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Abstract

Many hardware and software pairing implementations can be found
in the literature and some pairing friendly parameters are given. How-
ever, depending on the situation, it could be useful to generate other nice
parameters (e.g. resistance to subgroup attacks, larger security levels,
database of pairing friendly curves). The main purpose of this paper is to
describe explicitly and exhaustively what should be done to generate the
best possible parameters and to make the best choices depending on the
implementation context (in terms of pairing algorithm, ways to build the
tower �eld, Fp12 arithmetic, groups involved and their generators, system
of coordinates).

We focus on low level implementations, assuming that Fp additions
have a signi�cant cost compared to other Fp operations. However, the
results obtained are still valid in the case where Fp additions can be ne-
glected. We also explain why the best choice for the polynomials de�ning
the tower �eld Fp12 is only depending on the value of the BN parameter
u modulo small integers like 12 as a nice application of old elementary
arithmetic results. Moreover, we use this opportunity to give some new
improvements on Fp12 arithmetic (in a pairing context) in terms of Fp-
addition allowing to save around 10% of them depending on the context.

1 Introduction

Pairing based cryptography has now many practical applications such as short
signature schemes [12], identity based cryptography [10] or broadcast encryp-
tion [11]. Because of recent attacks on the discrete logarithm problem in small
characteristic �nite �elds [30, 4], it is now clear that prime base �elds should
be used to de�ne pairing friendly elliptic curves. Many implementations, both
hardware and software can be found in the literature and some pairing friendly
parameters are given. For example, at the 128-bit security level, the parameters
given in [44] are almost always used because they have many good properties, in
particular in terms of e�ciency. However, depending on the situation, it could
be useful to generate other nice parameters (e.g. resistance to subgroup attacks
[38, 5], larger (or smaller) security levels, database of pairing friendly curves).
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This paper deals only with the case of BN curves because they are undoubtedly
the best choice at the 128-bit security level, which is the most used today and in
the near future, but also because they have many nice properties (e.g. maximal
degree twists) that make them interesting even for higher security levels.

The main purpose of this paper is to describe explicitly and exhaustively what
should be done to generate the best possible parameters and to make the best
choices depending on the implementation context. We focus on low level im-
plementation (mainly hardware but also assembly language), assuming that Fp
additions have a signi�cant cost compared to other Fp operations, whereas they
are usually neglected in the literature. However, the results obtained are still
valid in the case where Fp additions can be neglected. Most of the content of this
paper already lies in the literature or in existing implementations but, even if it
is not our initial purpose, we also give some new ideas to minimize the number
of Fp additions during the pairing computation. We also explain why the best
choice for the polynomials de�ning the tower �eld Fp12 is only depending on the
value of the BN parameter u modulo small integers like 12.

The paper is organized as follows. In Section 2 we recall how the optimal
Ate pairing on BN curves is computed. In Section 3 we present the di�erent
options to build Fp12 and how to implement the basic operations. This includes
the choice of the de�ning polynomials in terms of u, the choice of the tower
structure and the choice of the algorithms for basic arithmetic, depending on
the relative cost of Fp operations. In Section 4 we explain how to choose the
BN parameter u. Sections 5 and 6 are devoted to the choices inherent to the
curve (coe�cients, generators, system of coordinates). Finally, in Section 7 we
recall the other algorithms that must be used for e�cient implementation and
adapt them to our context and to the results obtained in the previous sections.

The following notations for Fpi arithmetic will be used:

• Ai denotes an addition and A′i denotes a multiplication by 2,

• Mi denotes a multiplication (MM
i if the method M is used),

• sMi denotes a sparse multiplication,

• mi,c denotes a multiplication by a constant c,

• Si denotes a squaring (SM
i if the method M is used),

• Ii denotes an inversion.
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2 Background

2.1 BN curves

A Barreto-Naehrig (BN) curve [8] is an elliptic curve E over a �nite �eld Fp,
p ≥ 5, with order r = #E(Fp), such that p and r are prime numbers given by

p = 36u4 + 36u3 + 24u2 + 6u+ 1,

r = 36u4 + 36u3 + 18u2 + 6u+ 1,

for some u in Z. It has an equation of the form

y2 = x3 + b,

where b ∈ F∗p. Its neutral element is denoted by OE .

BN curves have been designed to have an embedding degree equal to 12. This
makes them particularly appropriate for the 128-bit security level. Indeed, a
prime p of size 256 bits leads to a BN curve whose group order is roughly 256 bits
together with pairings taking values in F∗p12 , which is a 3072-bit multiplicative
group. According to the NIST recommendations [45], both groups involved are
matching the 128-bit security level. By the way, BN curves at this security level
have been the object of numerous recent publications ([21, 2, 14, 24, 43, 27, 53]).

Finally, BN curves always have degree 6 twists. If ξ is an element which is
neither a square nor a cube in Fp2 , the twisted curve E′ of E is de�ned over Fp2
by the equation

E′ : y2 = x3 + b′,

with b′ = b/ξ or b′ = bξ. In order to simplify the computations, the element ξ
should also be used to represent Fp12 as a degree 6 extension of Fp2 (Fp12 = Fp2 [γ]
with γ6 = ξ) [21], [37]. In this paper, we deal only with the case b′ = b/ξ as
usually done in the literature but b′ = b/ξ5 can be also used with a very small
additional cost [27].

2.2 Optimal Ate pairing

Let a be an integer and Q 6= OE be a point on E. We denote by fa,Q the
normalized function on the curve with divisor

div(fa,Q) = a[Q]− [aQ]− (a− 1) [OE ] .

Such functions are the core of all known pairings. They are computed thanks to
the Miller loop (described in Section 2.3), which is an adaptation of the classical
scalar multiplication algorithm. For example, the (reduced) Tate pairing is
de�ned by

eT (P,Q) = fr,P (Q)
p12−1

r .

3



There are many variants of the Tate pairing allowing to use a smaller value of a
in order to shorten the length of the Miller loop ([6, 29, 28, 39, 36, 54]). It has
been proven in [54] that the shortest possible loop has length r/ϕ(12) = r/4
and that this length is reached by the so-called optimal Ate pairing.

Let π(x, y) = (xp, yp) be the Frobenius map on the curve. If P is a ratio-
nal point on E and Q is a point in E

(
Fp12

)
which is in the p-eigenspace of π,

the optimal Ate pairing [43] can be de�ned by

aopt(Q,P ) =
(
fv,Q(P ).`vQ,π(Q)(P ).`vQ+π(Q),−π2(Q)(P )

) p12−1
r ,

where v = 6u+ 2 and `A,B is the normalized line function arising in the sum of
the points A and B.

In this study, we are only considering this pairing because it makes no doubt
that it is currently the most e�cient for BN curves, but the same work can be
easily done with other pairings. The computation of the optimal Ate pairing is
done in four steps:

1. A Miller loop to compute f|v|,Q(P ). The algorithmic choices for this step
are discussed in Section 2.3.

2. If v < 0, the result f of the Miller loop must be inverted to recover
fv,Q(P ). Such an inversion is potentially expensive but thanks to the �nal
exponentiation, f−1 can be replaced by fp
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[2] which is nothing but the
conjugation in Fp12/Fp6 , thus it is for free.

3. Two line computations, `vQ,π(Q)(P ) and `vQ+π(Q),−π2(Q)(P ) which are
nothing but extra addition steps of the Miller loop.

4. A �nal exponentiation to the power of p
12−1
r . The algorithmic choices for

this step are discussed in Section 2.4.

Since BN curves have twists of order 6, a twisted version of the optimal Ate
pairing allows to take Q in E′

(
Fp2

)
. Using the isomorphism between the curve

and its twist, the point Q in our de�nition of the optimal Ate pairing can then
be chosen of the form

(
xQγ

2, yQγ
3
)
∈ E

(
Fp12

)
, where xQ, yQ ∈ Fp2 ((xQ, yQ) ∈

E′
(
Fp2

)
). This means that elliptic curve operations lie in Fp2 instead of Fp12

(but the result remains in Fp12). Of course, this makes computations easier, but
this also allows denominator elimination as in [7] because all the factors lying
in a proper sub�eld of Fp12 (as Fp2) are wiped out by the �nal exponentiation.

2.3 The Miller loop

The �rst step of the pairing computation evaluates f|v|,Q(P ) thanks to the Miller
algorithm presented in Algorithm 1 and introduced in [40]. It is based on the
double and add scheme used for the computation of |v|Q by evaluating at P the
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lines occurring in the doubling and addition steps of this computation. More
precisely, it is based on Miller's formula given in the following Lemma, which
can be proven by considering divisors.

Lemma 1. For all a, b ∈ Z, Q a point of E, we have

fa+b,Q = fa,Qfb,Q
`aQ,bQ
v(a+b)Q

where `aQ,bQ is the equation of the line passing through the points aQ and bQ
and v(a+b)Q is the equation of the vertical line passing through the point (a+b)Q.

Remark 1. In the case of the optimal Ate pairing, the point Q comes from
the twisted curve. Hence its x-coordinate lies in a proper sub�eld of Fp12 and
p ∈ E(Fp) so that v(a+b)Q(P ) also lies in a proper sub�eld of Fp12 and then
is wiped out by the �nal exponentiation. This is known as the denominator
elimination optimisation [33]. Then we do not take v(a+b)Q into consideration
in the following.

Miller's algorithm makes use of Lemma 1 with b = a (for doubling steps) or
b = 1 (for addition steps) and is described by the pseudocode in Algorithm 1
assuming Remark 1.

Algorithm 1: Miller(P,Q, a)

Data: a = (an . . . a0)2,
Data: P ∈ E (Fp),
Data: Q ∈ E

(
Fp12

)
having its x-coordinate in a proper sub�eld of Fp12 ;

Result: λfa,Q(P ) ∈ F∗p12 with λ in a proper sub�eld of Fp12 ;
T ← Q ;
f ← 1 ;
for i = n− 1 to 0 do

f ←− f2 × `T,T (P );
T ← 2T ;
if ai = 1 then

f ←− f × `T,Q(P );
T ← T +Q ;

end

end

return f

Several choices are possible for the system of coordinates in order to perform
the operations over the elliptic curve during the Miller loop. We discuss them
in Section 6.

Since the Miller algorithm is based on the double and add algorithm, it is
natural to try to improve it by using advanced exponentiation techniques like
the sliding window method [17, Algo 9.10] or the NAF representation [17, Algo
9.14]. However, the interest is limited in practice for two reasons:
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• In the context of pairing based cryptography, the exponent is not a secret.
Then it is usually chosen sparse so these advanced exponentiation methods
are useless.

• Such methods involve operations like T ← T + 3Q. We need to compute
f ← f × f3,Q × `T,3Q to obtain the corresponding function. Of course,
f3,Q can be precomputed but such a step requires an additional Fp12 mul-
tiplication which is the most consuming operation in Algorithm 1.

The only interesting case is a signed binary representation of the exponent
(i.e. a 2-NAF) because it can help to �nd a sparse exponent. In this case,
the substraction step of Algorithm 1 is involving an additional division by the
vertical line passing trough Q and −Q which could be expensive, but fortunately
it is wiped out by the �nal exponentiation if Q comes from the twisted curve.

2.4 The �nal exponentiation

As proposed in [33, 50] the cost of the �nal exponentiation can be reduced
thanks to the integer factorization

p12 − 1

r
=

(
p6 − 1

) (
p2 + 1

)(p4 − p2 + 1

r

)
.

Since p is the characteristic of Fp12 , it is easy to compute the pth−power of
any element in Fp12 . More details about these Frobenius computations can be
found in Section 7.1. Powering to the

(
p6 − 1

) (
p2 + 1

)
is then called the easy

part of the �nal exponentiation, even if an expensive inversion in Fp12 is required.

Powering to the p4−p2+1
r is called the hard part of the �nal exponentiation.

For this computation, the exponent is usually developed in base p in order to
use again cheap Frobenius computations ([49, 21, 50, 13, 23]), and the cost is
around three times the cost of an exponentiation by u.

Moreover, as f has been raised to the power of
(
p6 − 1

) (
p2 + 1

)
, it has or-

der dividing p4 − p2 + 1. Then, as noticed in [26], it lies in the cyclotomic
group GΦ6(Fp2). This has two important consequences for the e�ciency of the
computation :

• Squaring is less expensive than a classical squaring in Fp12 [26, 31] (more
details are given in Section 7.2),

• Inversion is the same operation as raising to the power p6, which is nothing
but the conjugation in Fp12/Fp6 , thus it is for free [49, 52].

