Unclonable encryption revisited

\[(4 \times 2 = 8)\]

Boris Škorić

b.skoric@tue.nl

Abstract

Unclonable Encryption is a technique similar to Quantum Key Distribution and authentication of quantum states; it quantum-protects classical ciphertext so that it cannot be copied by eavesdroppers. We propose an improved variant which has higher efficiency and much better noise tolerance. Our variant uses four cipherstate bases that are equally spaced on the Bloch sphere, instead of the usual + and \times basis.

1 Introduction

1.1 Quantum physics in cryptography and security

Quantum physics is markedly different from classical physics regarding information processing. For instance, performing a measurement on an unknown quantum state typically destroys state information. Furthermore, it is impossible to clone an unknown state by unitary evolution [1]. These two properties are very interesting for security applications, since they provide a certain amount of inherent confidentiality, unclonability and tampering detection. Quantum physics also has entanglement of subsystems, which allows for feats like teleportation [2, 3] that have no classical analogue.

The laws of quantum physics have been exploited in numerous (cryptographic) schemes, such as Quantum Key Distribution (QKD) [4, 5, 6], quantum anti-counterfeiting [7], quantum Oblivious Transfer [8, 9], authentication and encryption of quantum states [10, 11, 12], quantum authentication of PUFs [13, 14], and quantum-secured imaging [15], to name a few. A recent overview of quantum-cryptographic schemes is given in [16].

1.2 Unclonable ciphertext

A less known primitive is *Unclonable Encryption* (UE), introduced by Daniel Gottesman in 2003 [17].\(^1\) The context here is that there is a quantum channel from Alice to Bob, but, in contrast to QKD, no (cheap) channel from Bob to Alice. This scenario is relevant for instance when a message is sent into the future, or in the case of significant time lags in long-distance communication, or if multiple-round protocols are too costly. The aim of Unclonable Encryption is to send a classical ciphertext to Bob, quantum-protected in such a way that one of the following two outcomes occurs: Either (i) Bob successfully recovers the plaintext and verifies its authenticity. Eve learns nothing about the ciphertext. Or (ii) Eve learns some of the ciphertext. Bob is not able to recover & verify the plaintext, i.e. the attack has been noticed.

Gottesman listed a number of use cases for Unclonable Encryption,

1. Alice and Bob use a classical One Time Pad (OTP). When an OTP has not yet been used, it needs to be strictly protected. After it has been used, it must be completely erased from memory. With today’s computer infrastructure both data protection and data erasure are nontrivial tasks. Eve copies the classical ciphertext and she may later obtain information about the OTP. UE thwarts this attack by denying Eve the ability to copy the ciphertext.

\(^1\)That work was presaged by an unpublished manuscript by Bennett, Brassard and Breidbart in 1982 [18].
2. Similar to use case 1, but with cryptography based on computational assumptions. Instead of an OTP, Alice and Bob repeatedly use the same short key to encrypt large plaintexts. Now, even if she cannot get hold of the encryption key, Eve’s ability to make a copy of each ciphertext allows her to launch brute force attacks. Again, UE thwarts the attack.

3. Quantum Key Distribution with less interaction than standard schemes, and fewer bits spent for eavesdropping detection.

Gottesman’s UE scheme protects the classical ciphertext by encoding each ciphertext bit in a qubit state, either in the standard basis (“+”) or in the Hadamard basis (“×”). The sequence of bases is a secret known only by Alice and Bob. Any attempt by Eve, who does not know the sequence, to measure a qubit state will cause a disturbance at Bob’s side with substantial probability.

The scheme does not need any entanglement (which is difficult to create and preserve) or complicated unitary transformations, and can be implemented using purely “prepare and measure” techniques such as in BB84.

One interesting aspect of the scheme is that, as long as no disturbance is noticed, Alice and Bob can keep re-using their secret bases sequence.² Remarkably, this holds even if the sequence is generated pseudorandomly from a short secret: Eve must break the pseudo-randomness before Bob receives the qubits.

UE is similar to Quantum Key Recycling Schemes (QKRS) [19], but there are subtle differences. A QKRS protects the plaintext but does allow the attacker to obtain knowledge about the ciphertext. Furthermore, QKRSs typically require multi-qubit operations during encryption and decryption, whereas Gottesman’s UE is entirely based on single-qubit operations.

1.3 Contributions and outline

We propose an improvement of Gottesman’s Unclonable Encryption scheme. We use the well known two-bit encryption of qubit states, and encode a classical ciphertext bit into one of eight states which are maximally spread apart on the Bloch sphere. We refer to this as the eight-state system. Making use of the full Bloch sphere, instead of just the one circle containing the “+” and “×” basis, brings a number of advantages. Eve’s knowledge about the classical ciphertext is drastically reduced, even to zero in case of a fully random sequence of bases. Furthermore, the probability of detecting eavesdroppers increases. These advantages reduce the amount of privacy amplification (compression) needed in the scheme and thereby reduce the number of qubits needed to send a message and improve the noise tolerance. From our improved UE we construct a QKD variant that is more efficient than Gottesman’s QKD-from-UE construction.

The outline of this paper is as follows. In Section 2 we briefly review Gottesman’s scheme and encryption of quantum states. Section 3 discusses the privacy amplification in Gottesman’s scheme. In Section 4 we introduce our 8-state system and the improved UE. In Section 5 we analyse the privacy amplification needs of the improved scheme, and in Section 6 we analyse the security of the classical ciphertext and of the quantum encryption key in cases where keys are generated pseudorandomly. In Section 7 we discuss the implications for QKD. Section 8 concludes with a discussion of implementation options and potential uses of the improved UE.

2 Preliminaries

2.1 Notation and terminology

Random Variables (RVs) are denoted with capital letters, and their realisations with lowercase letters. The probability that a RV X takes value x is written as $\Pr[X = x]$. The expectation with respect to RV X is denoted as $\mathbb{E}_x f(x) = \sum_{x \in \mathcal{X}} \Pr[X = x] f(x)$. Sets are denoted in calligraphic font. The notation ‘log’ stands for the logarithm with base 2. The min-entropy of $X \in \mathcal{X}$ is denoted as $H_{\min}(X) = -\log \max_{x \in \mathcal{X}} \Pr[X = x]$, and the conditional min-entropy as $H_{\min}(X|Y) = \ldots$.²

²The aim of [18] was to re-use the classical OTP.
\[-\log \mathbb{E}_y \max_{x \in X} \Pr[X = x|Y = y]. \] The notation \(h \) stands for the entropy function \(h(p) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p} \). Bitwise XOR is written as ‘\(\oplus \)’. In the treatment of error-correcting codes we write messages, codewords and syndromes as column vectors.

For quantum states we use Dirac notation, with the standard qubit basis states \(|0\rangle\) and \(|1\rangle\) represented as \((0)\) and \((1)\) respectively. The Pauli matrices are denoted as \(\sigma_x, \sigma_y, \sigma_z\), and we write \(\sigma = (\sigma_x, \sigma_y, \sigma_z)\). The standard basis is the eigenbasis of \(\sigma_z\), with \(|0\rangle\) in the positive \(z\)-direction. We write \(1_n\) for the \(n \times n\) identity matrix. The fully mixed \(N\)-qubit state is denoted as \(\tau_N = 2^{-N}1_{2^N}\).

We will use the Positive Operator Valued Measure (POVM) formalism. The notation ‘\(\text{tr} \)’ stands for trace.

2.2 Gottesman’s Unclonable Encryption scheme

We briefly describe Gottesman’s scheme, in particular the second variant presented in [17], and its main properties.

Preparation phase

Alice and Bob share three classical secrets: an authentication key \(a \in \{0,1\}^s\), a OTP \(e \in \{0,1\}^N\) and a basis sequence \(b \in \{0,1\}^N\). Alice and Bob agree on a message length \(n\) and on a Message Authentication Code (MAC) that uses the key \(a\) and produces a string of length \(s\). They agree on an error-correcting code \(C\) with message length \(k\) \((k > n + s)\) and codeword length \(N\), as well as an error-correcting code \(D\) with message length \(k' = (n+s) + N - k\) \((k' < k)\) and codeword length \(N\), satisfying\(^3\) \(D^\perp \subseteq C\). The parity check matrix of \(C\) is contained in the parity check matrix of \(D^\perp\). (See Fig. 1). The purpose of code \(C\) is to correct noise on the quantum channel, while \(D\) is used for privacy amplification. For \(D\) it is not necessary to have an efficient decoding algorithm.

Figure 1: Relation between the codes \(C\) and \(D^\perp \subseteq C\).

Encryption

Alice performs the following steps.

A1. Take the plaintext \(x \in \{0,1\}^n\) and compute a MAC \(\mu \in \{0,1\}^s\) using the key \(a\). Concatenate \(x\) and \(\mu\) into \(y = x\mu \in \{0,1\}^{n+s}\).

A2. Find any vector \(z_y \in \{0,1\}^N\) that satisfies

\[
H_{D^\perp} z_y = \left(\begin{array}{c} 0^{N-k} \\ y \end{array}\right) \in \{0,1\}^{k'},
\]

i.e. \(z_y\) is a codeword of \(C\) and has additional syndrome bits \(y\) w.r.t. \(D^\perp\). Pick a random codeword \(r \in D^\perp\) \((N - k'\) random bits) and compute \(z = z_y \oplus r\).

