AIMult(params, 2, τcj+1 ,AIGen(params, 1, φw)).

• AND Gate: Let w be an output wire of an AND gate with depth j. If fw(x∗) = 1,

then D chooses aw, bw
$← [Approx(G)], computes Kw := ej(g, . . . , g)rw−awrA(w)−bwrB(w) ,

τaw := AIGen(params, 2, aw), τbw := AIGen(params, 2, bw). If fw(x∗) = 0, then it works as

follows. If fA(w)(x
∗) = 0, then it chooses ψw, φw, ηw

$← [Approx(G)], sets aw := cj+1+ψw,

bw := φw and rw := Πj+1
i=1 ci + ηw, and computes

Kw := ej(g, . . . , g)ηw−ψwηA(w)−φwrB(w)−cj+1ηA(w)−ψwΠj
i=1ci

τaw := AIMult(params, 2, τcj+1 ,AIGen(params, 1, ψw))

τbw := AIGen(params, 2, φw).

If fA(w)(x
∗) = 1 and fB(w)(x

∗) = 0, it works symmetric to what is above, with the roles
of aw and bw reversed.

Remark 4. D can actually simulate the key generation oracle as the above since ej(g, . . . , g)Πj
i=1ci

can be computed by iterated usage of Map by using τc1 , . . . , τcj . Note that it need not compute

ej(g, . . . , g)Πj+1
i=1 ci thanks to the cancellation technique.

Since we have f(x∗) = 0, for the output wire v, rv is defined as Πd+1
i=1 ci + ηv. Therefore it can

generate KH := ed(g, . . . , g)−ηv by the cancellation. Thus, it can simulate the key generation
oracle.

Guess. Finally, when A outputs b′, D outputs 1 if b = b′, and otherwise 0.

The above completes the description of D. We can easily see that if β = 1, then the CPA game
and the simulated environment are computationally indistinguishable from the view of A by the
indistinguishablity of auxiliary information. (Recall that β is a random coin that determines T
is random or not.) On the other hand, if β = 0, then information of b is completely hidden and
therefore the probability that A predicts b is equal to 1/2. Therefore Pr[1 ← D|β = 1] − Pr[1 ←
D|β = 0] is non-negligible if A breaks the CPA security of the scheme. ut

6 Homomorphic Encryption

In this section, we construct a somewhat homomorphic encryption scheme by using an indistin-
guishability obfuscator. This is not a direct application of our self-bilinear map. However, the idea
behind the construction is similar.

6.1 Definition of Homomorphic Encryption

Here, we recall some definitions for homomorphic encryption. A homomorphic encryption scheme
HE consists of the four algorithms (KeyGen,Enc,Eval,Dec). KeyGen takes the security parameter 1λ
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as input and outputs a public key pk and a secret key sk. Enc takes a public key pk and a massage
m ∈ {0, 1} as input, and outputs a ciphertext c. Eval takes a public key pk, a circuit f with input
length ` and a set of ` ciphertexts c1, . . . , c` as input, and outputs a ciphertext cf . Dec takes a
secret key sk and a ciphertext c as input, and outputs a message m. For correctness of the scheme,
we require that for all (pk, sk)← KeyGen(1λ) and all m ∈ {0, 1}, we have Dec(sk,Enc(pk,m)) = m
with overwhelming probability.

Next, we define some properties of homomorphic encryption such as the CPA security, C-
homomorphism, and compactness.

Definition 5. (CPA security) We say that a scheme HE is CPA secure if for any efficient adversary
A,

|Pr[1← A(pk,Enc(pk, 0))]− Pr[1← A(pk,Enc(pk, 1))]|

is negligible, where (pk, sk)← KeyGen(1λ).