The most popular way to perform this hard part uses the following addition
chain [50] :

f
p4−p2+1

r = y0y
2
1y

6
2y

12
3 y18

4 y30
5 y36

6 ,
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where y0 = fpfp
2

fp
3

, y1 =
1

f
, y2 =

(
fu

2
)p2

, y3 = (fu)
p
,

y4 =

(
fu

2
)p

fu
, y5 =

1

fu2 , y6 =

(
fu

3
)p

fu3 .

The cost of this method is 13M12, 4S12 and 7 Frobenius maps in addition to
the cost of 3 exponentiations by u. The method given in [13] is slightly more
e�cient but computes a power of the optimal Ate pairing. The main drawback
of these methods is that they are memory consuming (up to 4Ko), which can be
annoying in restricted environments. Some variants of these methods optimized
in terms of memory consumption are given in [23].

3 Choosing the �nite �elds and their arithmetic

3.1 Fp arithmetic

In this paper, we assume that the basic operations in Fp (additions, subtractions,
multiplications) are already implemented. This multiple precision arithmetic
is usually performed by combining the schoolbook method or the Karatsuba
method [32] and the Montgomery reduction [42] or the Barrett reduction [9].

In the case where p is taken to be a generalized Mersene prime [51, 15], the
�eld operations can be sped-up by exploiting the particular shape of p. How-
ever, no general method to produce ordinary pairing-friendly elliptic curves with
such p is known, and moreover, using low weight primes could introduce weak-
ness in pairing based cryptosystems [48].

As an alternative, several authors (e.g. [22], [14]) proposed to use the Residue
Number Systems (RNS) for pairing computation (an integer a modulo p is rep-
resented by (a1, . . . , an), where ai = a mod mi, for some well-chosen coprime
integers m1, . . . ,mn). The RNS allows a rather low cost for additions and mul-
tiplications, but on the other hand, the reduction step is expensive, so it is
recommended to accumulate several operations before performing a reduction
(this is called lazy reduction), which requires some extra memory.

Anyway, the method used for Fp arithmetic does not have direct consequences
on the choices to be made for extension �eld or elliptic curve arithmetic. The
only important criterion is the relative cost between the Fp operations (A1,
A′1, M1, S1, I1). One of the main purpose of this paper is to discuss the avail-
able choices depending on these ratios. We plan to cover most of the possible
practical situations, so that we make the following assumptions:

• Addition can be relatively expensive (A1 < 0.5M1). They are often ne-
glected in theoretical studies but this should not be the case for real life
implementations, especially in low level implementation where the most
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common ratios at the 128-bit security level are between 0.2 and 0.3 [47, 25],
but also in software implementation (for example, the ratio is 0.17 in the
Microsoft ECC library [46] at the 128-bit security level). Therefore, the
number of Fp additions involved in extension �eld arithmetic must be
taken into account and may have an in�uence on the choices to be made.

• In order to stay in the most general case, we chose to use distinct symbols
to denote an addition (A1) and a doubling (A′1). However, notice that
we usually have A′1 = A1.

• If a speci�c algorithm for squaring is implemented, then S1 is usually
assumed to be 0.8M1, else, a square is computed by doing a multiplication
and S1 = M1.

3.2 Arithmetic of Fp2i/Fpi

In theory, any irreducible quadratic polynomial can be used to build Fp2i over
Fpi , but non-zero coe�cients of this polynomial imply extra operations for Fp2i
arithmetic. Therefore, Fp2i is usually built with a polynomial of the formX2−µ,
where µ is not a square in Fpi .

Fp2i = Fpi [α] with α2 = µ.

3.2.1 Fp2i addition

Whatever the choice for building Fp2i , an addition (resp. a multiplication by 2)
always requires 2 Fpi additions (resp. multiplications by 2). In any case

A2i = 2Ai and A′2i = 2A′i.

3.2.2 Fp2i multiplication

We will consider only two methods since the other methods do not reduce the
overall complexity, independently of the relative cost of Fpi operations.

Schoolbook method. The method computes as follows:

(x0 + x1α)(y0 + y1α) = x0y0 + µx1y1 + (x0y1 + x1y0)α

and requires MSB
2i = 4Mi + mi,µ + 2Ai.

Karatsuba method. The method is a standard variant of the schoolbook
method. The evaluation is performed as follows:

(x0 + x1α)(y0 + y1α) = x0y0 + µx1y1 + ((x0 + x1)(y0 + y1)− x0y0 − x1y1)α

and requires MK
2i = 3Mi + mi,µ + 5Ai.
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Remark 2. The schoolbook method should be preferred to the Karatsuba method
when 3Ai >Mi.

3.2.3 Fp2i squaring

In this case, we will additionally consider the complex method.

Schoolbook method. In the squaring case, we get

(x0 + x1α)2 = x2
0 + µx2

1 + 2x0x1α

which requires SSB
2i = Mi + 2Si + mi,µ + Ai + A′i.

Karatsuba method. In the squaring case, we get

(x0 + x1α)2 = x2
0 + µx2

1 + ((x0 + x1)2 − x2
0 − x2

1)α

which requires SK
2i = 3Si + mi,µ + 4Ai.

Complex method. The method is particularly e�cient if µ = −1, which
explains its name. It computes as follows:

(x0 + x1α)2 = (x0 + µx1)(x0 + x1)− (µ+ 1)x0x1 + 2x0x1α

and requires SC
2i = 2Mi + mi,µ + mi,µ+1 + 3Ai + A′i.

Remark 3. Determining which method is the best is not as easy as for multipli-
cation in the general case because it depends on both the relative cost of Mi and
Ai and of Mi and Si. We postpone this question to Section 3.5 which discusses
speci�c choices of µ.

3.2.4 Fp2i inversion

The Fp2i inversion is classically done thanks to the norm of an element

N = (x0 + x1α) (x0 − x1α) = x2
0 − µx2

1 ∈ Fp.

We easily get the inverse of x0 + x1α as x0

N −
x1

N α. This way of computing an
inverse in Fp2i requires

I2i = Ii + 2Mi + 2Si + Ai + mi,µ.

3.3 Arithmetic of Fp3i/Fpi

As in Section 3.2, it is preferable to chose a sparse polynomial to minimize the
cost of Fp3i arithmetic. Thus, Fp3i is built as Fpi [α], where α3 = ξ for some ξ in
Fpi . Of course, Fp3i arithmetic will involve some multiplications by ξ, so that ξ
must be chosen carefully.
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3.3.1 Fp3i addition

Whatever the choice for building Fp3i , an addition (resp. a multiplication by 2)
always requires 3 Fpi additions (resp. multiplications by 2). So in any case

A3i = 3Ai and A′3i = 3A′i.

3.3.2 Fp3i multiplication

Again, we give only the schoolbook and the Karatsuba methods because other
methods (like Toom-Cook) require too many additions (and divisions by 2 or
3), which is contradictory with our assumptions (additions are not so negligible
on real world devices).

Schoolbook method. The method uses the following equality

(x0 + x1α+ x2α
2)(y0 + y1α+ y0α

2) = x0y0 + ξ(x1y2 + x2y1)

+ [x0y1 + x1y0 + ξx2y2]α

+ [x0y2 + y2x0 + x1y1]α2

and requires MSB
3i = 9Mi + 2mi,ξ + 6Ai.

Karatsuba method. As in the case of quadratic extensions, the method
allows to compute sums of products like x1y2+x2y1 with only one multiplication,
assuming that x1y1 and x2y2 are already computed. The equality in the cubic
case is

(x0 + x1α+ x2α
2)(y0 + y1α+ y2α

2) = x0y0 + ξ((x1 + x2)(y1 + y2)− x1y1 − x2y2)

+ [(x0 + x1)(y0 + y1)− x0y0 − x1y1 + ξx2y2]α

+ [(x0 + x2)(y0 + y2)− x0y0 − x2y2 + x1y1]α2

This means that 2Mi +Ai is replaced by Mi + 4Ai three times. As in the case
of quadratic extensions, the Karatsuba method then becomes interesting when
Mi ≥ 3Ai and requires MK

3i = 6Mi + 15Ai + 2mi,ξ.

We will also use in the following the Karatsuba method when one of the operands
is sparse. If two coe�cients are zero, the Karatsuba method has no interest but
it can be used if one coe�cient, say y2, is zero. In this case, we have

(x0 + x1α+ x2α
2)(y0 + y1α) = x0y0 + ξx2y1

+ [(x0 + x1)(y0 + y1)− x0y0 − x1y1]α

+ [x2y0 + x1y1]α2

which requires sMK
3i = 5Mi + 6Ai + mi,ξ.
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3.3.3 Squaring

The Schoolbook and Karatsuba squarings are deduced from the multiplication.

Schoolbook method. The method uses the equality

(x0 + x1α+ x2α
2)2 = x2

0 + 2ξx1x2 +
[
2x0x1 + ξx2

2

]
α+

[
x2

1 + 2x0x2

]
α2.

Note that if we �rst compute 2x1, only 2 multiplications by 2 are necessary to
evaluate this formula, so the cost is SSB

3i = 3Mi + 3Si + 3Ai + 2A′i + 2mi,ξ.

Karatsuba Method. The method computes the double products involved in
the schoolbook squaring using

2x0x1 = (x0 + x1)2 − x2
0 − x2

1.

The complexity becomes SK
3i = 6Si + 12Ai + 2mi,ξ.

Chung-Hasan Method. We can also use the Chung-Hasan method [16] for
squaring in degree 3 extensions. There are several variants but the most inter-
esting in our context is to compute the term in α2 in the schoolbook method
using the formula

x2
1 + 2x0x2 = (x0 + x1 + x2)2 − (2x0x1 + 2x1x2 + x2

0 + x2
2).

Computing this term requires Si + 6Ai instead of Mi + Si + Ai + A′i, so the
overall complexity is SCH

3i = 2Mi + 3Si + 8Ai + A′i + 2mi,ξ.

3.4 Building Fp12

In this section, we discuss the ways to build the extension tower Fp12 for pair-
ings on BN curves. All the ways to build Fp12 are mathematically equivalent.
However, we will use this extension in the speci�c case of pairings on BN curves,
which implies some constraints in order to allow other improvements for pairing
computation.

• As explained in Section 2.2, Fp12 must be built as an extension of Fp2
because of the use of a sextic twist. Indeed, the twisted curve is de�ned
over Fp2 .

• Fp12 must be built over Fp2 with a polynomial X6 − ξ where ξ, which
is neither a square nor a cube, is the element used to de�ne the twisted
curve. This allows the line involved in the Miller algorithm to be a sparse
element of Fp12 (see Section 6 for more details).

Then, Fp12 should be built

• Case 2, 2, 3: as a cubic extension of a quadratic extension of Fp2 ,
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• Case 2, 3, 2: as a quadratic extension of a cubic extension of Fp2 ,

• Case 2, 6: as a sextic extension of Fp2 .

The latter case is proved to be less e�cient [20], so we will only consider here
the �rst two ones. In any case, we have

Fp12 = Fp2 [γ] with γ6 = ξ ∈ Fp2 .

In the case 2, 2, 3, we will use β = γ3 to de�ne Fp4 and in the case 2, 3, 2, we will
use β = γ2 to de�ne Fp6 . These cases are studied in detail in Sections 3.6 and 3.7.

Of course, ξ must be carefully chosen, since Fp12 arithmetic will involve multi-
plications by ξ or β; this is the purpose of Section 3.8. But let us �rst give more
details on the choice of Fp2 and its arithmetic.

3.5 Choice of Fp2 and its arithmetic

As explained in Section 3.2, Fp2 is built thanks to an element µ which is not a
square in Fp so that

Fp2 = Fp[α] with α2 = µ.

According to Remark 2, the Karatsuba method for Fp2 multiplication is better
when A1 <

1
3M1.