A3. Apply the One-Time Pad: \(g = z \oplus e \in \{0,1\}^N\).

A4. For \(i \in \{1,\ldots,N\}\) encode ciphertext bit \(g_i\) in the basis “\(+\)” if \(b_i = 0\) and in the basis “\(-\)” if \(b_i = 1\). The resulting state is denoted as \(|\psi\rangle_i\). Send \(|\psi\rangle_i\) to Bob.

\(^3\)The notation \(D^\perp\) stands for the dual code, i.e. all vectors in \(D^\perp\) are orthogonal to all vectors in \(D\). The notation \(D^\perp \subseteq C\) means that each codeword of \(D^\perp\) is also a codeword of \(C\).
Decryption
Bob performs the following steps.

B1. For $i \in \{1, \ldots, N\}$ receive qubit states $|\psi_i\rangle$. If $b_i = 0$ measure the qubit in the “+” basis, otherwise in the “x” basis. The result is $g'_i \in \{0, 1\}$.

B2. Apply the One-Time Pad: $z' = g' \oplus e \in \{0, 1\}^N$.

B3. Apply error correction on z' using code C. The result is denoted as $\hat{z} \in C$.

B4. Compute $y' = (H_{D\perp \hat{z}})_{\text{last } n+s} \text{ bits}$.

B5. Parse y' as the concatenation $x'\mu'$ with $x' \in \{0, 1\}^n$. Using the key a, verify if μ' is a correct MAC on x'.

If the verification in step B5 fails, then either Eve tampered with the transmitted qubits or there was too much noise on the quantum channel. Step B3 corrects transmission errors. Step B4 achieves privacy amplification, which is necessary since the noise that is tolerated by the protocol could be due to Eve’s snooping, from which she obtains some information about the ciphertext g. (See Section 3).

Re-usability
As long as the OTP is fully random in each message and Bob detects no disturbance, the keys a and b can be safely re-used. Consequently, for asymptotic number of undisturbed messages the number of key bits required to encrypt a message is practically the same as for a classical OTP, and the unclonability has been obtained essentially ‘for free’.

If Alice and Bob are re-using b and Eve at some point in time learns b, then (i) Eve can copy future ciphertexts g but not decrypt them because of the fresh OTPs; and (ii) she can not learn anything about the ciphertext g of past messages.

If Eve learns the OTP e for a message before/during transmission, then the unclonability prevents her from learning g (and hence the plaintext). However, she can obtain information about b, which endangers the unclonability of future transmissions if Alice and Bob re-use b.

Pseudorandom basis sequence
Unclonability still holds if b is generated pseudorandomly from a large enough seed. Eve has to break the pseudorandomness before Bob receives the qubits, otherwise she cannot clone the qubits.

2.3 Perfect encryption of arbitrary qubit states
An arbitrary unknown qubit state can be perfectly encrypted using a classical two-bit key. Let the state be a pure state $|\psi\rangle$ and let the key be $(u, w) \in \{0, 1\}^2$. The encrypted state is $|\psi_{uw}\rangle = E_{uw}|\psi\rangle$, with E_{uw} the unitary encryption operator, $E_{uw} = |0\rangle\langle 0| + (-1)^u|1\rangle\langle 1|$. In terms of Pauli spin matrices: $E_{00} = 1$, $E_{01} = \sigma_x$, $E_{10} = \sigma_z$, $E_{11} = \sigma_x\sigma_z$, or $E_{uw} = \sigma^u_x\sigma^u_z$. From the point of view of an attacker Eve who does not know u, w, the state is a mixed state $\frac{1}{2} \sum_{u,w} |\psi_{uw}\rangle\langle \psi_{uw}| = \!
bases of the form $\cos \varphi |0\rangle + \sin \varphi |1\rangle$ that Eve could choose; it is a property of the “+×” bases system used by Alice and Bob.) Hence, when $N\delta$ errors occur it is prudent to assume that Eve has performed a measurement on approximately $4N\delta$ qubits. It is well known that Eve learns most if she applies the ‘\(\frac{\pi}{2}\)-attack’, i.e. measuring polarisation at an angle $\varphi = \pi/8$ which lies exactly halfway between the “+” and “×” basis. In this way she achieves $H_{\text{min}}(G|\text{Eve’s observation}) = -\log_2{\left(\cos^2{\frac{\pi}{8}}\right)} \approx 0.228$. Thus, in terms of min-entropy, we can say that Eve has learned $N_E \approx 4N\delta \cdot 0.772 = 3.09N\delta$ bits of information about the RV $G \in \{0,1\}^N$ without being detected.

Consider the case where Alice and Bob keep re-using the basis sequence b. Eve collects $2N\delta$ qubits from each transmission (e.g. the first $2N\delta$ qubits) without being noticed. (Now the probability of causing a bit flip is $\frac{1}{2}$). After a large number of transmissions, she applies a measurement on all qubits with the same index i; since they are encrypted with the same key b_i, Eve learns practically everything about the ciphertext bits. She does this for each of the $2N\delta$ positions. Her knowledge N_E about each transmitted ciphertext is almost $2N\delta$.

The privacy amplification step has to turn Eve’s N_E bits of knowledge about g into practically zero knowledge about the $n + s$ last bits of the D^+-syndrome of g. After the error correction, a string in $\{0,1\}^N$ is obtained with k degrees of freedom. Then the privacy amplification maps this to a syndrome of size $n + s$. The number of bits ‘ignored’ by the syndrome is $k - (n + s) = N - k'$, which is precisely the redundancy of the code D. This should exceed Eve’s knowledge N_E. Indeed, [17] suggests a construction with redundancy $N - k' = Nh(2\delta + 2\eta) > 4N(\delta + \eta) > N_E$. The paper also states that setting the redundancy of the code C to $N - k = Nh(2\delta)$ is achievable (though closer to the Shannon bound $Nh(\delta)$ is of course desirable). According to these somewhat pessimistic parameter choices, the number of qubits used to send a message of length $n + s$ would be $N = (n + s)/(1 - h(2\delta) - h(2\delta + 2\eta))$.

The ‘overhead’ from the privacy amplification, without counting the error correction, is a factor $\frac{N}{(n + s)/(1 - h(2\delta))} = \frac{1 - h(2\delta)}{1 - h(2\delta) - h(2\delta + 2\eta)} = 1 + \frac{h(2\delta + 2\eta)}{1 - h(2\delta) - h(2\delta + 2\eta)}$. Even for $\eta \to 0$ the overhead factor is considerable and explodes to infinity around $\delta = 0.055$. This would imply that the scheme does not work at noise levels higher than approximately 5.5%. The numbers improve if we move closer to the Shannon bound. In the most optimistic case, we set $\eta = 0$, $N - k = Nh(\delta)$ and $N - k' = N_E$ resulting in an overhead factor $1 + \frac{N_E/N}{1 - h(\delta) - N_E/N}$. Now the overhead explodes only at $\delta \approx 0.137$; however, the overhead is still considerable, e.g. a factor 2 at $\delta \approx 0.09$.

4 Eight-state Unclonable Encryption

Intuitively, it should be possible to obtain an Unclonable Encryption scheme better than [17] from the perfect encryption scheme of Section 2.3. However, we observe that it makes no sense to apply the perfect encryption scheme to a classical bit if that bit is represented in the standard basis $|0\rangle, |1\rangle$.\(^4\) All the eight encrypted states are proportional either to $|0\rangle$ or to $|1\rangle$. While the plaintext value is perfectly hidden, Eve can learn the encrypted state with 100% accuracy, completely breaking the unclonability property that we are aiming for. What has in fact been achieved is a wasteful two-bit masking of a single classical bit.

We propose a system in which a classical bit is nontrivially quantum-encrypted using the 2-bit key; this results in 8 entirely different states which are maximally spread out over the Bloch sphere. Although our 8-state set is very simple and has interesting properties, we are not aware that it has ever been used.

\(^4\)Which is in fact what happens in Appendix B of [17].
4.1 Maximally separated cipherstates

We define \(\cos \alpha \equiv 1/\sqrt{3} \), \(\alpha \approx 0.96. \) We write \(\sqrt{3} = e^{i\pi/4} \). We encode the classical ‘0’ and ‘1’ as qubit states \(\psi_0, \psi_1 \),

\[
|\psi_0\rangle \equiv \left(\frac{\cos \frac{\alpha}{2}}{\sqrt{\sin \frac{\alpha}{2}}} \right) \quad |\psi_1\rangle \equiv \left(\frac{\sin \frac{\alpha}{2}}{\sqrt{\cos \frac{\alpha}{2}}} \right) \quad \langle \psi_1 | \psi_0 \rangle = 0
\]

(2)

which on the Bloch sphere corresponds to the normal vectors \((1,1,1)^T/\sqrt{3} \) and \((-1,-1,-1)^T/\sqrt{3} \) respectively. In spherical coordinates \((\theta, \varphi)\) this corresponds to \((\theta, \varphi) = (\alpha, \frac{\pi}{4})\) and \((\theta, \varphi) = (\pi - \alpha, -\frac{3}{4}\pi)\). Compactly written in terms of the standard basis \(|0\rangle, |1\rangle\),

\[
|\psi_g\rangle = (-\sqrt{i})^g \cos \frac{\alpha}{2} |g\rangle + (\sqrt{i})^{1-g} \sin \frac{\alpha}{2} |1 - g\rangle \quad g \in \{0, 1\}.
\]