Definition 6. (C-homomorphism) Let C = {Cλ}λ∈N be a class of circuits. A scheme HE is C-
homomorphic if for any family of circuits {fλ}λ∈N such that fλ ∈ C whose input length is ` and
any messages m1, . . . ,m` ∈ {0, 1},

Pr[Dec(sk,Eval(pk,C, c1, . . . , c`)) 6= C(m1, . . . ,m`)]

is negligible, where (pk, sk)← KeyGen(1λ) and ci ← Enc(pk,mi).

Remark 5. We can also consider the additional property that an output of Eval can be used as
input of another homomorphic evaluation. This is called “multi-hop” homomorphism, and many
fully homomorphic encryption schemes have this property. However, our scheme does not.

Definition 7. (Compactness) A homomorphic encryption scheme HE is compact if there exists a
polynomial poly such that the output length of Eval is at most poly(λ)-bit.

6.2 Φ-hiding Assumption

Here, we give the definition of the Φ-hiding assumption [35] as follows. Let RSA[p ≡ 1 mod e] be
an efficient algorithm which takes the security parameter 1λ as input and outputs (N,P,Q) where
N = PQ is an `N -bit Blum integer such that P ≡ 1 mod e and QR+

N is cyclic. Let P` be the set of
all `-bit primes.

Definition 8. For a constant c, we consider the following distributions.

R = {(e,N) : e, e′
R← Pc`N ;N ← RSA[p ≡ 1 mod e′](1λ)}

L = {(e,N) : e
R← Pc`N ;N ← RSA[p ≡ 1 mod e](1λ)}

We say that the Φ-hiding assumption holds with respect to RSA if for any efficient adversary A,
|Pr[1← A(L)]− Pr[1← A(R)]| is negligible.

Parameters. According to [35], N can be factorized in time O(N ε) where e
R← Pc`N ;N ← RSA[p ≡

1 mod e](1k) and c = 1/4 − ε. In our scheme, we set c to be the value such that c`N = λ. This
setting avoids the above mentioned attack in a usual parameter setting (e.g., `N = 1024 for 80-bit
security).
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6.3 Our Construction

Here, we construct a somewhat homomorphic encryption scheme by using indistinguishability ob-
fuscation. We use the notation for circuits on QR+

N which is given in Sec. 4. In addition to
that, here, we use the following notation. For circuits C1 and C2 such that an output of C1 can
be interpreted as input for C2, C1 ◦ C2 denotes the composition of C1 and C2, i.e, C1 ◦ C2 is a
circuit that computes C2(C1(x)) for input x. The construction of our homomorphic encryption
HEOurs = (KeyGen,Enc,Eval,Dec) is as follows.

KeyGen(1λ): Choose e
$← Pλ and (N,P,Q) ← RSA[p ≡ 1 mod e](1λ). Choose g

$← QR+
N and

compute an integer ρ such that ρ ≡ 0 mod ord(QR+
N )/e and ρ ≡ 1 mod e. It outputs a public

key pk = (N, e, g) and a secret key sk = (ρ, pk).

Enc(pk,m ∈ {0, 1}): Choose r
$← [(N − 1)/4], set c← iO(Max, C̃N,m+re) and output c, where Max

is defined as an integer larger than maxm∈{0,1},r∈[(N−1)/4]{|C̃N,m+re|}.

Eval(pk, f, c1, . . . , c`): Work only if c1, . . . , c` are circuits (i.e., generated by Enc). Convert f into
an arithmetic circuit f ′ on Ze. (That is, each gate of f ′ is addition, multiplication or negation
on Ze.)5 Compute as follows for all wires of f ′ from wires with lower depth.

• Input: Let w be the i-th input wire. Then ci is assigned to this wire.

• Addition: Let w be an output wire of an addition gate. Set cw := Mult(cA(w), cB(w)).

• Multiplication: Let w be an output wire of a multiplication gate. Set cw := cA(w) ◦cB(w).

• Negation: Let w be an output wire of a negation gate. Set cw := CN,inv ◦ cA(w) where

CN,inv is a circuit that computes an inverse on QR+
N .