Determining the best squaring algorithm is less simple. Let us �rst compare
the schoolbook and the Karatsuba method. The di�erence between the com-
plexities is M1 − S1 + A′1 − 3A1. Assuming that S1 = M1, this di�erence
becomes A′1 − 3A1 which is always negative. This means that the schoolbook
method is always better. Assuming that S1 = 0.8M1, the di�erence becomes
0.2M1 + A′1 − 3A1 which is negative if A1 ≥ 0.1M1 (and even less if A′1 is
assumed to be cheaper than A1). Thus the schoolbook method is also better in
this case, unless if the addition in Fp is really very e�cient (A1 < 0.1M1). We
then assume that the Karatsuba method for Fp2 squaring has no (or very few)
interest.

Let us now compare the Schoolbook method and the complex method. In this
case, the di�erence between the complexities is 2S1−M1−2A1−m1,µ+1. This
means that the schoolbook method is generally better if µ is randomly chosen
(m1,µ+1 = M1). If µ is chosen to be a small number, the conclusion is depend-
ing on this choice (more precisely on the cost of the multiplication by µ + 1).
The choice of µ is the object of Section 3.5.1.

3.5.1 Choice of µ and consequences on u

We focus on multiplications and squarings in Fp2 because other operations such
as inversions or additions are rare or independent of the choice of µ. In order
to have the best arithmetic, µ must be chosen such that m1,µ and m1,µ+1 are
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as cheap as possible. Since µ has to be a non-square in Fp, 0 and 1 must be
avoided and the best choice is µ = −1. If this choice is not possible, µ = ±2 is
also a good choice. Other choices are possible, even if they are of course more
expensive. Let us now give more details on which values of µ should be used to
de�ne Fp2 , depending on u. Further justi�cations are given in Appendix A.

The case Fp2 = Fp[i]. If µ = −1, then Fp2 can be seen as an analogue of the
complex �eld and in this case α is usually denoted by i. In this situation, m1,µ

and m1,µ+1 are both for free, but one can do even better because the complex
method for squaring becomes

(a0 + a1i)
2 = (a0 − a1)(a0 + a1) + 2a0a1i

and requires 2M1 + 2A1 + A′1 which is faster than schoolbook or Karatsuba
method in any case.

Choosing µ = −1 is possible if and only if −1 is not a square in Fp, which
is equivalent to take u odd, as proved in Proposition 1 of Appendix A.

The case Fp2 = Fp
[√
−2

]
. In this case, m1,µ = A′1 and m1,µ+1 = 0. The

complex method for computing a square in Fp2 then requires 2M1 +3A1 +2A′1
whereas the schoolbook method needs M1 + 2S1 + A1 + 2A′1. The di�erence
between the complexities is 2S1 −M1 − 2A1. The complex method is then
always better if S1 = M1. If S1 = 0.8M1, the schoolbook method is better only
if A1 > 0.3M1.

According to Proposition 1 of Appendix A, choosing µ = −2 is possible if
and only if u = 1 or 2 modulo 4. However, if u = 1 modulo 4, choosing µ = −1
is more appropriate in terms of e�ciency.

The case Fp2 = Fp
[√
−5

]
. In this case, m1,µ = 2A′1 + A1 and m1,µ+1 =

2A′1. However, the complex method can be rewritten in a more e�cient way

(a0 + a1α)2 = (a0 + a1 + 2a′1)(a0 + a1) + 2a0a
′
1 + a0a

′
1α with a′1 = 2a1

and then requires 2M1 +4A1 +2A′1 which is almost as good as the case µ = −2
and better than the schoolbook method (except if A′1 is very small compared
to A1 and S1 = 0.8M1).

If u is odd, it is better to choose µ = −1, and if u = 2 modulo 4 it is better to
choose µ = ±2, so we assume that u = 0 modulo 4. In this case, according to
Proposition 1 of Appendix A, 5 and −5 are squares together when u = 0 or 4
modulo 5. Therefore, µ = −5 should be chosen when u = 8, 12 or 16 modulo
20.
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Other choices for building Fp2
• If µ = −1 and µ = −2 cannot be chosen to build Fp2 , then 2 cannot be
chosen either. Moreover, choosing µ = 2 instead of −2 is less e�cient for
the complex method since µ + 1 = 3 instead of −1. Therefore, choosing
µ = 2 has no interest.

• The same remark holds for µ = 5.

• The case µ = 3 is interesting at �rst glance because the complexity of the
complex method is as good as when µ = −2. However, this choice can be
done if and only if u is odd, and in this case, choosing µ = −1 is more
appropriate in terms of e�ciency.

• Since p = 1 modulo 3 for BN primes, −3 is always a square in Fp, so it
cannot be chosen to build Fp2 .

Finally, the only interesting small values for µ are −1,−2 and −5 and one of
them can be used whenever u 6= 0 or 4 modulo 20.

3.5.2 Summary of choices and complexities for Fp2 arithmetic

We saw that we trivially have A2 = 2A1 and A′2 = 2A′1 whatever the choice
made to build Fp2 . The situation is more complicated for M2 and S2; it is
summarized in Tables 1 and 2. In these tables SB, K and C denote the method
used.

µ Assuming A1 ≤ 0.33M1 Assuming A1 > 0.33M1 Condition
−1 3M1 + 5A1 (K) 4M1 + 2A1 (SB) u = 1 mod 2
−2 3M1 + 5A1 + A′1 (K) 4M1 + 2A1 + A′1 (SB) u = 2 mod 4
−5 3M1 + 6A1 + 2A′1 (K) 4M1 + 3A1 + 2A′1 (SB) u = 8, 12, 16 mod 20
any 4M1 + 5A1 (K) 5M1 + 2A1 (SB) u = 0, 4 mod 20

Table 1: Complexities of M2 depending on the way to build Fp2

Assuming S1 = M1 or Assuming Condition
µ S1 = 0.8M1,A1 ≤ 0.3M1 S1 = 0.8M1,A1 > 0.3M1

−1 2M1 + 2A1 + A′1 (C) u = 1 mod 2
−2 2M1 + 3A1 + 2A′1 (C) M1 + 2S1 + A1 + 2A′1 (SB) u = 2 mod 4
−5 2M1 + 4A1 + 2A′1 (C) u = 8, 12, 16 mod 20
any 2M1 + 2S1 + A1 + A′1 (SB) u = 0, 4 mod 20

Table 2: Complexities of S2 depending on the way to build Fp2

Remark 4. The in�uence of the relative cost of A′1 compared to A1 is small
and even negligible, even if −2 is chosen to de�ne Fp2

Thanks to Tables 1 and 2, it is easy to choose the best algorithm for Fp2
multiplication and squaring depending on the context (relative cost of Fp oper-
ations, choice of u).
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3.6 Choice of Fp12 arithmetic in the case 2, 3, 2

We assume that Fp12 is built over Fp2 via Fp6 , using some ξ which is neither a
square nor a cube in Fp2 :

Fp6 = Fp2 [β] where β3 = ξ and Fp12 = Fp6 [γ] with γ2 = β.

3.6.1 Fp6 arithmetic

We saw in Section 3.3.2 that the Karatsuba method becomes interesting when
M2 ≥ 3A2. Regarding Table 1, this condition is clearly always satis�ed. There-
fore, the Karatsuba method should always be used for Fp6/Fp2 multiplications
and

M6 = 6M2 + 15A2 + 2m2,ξ.

It is also easy to study the di�erence between the complexities of the schoolbook,
the Karastuba and the Chung-Hasan methods and to conclude that the latter
is better in each case of Tables 1 and 2. Therefore, the Chung-Hasan method
should always be use for Fp6/Fp2 squaring so

S6 = 2M2 + 3S2 + 8A2 + A′2 + 2m2,ξ.

3.6.2 Fp12 arithmetic

We obviously have A12 = 2A6 = 12A1 and A′12 = 2A′6 = 12A′1.

Fp12 multiplication. According to Section 3.2, the Karatsuba method is bet-
ter than the schoolbook method when 3A6 < M6, which is obviously always
the case according to 3.6.1. The Fp6 multiplication by β involved in Karatsuba
formulas is given by(

b0 + b1β + b2β
2
)
β = ξb2 + b0β + b1β

2,

thus m6,β = m2,ξ. Finally, the Karatsuba method should always be used for
Fp12/Fp6 multiplications and

M12 = 18M2 + 60A2 + 7m2,ξ.

Fp12 sparse multiplication. During the Miller loop for the optimal Ate pair-
ing, one of the operands (the line `) is sparse but the conclusion remains the
same: the Karatsuba method should be preferred for multiplications at all lev-
els, assuming that at least two coe�cients are non-zero. More precisely, as
explained in Section 6, ` is of the form b0 +b1γ+b3γ

3, where bi ∈ Fp2 . With our
notations, it can be written ` = b0 + (b1 + b3β)γ. The Karatsuba multiplication
in Fp12 between ` and c0 + c1γ is given by

b0c0 + (b1 + b3β)c1β + ((b0 + b1 + b3β) (c0 + c1)− b0c0 − (b1 + b3β) c1) (1)

and requires
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• one multiplication of c0 ∈ Fp6 by b0 ∈ Fp2 which trivially costs 3M2,

• one multiplication of c1 ∈ Fp6 by b1 + b3β. It is done thanks to the sparse
Karatsuba multiplication given in Section 3.3 and costs 5M2+6A2+m2,ξ,

• 4A2 to compute b0 + b1 and c0 + c1,

• one multiplication of c0 + c1 by b0 + b1 + b3β which is the same as the one
of c1 by b1 + b3β,

• one m6,β = m2,ξ and 3A6 to compute the �nal result.

Hence a Fp12 sparse multiplication requires

sM12 = 13M2 + 25A2 + 3m2,ξ.

Fp12 squaring. Let us now compare the schoolbook and the Karatsuba meth-
ods for squaring in Fp12/Fp6 . Using the complexities obtained for M6 and S6

in 3.6.1, the di�erence between the complexities is

SK

12 − SSB

12 = 3S2 − 4M2 + 2A2 − 2A′2 + m2,ξ.

Using Tables 1 and 2, we can easily verify that this di�erence is negative in all
the cases we have considered even if m2,ξ = M2 (which is obviously the worst
case for m2,ξ). Therefore, the schoolbook method should not be used.

We have now to compare the Karatsuba and the complex methods for squar-
ing in Fp12/Fp6 . Using the complexities obtained for M6 and S6 in 3.6.1 and
assuming that m6,β+1 = A6 + m6,β = A6 + m2,ξ, the di�erence between the
complexities is

∆ = SK

12 − SC
12 = 9S2 − 6M2 − 6A2 + m2,ξ

The sign of ∆ depends on the value of µ. Again, we do not give all the details
but thanks to Tables 1 and 2, we can determine that

• The Karatsuba method should be used if µ = −1,−5 and if µ = −2 with
A1 ≤ 0.33M1 or S1 = 0.8M1 and in this case

S12 = 6M2 + 9S2 + 36A2 + 3A′2 + 7m2,ξ.

• The complex method should be used if µ is not small and if µ = −2 with
A1 > 0.33M1 and S1 = M1 and in this case

S12 = 12M2 + 42A2 + 3A′2 + 6m2,ξ.

3.7 Choice of Fp12 arithmetic in the case 2, 2, 3

We assume that Fp12 is built over Fp2 via Fp4 , using some ξ which is neither a
square nor a cube in Fp2 :

Fp4 = Fp2 [β] where β2 = ξ and Fp12 = Fp4 [γ] with γ3 = β.
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3.7.1 Fp4 arithmetic

We saw in Section 3.2.2 that the Karatsuba method becomes interesting when
M2 ≥ 3A2 = 6A1. Regarding Table 1, this condition is clearly always satis�ed.

Therefore, the Karatsuba method should always be used for Fp4/Fp2 multi-
plications and

M4 = 3M2 + 5A2 + m2,ξ.

Concerning the squaring, all the methods are close in terms of complexity. We
do not give details here, but thanks to Tables 1 and 2, we can decide which
method is preferable to use, depending on the context. The Karatsuba method
is usually the best and this is summarized in Table 3.

µ condition method complexity
assuming A1 ≤ 0.33M1

−1,−2 or −5 K 3S2 + m2,ξ + 4A2

any C 2M2 + m2,ξ + m2,ξ+1 + 3A2 + A′2
assuming A1 > 0.33M1

−1 or −5
K 3S2 + m2,ξ + 4A2−2

S1 = 0.8M1any SB M2 + 2S2 + m2,ξ + A2 + A′2
−2 or any S1 = M1 C 2M2 + m2,ξ + m2,ξ+1 + 3A2 + A′2

Table 3: Complexities of S4 depending on the context

3.7.2 Fp12 arithmetic

We also have A12 = 12A1 and A′1212A′1 in this case.