(3)

We act on these qubit states with the four encryption operators \(E_{uw} \) defined in Section 2.3 and thus obtain eight different cipherstates,

\[
|\psi_{uwg}\rangle \equiv E_{uw} |\psi_g\rangle = (-1)^u \left[(-\sqrt{i})^g \cos \frac{\alpha}{2} |g \oplus w\rangle + (\sqrt{i})^{1-g} \sin \frac{\alpha}{2} |1 - g \oplus w\rangle \right].
\]

(4)

On the Bloch sphere these correspond to unit-length vectors \(n_{uwg} \) as follows,

\[
n_{uwg} = \frac{(-1)^g}{\sqrt{3}} \left(\frac{(-1)^u}{-1} \right).
\]

(5)

The relation between the Bloch sphere angles \(\theta, \varphi \) and the elliptic polarisation parameters \(\beta \) (angle from the \(x \)-axis to the major axis) and \(\tan \zeta \) (ratio minor/major, with \(\zeta < 0 \) left rotating) is given by \(\cos \theta = \cos 2\zeta \cos 2\beta \), \(\sin \varphi = \sin 2\beta/\sqrt{1 - (\cos 2\zeta \cos 2\beta)^2} \), \(\tan 2\beta = \cos \varphi \tan \theta \), \(\sin 2\zeta = \sin \theta \sin \varphi \). Our eight cipherstates have \(\beta \in \{\pm \frac{\pi}{4}, \pm \frac{3\pi}{4}\} \), \(\zeta = \pm (\frac{\pi}{4} - \frac{\pi}{8}) \approx \pm 0.308 \). We will often write \(b = 2u + w, b \in \{0, 1, 2, 3\} \) as a basis index, with corresponding notation \(|\psi_{bg}\rangle \) and \(n_{bg} \).

| \(u \) | \(w \) | \(g \) | \(x \) | \(y \) | \(z \) | \(\theta \) | \(\varphi \) | \(\beta \) | \(\zeta \) | cipherstate | \(|\psi_{uwg}\rangle \) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | + | + | + | \(\alpha \) | \(\pi/4 \) | \(\pi/8 \) | + | \(\cos \frac{\alpha}{2} |0\rangle + \sqrt{\sin \frac{\alpha}{2}} |1\rangle \) |
| 0 | 1 | 0 | + | - | - | \(\pi - \alpha \) | \(-\pi/4 \) | \(3\pi/8 \) | - | \(\cos \frac{\alpha}{2} |1\rangle + \sqrt{\sin \frac{\alpha}{2}} |0\rangle \) |
| 1 | 0 | 0 | - | - | + | \(\alpha - 3\pi/4 \) | \(-\pi/8 \) | - | \(\cos \frac{\alpha}{2} |0\rangle - \sqrt{\sin \frac{\alpha}{2}} |1\rangle \) |
| 1 | 1 | 0 | - | + | - | \(\pi - \alpha \) | \(3\pi/4 \) | \(-3\pi/8 \) | + | \(\cos \frac{\alpha}{2} |1\rangle - \sqrt{\sin \frac{\alpha}{2}} |0\rangle \) |
| 0 | 0 | 1 | - | - | + | \(\pi - \alpha \) | \(-3\pi/4 \) | \(-3\pi/8 \) | - | \(\sin \frac{\alpha}{2} |0\rangle - \sqrt{\sin \frac{\alpha}{2}} |1\rangle \) |
| 0 | 1 | 1 | - | + | + | \(\alpha \) | \(3\pi/4 \) | \(-\pi/8 \) | + | \(\sin \frac{\alpha}{2} |1\rangle - \sqrt{\sin \frac{\alpha}{2}} |0\rangle \) |
| 1 | 0 | 1 | + | - | + | \(\pi - \alpha \) | \(\pi/4 \) | \(3\pi/8 \) | + | \(\sin \frac{\alpha}{2} |0\rangle + \sqrt{\sin \frac{\alpha}{2}} |1\rangle \) |
| 1 | 1 | 1 | + | - | + | \(\alpha \) | \(-\pi/4 \) | \(\pi/8 \) | - | \(\sin \frac{\alpha}{2} |1\rangle + \sqrt{\sin \frac{\alpha}{2}} |0\rangle \) |

4.2 Properties of the eight-state system

It holds that \(\langle \psi_{uw0} | \psi_{uw1} \rangle = 0 \), i.e. opposite bit values encrypted with the same key lead to orthogonal cipherstates. This trivially follows from the unitarity of the encryption operators, \(\langle \psi_{uw0} | \psi_{uw1} \rangle = \langle \psi_0 | E_{uw} E_{uw} | \psi_1 \rangle = \langle \psi_0 | \psi_1 \rangle = 0 \).

More generally, we can readily compute the inner products between all the various cipherstates from the general rule \(|\langle \psi_{uw'w'g'} | \psi_{uwg} \rangle|^2 = \frac{1}{2} + \frac{1}{2} n_{uw'w'g'} \cdot n_{uwg} \),

\[
|\langle \psi_{uw'w'g'} | \psi_{uwg} \rangle|^2 = \delta_{uw} \delta_{uw'} \delta_{g} \delta_{g'} + (1 - \delta_{uw} \delta_{uw'}) \left[\delta_{g} \left(\frac{1}{3} + (1 - \delta_{gg'}) \frac{2}{3} \right) \right].
\]

(6)

\(^5 \sin \alpha = \sqrt{2/3}; \quad \tan \alpha = \sqrt{2}; \quad \cos \frac{\alpha}{2} = \sqrt{\frac{1}{2} + \frac{1}{2\sqrt{3}}}; \quad \sin \frac{\alpha}{2} = \sqrt{\frac{1}{2} - \frac{1}{2\sqrt{3}}}; \quad \tan \frac{\alpha}{2} = \sqrt{\frac{\sqrt{3} - 1}{\sqrt{3}}}. \)
In words: When \(g \) gets encrypted with two different keys the two cipherstates have (squared) inner product 1/3; any encryption of \(g, g', g \neq g \), with unequal keys yields cipherstates that have inner product 2/3. The squared inner product determines the probability that one cipherstate gets projected onto another when a projective measurement is performed. Eq. (6) tells us that the nontrivial encryptions of \(|\psi_{1-g}\rangle \) look more like \(|\psi_g\rangle \) than the nontrivial encryptions of \(|\psi_g\rangle \) itself.

The projection operator for the state \(|\psi_{uwg}\rangle \) is given by

\[
|\psi_{uwg}\rangle \langle \psi_{uwg}| = \frac{1}{2} I + \frac{1}{2} n_{uwg} \cdot \sigma
\]

From (7) it is readily verified that the mixed state resulting from encryption with a random key \((u, w) \) is

\[
\rho = \frac{1}{4} \sum_{uw} |\psi_{uwg}\rangle \langle \psi_{uwg}| = \frac{1}{2} I,
\]

i.e. the fully mixed state. This holds even for known \(g \).

4.3 Eight-state unclonable ciphertext scheme

We finally get to the main contribution, namely the improved Unclonable Encryption scheme. It closely follows the steps of Gottesman’s scheme, with two differences: we use the eight-state system instead of the +× bases, and our code parameters are different. We first present the protocol steps; then we analyze the security.

\textbf{Preparation phase}

Same as Section 2.2, but now \(b_i \in \{0, 1, 2, 3\} \) with \(b_i = 2u_i + w_i \) and \(u_i, w_i \in \{0, 1\} \).

\textbf{Encryption}

A1. Take the plaintext \(x \in \{0, 1\}^n \) and compute a MAC \(\mu \in \{0, 1\}^s \) using the key \(a \). Concatenate \(x \) and \(\mu \) into \(y = x \mu \in \{0, 1\}^{n+s} \).

A2. Find any vector \(z_y \in \{0, 1\}^N \) that satisfies \(H_D \perp z_y = \binom{0^{N-k}}{y} \in \{0, 1\}^{k'} \). Pick a random codeword \(r \in D_\perp (N-k' \text{ random bits}) \) and compute \(z = z_y \oplus r \).

A3. Apply the One-Time Pad: \(g = z \oplus e \in \{0, 1\}^N \).

A4. For \(i \in \{1, \ldots, N\} \) prepare state \(|\chi_i\rangle = |\psi_{ui,w_i,gi}\rangle \) according to (4). Send \(|\chi_i\rangle \).
Decryption

B1. For \(i \in \{1, \ldots, N\} \) receive qubit states \(|\chi_i^\prime\rangle \). Measure \(|\chi_i^\prime\rangle \) in the basis \(|\psi_{u,w,0}\rangle, |\psi_{u,w,1}\rangle \). The result is \(g_i^\prime \in \{0,1\} \).

B2. Apply the One-Time Pad: \(z' = g' \oplus e \in \{0,1\}^N \).

B3. Apply error correction on \(z' \) using code \(C \). The result is denoted as \(\hat{z} \in C \).

B4. Compute \(y' = (H_{D+\hat{z}})^\text{last} n+x \) bits.

B5. Parse \(y' \) as the concatenation \(x' \mu' \) with \(x' \in \{0,1\}^n \). Using the key \(a \), verify if \(\mu' \) is a correct MAC on \(x' \).