Let v be the output wire. Compute ceval = cv(g) and output it. Note that it is a group
element and not a circuit. Therefore we cannot evaluate it again.

Dec(sk, c): Work differently depending on whether c is an output of Enc or Eval. If c is an output
of Enc, then compute M = c(g). If Mρ = 1, then output 0, and otherwise output 1. If c is
an output of Eval, then output 0 if cρ = 1, and otherwise output 1.

First, we prove the correctness of the scheme. We have e|ord(QR+
N ) by the choice of N . Therefore,

there exists a subgroup G+
e of order e of QR+

N . We can see that for any element h ∈ QR+
N , hρ is the

G+
e component of h. In the decryption, we have M = iO(Max, CN,m+re)(g) = gm+re. Therefore

Mρ is the G+
e component of gm. We can see that G+

e component of g is not 1 with overwhelming
probability since e is a λ-bit prime. Therefore Mρ = 1 is equivalent to m = 0 and Mρ 6= 1 is
equivalent to m = 1 with overwhelming probability. Thus the correctness follows.

The security of HEOurs relies on the Φ-hiding assumption. Specifically, it satisfies the following
property.

Theorem 5. HEOurs is NC1-homomorphic, compact and CPA secure if the Φ-hiding assumption
holds with respect to RSA and iO is an indistinguishability obfuscator for P/poly.

Proof. NC1-homomorphism. We show that HEOurs is NC1-homomorphic. Here, NC1 is the class
of circuits with depth O(log(λ)). Note that if f is in NC1, then the depth of the corresponding
arithmetic circuit f ′ is also O(log(λ)). First, we show the correctness of Eval. We can see that

5This can be done since we have a ∧ b = a · b mod e and a ∨ b = a+ b− a · b mod e if a, b ∈ {0, 1}.
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output ceval of Eval satisfies ceval = gm by an easy induction where m is a corresponding message.
Therefore we can prove that ceval is correctly decrypted similarly as the above. Next, we show
that Eval is computed efficiently if the depth of f ′ is O(log(λ)). We can easily see that Eval is
computed efficiently if |cv| is polynomially bounded in the security parameter. Let Mj be the
maximum value of |cw| for a wire w with depth j. M1 is constant in |f ′|. For j ≥ 2, we have
Mj ≤ 2Mj−1 + max{|CN,mult|, |CN,inv|}. Therefore if the depth of f ′ is O(log λ), then |cv| is poly-
nomially bounded by |f ′| (and therefore λ). Therefore Eval is efficiently computable.

Compactness. HEOurs is compact since output of Eval is always an element of QR+
N .

Security. To prove the security, we consider the following sequence of games.

Game 1: This game is the original CPA game. More formally, it is as follows.

e
$← Pλ

(N,P,Q)← RSA[p ≡ 1 mod e](1λ)

g
$← Z∗N

b
$← {0, 1}

r
$← [(N − 1)/4]

c← iO(Max, C̃N,b+re)

b′
$← A(N, e, g, c)

Game 2: This is the same game as Game 1 except that N and e are set differently as follows.

e, e′
$← Pλ

(N,P,Q)← RSA[p ≡ 1 mod e′](1λ)

Game 3: This is the same game as Game 2 except that c is set differently as follows.

c← iO(Max, C̃N,(b+re mod ord(QR+
N )))

Game 4: This is the same game as Game 3 except that c is set differently as follows.

r′
$← [ord(QR+

N )]
c← iO(Max, CN,r′)

Let Ti be the event that b′ = b in Game i. What we want to prove is |Pr[T1]−1/2| is negligible.
We prove it by the following lemmas.

Lemma 4. Pr[T1]− Pr[T2] is negligible if the Φ-hiding assumption holds.

Proof. It is easy to see that an adversary that distinguishes Game 1 and Game 2 is reduced
to an adversary that breaks the Φ-hiding assumption. ut

Lemma 5. Pr[T2]−Pr[T3] is negligible if iO is an indistinguishability obfuscator for P/poly.