Fp12 multiplication. According to Section 3.3, the Karatsuba method is bet-
ter than the schoolbook method for multiplications in Fp12/Fp4 when 3A4 <M4,
which is obviously always the case according to Section 3.7.1. The Fp4 multi-
plication by β involved in Karatsuba formulas is given by

(b0 + b1β)β = ξb1 + b0β,

thus m4,β = m2,ξ. Therefore, the Karatsuba method should always be used for
Fp12/Fp4 multiplications and

M12 = 18M2 + 60A2 + 8m2,ξ.

Fp12 sparse multiplication. Again, the Karatsuba method should be pre-
ferred for multiplications at all levels when one of the operands is sparse. With
our notations, the sparse element involved in the Miller loop can be written
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` = b0 + b3β+ b1γ. We use the sparse Karatsuba multiplication given in Section
3.3 to compute the product of ` and c0 + c1γ + c2γ

2 ∈ Fp12

(c0 + c1γ + c2γ
2)((b0 + b3β) + b1γ) = c0(b0 + b3β) + βc2b1

+ [(c0 + c1)(b0 + b3β + b1)− c0(b0 + b3β)− c1b1]γ

+ [c2(b0 + b3β) + c1b1]γ2 (2)

It requires

• Two multiplications of c1 (or c2) ∈ Fp4 by b1 ∈ Fp2 which trivially cost
2M2 each.

• Three Fp4 multiplications which are done thanks to the Karatsuba method
and cost 3M2 + 5A2 + m2,ξ.

• 3A2 to compute b0 + b1 and c0 + c1.

• One m4,β = m2,ξ and 4A4 to compute the �nal result.

Hence a Fp12 sparse multiplication requires

sM12 = 13M2 + 26A2 + 4m2,ξ.

Fp12 squaring. We do not give details here because it would be repetitive after
previous sections but it is easy to study the di�erence between the complexi-
ties of the schoolbook, the Karastuba and the Chung-Hasan methods and to
conclude that the latter is always better. Therefore, the Chung-Hasan method
should always be used for Fp12/Fp4 squaring and

S12 = 3S4 + 6M2 + 26A2 + 2A′2 + 4m2,ξ.

3.8 Choice of ξ and consequences on u

The choice of ξ has no consequence on the way of choosing the arithmetic of
Fp12 , but it must be done such that multiplication by ξ is as e�cient as possible.
However, the choice of ξ has less in�uence on M12 and S12 complexities than
the choice of µ. So an e�cient µ should be chosen in priority.

The most natural choice is ξ = α, so that a multiplication by ξ in Fp2 is

(a0 + a1α)ξ = µa1 + a0α

and thus m2,ξ = m1,µ. It means that µ must be neither a fourth power nor a
cube in Fp. If p ≡ 1 (mod 6), which is always the case for a BN prime, such a
µ always exists.

In practice, it is easy to �nd one by trial and error, by factoring x12 − µ mod-
ulo p until �nding an irreducible polynomial. However, the obtained value is
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not necessarily optimal for Fp2 arithmetic and µ should be chosen in priority
to de�ne Fp2 as e�ciently as possible. For example, the best choice for Fp2 is
µ = −1 but it is obviously always a cube. Then, if µ is already �xed to de�ne
Fp2 and is a cube, ξ must be chosen as an element of Fp2 with small coe�cients.
At �rst glance, the best choices are ξ = 2 and ξ = 1 +α. However, as proved in
Corollary 1 of Appendix A, 2 (as any other element of Fp) is always a square in
Fp2 , so it cannot be chosen to de�ne Fp12 . Other choices can be made as 2 + α
but they are of course less interesting in terms of e�ciency.

Remark 5. The condition to choose ξ is that it is neither a square nor a cube
in Fp2 . Since −1 is always a square and a cube in Fp2 , there is no interest to
consider the sign of ξ. In the same way, there is no interest to consider the
conjugates of ξ because they are squares and cubes at the same times as ξ.

Let us now precise the possible choices for ξ depending on the choice of µ and
their consequences on the choice of the parameter u. We will use the following
proposition which is proved in Appendix A:

Proposition 3. Let p be an odd prime number which is equal to 1 modulo 3
(this is always the case for BN primes). Then an element is a square (resp. a
cube) in Fp2 if and only if its norm is a square (resp. a cube) in Fp.

3.8.1 The case µ = −1

In this case, the smallest complexity for m2,ξ is reached by ξ = 1 + i and equals
2A1 since

(1 + i)(a0 + a1i) = a0 − a1 + (a0 + a1)i.

Let us now study the conditions on u ensuring that 1 + i is neither a square nor
a cube in Fp2 .

Theorem 1. Let p = 36u4 + 36u3 + 24u2 + 6u + 1 be a BN prime with u odd
(thus Fp2 can be de�ned by i =

√
−1). Then 1 + i is neither a square nor a cube

in Fp2 if and only if u = 7 or 11 modulo 12. In this case, Fp12 can be de�ned
over Fp2 by a sixth root of 1 + i.

Proof. By Proposition 3, 1 + i is a square (resp. a cube) in Fp2 if and only if
2 = NFp2/Fp

(1 + i) is a square (resp. a cube) in Fp.

• According to Proposition 1 of Appendix A, 2 is a square in Fp if and only
if u = 0 or 1 modulo 4. Thus, in our situation, 1 + i is not a square in Fp2
if and only if u = 3 modulo 4.

• In the same way, 1 + i is not a cube if and only if 2 is not a cube which
means, according to Proposition 2 of Appendix A, that u 6= 0 mod 3.
Thus 1 + i is not a cube if and only if u = 1 or 5 modulo 6.

Combining these two congruences ends the proof.
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If 1+i cannot be chosen, ξ should be sought in the form a+ib with a > b > 0
and can be chosen if and only if a2 +b2 = NFp2/Fp

(a+ ib) is neither a square nor
a cube in Fp. The next candidate in terms of e�ciency is ξ = 2 + i for which
m2,ξ = 2A1 + 2A′1 and whose norm is 5. Combining the condition ensuring
that 5 is neither a square nor a cube given in Appendix A and the fact that
u 6= 7 or 11 modulo 12 (otherwise ξ = 1 + i can be chosen), we get that 2 + i
should be chosen to de�ne Fp12 if u = 1, 3, 13, 27, 33, 37, 41 or 57 modulo 60
but not in the 12 remaining cases (u = 5, 9, 15, 17, 21, 25, 29, 39, 45, 49, 51 or 53
modulo 60). In 3 of these cases (u = 17, 39 and 53 modulo 60), one can choose
3 + i, whose norm is 10. Of course, this study can be easily continued with
"larger" values of ξ (4 + i, 3 + 2i, ...) to be able to deal with the 9 remaining
cases. But the interest is limited here and the reader can easily do it by himself
if necessary.

3.8.2 The case µ = −2

Taking in account the results from Section 3.5, this choice should be made only
when −1 cannot be chosen to build Fp2 , that is, when u = 2 modulo 4 (−1 is a
square and −2 is not a square). In this case, the smallest complexity for m2,ξ is
reached by ξ = α =

√
−2. Let us now study the conditions on u ensuring that√

−2 is neither a square nor a cube in Fp2 .

Theorem 2. Let p = 36u4 + 36u3 + 24u2 + 6u + 1 be a BN prime with u = 2
modulo 4 (thus Fp2 can be de�ned by

√
−2 but not by

√
−1). Then α =

√
−2 is

neither a square nor a cube in Fp2 if and only if u = 2 or 10 modulo 12. In this
case, Fp12 can be de�ned over Fp2 by a sixth root of α.

Proof.

• Since −1 is a square and −2 is not, NFp2/Fp
(α) = 2 is never a square in

Fp and thus, by 3, α is never a square in Fp2 . Note that this proof is not
speci�c to the case µ = −2; it is only using the fact that −1 is a square
in Fp and µ is not.

• Since −1 is a cube, α is a cube in Fp2 if and only if 2 = −NFp2/Fp
(α) is

a cube in Fp. According to Proposition 2 of Appendix A, 2, and thus α,
is not a cube if and only if u = 1 or 2 modulo 3. Taking in account that
−1 is a square and −2 is not a square, this last condition can be rewritten
u = 2 or 10 modulo 12.

The next interesting candidate is ξ = 1 + α but it cannot be chosen since
its norm equals 3 which is always a square in Fp in the remaining case (u = 6
modulo 12). The situation is better if ξ = 2 +α whose norm is 6. Indeed, since
2 is not a square and 3 is always a square, 6 is never a square in Fp. Moreover,
since it was not possible to choose ξ = α, 2 is a cube in Fp and thus 6 is not a
cube in Fp if and only if 3 is not a cube in Fp. According to Proposition 2 of
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Appendix A, ξ = 2+α can then be chosen if u = 6 or 30 modulo 36. In this case
m2,ξ = 2A1 + 2A′1. Again, this study can be easily continued by the interested
reader with "larger" values of ξ like 3 + α to deal with the last remaining case
(u = 18 modulo 36).

3.8.3 The case µ = −5

Again, taking in account the results from Section 3.5, this case should be con-
sidered only if u = 8, 12 or 16 modulo 20 (−1,±2 are squares and ±5 are not).
The smallest complexity for m2,ξ is reached by ξ = α =

√
−5. Let us study the

conditions on u ensuring that
√
−5 is neither a square nor a cube in Fp2 .

Theorem 3. Let p = 36u4 + 36u3 + 24u2 + 6u+ 1 be a BN prime with u = 8, 12
or 16 modulo 20. Then α =

√
−5 is neither a square nor a cube in Fp2 if and

only if u = 12, 16, 28, 48, 52, 56 modulo 60. In this case, Fp12 can be de�ned over
Fp2 by a sixth root of α.

Proof. Similarly to the proof of Theorem 2, we prove that α is never a square
in Fp2 . Moreover, α is a cube in Fp2 if and only if 5 = −NFp2/Fp

(α) is a cube
in Fp. Proposition 2 of Appendix A gives a condition ensuring that 5, and thus
α, is not a cube and allows to conclude.

The next interesting candidate is ξ = 1 + α but it cannot be chosen since
its norm equals 6 which is always a square in this case. The situation is the
same for 2 +α since its norm is 9. The "smallest" usable candidates are 1 + 2α
and 3 + α whose norms are respectively 21 and 14. This will give conditions
on u modulo 7 but we leave it to the interested reader, since there are very few
concerned cases (u = 8, 32 or 36 modulo 60) and the cost of m2,ξ becomes high.

3.8.4 Recapitulative table

Finally, we gave almost all the best choices for ξ, depending on the value of u.
This is summarized in Table 4.

µ
Value of u modulo

ξ m2,ξ4 12 20 36 60

−1 1, 3

7, 11 1 + i 2A1

1, 3, 5, 9
1, 3, 13, 27, 33, 37, 41, 57 2 + i 2A1 + 2A′1

17, 39, 53 3 + i 4A1 + 2A′1
5, 9, 15, 21, 25, 29, 45, 49, 51 � �

−2 2
2, 10

√
−2 A′1

6
6, 30 2 +

√
−2 2A1 + 2A′1

18 � �

−5
0 0, 4, 8

8, 12, 16
12, 16, 28, 48, 52, 56

√
−5 A1 + 2A′1

8, 32, 36 � �
any 0, 4

√
µ M1

Table 4: Best choices of µ and ξ in terms of u
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3.9 New improvements of Fp12 arithmetic

Usually, the cost of additions is not taken in account in complexity studies
because it is assumed to be negligible. However, it is not always the case in
hardware or assembly language where the ratio between additions and multi-
plications in Fp can be as large as 0.2 to 0.5, as explained in Section 3.1. In
this case, we get some new improvements (saving of course only additions). The
�rst one is just a computational trick and is probably used in practical imple-
mentations but it is usually not explicitly written. The second one consists in
precomputing the traces of some elements of the intermediate levels of the ex-
tension tower which are involved in several operations.

Since these are new results, we chose to present them in a dedicated section.
These results could be included in our previous discussion on the choices for
building Fp12 . We did not do it for two reasons. The �rst one is that they
require some precomputations storage which is not always desirable, depending
on the context. The second one is that it has no in�uence on the choices to be
made.