The remarks about re-usability at the end of Section 2.2 apply to the new scheme as well.

5 Privacy amplification requirements

If Alice and Bob use a new random sequence \(B \) for each message, then it is impossible for Eve to get any information about \(G \). No privacy amplification is required, and the code \(C_1 \) suffices. This implies a significant reduction of the number of qubits \(N \) and an improvement of the noise tolerance to any noise level that can be error-corrected by a classical code.

If Alice and Bob keep re-using \(B \), then Eve may collect a small number of qubits from each message and postpone her measurements, as described in Section 3. When she replaces a qubit by a random state, she causes a bit flip with probability \(\frac{1}{2} \). Thus she may learn up to \(2N\delta \) bits of information about \(G \) while avoiding detection. The privacy amplification must discard \(2N\delta \) bits.

In all other use cases we need to know how much disturbance Eve is causing when she does intercept-and-resend attacks on qubits. Below we show that a measurement causes a bit flip \(g_i^\prime \neq g_i \) at Bob’s side with probability \(\frac{1}{4} \). This is better than the \(\frac{1}{3} \) of the original scheme.

Theorem 1 Let Eve know \(g \) and receive a qubit state \(|\psi_{uwg}\rangle \) randomly drawn from the four possible cipherstates. Let her choose an arbitrary direction \(|\gamma\rangle \) without knowing \(u \) and \(w \) and perform a projective measurement in this direction, resulting in a final state \(|\gamma_j\rangle \) with \(j \in \{-1, +1\} \). Next, when a measurement in the \(|\psi_{uwg}\rangle, |\psi_{uw,1-g}\rangle \) basis is done, the probability of projecting back onto \(|\psi_{uwg}\rangle \), averaged over \(u, w, j \), is \(\frac{5}{7} \).

Proof: We write \(|\gamma\rangle = (\cos \frac{\theta}{2}, e^{i\varphi} \sin \frac{\theta}{2})^T \) which on the Bloch sphere corresponds to \(n_{\theta \varphi} = \left(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta \right)^T \). We use \(\langle |\gamma| \psi_{uwg}\rangle \rangle ^2 = \frac{1}{2} + \frac{1}{2} n_{\theta \varphi} \cdot n_{uwg} \) with \(n_{uwg} \) as specified by (5),

\[
\begin{align*}
 n_{\theta \varphi} \cdot n_{uwg} &= \frac{(-1)^g}{\sqrt{3}} \left[(-1)^u \sin \theta \cos \varphi + (-1)^{u+w} \sin \theta \sin \varphi + (-1)^w \cos \theta \right].
\end{align*}
\]

(8)

The probability of projecting back-and-forth, averaged over Eve’s outcome \(j \), is \(\langle |\gamma| \psi_{uwg}\rangle \rangle ^4 + (1 - \langle |\gamma| \psi_{uwg}\rangle \rangle ^2)^2 = \frac{1}{2} + \frac{1}{2} n_{\theta \varphi} \cdot n_{uwg})^2 + (\frac{1}{2} - \frac{1}{2} n_{\theta \varphi} \cdot n_{uwg})^2 = \frac{1}{2} + \frac{1}{2} (n_{\theta \varphi} \cdot n_{uwg})^2 = \frac{1}{2} + \frac{1}{2} \left[2(-1)^u \sin \theta \cos \varphi + (1 + 2(-1)^w \sin \theta \sin \varphi + (2(-1)^u \sin \theta \cos \varphi + (1) \sin \theta \sin \varphi \right].
\]

After averaging over \(u, w \) all terms that depend on \(\theta, \varphi \) disappear, leaving us with \(\frac{1}{2} + \frac{1}{2} = \frac{2}{3} \). \(\square \)

Note that Theorem 1 is formulated very generally, with Eve actually having complete knowledge of \(g_i \). As long as \(B \) is truly random, the bit flip probability is \(\frac{1}{3} \) no matter how much Eve knows about \(g_i \).

Interesting use cases could be e.g. having pseudorandom \(B \) and/or pseudorandom OTP \(E \). Here it is important to keep in mind that \(B \) provides unclonability of \(G \), while the randomness of \(G \) protects the confidentiality of \(B \).

- If \(B \) is pseudorandom, Eve has a small advantage in guessing the keys \(b_i \) which she may exploit to choose a measurement basis in which she obtains (partial) information about \(g_i \), and has a probability slightly lower than \(\frac{1}{3} \) of causing a bit flip. Both these effects have to be taken into account for setting the parameter \(k' \) of the code \(D \).
Similarly, if G is pseudorandom (caused by pseudorandom E), then Eve can obtain some information about B, which limits the re-usability of B. If Alice and Bob decide to re-use B nonetheless, they have to take into account that Eve's accumulated knowledge about B allows her to obtain information about G, necessitating a certain amount of privacy amplification.

If both B and G are pseudorandom, both the above mentioned effects play a role and in fact amplify each other.

In Section 6 we quantify some of these statements.

6 Security analysis

6.1 Modelling pseudorandomness

We model a pseudorandom basis sequence as follows. Let q be a constant, and $Q = 4^q \in \mathbb{N}$, with $Q \ll 4^N$. Let T be a fully random $Q \times N$ publicly known table with elements $T_{ji} \in \{0, 1, 2, 3\}$. For each message, uniformly draw a random $J \in \{1, \ldots, Q\}$. Then the pseudorandom sequence B is the Jth row of t, i.e. $B_i = t_{ji}$.\footnote{Note that the case $q \rightarrow N$ is not entirely equivalent to a fully random B. Perfect randomness would correspond to a structured table of size $4^N \times N$, e.g. with row j given by the base-4 representation of the integer j.}

We model pseudorandomness of the pad e in a similar way. We introduce a security parameter ℓ and $L = 2^\ell \in \mathbb{N}$, $L \ll 2^N$. Let Γ be a fully random publicly known $L \times N$ binary table. For each message, uniformly draw a row index $V \in \{1, \ldots, L\}$. The ciphertext G_i is given by γ_{V_i}. Of course this is not how ciphertext is created in reality (there is not even a plaintext in this model), but our model captures the pseudorandomness of a classical pad $e \in \{0, 1\}^N$ masking a plaintext in such a way that the ciphertext has min-entropy $\ell < N$.

6.2 Random G, pseudorandom B

6.2.1 General attacks

Eve steals qubits $D \subseteq \{1, \ldots, N\}$. We write $|D| = d$. Alice prepares a state that can be represented as a quantum state for the classical variable G and the quantum state of the qubits. To this end orthonormal basis states $|g\rangle$ are introduced, in an auxiliary space.

$$
\rho_{G,[N]}^{G} = \frac{1}{2N} \sum_{g \in \{0,1\}^N} |g\rangle \langle g| \otimes \rho_g^{[N]}
$$

$$
\rho_g^{[N]} = \mathbb{E}_j \bigotimes_{i=1}^N |\psi_{t_{ji},g_{i}}\rangle \langle \psi_{t_{ji},g_{i}}| = \mathbb{E}_j \bigotimes_{i=1}^N (\frac{1}{2} \mathbb{1} + \frac{1}{2} n_{t_{ji},g_{i}} \cdot \sigma).
$$

The matrix t is known to Eve. The part that is shared between Alice and Eve is

$$
\rho_{G,D}^{G} = \frac{1}{2N} \sum_{g \in \{0,1\}^N} |g\rangle \langle g| \otimes \rho_g^{D}
$$

$$
\rho_g^{D} = \mathbb{E}_j \bigotimes_{i \in D} |\psi_{t_{ji},g_{i}}\rangle \langle \psi_{t_{ji},g_{i}}| = \mathbb{E}_j \bigotimes_{i \in D} (\frac{1}{2} \mathbb{1} + \frac{1}{2} n_{t_{ji},g_{i}} \cdot \sigma).
$$

Note that $\mathbb{E}_g \rho_g^{D} = \tau_d$. The min-entropy of G, given Eve’s knowledge of T and her possession of the stolen qubits, can be expressed [20] as

$$
H_{\min}(G|T, \text{subsystem } D) = -\log \mathbb{E}_i \max_M \mathcal{M}_g \text{tr } M_g \rho_g^D
$$

\footnote{We will occasionally write $T = 2U + W$, where U and W are binary matrices.}
where the vector \(\mathcal{M} = (M_g)_{g \in \{0, 1\}^N} \) is a POVM satisfying \(M_g \geq 0 \) (positive semidefinite) and \(\sum_g M_g = \mathbb{I}_{2^n} \). The loss of min-entropy due to the attack is

\[
H_{\min}(G) - H_{\min}(G|T, \text{subsystem } D) = \log \mathbb{E}_t \max_{\mathcal{M}} \text{tr} \sum_g M_g \rho_g^D.
\]

(12)

Instead of solving the maximisation problem in (12) we look at the scaling behaviour of the min-entropy. The expression \(\text{tr} (\rho_g^D)^2 \) is an indicator for the quality of the quantum-encryption: such a trace evaluates to 1 in the case of a pure state and to \(2^{-d} \) in the case of the fully mixed state.

Lemma 1 \(\mathbb{E}_t \text{tr} (\rho_g^D)^2 = \frac{1}{2^n} + \frac{1}{Q} (1 - \frac{1}{2^n}) \).