Proof. C̃N,b+re and C̃N,(b+re mod ord(QR+
N )) compute identically for all input. Therefore the

lemma follows from the property of iO. ut

Lemma 6. Pr[T3]− Pr[T4] is negligible.

20



Proof. In Game 3, ord(QR+
N ) is coprime to e with overwhelming probability. Therefore the

distribution of r mod ord(QR+
N ) where r

$← [(N − 1)/4] is negligibly close to the uniform
distribution on Zord(QR+

N ) since (N − 1)/4 is negligibly close to ord(QR+
N ). ut

Lemma 7. Pr[T4] = 1/2

Proof. In Game 4, A obtain no information of b, therefore the probability that A predicts b
is 1/2. ut

ut
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A Multi-bit Variant

In the construction of a self-bilinear map with auxiliary information which is given in Sec. 4, we can
obtain only 1-bit hardcore function for the MHDH assumption. Here, we modify the construction
so that we can obtain k-bit hardcore function for any integer k (which is polynomially bounded
in λ). The idea of our multi-bit variant is similar to the Blum-Blum-Shub pseudorandom number
generator [6].

A.1 Construction

The construction of our multi-bit variant SBPMult is as follows.

InstGen(1λ)→ params = (N, g) : It runs RSAGen(1λ) to obtain (N,P,Q), chooses g
$← G and

outputs params := (N, g). params defines the underlying group G := QR+
N the self-bilinear

map as e(gx, gy) = g2kxy and Approx(G) = (N − 1)/4. For an integer x and ` ∈ N, a set T `x
is defined as T `x = {iO(M`, CN,2kx; r) : CN,2kx ∈ CN,2kx such that |CN,2kx| ≤M`, r ∈ {0, 1}∗},
where M` is defined later.

AIGen(params, `, x)→ τx : It takes the canonical circuit C̃N,2kx ∈ CN,2kx, sets τx ← iO(M`, C̃N,2kx)
and outputs τx.

Map(params, gx, τy)→ e(gx, gy) : It computes τy(g
x) and outputs it. (Recall that τy is a circuit

that computes the 2ky-th power for an element of QR+
N .)

AIMult(params, `, τx, τy)→ τx+y : It computes τx+y ← iO(M`,Mult(τx, τy)) and outputs it.

Definition of M`. M` represents an upper bound of the size of a circuit which is obfuscated by
iO when auxiliary information with level ` is generated (by AIGen or AIMult). It can be defined
recursively as follows. We let M1 := maxx∈[(N−1)/4]{|C̃N,2kx|} and M`+1 := 2poly(M`, λ) + |CMult|
for ` ≥ 1 where poly is a polynomial that satisfies |iO(M,C)| < poly(M,λ) for any integer M and
circuit C such that |C| < M .

Indistinguishability of auxiliary information. If we have z ≡ x + y mod ord(QR+
N ), then

CN,2kz and Mult(τx, τy) have exactly the same functionality. Therefore if we obfuscate these circuits
by iO, then the resulting circuits are computationally indistinguishable.

Indistinguishability of auxiliary information easily follows from the security of the indistin-
guishability obfuscator since τx ∈ ∪`∈NT `x is an obfuscation of a circuit that computes the 2x-th
power for an element of QR+

N regardless of whether τx is generated by AIGen or AIMult.
We also define the BBS generator which we will use as a hardcore function.

Definition 9. For `N -bit Blum integer N , g ∈ QR+
N and r ∈ {0, 1}`N , we define the BBS generator

as
BBSr(g) := (GLr(g), . . . ,GLr(g

k−1))

where GL denote the Goldreich-Levin hardcore bit function [25]. That is, GLr(x) :=
⊕`N

i=1 rixi where
ri and xi are i-th bit of r and x which is represented as an integer in {1, . . . , (N − 1)/2}. We write
BBS to denote the family of functions {BBSr}r∈{0,1}`N .
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A.2 Hardness Assumption

The following hardness assumption holds with respect to our construction.