3.9.1 Multiplications by ξ − 1 in Karatsuba operations

If mi,ξ−1 ≤mi,ξ, then the Karatsuba multiplication of x0 + x1β by y0 + y1β in
Fp2i can be evaluated as

x0y0 + x1y1 + (ξ − 1)x1y1 + ((x0 + x1)(y0 + y1)− x0y0 − x1y1)β,

instead of

x0y0 + ξx1y1 + ((x0 + x1)(y0 + y1)− x0y0 − x1y1)β.

Then it requires 3Mi + mi,ξ−1 + 5Ai instead of 3Mi + mi,ξ + 5Ai because
x0y0 + x1y1 is used twice.

In the same way, the Karatsuba multiplication of x0 + x1β + x2β
2 by y0 +

y1β + y0β
2 in Fp3i can be evaluated as

x0y0 + ξ((x1 + x2)(y1 + y2)− x1y1 − x2y2)

+ [(x0 + x1)(y0 + y1)− x0y0 − x1y1 + x2y2 + (ξ − 1)x2y2]β

+ [(x0 + x2)(y0 + y2)− x0y0 − (−x1y1 + x2y2)]β2.

One of the multiplications by ξ is then replaced by a multiplication by ξ − 1
compared to the formula given in 3.3.2. Of course, both in the case of quadratic
and cubic extensions, this trick also applies to Karatsuba squaring.

In the cases considered in Section 3.8, this improvement is only interesting
in the intermediate �elds (Fp4/Fp2 in the 2, 2, 3 case and Fp6/Fp2 in the 2, 3, 2
case) and allows to save some Fp additions for each Karatsuba multiplication or
squaring in Fp4 or Fp6 in the cases given in Table 5.
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ξ m2,ξ−1 m2,ξ Saving
1 + i 0 2A1 2A1

2 + i 2A1 2A1 + 2A′1 2A′1
3 + i 2A1 + 2A′1 4A1 + 2A′1 2A1

2 +
√
−2 2A1 + A′1 2A1 + 2A′1 A′1

Table 5: Savings provided by the ξ − 1 trick

Remark 6. This trick is more interesting in the case 2, 2, 3 that in the case
2, 3, 2. Indeed, a Karatsuba multiplication in Fp12 requires 6 multiplications at
the middle level in the case 2, 2, 3 (and then 6m2,ξ are replaced by 6m2,ξ−1) but
only 3 in the case 2, 3, 2. Of course, this remark also applies to sparse Fp12
multiplications and to Fp12 squarings.

3.9.2 Precomputed traces

In the case where memory is large enough, we can perform some pre-computations
to speed up the di�erent operations (i.e. Mi or Si). In particular, it could be in-
teresting to precompute the trace of an element if this element is used in several
operations (requiring its trace) in the following.

For example, assuming that x0 + x1 = trFp2i/Fpi
(x0 + x1α) is precomputed,

computing (x0 + x1α)2 in Fp2i using the Karatsuba method as in 3.2.3 requires
only 3Si +mi,µ + 3Ai instead of 3Si +mi,µ + 4Ai. The same remark holds for
all the methods for squaring or multiplying in Fp2i or Fp3i involving traces (or
more precisely sums of coordinates). It is summarized in Table 6 (notations are
those of Sections 3.2 and 3.3).

Operation Method Precomputations Saving
(x0 + x1α)(y0 + y1α) MK

2i x0 + x1, y0 + y1 2Ai

(x0 + x1α)2 SK
2i or S

C
2i x0 + x1 Ai

(x0 + x1ξ + x2ξ
2)(y0 + y1ξ + y2ξ

2) MK
3i

x0 + x1, x0 + x2, x1 + x2 6Aiy0 + y1, y0 + y2, y1 + y2

(x0 + x1ξ + x2ξ
2)2 SK

3i x0 + x1, x0 + x2, x1 + x2 3Ai

SCH
3i x0 + x1 + x2 2Ai

Table 6: Precomputing traces

Of course, we get savings only if the precomputations are used in several opera-
tions. This may hold in the arithmetic of the extension tower when an element
is used twice. For example, a schoolbook multiplication in Fp2i will use x0 both
for x0y0 and for x0y1. If these multiplications are performed with the Karatsuba
method in Fpi , precomputing the trace of x0 is interesting because it is used
twice. However, in Karatsuba operations or in complex squarings, no element is
used twice. As a consequence, this is not interesting for multiplications in Fp12
because the Karatsuba method is always used at higher levels of the extension
tower according to Sections 3.6 and 3.7. But it can be applied for squarings
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when the Chung-Hasan method is used over Karatsuba or complex arithmetic.
It can also be applied for sparse multiplications since it involves schoolbook
steps if operands have only one non-zero coe�cient. Finally, we can also pre-
compute traces if one Fp12 element is used for several multiplications, which is
usually the case in the �nal exponentiation step. Let us now give more details
about these three situations.

3.9.3 Use of precomputed traces in Fp12 squarings

Some coe�cients are used several times in Fp12 squaring if the Chung-Hasan
method is used over Karatsuba or complex arithmetic (i.e. when A1 is not very
expensive compared to M1). Indeed, we know from Section 3.3 that x0, 2x1

and x2 are used twice to compute (x0 + x1α + x2α
2)2 using the Chung-Hasan

method in Fp3i/Fpi . Thus 3Ai can be saved in SCH
3i if traces are precomputed

at the level i. We saw in Sections 3.6 and 3.7 that this method is always used
but one can do even better, depending on the way to build Fp12 .

Case 2,3,2. We saw in Section 3.6 that the Karatsuba method is usually used
for the Fp12/Fp6 squaring, so that the Chung-Hasan squaring in Fp6 is used 3
times to compute (c0 + c1γ)2 (for c20, c

2
1 and (c0 + c1)2). Of course each of them

is used only once but precomputing traces is nonetheless interesting because
trFp6/Fp2

(c0 + c1) = trFp6/Fp2
(c0) + trFp6/Fp2

(c1) which requires only one A2

instead of 2 if it is computed directly. Hence, in this case, if the Karatsuba
method is used in Fp2 , 11A1 can be saved in S12 thanks to trace precomputations
(9 from Fp6/Fp2 Chung-Hasan over Karatsuba squaring and 2 from Fp12/Fp6
Karatsuba over Chung-Hasan squaring). If the Karatsuba method is not used
in Fp2 , which means that A1 > 0.33M1, only 2A1 can be saved (from Fp12/Fp6
Karatsuba over Chung-Hasan squaring).

Case 2,2,3. We saw that when we compute (c0 +c1γ+c2γ
2)2 with the Chung-

Hasan method c0, c1 and c2 ∈ Fp4 are used twice. For example c0 is used in
c20 and in 2c0c1, so that precomputing t0 = trFp4/Fp2

(c0) saves one A2. But,

assuming that c0 = b0 + b1β, b0 ∈ Fp2 is also used twice (also in c20 and in 2c0c1
whatever the methods used) and precomputing its trace is then interesting if
the Karatsuba/complex method is used in Fp2 . Moreover for Fp4 Karatsuba
or complex operations, t0 plays the same role as b0 so that precomputing its
trace is also interesting. Finally, in this case and if the Karatsuba method is
used in Fp2 , 15A1 can be saved in S12 thanks to trace precomputations (6 from
the Fp4/Fp2 traces of the ci, 6 from the Fp2/Fp traces of the Fp2 components
of the ci and 3 from the Fp2/Fp traces of the Fp4/Fp2 traces of the ci). If the
Karatsuba method is not used in Fp2 , which means that A1 > 0.33M1, only
6A1 can be saved (from the Fp4/Fp2 traces of the ci).
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3.9.4 Use of precomputed traces in Fp12 sparse multiplications

The sparse multiplication involved in the Miller loop for the optimal Ate pairing
involves schoolbook steps if operands have only one non-zero coe�cient. Again,
the savings are depending on the way to build Fp12

Case 2,3,2. Looking at formula (1) given in Section 3.6.2, we can see that

• b0 is used in 3 Fp2 multiplications. Precomputing its trace then saves 2A1,

• b1 and the third component of c1 are used in 2 Fp2 multiplications during
the sparse product (b1 + b3β)c1, so 2A1 can be saved,

• The same holds for the sparse product (b0 + b1 + b3β)(c0 + c1),

• b3 is used twice in each of these sparse products, so 3A1 can be saved by
precomputing trFp2/Fp

(b3).

Finally, 9A1 can be saved in the sparse multiplication if traces are precomputed
(assuming that the Karatsuba method is used for Fp2 multiplications, i.e. that
A1 ≤ 0.33M1)

Case 2, 2, 3. Looking at formula (2) given in Section 3.7.2, we can see that

• b0 + b3β is used in 2 Fp4 multiplication. Precomputing its trace (b0 + b3)
saves A2,

• As a consequence of the previous point, b0, b3 and b0 + b3 are used in 2
Fp2 multiplications, so 3A1 can be saved,

• b3 is also used in the Fp4 product (c0 + c1)(b0 + b1 + b3β) so one additional
A1 can be saved,

• b1 is used in 4 Fp2 multiplications (c2b1 and c1b1) so 3A1 can be saved by
precomputing trFp2/Fp

(b1),

• c2 is used twice (in c2b1 and in c2(b0 +b3β)) so its Fp2 coe�cients are used
twice each which saves 2A1.

Finally, 11A1 can be saved in the sparse multiplication if traces are precom-
puted (assuming that the Karatsuba method is used for Fp2 multiplications,
i.e. that A1 ≤ 0.33M1, otherwise only 2A1 are saved).

In all considered cases, the saving obtained is around 10% of the total num-
ber of additions in Fp12 operations which is not negligible if the relative cost of
an addition compared to a multiplication in Fp is not small.
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3.9.5 Use of precomputed traces in the �nal exponentiation

Full multiplications in Fp12 are only used in the �nal exponentiation (in the
Miller loop, sparse multiplications are used). If the implemented exponentiation
parses the exponent from left to right (which is usually the case), then the
multiplication steps are performed with one constant term c. Hence, we can
precompute and store all the traces depending only on c. Since the Karatsuba
method is used at all levels of the extension tower (except in Fp2 if A1 >
0.33M1), we will signi�cantly reduce the number of required additions, whatever
the way to build Fp12 .

Case 2,3,2.

• MK
12 requires the Fp12/Fp6 trace of c, thus one A6 can be saved if this

trace is already precomputed. It also requires 3MK
6 with one constant

term (the 2 coordinates of c and its trace).

• Each MK
6 involving a constant term b requires 3 sums of 2 coordinates of

b, thus 3A2 can be saved if these sums are precomputed. Hence 9A2 are
saved at this level. Each MK

6 also requires 6M2 with one constant term
(the 3 coordinates of b and the 3 sums of 2 coordinates).

• Each MK
2 involving a constant term a requires the Fp2/Fp trace of a, thus

one A1 can be saved if this trace is precomputed. Hence 18A1 can be
saved at this level when the Karatsuba method is used for M2 (i.e. if
A1 ≤ 0.33M1 according to Section 3.5).

Case 2,2,3.

• MK
12 requires 3 sums of 2 coordinates of c, thus 3A4 can be saved if these

sums are precomputed. It also requires 6MK
4 with one constant term (the

3 coordinates of c and the 3 sums of 2 coordinates).

• Each MK
4 involving a constant term b requires the Fp4/Fp2 trace of b, thus

one A2 can be saved if this trace is precomputed. Hence 6A2 are saved
at this level. Each MK

4 also requires 3M2 with one constant term (the 2
coordinates of b and its trace).

• Again, one A1 can be saved for each MK
2 involving a constant term if

its trace is precomputed. Hence 18A1 can be saved at this level when
the Karatsuba method is used for M2 (i.e. if A1 ≤ 0.33M1 according to
Section 3.5).

In both cases, 42A1 can be saved for each multiplication in Fp12 involving
a constant term if its traces are precomputed. This is about 20% of the total
number of additions inM12 which is signi�cant if the relative cost of an addition
compared to a multiplication in Fp is not small. IfA1 > 0.33M1, the schoolbook
method is used for Fp2 multiplication and only 24A1 are saved in this case.
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3.10 Summary of Fp12 arithmetic

In the previous sections, we explained how to choose the tower �eld depending
on u and on the relative cost of Fp operations. We also saw that the arithmetic
choices to be made are essentially depending on the Fp2 arithmetic. Let us now
recapitulate these choices.