Proof: From (10) we have \(\text{tr} (\rho_g^D)^2 = \mathbb{E}_j \mathbb{E}_{j'} \prod_{i \in D} |\langle \psi_{t_i, g_i} | \psi_{t_{j_i}, g_i} \rangle |^2 = \mathbb{E}_j \mathbb{E}_{j'} \prod_{i \in D} \left(\frac{1}{2} + \frac{1}{2} n_{t_i, g_i} \cdot n_{t_{j_i}, g_i} \right) \). When we average over \(t \), all the \(n \cdot n \) average to zero since \(t_{j_i} \) and \(t_{j_i}' \) are independent. The result is \(\frac{1}{Q} + \frac{Q^2 - Q}{Q^2} (\frac{1}{2})^d \).

We introduce notation \(\sigma^{(i)} = (\sigma_{z}^{(i)}, \sigma_{y}^{(i)}, \sigma_{z}^{(i)}) \) for the \(2^d \times 2^d \) matrices that represents the spin for the \(i \)-th qubit. We note that (10) can be written as

\[
\rho_g^D = \tau_d + (\frac{1}{2})^{d} \omega_g \quad ; \quad \omega_g = \sum_{A \subseteq D; A \neq \emptyset} \mathbb{E}_j \prod_{i \in A} n_{t_i, g_i} \cdot \sigma^{(i)}.
\]

(13)

We have \(\text{tr} \omega_g = 0 \), which leads to \(\text{tr} (\rho_g^D)^2 = 2^{-d} + 2^{-2d} \text{tr} \omega_g^2 \). Lemma 1 can also be understood as follows. The \(\omega_g^2 \) consists of \(2^d - 1 \) squared spin operators which are each equal to \(1 \), and cross terms which are all spin operators and therefore traceless. The second order statistical fluctuations are of order \(1/Q \).

This insight helps us to estimate the min-entropy loss (12). We have \(\text{tr} \sum_g M_g \rho_g^D = \text{tr} \sum_g M_g (\tau_d + 2^{-d} \omega_g) = \text{tr} \tau_d + 2^{-d} \text{tr} \sum_g M_g \omega_g \).

Let us first look at the \(|A| = 1 \) terms in \(\omega_g \). For them, the summation \(\sum_{j=1}^Q \) in (13) is a \(Q \)-step random walk in four dimensions (four possible bases), which typically reaches distance \(O(\sqrt{Q}) \) in each dimension. When divided by \(Q \), this yields a contribution of order \(1/\sqrt{Q} \) to the min-entropy loss (12). For general size \(|A| \) the dimension\(^8\) of the random walk is \(4^{|A|} \), and the average number of steps taken in each dimension is \(Q/4^{|A|} = 4^{q-|A|} \). When the number of steps per dimension is of order 1 or smaller, the typical result of the random walk is \(Q \) size-one steps in \(Q \) different directions. After division by \(Q \), the result is a matrix with entries of order \(1/Q \).

The bulk of the \(A \)-terms occurs around \(|A| = d/2 \). Hence, if \(q < d/2 \) then practically all the built up entries in \(\omega_g \) are of order \(1/Q \) instead of \(1/\sqrt{Q} \). For the min-entropy loss this yields \(\log(1 + \text{const}. \frac{2^d}{Q}) \approx d - 2q \). This indicates, unsurprisingly, that each bit of key material reduces the leakage by one bit. A full analysis including all the constants is left for future work.

The above result has the interesting consequence, just as in [17], that it can be sufficient in practice to use pseudorandom keys. Let Alice and Bob use \(q = \beta N \), where \(\beta \) is the bit error rate of the quantum channel. Then Eve could steal \(d = 2\beta N \) qubits while Bob still accepts, and the maximum leakage about \(G \) would be \(d - 2q = 0 \). Alternatively, Eve could steal \(d > 2\beta N \) qubits and potentially learn \(d - 2q > 0 \) bits, but then Bob only accepts if Eve manages to perform a difficult quantum-computational task in real-time. This kind of security is not unconditional, but it is far better than the usual (quantum-)computational assumptions where the adversary has unlimited time.

Theorem 2 Let Alice and Bob use fully random \(G \). Let \(B \) be pseudorandom as described in Section 6.1. Let Eve perform an arbitrary measurement on her system of \(d \) qubits. Then she obtains no knowledge about \(B \) that she did not already have.

\(^8\)This is the number of different matrix degrees of freedom in \(\omega_g \) that are being addressed. They are different for every \(A \).
Eve’s qubits are correlated to B (i.e. the index J in table t) in a manner similar to (10), namely $\rho^{J,D} = \frac{1}{2} \sum_j |j\rangle \otimes \rho_j^D$ with $\rho_j^D = E_g \otimes_{i \in D} |\psi_{J,g_i}\rangle \langle \psi_{J,g_i}|$. However, all the g_i are independent, which yields $\rho_j^D = \otimes_{i \in D} E_g (\frac{1}{2} \mathbb{1} + \frac{1}{2} n_{i,g_i} \cdot \sigma) = \tau_d$. The conditional min-entropy becomes $H_{\min}(J|T, \text{subsystem } D) = -\log \mathbb{E}_x \max_M E_j \text{tr} M_j \rho_j^D = -\log \mathbb{E}_x \max_M \frac{1}{2} \sum_j \text{tr} M_j \tau_d = -\log \mathbb{E}_x \max_M \frac{1}{\sqrt{2}} \text{tr} \tau_d = \log Q$, which equals $H_{\min}(J)$. □

6.2.2 Qubit-by-qubit attacks

We investigate three simple qubit-by-qubit attacks: (i) Eve measures in the standard basis or, equivalently, in the eigenbasis of σ_x or σ_y; (ii) she measures in a random u, w basis; (iii) at position i she picks the u, w basis that is most frequent in the $i’$th column of T. The results are presented in the theorems below.

Lemma 2 Let the RV $G_i \in \{0, 1\}$ be uniform, independent of B_i. Let Eve perform a measurement on the $i’$ th qubit, in a basis independent of the table T, with result $R_i \in \{-1, +1\}$. Then

$$\Pr[G_i = g | B_i = b, R_i = r] = \Pr[R_i = r | G_i = g, B_i = b]. \quad (14)$$

Proof: We have (in abbreviated notation) $\Pr[g | b] = \frac{\Pr[|b\rangle]}{\Pr[|b\rangle]} = \frac{\Pr[|b\rangle] \Pr[r | g] \Pr[r | b]}{\Pr[r | b]} = \frac{\Pr[|b\rangle] \Pr[r | b]}{\Pr[r | b]}$. Since G_i is independent of B_i and uniform, we have $\Pr[|b\rangle] = \frac{1}{2}$. Eve measures in some direction θ, ϕ. We have $\Pr[r | b] = E_g \Pr[r | g] = E_g [\frac{1}{2} + \frac{1}{2} n_{\theta, \phi} \cdot n_{bg}]$ where $n_{\theta, \phi} \cdot n_{bg}$ is given by (8). Finally, $E_g n_{bg} = 0$ yields $\Pr[r | b] = \frac{1}{2}$. □

Theorem 3 (Standard basis attack) Let Alice and Bob use fully random G. Let B be pseudo-random as described in Section 6.1. Let Eve measure each individual qubit $i \in D$ in the standard basis, yielding a sequence $R \in \{-1, +1\}$ of measurement results. Then Eve’s knowledge about G can be summarized as

$$H_{\min}(G) - H_{\min}(G | TR) = d \log \left[1 + \frac{2}{\sqrt{3}} \cdot \frac{1}{2^{Q/2}} \left(\frac{Q-1}{Q/2} \right) \right] \approx d \log \left[1 + \frac{\sqrt{2}}{\sqrt{3} \pi} \cdot \frac{1}{2^q} \right]. \quad (15)$$

For each individual qubit the probability of causing $g_i' = g_i$ is $\frac{1}{3}$. Proof: see Appendix A.

Theorem 4 (Random basis attack) Let Alice and Bob use fully random G. Let B be pseudo-random as described in Section 6.1. Let Eve measure each individual qubit $i \in D$ in a random basis $\lambda_i \in \{0, 1, 2, 3\}$ which is one of the four possible bases used by Alice and Bob, yielding a sequence $R \in \{0, 1\}^d$ of measurement results. Then Eve’s knowledge about G can be bounded as

$$H_{\min}(G) - H_{\min}(G | TRA) < d \log \left[1 + \frac{1}{\sqrt{3}} \cdot \frac{1}{2^q} \right]. \quad (16)$$

For each individual qubit the probability of causing $g_i' = g_i$ is $\frac{1}{3}$. Proof: see Appendix B.