Theorem 6. The MHDH assumption holds with respect to SBPMult and BBS if the factoring
assumption holds for RSAGen and iO is an indistinguishability obfuscator for P/poly.

Proof. For an algorithm A, we consider the following games.

Game 1. This game is the original n-MHDH game. More precisely, it is as follows.

(N,P,Q)← RSAGen(1λ)

g
$← QR+

N

r
$← {0, 1}`N

x0, . . . , xn
$← [(N − 1)/4]

τxi ← iO(M`i , C̃N,2kxi) for i = 0, . . . , n

T := BBSr(g
2k(n−1)Πn

i=0xi)
b← A(N, g, gx0 , . . . , gxn , τx0 . . . , τxn , r, T )

Game 1′ This game is the same as Game 1 except that x0, . . . , xn are chosen from [ord(QR+
N )].

Game 2′. This game is the same as Game 1 except that g, x0, . . . , xn, τx0 , . . . , τxn are set differently.
More precisely, it is as follows.

(N,P,Q)← RSAGen(1λ)

h
$← QR+

N

g := h2k

x′0, . . . , x
′
n

$← [ord(QR+
N )]

gxi := gx
′
ih for i = 0, . . . , n

(This implicitly defines xi ≡ x′i + 1/2k mod ord(QR+
N ))

τxi ← iO(M`i , C̃N,2kx′i+1) for i = 0, . . . , n

T := BBSr(g
2k(n−1)Πn

i=0xi)
b← A(N, g, gx0 , . . . , gxn , τx0 . . . , τxn , r, T )

Game 2 This game is the same as Game 2′ except that x′0, . . . , x
′
n are chosen from [(N − 1)/4].

Game 3. This game is the same as Game 2 except that T is set as a random k-bit string.

Let Ti be the event that A outputs 1 in Game i and T ′i be the event that A outputs 1 in Game i′.
What we want to prove is |Pr[T1]− Pr[T3]| is negligible. We prove this by the following lemmas.

Lemma 8. |Pr[Ti]− Pr[T ′i ]| is negligible for i = 1, 2

Proof. This follows since (N − 1)/4 is negligibly close to ord(QR+
N ). ut

Lemma 9. |Pr[T ′1]− Pr[T ′2]| is negligible if iO is an indistinguishability obfuscator for P/poly.
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Proof. We define hybrid games H1,0, . . . H1,n+1. A hybrid game H1,i is the same as Game 1′ except
that the first i auxiliary information (i.e, τx0 , τx1 , . . . , τxi−1) are generated as in Game 2′. Let T1,i be
the event that A outputs 1 in the hybrid H1,i. It is clear that H1,0 is Game 1′ and H1,n+1 is Game
2′. Let T1,i be the event that A wins in Game H1,i. Since we have xi ≡ x′i + 1/2k mod ord(QR+

N ),
CN,2kx′i+1 computes exactly the same as CN,2kxi for any input for i = 0, . . . n. (Recall that these

circuits computes the exponentiation only for an element of QR+
N .) Then we can see that |Pr[T1,i]−

Pr[T1,i−1] is negligible for i ∈ [n+1] from the security of iO. (Note that a reduction algorithm here
may know the factorization of N .) ut

Lemma 10. |Pr[T2]−Pr[T3]| is negligible if the factoring assumption holds for RSAGen and iO is
an indistinguishability obfuscator for P/poly.