3.10.1 The case µ = −1

This choice can be made if u is odd and ξ can be chosen "small" in most cases :

• ξ = 1 + i if u = 7 or 11 modulo 12 and m2,ξ = 2A1,

• ξ = 2+i if u = 1, 3, 13, 27, 33, 37, 41, 57 modulo 60 andm2,ξ = 2A1+2A′1,

• ξ = 3 + i if u = 17, 39 or 53 modulo 60 and m2,ξ = 4A1 + 2A′1.

Let us �rst assume that A1 ≤ 0.33M1. In this case, the full Fp12 multiplication
and the sparse multiplication should be done using Karatsuba arithmetic at all
levels of the tower. Concerning the Fp12 squaring, the Chung Hasan method
should be used for squaring in the degree 3 extension (Fp6/Fp2 or Fp12/Fp4)
but all the other multiplications should use the Karatsuba method. The overall
complexities are summarized in Table 7. For the complexities using our new
improvements given in Section 3.9, we assumed that M12 is only used in the
�nal exponentiation and sM12 is only used in the Miller loop (which is always
the case in practice). We also assumed for simplifying that the ξ− 1 trick saves
2A1 whatever the choice of ξ (in fact it saves 2A′1 instead of 2A1 if ξ = 2 + i).
An interesting point is that, if our improvements are used, the results given in
Table 7 also hold if A1 > 0.33M1 (because less additions are required). Finally,
in this table (as well as in the following ones), K, CH, SB and C denote the
methods used for arithmetic and SB/C means that the schoolbook method is
used for multiplications and the complex method is used for squarings.

Oper-
Case

Arithmetic used
Number of operations

ation
without/with improvement

Fp2 Fp4 Fp6 Fp12 M1 A1 A′1 m2,ξ

M12
2, 3, 2

K
K

K 54
210/162

0
7

2, 2, 3 K 210/156 8

sM12
2, 3, 2

K
K

K 39
115/106

0
3

2, 2, 3 K 117/100 4

S12
2, 3, 2

K/C CH K
36

120/109 15
7

2, 2, 3 K CH 124/99 13

Table 7: Fp12 complexities if µ = −1 (assuming A1 ≤ 0.33M1 if our new
improvements are not used)

Remark 7. We can see that, if our new improvements are not used, it is slightly
better to choose a 2, 3, 2 extension tower. This is in accordance with the state of
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the art (see [20, 14, 3, 27] for example). However, our improvements take more
advantage of a 2, 2, 3 extension tower and then this way to build Fp12 becomes
the one to choose.

The other cases are quite similar so we are only giving the �nal complexities
in tables. Let us �rst give in Table 8 the Fp12 complexities if A1 > 0.33M1.

Oper-
Case

Arithmetic used Number of operations
ation Fp2 Fp4 Fp6 Fp12 M1 A1 A′1 m2,ξ

M12
2, 3, 2

SB
K

K 72
156

0
7

2, 2, 3 K 156 8

sM12
2, 3, 2

SB
K

K 52
76

0
3

2, 2, 3 K 78 4

S12
2, 3, 2

SB/C CH K
42

102 15
7

2, 2, 3 K CH 106 13

Table 8: Fp12 complexities if µ = −1 assuming our improvements are not used
and A1 > 0.33M1

3.10.2 The case µ = −2

This choice should be made if the previous one cannot, in the case where u = 2
modulo 4. Tables 9 and 10 give the complexities of Fp12 operations when ξ =√
−2 (which means, according to Section 3.8, that u = 2 or 10 modulo 12) and

when ξ = 2 +
√
−2 (which means that u = 6 or 30 modulo 36 but not 18).

Oper-
Case

Arithmetic used
Number of operations

ation
without/with improvement

M1
if ξ =

√
−2 if ξ = 2 +

√
−2

Fp2 Fp4 Fp6 Fp12 A1 A′1 A1 A′1

M12
2, 3, 2

K
K

K 54
210/168 25 224/182 32/29

2, 2, 3 K 210/168 26 226/184 34/28

sM12
2, 3, 2

K
K

K 39
115/106 16 121/112 19

2, 2, 3 K 117/106 17 125/114 21/18

S12
2, 3, 2

K/C CH K
36

129/118 37 143/132 44
2, 2, 3 K CH 133/118 35 147/132 42/37

Table 9: Fp12 complexities if µ = −2 (assuming A1 ≤ 0.33M1 if our improve-
ments are not used)

28



Oper-
Case

Arithmetic used
Number of operations

ation M1
if ξ =

√
−2 if ξ = 2 +

√
−2

Fp2 Fp4 Fp6 Fp12 A1 A′1 A1 A′1

M12
2, 3, 2

SB
K

K 72
156 25 170 32

2, 2, 3 K 156 26 172 34

sM12
2, 3, 2

SB
K

K 52
76 16 82 19

2, 2, 3 K 78 17 86 21
S12 2, 3, 2

SB
K C

48
108 24 120 30

S1=M1 2, 2, 3 K/C CH 106 32 126 42
S12 2, 3, 2

SB
CH K

47.4
93 37 107 44

S1=0.8M1 2, 2, 3 K CH 97 35 111 40

Table 10: Fp12 complexities if µ = −2 assuming our improvements are not used
and A1 > 0.33M1

3.10.3 The case µ = −5

This choice should be made if the previous ones cannot, in the case where u =
8, 12 or 16 modulo 20. Tables 11 and 12 give the complexities of Fp12 operations
when ξ =

√
−5 which means, according to Section 3.8, that u = 12, 16, 28, 48, 52

or 56 modulo 60 (but not 8, 32 or 36).

Oper-
Case

Arithmetic used
Number of operations

ation
without/with improvement

Fp2 Fp4 Fp6 Fp12 M1 A1 A′1

M12
2, 3, 2

K
K

K 54
225/183 50

2, 2, 3 K 226/184 52

sM12
2, 3, 2

K
K

K 39
131/122 32

2, 2, 3 K 134/123 34

S12
2, 3, 2

K/C CH K
36

151/140 50
2, 2, 3 K CH 155/140 48

Table 11: Fp12 complexities if µ = −5 (assuming A1 ≤ 0.33M1 if our improve-
ments are not used)

Oper-
Case

Arithmetic used Number of operations
ation Fp2 Fp4 Fp6 Fp12 M1 A1 A′1

M12
2, 3, 2

SB
K

K 72
181 50

2, 2, 3 K 182 52

sM12
2, 3, 2

SB
K

K 52
92 32

2, 2, 3 K 95 34

S12
2, 3, 2

SB/C CH K
42

133 50
2, 2, 3 K CH 137 48

Table 12: Fp12 complexities if µ = −5 assuming our improvements are not used
and A1 > 0.33M1
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3.10.4 The case µ large

This choice should be made if u = 0 or 4 modulo 20 and we assume that
ξ =

√
µ since it is always possible to choose such a µ. In this case, we have

m1,µ = m2,ξ = M1 and the complexities of Fp12 operations are given in Tables
13 and 14.

Oper-
Case

Arithmetic used
Number of operations

ation
without/with improvement

Fp2 Fp4 Fp6 Fp12 M1 A1 A′1

M12
2, 3, 2

K
K

K
79 210/168

0
2, 2, 3 K 80 210/168

sM12
2, 3, 2

K
K

K
55 115/106

0
2, 2, 3 K 56 117/106

S12
2, 3, 2

K
K C 54 144/133 6

2, 2, 3 K/C CH 58 142/127 10

Table 13: Fp12 complexities if µ is large (assuming A1 ≤ 0.33M1 if our improve-
ments are not used)

Oper-
Case

Arithmetic used Number of operations
ation Fp2 Fp4 Fp6 Fp12 M1 A1 A′1

M12
2, 3, 2

SB
K

K
97

156 0
2, 2, 3 K 98

sM12
2, 3, 2

SB
K

K
68 76

0
2, 2, 3 K 69 78

S12 2, 3, 2
SB

K C 66 108 6
S1=M1 2, 2, 3 K/C CH 70 106 10
S12 2, 3, 2

SB
K C 66 108 6

S1=M1 2, 2, 3 K/SB CH 73.6 82 16

Table 14: Fp12 complexities if µ is large assuming our improvements are not
used and A1 > 0.33M1

3.10.5 Some remarks

Looking at these tables, we can make some interesting remarks:

• As noticed in Remark 7 building Fp12 with a 2, 3, 2 tower remains prefer-
able in most cases to a 2, 2, 3 tower if our new improvements are not used
but this is no longer the case if there are used. Anyway, the di�erence
between the complexities of the two choices for building Fp12 is negligible.

• As already mentioned, the choice of µ has a great in�uence on the number
of additions involved in Fp12 arithmetic, so it should be chosen �rst, even
if the choice of ξ is not optimal in this case. For example, it is better to
take µ = −2, ξ = 2 +

√
−2 than µ = −5, ξ =

√
−5.
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• Our new improvements have a signi�cant impact on Fp12 arithmetic if
Fp additions are costly which, as explained in Section 3.1, is often the
case in low level implementations. For example if A1 = 0.25M1 (which
is probably not far from the average cost of additions in hardware im-
plementations), our improvements are providing a gain between 6 and
13% on Fp12 arithmetic (and then on pairing computation). In fact the
gain is even not so negligible if Fp additions are cheap (like in software
implementations). For example, if A1 = 0.1M1, it is between 3 and 7%.

• The cost of Fp squaring (with respect to Fp multiplication) and Fp dou-
bling (with respect to Fp addition) have very few impact on the choices
to be made for Fp12 arithmetic.

4 Choosing u

The parameter u is involved at several levels of the pairing computation, so that
the best choice is not trivial to do. Let us summarize the constraints on u that
we have to deal with in order to make a good choice.

• The parameter u is de�ning the security level. Indeed, it is both parametriz-
ing the size of the elliptic curve (whose prime order is 36u4 +36u3 +18u2 +
6u + 1) and the number of elements of the target �nite �eld (which is
(36u4 + 36u3 + 24u2 + 6u+ 1)12).

• It is involved as an exponent in the Miller loop. More precisely, in the case
of an optimal Ate pairing, the exponent of the Miller loop is 6u + 2. In
order to optimize this step, u should be chosen such that 6u+ 2 is sparse.

• It is involved as an exponent in the �nal exponentiation. If the addition
chain given in Section 2.4 is used, u is directly used (three times) as
an exponent, so it should be sparse to ensure a fast �nal exponentiation.
Other �nal exponentiation methods may involve exponentiations by 6u+5
and 6u2 + 1 [21, 23] or 6u+ 4 [23] but these quantities are usually sparse
at the same time as u.

• The sign of u has no consequence in terms of complexities of the algo-
rithms involved. Indeed, changing u in −u costs an Fp12 inversion, but
this inversion can be replaced by a conjugation in Fp12/Fp6 thanks to the
�nal exponentiation.

• Choosing u with a signed binary representation (to facilitate the research
of a sparse u) is possible if the exponentiation algorithms are adapted.

• The choice of u has a great impact on Fp12 arithmetic. The work done in
Section 3 shows that the choice of the extension tower is a direct conse-
quence of the value of u modulo 12, 20, 36 or 60. It is summarized in Table
4. The best choice is u = 7 or 11 modulo 12 so that we can use µ = −1
and ξ = 1 + i. Depending on the situation, it could be better to choose a
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sparser u 6= 7, 11 modulo 12 or reciprocally a u of higher Hamming weight
but congruent to 7 or 11 modulo 12.

Hence u should be chosen as sparse as possible and with the best possible way
to build Fp12 . Moreover, its size must ensure the right security level. For exam-
ple, at the 128-bit security level, u should be a 63-bit integer. A 95-bit integer
provides a 192-bit security level on the elliptic curve but not in Fp12 . To get
this level of security, a 169 or 170-bit integer u should be chosen.

Thanks to the results of Section 3.8, �nding an appropriate value of u can
be easily done by an exhaustive search with any software which is able to check
integer's primality. Unfortunately, only few values of u with very low Hamming
weight can be found. The best choice at the 128-bit security level is given by
u = −261 − 255 − 1 [44], even if it is ensuring a slightly smaller security level
than 128. It has weight 3 and is congruent to 11 modulo 12, so that µ = −1
and ξ = 1 + i can be used to build Fp12 (and to twist the curve). For these
reasons, it is widely used in the literature. However, relaxing the constraint on
the weight of u allows to generate many good values of u (of weight 4, 5 or 6 for
example) that can be used in a database of pairing friendly parameters or for
higher (or smaller) security levels.