Theorem 5 (Most-frequent-basis attack) Let Alice and Bob use fully random G. Let B be pseudo-random as described in Section 6.1. Let Eve measure each individual qubit $i \in D$ in a basis $\beta_i \in \{0, 1, 2, 3\}$ which is equal to the most frequently occurring basis in the i’th column of t, yielding a sequence $R \in \{0, 1\}^d$ of measurement results. Then Eve’s knowledge about G can be bounded as

$$H_{\min}(G) - H_{\min}(G | TR) < d \log \left(1 + \frac{1}{2^q} \left(\frac{4}{3} + \frac{2\sqrt{2}}{3} \sqrt{q \ln 2 + \ln 3} \right) \right). \quad (17)$$

For each individual qubit the probability of causing a disturbance is lower bounded as

$$\Pr[G_i \neq g_i] > \frac{1}{3} - \frac{1}{9 \cdot 2^q-2} \left(1 + \frac{1}{\sqrt{2}} \sqrt{\ln 3 + q \ln 2} \right). \quad (18)$$
The security analysis is completely analogous to the case of pseudorandom
B correlated to the key B ∈ \{0,1,2,3\}^N as
\[
\rho^{B,D} = 4^{-N} \sum_b |b\rangle \langle b| \otimes \rho^D_b
\]
\[
\rho^D_b = E_i \bigotimes_{i \in D} |\psi_{b_i \gamma_i}\rangle \langle \psi_{b_i \gamma_i}| = E_i \bigotimes_{i \in \mathcal{D}} (\frac{1}{2} \mathbb{1} + \frac{1}{2} n_{b_i \gamma_i} \cdot \sigma)
\]
and Eve’s potential knowledge can be bounded using the min-entropy
H_{\text{min}} (B|\Gamma, \text{subsystem } \mathcal{D}) = - \log \mathbb{E}_\gamma \max_M \mathbb{E}_b \text{tr } M_b \rho^D_b. It holds that \mathbb{E}_b \rho^D_b = \tau_d. The \rho^D_b can be rewritten as
\[
\rho^D_b = \tau_d + (\frac{1}{2})^d \omega_b ; \quad \omega_b = \sum_{A \subseteq \mathcal{D} : A \neq \emptyset} \mathbb{E}_\gamma \prod_{i \in \mathcal{A}} n_{b_i \gamma_i} \cdot \sigma^{(i)}
\]
and the min-entropy loss of order d − \ell. Hence setting \ell = 2\beta N may be sufficient in practice to enable re-use of B.

Again we look at a simple qubit-by-qubit attack.

Theorem 6 Let B be fully random and let G be pseudorandom as described in Section 6.1. Let Eve choose \(d\) arbitrary (u, w)-bases to measure in, yielding a sequence \(R \in \{0,1\}^d\). Then Eve’s knowledge about B can be upper bounded as
\[
H_{\text{min}} (B) - H_{\text{min}} (B|R\Gamma) \leq d \log \left(1 + \frac{2/3}{2^\xi/2} \right)
\]
and for each individual qubit the probability of causing \(g'_i \neq g_i\) is \(\frac{1}{3}\).

Proof: see Appendix D.

Again this kind of simple attack is far less powerful than generic attacks on \(d\) qubits.

6.3 Pseudorandom G, random B

The security analysis is completely analogous to the case of pseudorandom B. Eve’s qubits are correlated to the key \(B \in \{0,1,2,3\}^N\) as
\[
\rho^{B,D} = 4^{-N} \sum_b |b\rangle \langle b| \otimes \rho^D_b
\]
\[
\rho^D_b = E_i \bigotimes_{i \in \mathcal{D}} |\psi_{b_i \gamma_i}\rangle \langle \psi_{b_i \gamma_i}| = E_i \bigotimes_{i \in \mathcal{D}} (\frac{1}{2} \mathbb{1} + \frac{1}{2} n_{b_i \gamma_i} \cdot \sigma)
\]
and Eve’s potential knowledge can be bounded using the min-entropy
H_{\text{min}} (B|\Gamma, \text{subsystem } \mathcal{D}) = - \log \mathbb{E}_\gamma \max_M \mathbb{E}_b \text{tr } M_b \rho^D_b. It holds that \mathbb{E}_b \rho^D_b = \tau_d. The \rho^D_b can be rewritten as
\[
\rho^D_b = \tau_d + (\frac{1}{2})^d \omega_b ; \quad \omega_b = \sum_{A \subseteq \mathcal{D} : A \neq \emptyset} \mathbb{E}_\gamma \prod_{i \in \mathcal{A}} n_{b_i \gamma_i} \cdot \sigma^{(i)}
\]
and the min-entropy loss of order d − \ell. Hence setting \ell = 2\beta N may be sufficient in practice to enable re-use of B.

Again we look at a simple qubit-by-qubit attack.

Theorem 6 Let B be fully random and let G be pseudorandom as described in Section 6.1. Let Eve choose \(d\) arbitrary (u, w)-bases to measure in, yielding a sequence \(R \in \{0,1\}^d\). Then Eve’s knowledge about B can be upper bounded as
\[
H_{\text{min}} (B) - H_{\text{min}} (B|R\Gamma) \leq d \log \left(1 + \frac{2/3}{2^\xi/2} \right)
\]
and for each individual qubit the probability of causing \(g'_i \neq g_i\) is \(\frac{1}{3}\).

Proof: see Appendix D.

Again this kind of simple attack is far less powerful than generic attacks on \(d\) qubits.

6.4 Pseudorandom G and B

We look at the security of the index V which identifies the classical ciphertext. We introduce shorthand notation \(|\psi^i_{vj}\rangle = |\psi_{ij,\gamma_v}\rangle\) and \(n^i_{vj} = n_{ij,\gamma_v}\). The relevant state matrices are
\[
\rho^{V,D} = 1/L \sum_{v=1}^L |v\rangle \langle v| \otimes \rho^D_v
\]
\[
\rho^D_v = E_j \bigotimes_{i \in \mathcal{D}} |\psi^i_{vj}\rangle \langle \psi^i_{vj}| = E_j \bigotimes_{i \in \mathcal{D}} (\frac{1}{2} \mathbb{1} + \frac{1}{2} n^i_{vj} \cdot \sigma).
\]
Note that \(\mathbb{E}_v \rho^D_v \neq \tau_d\). The relevant min-entropy is
H_{\text{min}} (V|IT, \text{subsystem } \mathcal{D}) = - \log \mathbb{E}_\gamma \max_M \mathbb{E}_b \text{tr } M_b \rho^D_b. We have \(\mathbb{E}_v \text{tr } (\rho^D_v)^2 = \frac{1}{2} + \frac{1}{4} (1 - \frac{1}{2\xi})\), just as in the case of fully random G, and \(\rho^D_v = \tau_d + (\frac{1}{2})^d \omega_v\), with
\[
\omega_v = \sum_{A \subseteq \mathcal{D} : A \neq \emptyset} \mathbb{E}_j \prod_{i \in \mathcal{A}} n^i_{vj} \cdot \sigma^{(i)}.
\]
The difference with \(\omega_g \) (13) is that the directions \(n_{ij} = n_{i,v_j} \) at different \(i \) are now more strongly correlated since \(\gamma \) is a finite table of length \(L \ll 2^N \). This allows for somewhat more powerful attacks. A full analysis is left for future work.

7 Implications for Quantum Key Distribution

Gottesman [17] identified the implication chain quantum authentication \(\Rightarrow \) UE \(\Rightarrow \) QKD and gave a construction for building QKD from UE. We briefly review this construction. It works in a scenario where Bob is able to temporarily store the qubits he receives, and Alice&Bob communicate over an authenticated insecure classical channel.

1. Alice generates a random message \(x \) and a random key \(\kappa \).
2. Alice uses UE with key \(\kappa \) to send \(x \) to Bob.
4. Alice sends \(\kappa \).
5. Bob decrypts, checks if the message is valid and reports the yes/no result.

This construction has reduced interaction, and the overhead for detecting eavesdropping is less than in typical schemes, where Alice and Bob sacrifice a significant number of bits to estimate the error rate. If the temporary storage of qubits at Bob’s side is a problem, a modified version of steps 2–4 can be used to reduce the duration of Bob’s qubit storage, e.g. by doing the steps in a bit-by-bit fashion.9

Our improvement of UE has the effect that the above construction becomes (i) even more efficient in terms of the required number of qubits; (ii) more noise-tolerant. However, even with 8-state UE the noise tolerance is not improved beyond the state of the art in QKD. It was already argued in [21] that going to more than 6-state QKD does not improve security, as six states already make use of the full Bloch sphere. We briefly illustrate this. Let the 8-state UE scheme make use of a classical error-correcting code (ECC) with codeword length \(N \) that can repair up to \(t = N\beta \) errors. If \(t \) errors occur, then the worst case assumption is that Eve has stolen \(2t \) qubits, replaced these by random qubits sent to Bob, and upon receipt of \(\kappa \) decrypted her stored qubits. (The \(2t \) random states each cause a bit flip at Bob’s side with 50% probability, typically resulting in \(t \) flips). If \(2t \) erasures occur, which the ECC can also deal with, then the worst case assumption is that Eve has stolen \(2t \) qubits, without sending anything to Bob, and decrypted them. Hence Eve’s knowledge about \(x \) can be at most \(2t \) bits. Let’s assume that the ECC is close to the Shannon bound, with rate \(r = 1 - h(\beta + \eta) \), where \(\eta \) is very small. Then the min-entropy of \(x \) given Eve’s knowledge is at worst as low as \(N[r - 2\beta] = N[1 - h(\beta + \eta) - 2\beta] \). This expression hits zero at \(\beta \approx 0.171 \), i.e. this QKD construction cannot be proven secure at bit error rate higher than 17.1%.

The 6-state QKD has the same eavesdropping properties and the same reasoning applies there.