Proof. We define hybrid games H2,0, . . . H2,k. For i = 0, 1, . . . , k, a hybrid game H2,i is the same
as Game 2 except that the first i-bit of T are set as in Game 2 and other bits are set as in Game

3, i.e, T := U1|| . . . ||Ui||GLr(g2k(n−1)+iΠn
j=0xj )|| . . . ||GLr(g2kn−1Πn

j=0xj ), where U1 . . . Ui
$← {0, 1}. In

the following, we write GL(r, i) to denote GLr(g
2k(n−1)+iΠn

j=0xj ) for notational simplicity. It is clear
that H2,0 is the same as Game 2 and H2,k is the same as Game 3. Let T2,i be the event that A
outputs 1 in the hybrid H2,i. We prove that |Pr[T2,i−1]−Pr[T2,i]| is negligible for all i ∈ [k]. To do
so, we assume that there exists an algorithm A that distinguishes H2,i and H2,i−1, and construct
a factoring algorithm by using A. Without loss of generality, we can assume that there exists
a negligible function ε such that Pr[T2,i−1] − Pr[T2,i] > ε. This is because given A, the sign of
Pr[T2,i−1] − Pr[T2,i] can be checked efficiently, and if Pr[T2,i−1] − Pr[T2,i] < 0 then we can modify
A to output inverse of the original output so that Pr[T2,i−1]−Pr[T2,i] > 0. In the following, we use
a similar argument as in [36].

Hardcore Predictor P. First, we construct an algorithm P that predicts GL(r, i− 1) with non-

negligible advantage when it is given (r,N, g, gx0 , . . . , gxn , τx0 . . . , τxn , g
2k(n−1)+iΠn

j=0xj ) where r, N ,
g, x0, . . . , xn and τx0 . . . , τxn are defined as in Game 2. The construction of P is as follows.

P(N, g, gx0 , . . . , gxn , τx0 . . . , τxn , g
2k(n−1)+iΠn

j=0xj , r): D′ picks b
$← {0, 1}, sets T := U1|| . . . ||Ui−1||b

||GL(r, i)|| . . . ||GL(r, k − 1) and runs A(N, g, gx0 , . . . , gxn , τx0 . . . , τxn , r, T ). Note that D’ can

generate GL(r, i), . . . ,GL(r, k − 1) since it knows g2k(n−1)+iΠn
j=0xj ). If A outputs 1, then P

outputs b, and otherwise it picks an independently random bit b′
$← {0, 1} and outputs it.

For notational simplicity, we define Y ′ := (N, g, gx0 , . . . , gxn , τx0 . . . , τxn , g
2k(n−1)+iΠn

i=0xi), i.e., Y ′

denotes input of P except r and define Y := (N, g, gx0 , . . . , gxn , τ, τx0 . . . , τxn), i.e., Y denotes input
of P except r and T . We prove that with the probability at least ε/2 over the choice of Y ′, P
predicts GL(r, i − 1) with advantage ε/4. By the standard averaging argument, with at least ε/2
fraction of the choice of Y , we have

Pr[1← A(Y, r, U1|| . . . ||Ui−1||GL(r, i− 1)|| . . . ||GL(r, k − 1))]

−Pr[1← A(Y, r, U1|| . . . ||Ui||GL(r, i)|| . . . ||GL(r, k − 1))] > ε/2.
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over the choice of r and randomness of A. Conditioned on such Y is fixed, we have

Pr[GL(r, i− 1)← P(Y ′, r)]

= Pr[GL(r, i− 1)← P(Y ′, r)|b = GL(r, i− 1)] Pr[b = GL(r, i− 1)]

+ Pr[GL(r, i− 1)← P(Y ′, r)|b 6= GL(r, i− 1)] Pr[b 6= GL(r, i− 1)]

= (1 · Pr[1← A(Y, r, U1|| . . . ||Ui−1||GL(r, i− 1)|| . . . ||GL(r, k − 1)]

+ 1/2 · (1− Pr[1← A(Y, r, U1|| . . . ||Ui−1||GL(r, i− 1)|| . . . ||GL(r, k − 1)])) · 1/2
+(0 · Pr[1← A(Y, r, U1|| . . . ||Ui−1||1− GL(r, i− 1)||GL(r, i)|| . . . ||GL(r, k − 1))]