5 Choosing the groups involved

5.1 Choosing the elliptic curve

Choosing the curve is not di�cult once u is chosen. Indeed, the base �eld Fp
and the cardinality of the curve r are �xed by the BN parametrisation given in
Section 2.1. Then, we only have to �nd b ∈ Fp such that the curve de�ned by
the equation

E : y2 = x3 + b

has cardinality r. Because of the form of the equation and of the existence
of a sextic twist, there are only 6 isomorphism classes over Fp. So, if b is
randomly chosen, there is about one chance in 6 that #E (Fp) = r. Checking
the cardinality is easily done by verifying that rP = OE for some P ∈ E(Fp).

Remark 8. We will see in Section 6 that the coe�cient b is involved in the
elliptic curve arithmetic, so that it is better to choose it small.

However, E is not the only curve to choose, we also have to choose its twist
E′. If ξ is the Fp2 element chosen to de�ne Fp12 , E′ is de�ned over Fp2 by the
equation

y2 = x3 + b′,

where b′ = b/ξ or b′ = bξ, such that r divides the cardinality of E′. This is the
case for exactly one of the two choices for b′ [2]. Again, the correct choice for b′

is done by checking the cardinality of E′, thanks to some point in E′(Fp2).
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Since E(Fp) has prime order, it is naturally protected against subgroup at-
tacks which exploit small prime divisors of the cofactor [38]. However, this is
not the case of E′(Fp2) whose order equals r(2p − r). For example, the value
of u given in Section 4, and usually used in the literature for the 128-bit se-
curity level, is not naturally protected against subgroup attacks. This can be
prevented by using (possibly expensive) membership tests. If we want to avoid
these tests, the parameter u should be chosen such that both r and 2p − r are
prime numbers [5].

5.2 Choosing the generators

In this section, we present an explicit method to construct the points P and Q
potentially involved in the optimal Ate pairing computations. Since E(Fp) has
prime order r, it is trivial to �nd a suitable candidate for P : any point P 6= OE
has order r.

However, generating a suitable point Q seems less easy because it must be
of order r in E

(
Fp12

)
, come from the twisted curve and be an eigenvector for

the eigenvalue p of the Frobenius map. In fact, it is not so di�cult because the
last condition is a consequence of the other ones [29]. Finding a suitable point
Q is then done in the following way:

1. Choose a random point Q′ in E′(Fp2).

2. If Q′ has not order r (which is statistically always the case), replace it by
(p− 2r)Q′ which has order r since #E′(Fp2) = (p− 2r)r.

3. If Q′ = OE′ then repeat steps 1 and 2.

4. Map Q′ to E
(
Fp12

)
thanks to the twist isomorphism between E and E′

over Fp12 . If b′ = b/ξ this is nothing but

Q =
(
xQ′γ

2, yQ′γ
3
)
if γ6 = ξ.

Then Q is a valuable candidate, in particular it lies in the p-eigenspace of π.

6 Choosing the system of coordinates

In this section, we give the formulas for adding and doubling points on BN
curves (with the line computation) and their complexities in the a�ne and the
projective cases (it is now well known that Jacobian coordinates are always less
e�cient than projective coordinates for pairing computations [18]). This allows
to determine which system of coordinates should be chosen, depending on the
context. Assuming the previous choices, the two operations involved in the
Miller loop are
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The doubling step. In this step, we have to

- double a temporary point T =
(
xT γ

2, yT γ
3
)
∈ E

(
Fp12

)
with xT , yT ∈ Fp2 ,

- compute the tangent line to E at T ,

- evaluate it at P = (xP , yP ) ∈ E (Fp).

The addition step In this step, we have to

- addQ =
(
xQγ

2, yQγ
3
)
and T =

(
xT γ

2, yT γ
3
)
in E

(
Fp12

)
with xQ, yQ, xT , yT ∈

Fp2 ,

- compute the line passing through T and Q,

- evaluate it at P = (xP , yP ) ∈ E (Fp).

6.1 A�ne coordinates

The slope of the line passing through T and Q (or the tangent line at T if
T = Q) is λγ, with

λ =
yT − yQ
xT − xQ

(
or λ =

3x2
T

2yT

)
.

Then T +Q (or 2T ) can be written in the form
(
xT+Qγ

2, yT+Qγ
3
)
with

xT+Q = λ2 − xT − xQ and yT+Q = λ (xT − xT+Q)− yT .

The equation of the line involved in the operation is y = λγ
(
x− xT γ2

)
− yT γ3,

thus the Fp12 element involved in the update of f in Algorithm 1 is

` = yP − λxP γ + (λxT − yT ) γ3.

Assuming that −xP is precomputed, the cost of the addition step (including
the line computation) is then I2 + 3M2 + S2 + 2M1 + 7A2 and the cost of the
doubling step is I2 + 3M2 + 2S2 + 2M1 + 5A2 + 2A′2.

Remark 9. Since λ is used three times in Fp2 operations (λ2, λ (xT − xT+Q)
and λxT ), 2A1 can be saved using our idea of precomputing its trace if the
Karatsuba/complex methods are used for Fp2 arithmetic. In the same way, xT
is used twice in the doubling step so that an additional A1 can be saved in this
case.

6.2 Projective coordinates

In order to avoid inversions in Fp2 , projective coordinates are used for the point
T , so that T =

(
XT γ

2, YT γ
3, ZT

)
with XT , YT and ZT ∈ Fp2 . However, the
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point Q is kept in a�ne coordinates (mixed addition method). According to
[18], 2T =

(
X2T γ

2, Y2T γ
3, Z2T

)
with

X2T = 2XTYT (Y 2
T − 9bZ2

T )

Y2T =
(
Y 2
T + 9bZ2

T

)2 − 12(3bZ2
T )2

Z2T = 8Y 3
TZT

and the equation of the tangent to the curve at T is (up to some sub�eld
multiple)

` = 2yPYTZT − 3xPX
2
T γ +

(
Y 2
T − 3bZ2

T

)
γ3.

Assuming that −3xP is precomputed, the doubling step (including the line com-
putation) then requires 2M2 + 7S2 + 4M1 + 13A2 + 5A′2 + 2m1,b. In order
to obtain this complexity, the double products like 2XTYT are computed by
(XT + YT )2 − X2

T − Y 2
T . This trick is not always interesting over Fp (e.g. if

M1 = S1) but it is always interesting over Fp2 because S2 is clearly cheaper
than M2 according to Section 3.5.

In the same way, if

N = YT − yQZT ,
D = XT − xQZT (so that λ = N

D ),

X = N2ZT −XTD
2 − xQD2ZT ,

we compute the addition step with

XT+Q = DX

YT+Q = N(xQD
2ZT −X)− yQD3ZT

ZT+Q = D3ZT

` = yPD −NxP γ + (NxQ −DyQ) γ3.

Assuming that −xP is precomputed, this requires 12M2 + 2S2 + 4M1 + 7A2.

Remark 10. Again, many Fp2 operands are used several times during the com-
putation, so that precomputing the traces saves additions in Fp. We do not give
details here because the addition step is rarely used in the Miller loop but it is
not di�cult to see that 16A1 can be saved if Karatsuba/complex arithmetic is
used for Fp2 arithmetic.

6.3 Consequences of formulas

Several remarks can be made looking at these formulas.

The �rst one is that the in�uence of b is small since it is just involved in two
multiplications by Fp elements. Hence a sparse u or a value of u enabling a nice
choice of µ (and ξ) should be preferred, even if a very small value of b is not
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available.

The second one is that, as mentioned in Sections 3.6 and 3.7, the line ` is
of the form b0 + b1γ + b3γ

3 with bi ∈ Fp2 , thus it is sparse in Fp12 and a multi-
plication by ` is faster than a full multiplication in Fp12 .

The third one is that, as already mentioned in [34, 1, 35, 27], it can be better
to use a�ne coordinates than projective coordinates, depending on the context.
Indeed, using the complexity formula for I2 given in Section 3.2.4 and the com-
plexities obtained for the doubling step in a�ne and projective coordinates, it is
easy to verify that a�ne coordinates become interesting for this step (and then
for the full Miller loop) as soon as

I1 < 5S2 −M2 − 2S1 + 15A1 + 6A′1 + 2m1,b −m1,µ.

For example, in the case µ = −1,A1 ≤ 0.33M1, Tables 1 and 2 show that a�ne
coordinates are interesting as soon as

I1 < 7M1 − 2S1 + 20A1 + 11A′1 + 2m1,b. (3)

Depending on the way to implement Fp inversion, this inequality may hold in
practice, especially if Fp addition are not negligible. In Table 15, we give the
maximum cost of I1 for which a�ne coordinates should be chosen, depending
on the context. To make the results more readable, we assumed that S1 =
M1,A1 = A′1 and b = 2 (which is the least advantageous value for a�ne
coordinates). In any case, the non-simpli�ed result is very similar to (3).

µ Use a�ne coordinates if
−1 I1 < 5M1 + 33A1

−2 I1 < 5M1 + 41A1

−5 I1 < 5M1 + 42A1

any I1 < 13M1 + 28A1

Table 15: A�ne coordinates versus projective ones

7 Algorithms that must be used for e�cient im-

plementation

We describe here some algorithms which should not in�uence the choice of the
parameters but which are important for the e�ciency of pairing computation.

7.1 Frobenius computation

Let
a = b0 + b1γ + b2γ

2 + b3γ
3 + b4γ

4 + b5γ
5
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be an arbitrary element of Fp12 , where bj ∈ Fp2 , j = 0, . . . , 5 and γ6 = ξ ∈ Fp2 .
The Frobenius map, which consists in computing ap, can be easily written in
terms of a. In this section, we give a way to compute it e�ciently, as well as
ap

i

for i = 1, . . . , 11.

7.1.1 Computation of ap

Since the Frobenius map is linear, we have

ap = bp0 + bp1γ
p + bp2

(
γ2

)p
+ bp3

(
γ3

)p
+ bp4

(
γ4

)p
+ bp5

(
γ5

)p
,

and bpj is just the conjugate bj of bj . Therefore, we only have to study the
(
γj
)p
.

For this, we de�ne the constant

δ = ξ
p−1
6 ∈ Fp2 ,

so that γp = (γ6)(p−1)/6γ = δγ and we have

ap = b0 + b1δγ + b2δ
2γ2 + b3δ

3γ3 + b4δ
4γ4 + b5δ

5γ5.

The constants δj are only depending on the way to build Fp12 , so they can
be precomputed. Finally, computing ap requires 5M2. If precomputing the δj

is a problem in terms of memory resources, they can of course all be recovered
from δ using only 2S2 + 2M2. But in any case, δ should be precomputed since
it is very expensive to compute.

Let us �nally note that some particular choices of µ and ξ allow to improve
this computation by using a precomputed constant in Fp instead of δ ∈ Fp2 .
Some details for the most interesting cases are given in Section 7.1.4.

7.1.2 Computation of ap
2

In this case

ap
2

= b0 + b1γ
p2 + b2

(
γ2

)p2
+ b3

(
γ3

)p2
+ b4

(
γ4

)p2
+ b5

(
γ5

)p2
.

We need the new precomputed constant

ω = ξ
p2−1

6 = NFp2/Fp
(δ) ∈ Fp.

Then we have γp
2

= (γ6)(p2−1)/6γ = ωγ. Notice that ω is a primitive 6th root
of unity (because ξ is neither a square nor a cube in Fp2). In particular, we have

ω2 − ω + 1 = 0. (4)

Then

ap
2

= b0 + b1ωγ + b2 (ω − 1) γ2 − b3γ3 − b4ωγ4 − b5 (ω − 1) γ5,

and computing ap
2

requires one addition in Fp to compute ω− 1 (it can be pre-
computed but the interest is really limited) and 5 multiplications of an element
of Fp2 by an element of Fp, thus the total cost is 10M1 + A1.
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7.1.3 Generalization to the computation of ap
i

The results of the two previous sections can be generalized as follows : for
i = 1, . . . , 11, j = 0, . . . , 5, let ci,j = ωjbi/2c. Notice that it is easy to deduce
from (4) that ci,j = 1 (resp. ω, ω − 1, −1, −ω, −ω + 1) if jbi/2c = 0 mod 6
(resp. 1, 2, 3, 4, 5). We �nd that for i = 1, . . . , 11,

ap
i

= b0 + b1ci,1δγ + b2ci,2δ
2γ2 + b3ci,3δ

3γ3 + b4ci,4δ
4γ4 + b5ci,5δ

5γ5

if i is odd, and

ap
i

= b0 + b1ci,1γ + b2ci,2γ
2 + b3ci,3γ

3 + b4ci,4γ
4 + b5ci,5γ

5

if i is even.