We introduce an alternative way of deriving QKD from UE. Alice and Bob have an original short secret (which they would normally use only for the authentication of Bob’s one-bit yes/no acknowledgement) which they now employ for an additional purpose: as key material for UE. Just as in Gottesman’s QKD-from-UE construction, Alice transmits an UE message that contains a random payload \(x \), but now she does not reveal \(B \) to Bob (and Eve) because Bob already knows \(B \). She reveals only \(e \). The \(e \) is random, while \(B \) is pseudorandom. Both are renewed every time. The entropy of the payload \(x \) is approximately \(N[1 - h(\beta)] \) for large \(N \). From this, \(2q \) bits are spent on creating a new seed for the next \(B \); what is left over is the final QKD yield. For proper protection Alice and Bob have to set at least \(q \approx \beta N \) (see Section 6.2). This again leads to a QKD rate \(1 - h(\beta) - 2\beta \). Nothing has been gained in terms of noise resilience. There are however two advantages: (i) Bob does not have to store qubits, and (ii) a reduction in the amount of communication.10

It might be interesting to look at the case of insufficient key length: \(q < \beta N \). With such parametrisation Alice and Bob achieve a positive QKD rate at a noise level that would otherwise be unreachable, but the price they pay is that Eve can potentially learn \(2\beta N - 2q > 0 \) bits of

9That specific adaptation would remove the advantage of reduced interaction, but the advantage of efficient eavesdropping detection remains.

10It could be further reduced by entirely omitting the pad \(e \).
information about the distributed key. Eve can get this information only by performing a quantum-computational task (not real-time) that is very different from single-qubit operations. This could be an interesting tradeoff: noise resilience at the cost of quantum-computational security instead of unconditional security.

8 Summary and discussion

We have modified Gottesman’s UE scheme by introducing the $|\psi_{000}\rangle$ and $|\psi_{001}\rangle$ states as the logical ‘0’ and ‘1’ state to be quantum-encrypted. This leads to the 8-state system as described in Section 4.1, with eight ciphertexts that are maximally spread out over the Bloch sphere. The immediate result is that the perfect quantum-encryption prevents Eve from learning anything about the classical ciphertext, in contrast to the situation with the $+ \times$ bases. At the same time the probability that eavesdropping causes a disturbance increases from $\frac{1}{4}$ to $\frac{3}{4}$. Due to the reduction of Eve’s knowledge, the scheme’s need for privacy amplification is reduced (even to zero in the case of non-reused random B) which in turn allows for more error correction. All this requires only single-qubit operations.

In Section 6 we analyzed the min-entropy loss due to attacks. In the case of pseudorandom basis sequence B, the min-entropy loss in the ciphertext G is approximately $d - 2q$ for general attacks, and of order $d/2^q$ for qubit-by-qubit attacks. In the case of pseudorandom G the loss in B is approximately $d - \ell$ for general attacks, and of order $d/2^{\ell/2}$ for qubit-by-qubit attacks. The optimal attacks are much stronger than qubit-by-qubit attacks. Full security proofs are left for future work. In Section 7 we proposed a novel QKD-from-UE construction that reduces the amount of communication and does not require Bob to store qubits.

Implementation of the 8-state system using photon polarisation states should not be more difficult than implementing ordinary polarisation-based QKD. However, this may not be the technology of choice. Standard QKD schemes can simply discard protocol rounds in which photon loss occurs; UE on the other hand has to handle such erasures in the error-correcting code, which becomes unwieldy at high erasure rates. As already mentioned in [17], going to continuous-variable techniques such as squeezed states [22] may solve the problem of particle loss. Another option is to use Orbital Angular Momentum techniques [23].

Finally we mention that 8-state UE can also be useful for primitives such as revocable time-release encryption [24] which need an unclonable form of commitment.

Acknowledgments

We thank Christian Schaffner, Serge Fehr and Andreas Hülsing for useful discussions.

A Proof of Theorem 3

Below we will use shorthand notation $g \in \{0,1\}^d$ for g_B, the restriction of the full string g to Eve’s part D. In abbreviated notation we write $\Pr[g|tr] = \mathbb{E}_j \Pr[g|tjr]$ where j is the random row index in the table t. Knowledge of t and j implies knowledge of b; we use Lemma 2 and obtain $\Pr[g|tr] = \mathbb{E}_j \Pr[r|gtj]$. Next we make use of $\Pr[r|g,b_j] = \frac{1}{2} + \frac{1}{2} n_{b_j} \cdot n_{b_j}$ and (8) with $\theta = 0$, which gives $\Pr[g|tr] = \mathbb{E}_j \prod_{i \in D} \left(\frac{1}{2} + \frac{1}{2\sqrt{3}} (-1)^{g_i r_i + w_{i}} \right)$. Here the notation $w_{j} \in \{0,1\}$ stands for the w-part of the basis t_j, i.e. $w_{j} = t_{ji} \mod 2$. Now we define $w_{i} \in \{0,1\}^Q$ as the ith column of w, and $\nu(w_{i}) \in \{0,1\}$ as the most frequent symbol in w_{i}. Then the sequence g^* that maximizes $\Pr[g|tr]$ is given by $g^*_i = r_i \oplus \nu(w_{i})$ and we obtain

$$\max_g \Pr[g|tr] = \mathbb{E}_j \prod_{i \in D} \left(\frac{1}{2} + \frac{1}{2\sqrt{3}} (-1)^{\nu(w_{i}) + w_{j}} \right).$$ \hspace{1cm} (25)
The dependence on r has vanished. Averaging over t and r is now equivalent to averaging over w. Since all the elements of w are generated independently, everything factorizes and we get

$$
\mathbb{E}_{t,r} \max_{g} \Pr[g|tr] = \mathbb{E}_{j} \prod_{i \in D} \left[\frac{1}{2} + \frac{1}{2\sqrt{3}} \mathbb{E}_{w_i} (-1)^{\nu(w_i) + w_{ji}} \right].
$$

(26)

We write $\mathbb{E}_{w_i} \rightarrow \mathbb{E}_{w_{ji},\nu(w_i)|w_{ji}}$, where w_{ji} is uniform. The $\nu(w_i)$ conditioned on w_{ji} has a cumulative binomial distribution: $\Pr[\nu(W_i) = 0|W_{ji} = w_{ji}] = \sum_{a=0}^{[Q/2] - w_{ji}} \binom{Q}{a} \left(\frac{1}{2} \right)^{Q-1}$. We get

$$
\mathbb{E}_{w_{ji},\nu(w_i)|w_{ji}} (-1)^{\nu(w_i) + w_{ji}} =
$$

$$
\frac{1}{2} \left(\Pr[\nu(W_i) = 0|W_{ji} = 0] - \Pr[\nu(W_i) = 1|W_{ji} = 0] \right)
$$

$$
- \frac{1}{2} \left(\Pr[\nu(W_i) = 0|W_{ji} = 1] - \Pr[\nu(W_i) = 1|W_{ji} = 1] \right)
$$

$$
= \Pr[\nu(W_i) = 0|W_{ji} = 0] - \Pr[\nu(W_i) = 0|W_{ji} = 1]
$$

$$
= \left(\binom{Q-1}{[Q/2]} \right) \left(\frac{1}{2} \right)^{Q-1}.
$$

(27)

The final expression in (15) follows by using Stirling’s approximation $n! \approx \sqrt{2\pi n}(n/e)^n$ and $Q = 2^{2g}$.

Disturbance probability

Each of the eight states has projection probabilities $\frac{1}{4} \pm \frac{1}{2\sqrt{3}}$ onto the $\pm z$ state. Then $\Pr[G'_i = g_i] = (\frac{1}{4} + \frac{1}{2\sqrt{3}})^2 + (\frac{1}{4} - \frac{1}{2\sqrt{3}})^2 = 2\left(\frac{1}{4} + \frac{1}{12}\right) = \frac{5}{6}$. \qed

B Proof of Theorem 4

Again we write g instead of g_D. From Lemma 2 and (6) we get $\Pr[g_i|tr_i\lambda_i] = \delta_{\lambda_i,t_i}\delta_{r_i,g_i} + (1 - \delta_{\lambda_i,t_i})\delta_{r_i,g_i} + \frac{1}{3}[1 - \delta_{r_i,g_i}]$. We introduce tally variables $\tau_{ia} = \sum_{j=1}^{Q} \delta_{t_j,a}$ and write $\Pr[g_i|tr_i\lambda_i] = \mathbb{E}_j \Pr[g_i|tr_i\lambda_i] = (\tau_{i\lambda_i}/Q)\delta_{r_i,g_i} + (1 - \tau_{i\lambda_i}/Q) \left(\frac{1}{3}[1 - \delta_{r_i,g_i}] \right)$. From this expression we see, after some reshuffling, that $\max_g \Pr[g_i|tr_i\lambda_i] = \frac{1}{3} + \frac{1}{3} \tau_{i\lambda_i}/Q - \frac{1}{3}|1 - \delta_{r_i,g_i}|$, which yields $\max_g \Pr[g_i|tr\lambda_i] = \prod_i (\frac{1}{3} + \frac{1}{3} \tau_{i\lambda_i}/Q - \frac{1}{3})$. The dependence on r has vanished. Taking the expectation over t reduces to taking the expectation over $\tau_{i\lambda_i}$ for each column of t independently, $\mathbb{E}_{t,r}\max_g \Pr[g_i|tr\lambda_i] = \mathbb{E}_\lambda \prod_i (\frac{1}{3} + \frac{1}{3} \mathbb{E}[\tau_{i\lambda_i}/Q - \frac{1}{3}]) \leq \mathbb{E}_\lambda \prod_i (\frac{1}{3} + \frac{1}{3} \sqrt[2]{\mathbb{E}[\tau_{i\lambda_i}/Q - \frac{1}{3}]}^2) = \mathbb{E}_\lambda \prod_i (\frac{1}{3} + \frac{1}{3} \sqrt[2]{\mathbb{E}[\tau_{i\lambda_i}/Q]}^d) = \left(\frac{1}{3} + \frac{1}{3} \mathbb{E}[\tau_{i\lambda_i}/Q] \right)^d$. Here we have made use of Jensen’s inequality and of the fact that the tallies are binomial-distributed. Note that the result also holds for fixed λ independent of T.