+ 1/2 · (1− Pr[1← A(Y, r, U1|| . . . ||Ui−1||1− GL(r, i− 1)||GL(r, i)|| . . . ||GL(r, k − 1))])) · 1/2
= 1/2 + 1/2 · (Pr[1← A(Y, r, U1|| . . . ||Ui−1||GL(r, i− 1)|| . . . ||GL(r, k − 1)]

− Pr[1← A(Y, r, U1|| . . . ||Ui−1||1− GL(r, i− 1)||GL(r, i)|| . . . ||GL(r, k − 1))])

> 1/2 + ε/4

Reconstruction Algorithm. We obtained an algorithm P that distinguishes GL(r, i − 1) =

GLr(g
2k(n−1)+i−1Πn

j=0xj ) from a random bit with the advantage larger than ε when it is given Y ′, r
for at least ε/2 fraction of Y ′. Here, we use the Goldreich-Levin theorem.

Theorem 7. (Goldreich-Levin Theorem [25]) Let x be an n-bit string. If there exists a PPT
algorithm P such that

|Pr[GLr(x)← P(r)]− 1/2|

is non-negligible where r
$← {0, 1}n, then there exists a PPT algorithm R such that

Pr[x← R(1n)]

is non-negligible.

By using this theorem, we obtain an algorithm R that computes g2k(n−1)+i−1Πn
j=0xj with non-

negligible probability when it is given (N, g, gx0 , . . . , gxn , τx0 . . . , τxn , g
2k(n−1)+iΠn

j=0xj ) for non-negligible
fraction of its input.

Factoring Algorithm Then we construct an algorithm B that given an RSA modulus N factorizes
NThe construction of B is as follows.

B(N): B chooses h′
$← Z∗N \ QR+

N sets h := |h′2 mod N | ∈ QR+
N , g := h2k , chooses x′0, . . . , x

′
n

$←
[(N−1)/4], sets gx0 := gx

′
0h2k−i

, τx0 ← iO(M ′1, CN,2kx′0+2k−i), gxi := gx
′
ih, τxi ← iO(M ′1, CN,2kx′i+1)

for i ∈ [n]. Then B can compute g2k(n−1)+iΠn
j=0xj = h2kn+iΠn

j=0xj = h(2ix′0+1)Πn
j=1(2kx′j+1). B

runs R(N, g, gx0 , . . . , gxn , τx0 , . . . , τxn , g
2k(n−1)+iΠn

j=0xj ))). Let U be the output of R. Then B
computes X := Πn

j=1(2kx′j + 1) and computes V = Uh−(2i−1x′0X+(X−1)/2). (Note that X is
odd and therefore (X − 1)/2 is an integer.) Then it outputs gcd(h′, V ).

First, we consider the distribution of input for R. Clearly, all components except gx0 and τx0 are
distributed as in Game 2. In the above algorithm, gx0 is distributed almost uniformly on QR+

N as
in Game 2 and therefore this difference causes a negligible difference on the behavior of R. τx0 is
set as an obfuscation of a circuit that computes 2kx0-th power both in the above algorithm and in
Game 2, and this causes a negligible difference by the property of indistinguishability obfuscation.

27



Therefore R outputs g2k(n−1)+i−1Πn
j=0xj with non-negligible probability for non-negligible fraction of

its input. In this case, we have

U = g2k(n−1)+i−1Πn
j=0xj = h2kn+i−1(x′0+1/2i)Πn

j=1(x′j+1/2k)

= h(2i−1x′0+1/2)Πn
j=1(2kx′j+1) = h2i−1x′0X+(X−1)/2+1/2.

Therefore we have V = h1/2. Thus h′ and V are distinct square roots of h in Z∗N and therefore
gcd(h′, V ) is a non-trivial factor of N . ut

Theorem 6 is proven by the above lemmas. ut

28