Disturbance probability

With probability $\frac{1}{3}$ the correct basis is chosen, which results in 100% probability of having $g'_i = g_i$. With probability $\frac{2}{3}$ the wrong basis is chosen, resulting in a probability distribution $\left(\frac{1}{3}, \frac{2}{3} \right)$ for Eve’s measurement, and $\Pr[G'_i = g_i] = \left(\frac{1}{3} \right)^2 + \left(\frac{2}{3} \right)^2 = \frac{5}{6}$. Overall $\Pr[G'_i = g_i] = \frac{1}{4} \cdot \frac{1}{2} + \frac{3}{4} \cdot \frac{3}{2} = \frac{5}{6}$. \qed

C Proof of Theorem 5

Again we write g instead of g_D. From Lemma 2 and (6) we get $\Pr[g_i|tr_i\lambda_i] = \delta_{\beta_i,t_i}\delta_{r_i,g_i} + (1 - \delta_{\beta_i,t_i})\delta_{r_i,g_i} + \frac{1}{3}[1 - \delta_{r_i,g_i}]$. We introduce the notation $\lambda_i = \sum_{j=1}^{Q} \delta_{\beta_j,t_j}$ for the number of entries in the ith column of t that equal β_i, the most frequent value. This allows us to write $\Pr[g_i|tr_i\lambda_i] = \mathbb{E}_j \Pr[g_i|tr_i\lambda_i] = \frac{1}{3} \tau_{i\lambda_i}/Q + \frac{1}{3} \left(\frac{1}{3}[1 - \delta_{r_i,g_i}] \right) = \delta_{r_i,g_i} \left(\frac{1}{3} + \frac{2}{3} \cdot \frac{1}{2} \right) + \frac{1}{3} \left(\frac{1}{3} - \frac{1}{3} \right)$. Since $\lambda_i \geq Q/4$ by definition, the first term satisfies $\frac{1}{3} + \frac{2}{3} \cdot \frac{1}{2} > \frac{1}{2}$ and we have $\max_g \Pr[g_i|tr_i\lambda_i] = \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{2}$ and $\max_g \Pr[g_i|tr_i\lambda_i] = \prod_{i \in D} \left(\frac{1}{3} + \frac{1}{3} \mathbb{E}[\lambda_i] \right)^d$. In the last step we used that all the entries of t are drawn independently. The index i in the last expression is arbitrary. We can now write $H_{\min}(G|TR) = -\log \mathbb{E}_{t,r} \max_g \Pr[g|tr] = \log(\frac{1}{3} + \frac{1}{2\sqrt{3}} \mathbb{E}[\lambda_i])$.

15
Finally we have to bound $\mathbb{E} \lambda_i$. We write $\Pr[\lambda_i > \frac{Q}{4} + \kappa \sqrt{Q}] \leq 4 \Pr[\text{binom}(Q, \frac{1}{4}) > \frac{Q}{4} + \kappa \sqrt{Q}] \leq 4 \exp(-2\kappa^2)$, where in the last step we used Hoeffding's inequality. We introduce the notation $P_\lambda = \Pr[\lambda_i = \lambda], \lambda \in \{\frac{Q}{4}, \ldots, Q\}$ and $\lambda_* = \frac{Q}{4} + \kappa \sqrt{Q}$. We have

$$\mathbb{E} \lambda_i = \sum_{\lambda=Q/4}^{Q} \lambda P_\lambda = \sum_{\lambda=Q/4}^{\lambda_*} \lambda P_\lambda + \sum_{\lambda=\lambda_*+1}^{Q} \lambda P_\lambda$$

$$\leq \lambda_* \sum_{\lambda=Q/4}^{\lambda_*} P_\lambda + \sum_{\lambda=\lambda_*+1}^{Q} P_\lambda = \lambda_*(Q - \lambda_*) \Pr[\lambda_i > \lambda_*]$$

$$\leq \lambda_* (Q - \lambda_*) 4e^{-2\kappa^2} = \frac{Q}{4} + \kappa \sqrt{Q} + (3Q - 4\kappa \sqrt{Q}) e^{-2\kappa^2}$$

$$< \frac{Q}{4} + \kappa \sqrt{Q} + 3Qe^{-2\kappa^2}.$$ \hfill (28)

We set $\kappa^2 = \frac{1}{2} \ln(3\sqrt{Q})$ yielding $\mathbb{E} \lambda_i < \frac{Q}{4} + \sqrt{Q} \{1 + \frac{1}{2} \ln(3\sqrt{Q})\}$.

Disturbance probability. As in the random-basis attack, we have $\Pr[G'_i = g_i | t] = \delta_{\beta_{ij},t_j} + (1 - \delta_{\beta_{ij},t_j}) \frac{\mu}{Q}$. This yields $\Pr[G'_i = g_i | t] = \mathbb{E}_t \Pr[G'_i = g_i | t] = \lambda_i/Q + (1 - \lambda_i/Q) \frac{\mu}{Q}$ and $\Pr[G'_i = g_i] = \mathbb{E}_t \Pr[G'_i = g_i | t] = \frac{\mu}{Q} + \frac{4}{3\sqrt{Q}} \mathbb{E} \lambda_i$. We use the above given bound on $\mathbb{E} \lambda_i$. \hfill □

D Proof of Theorem 6

We write B instead of B_D. We have $H_{\min}(B | R)G) = -\log \mathbb{E}_{r,\gamma} \max_b \Pr[b | r, \gamma] = -\log \mathbb{E}_{r,\gamma} \max_b \Pr[b | r] \Pr[r | \gamma] = -\log \frac{1}{2} \sum_r \sum_b \Pr[r | \gamma] \Pr[b | r] = H_{\min}(B) - \log \mathbb{E}_\gamma \sum_r \max_b \Pr[r | \gamma]$, with $\mathbb{E}_\gamma \sum_r \max_b \Pr[r | \gamma] = \max_b \mathbb{E}_\gamma \prod_i \Pr[r_i | \gamma_i | b_i]$. The v_i is a row index that applies to all columns of γ at the same time. If we were allowed to choose a separate row index v_i in each column, then we would have more freedom to select large numbers. Hence $\max_b \mathbb{E}_\gamma \prod_i \Pr[r_i | \gamma_i | b_i] \leq \mathbb{E}_\gamma \prod_i \max_b \Pr[r_i | \gamma_i | b_i]$. This inequality yields $H_{\min}(B) - H_{\min}(B | R) \leq \log \prod_{i=0}^{\gamma - 1} \mathbb{E}_\gamma \sum_r \max_b \mathbb{E}_\gamma \prod_i \Pr[r_i | \gamma_i | b_i]$. We introduce the notation μ_i for the number of ‘1’ symbols in the ith column of γ. We have $\mathbb{E}_\gamma \prod_i \Pr[r_i | \gamma_i | b_i] = \frac{1}{2^\mu_i} \Pr[r_i | 1 | b_i] + (1 - \frac{1}{2^\mu_i}) \Pr[r_i | 0 | b_i]$. Depending on b_i being equal to Eve’s basis or not, this expression takes either of the two following values: $\frac{1}{2^\mu_i} (\frac{1}{2} \delta_{\mu_i,1} + (1 - \frac{1}{2^\mu_i}) \delta_{\mu_i,0}$ or $\frac{1}{2^\mu_i} (\delta_{\mu_i,1} + \frac{1}{2}) + (1 - \frac{1}{2^\mu_i}) (\delta_{\mu_i,0} + \frac{1}{2})$ respectively. After some algebra this yields $\sum_r \max_b \mathbb{E}_\gamma \Pr[r_i | \gamma_i | b_i] = 1 + \frac{3}{2} |\mu_i - L/2|$. The expectation over γ_i reduces to an expectation over the binomial-distributed μ_i. We use Jensen’s inequality to write $\mathbb{E}_{\mu_i} |\mu_i - L/2| \leq \sqrt{\mathbb{E}_{\mu_i} |\mu_i - L/2|^2} = \sqrt{L/4}$. Disturbance probability. Since B is random, the probability of projecting from n_{b_i,g_i} to either of Eve’s basis states and back to n_{b_i,g_i} is given by: $0^2 + 1^2 = 1$ if Eve chose the correct basis; $(\frac{1}{2})^2 + (\frac{3}{4})^2 = \frac{5}{4}$ if Eve chose the wrong basis. The overall probability of not causing a bit flip is $\frac{1}{4} \cdot 1 + \frac{3}{4} \cdot \frac{5}{4} = \frac{3}{2}$. \hfill □

References