As explained for i = 2, the ci,j can be easily deduced from ω, so that only
ω, δ and possibly the ci,jδj need to be precomputed. We also note that com-
puting ap

6

is for free, since it is nothing but the conjugation in Fp12/Fp6 .

7.1.4 Simpli�cation of the constant δ for odd powers

For some particular choices of µ and ξ, the precomputed constants for odd
powers of the Frobenius map can be simpli�ed.

The case µ = −1 and ξ = 1 + i. We proved in Section 3.8 that in this case,
u = 7 or 11 modulo 12, so p equals 7 modulo 12. Then

δ = (1 + i)
p−1
6 = (1 + i)2 p−7

12 (1 + i) = (2i)
p−7
12 (1 + i) = i

p−7
12 (1 + i)2

p−7
12 ,

thus we only need to precompute d1 = 2
p−7
12 ∈ Fp instead of δ ∈ Fp2 . Moreover,

in this case, δ = iδ so that ω = iδ2 and by (4), we get δ4 = 1 − iδ2. Finally, if
d2 = −2d2

1 and d3 = d1d2, it is easy to �nd that(
δ, δ2, δ3, δ4, δ5

)
=

(
ξd1, id2, ξd3, d2 + 1, ξ(d1 + d3)

)
if u = 11, 19 mod 24,

=
(
−ξd1, id2,−ξd3, d2 + 1,−ξ(d1 + d3)

)
if u = 7, 23 mod 24.

It is not necessary to precompute d2 and d3 because their computation requires
only M1 + S1 + A′1. Once they are computed, computing ap requires 5 mul-
tiplications of an element of Fp by an element of Fp2 , 2 additions (1 + d2 and
d1 + d3) and 3 multiplications by ξ or ξ. Finally, assuming that d1 is precom-
puted, computing ap requires 11M1 + S1 + 8A1 + A′1.

The case ξ =
√
µ. We assume that u is even (see Section 3.5.1), so p = 1

mod 12. We have
δ =
√
µ

p−1
6 = µ

p−1
12 ∈ Fp.

Therefore, multiplications by δ and its powers by Fp2 elements cost 2M1 and
δ = δ so that ω = δ2 and by (4), δ4 = δ2 − 1 (and δ5 = δ3 − δ). Finally, if δ
is precomputed, computing ap requires 11M1 + S1 + 2A1 (M1 + S1 + 2A1 to
compute the δj and 10M1 to compute the bjδj).
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7.2 Cyclotomic squaring

As mentioned in Section 2.4, the �nal exponentiation requires exponentiations
in the subgroup GΦ6(p2) of F∗p12 of elements of order dividing Φ6(p2). Since
around 3 log2 u squarings are performed during the �nal exponentiation, saving
few �eld operations for each squaring leads to a signi�cant improvement. Given
a ∈ Fp12 , the condition aΦ6(p2) = 1 combined with a description of the Frobenius
action gives algebraic relations on the coordinates of a (where Fp12 is seen as a
Fp2-vector space). Granger and Scott [26] proposed to exploit these relations to
simplify the expression of a2.

Furthermore, these relations can be used to compress the representation of a in
such a way that the square of a can be directly computed in its compressed form
(multiplications have to be performed on the non-compressed forms). In partic-
ular, Karabina's method for compressed squaring [31, 2] costs 3S2+10A2+m2,ξ

less than Granger and Scott's method (in most cases). On the other hand, the
decompression step is relatively expensive and requires an inversion in Fp2 . The
number of decompressions required for an exponentiation is at most the Ham-
ming weight of the exponent, which is assumed to be small in our situation (see
Sections 2.4 and 4), and moreover, Montgomery's simultaneous inversion trick
[41] can be used (we refer to [2] for more details). Therefore, if Fp2 inversions
are available (at a reasonable cost), Karabina's method should be used for �nal
exponentiation, otherwise, Granger and Scott's method should be chosen.

7.2.1 Karabina's method

This method is due to Karabina [31] and was slightly improved in [2]. Let
a = b0 + b1γ + b2γ

2 + b3γ
3 + b4γ

4 + b5γ
5 ∈ GΦ6(p2) \ {1}, with bj ∈ Fp2 .

The compressed representation of a is [b1, b2, b4, b5]. The full representation
(decompression) of a is obtained via the formulae

b3 =
b25ξ + 3b22 − 2b4

4b1
, b0 = (2b23 + b1b5 − 3b4b2)ξ + 1, if b1 6= 0,

b3 =
2b2b5
b4

, b0 = (2b23 − 3b4b2)ξ + 1, if b1 = 0,

for a cost of I2+2M2+3S2+4A′2+6A2+2m2,ξ+A1 (or I2+2M2+S2+2A′2+
2A2 + m2,ξ + A1 if b1 = 0). The compressed representation [B1, B2, B4, B5] of
a2 can be computed using the formulae

B1 = 2b1 + 3(S2,5 − S2 − S5)ξ B4 = 3(S2 + S5ξ)− 2b4

B2 = 3(S1 + S4ξ)− 2b2 B5 = 2b5 + 3(S1,4 − S1 − S4),

where Si,j = (bi + bj)
2 and Si = b2i , for a cost of 6S2 + 4A′2 + 16A2 + 3m2,ξ.

7.2.2 Granger and Scott's method

This method is due to Granger and Scott [26]. They worked with a tower 2, 2, 3
but their results can be easily adapted to a tower 2, 3, 2, either by using the
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same technique and the formulae from Section 7.1, or simply by expanding the
formulae for a tower 2, 2, 3.

Case 2, 2, 3. With the notations of Section 3.7, let a = c0 + c1γ + c2γ
2 ∈

Fp12 = Fp2 [γ], where c0, c1, c2 ∈ Fp4 and write

a2 = C0 + C1γ + C2γ
2,

where C0, C1, C2 ∈ Fp4 . If a ∈ GΦ6(p2), then we have the following formulae,
given in [26]

C0 = 3c20 − 2c0

C1 = 3βc22 + 2c1

C2 = 3c21 − 2c2,

where u+ vβ = u− vβ, for u, v ∈ Fp2 . Therefore, the square of a ∈ GΦ6(p2) can
be computed for a cost of 3S4 + 3A′4 + 6A4 + m4,β (using that an expression
of the form 3u + 2v = 2(u + v) + u can be computed with one doubling and 2
additions).

Case 2, 3, 2. With the notations of Section 3.6, let a = (b0 + b2β + b4β
2) +

(b1 + b3β + b5β
2)γ ∈ Fp2 [γ], where bi ∈ Fp2 , i = 0, . . . , 5, and write

a2 = (B0 +B2β +B4β
2) + (B1 +B3β +B5β

2)γ

where Bi ∈ Fp2 , i = 0, . . . , 5. If a ∈ GΦ6(p2), then we have

B0 = 3(b23ξ + b20)− 2b0

B2 = 3(b24ξ + b21)− 2b2

B4 = 3(b25ξ + b22)− 2b4

B1 = 3ξ((b2 + b5)2 − b22 − b25)) + 2b1

B3 = 3((b0 + b3)2 − b20 − b23)) + 2b3

B5 = 3((b4 + b1)2 − b24 − b21)) + 2b5.

We �nd that the square of a ∈ GΦ6(p2) can be computed for a cost of 9S2 +
6A′2 + 24A2 + 4m2,ξ.

Remark 11. According to Table 3, S4 = 3S2 +m2,ξ+4A2 in the most common
case and then it is easy to verify that the cost of squaring in the case 2, 2, 3 is
exactly the same as in the case 2, 3, 2

8 Conclusion

In this paper, we explained in details how to choose and generate the parameters
for implementing a pairing on BN curves. More precisely, we explained the
choices which should be made be made in terms of
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- pairing algorithm (Miller loop, �nal exponentiation),

- ways to build the tower �eld depending on the value of the BN parameter
u as a nice application of old elementary arithmetic results,

- Fp12 arithmetic depending on the relative cost of Fp operations on the
targeted device,

- groups involved (base elliptic curve, its twist and their generators),

- system of coordinates to be used depending on the context.

Of course, the best choices are already well-known but there are many situations
where generating other parameters is necessary (pairing parameters database,
other security levels than 126-bit, resistance to subgroups attacks, trusted pa-
rameters, ...) and this paper should help anyone interested by generating pairing
parameters depending on the target device (security level, relative cost of Fp
operations, memory resources, ...). Moreover, we used this opportunity to give
some new improvements on Fp12 arithmetic (in a pairing context) in terms of
Fp-addition because they are usually not so negligible for small devices. The
gain obtained on Fp12 arithmetic is around 10%, depending on the context and
the Fp12 operation considered.
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A Appendix

In this appendix, we prove some results on the required conditions for an element
to be a square or a cube in Fp or Fp2 , if p is a BN prime.

Proposition 1. Let p = 36u4 + 36u3 + 24u2 + 6u+ 1 be a BN prime, we have

i) −1 is a square in Fp if and only if u is even.

ii) 2 is a square in Fp if and only if u = 0 or 1 modulo 4.

iii) 3 is a square in Fp if and only if u is even.

iv) 5 is a square in Fp if and only if u = 0 or 4 modulo 5.

Proof.

i) Since p = 1 + 2u mod 4, this is a direct consequence of the classical result
stating that −1 is a square in Fp if and only if p = 1 modulo 4.

ii) It is well known that 2 is a square in Fp if and only if p = ±1 mod 8. Since
p = 1 + 6u mod 8, 2 is a square in Fp if and only if u = 0 or 1 mod 4.

iii) It is not di�cult to prove, using the quadratic reciprocity law, that 3 is a
square in Fp if and only if p = ±1 mod 12. Since p = 1 + 6u mod 12, this
holds when u is even.

iv) Again, 5 is a square if and only if p = ±1 mod 5 and it is easy to check
that this only holds when u = 0 or 4 mod 5.

Proposition 2. Let p = 36u4 + 36u3 + 24u2 + 6u+ 1 be a BN prime, we have

1. 2 is a cube in Fp if and only if u = 0 mod 3.

2. 3 is a cube in Fp if and only if u = 0, 1 or 5 modulo 9.

3. 5 is a cube in Fp if and only if u = 0, 2, 4, 6 or 8 modulo 15.

Proof.
This result is based on two old statements. The �rst one is a theorem of Fermat
stating that every prime p = 1 mod 3 can be written in the form a2 + 3b2 and
that this representation is unique (up to signs). The second one is known as
Euler's conjectures and is proven by Cox in [19]. In the cases interesting us, it
states that if p = a2 + 3b2 as above, we have

• 2 is a cube in Fp if and only if 3|b.

• 3 is a cube in Fp if and only if 9|b or 9|a± b.

• 5 is a cube in Fp if and only if 15|b or 3|b, 5|a or 15|a± b or 15|2a± b.

46



BN primes are congruent to 1 modulo 3 and the Fermat representation can be
explicitly given by

p = 36u4 + 36u3 + 24u2 + 6u+ 1 =
(
6u2 + 3u+ 1

)2
+ 3u2.

So we have b = u and a = 6u2 + 3u+ 1 and it is not di�cult to �nd for which
values of u the conditions of Euler's conjectures are satis�ed.

Proposition 3. Let p be an odd prime number which is equal to 1 modulo 3.
Then an element is a square (resp. a cube) in Fp2 if and only if its norm is a
square (resp. a cube) in Fp.
Proof.
This is not a di�cult proof and it can be done by an undergraduate student.
It is for example trivial that, if an element is a square (resp. a cube) then its
norm is a square (resp. a cube). Let us now reciprocally assume that a ∈ Fp2
and NFp2/Fp

= b2 for some b in Fp. To prove that a is a square, we �rst need to
determine the number of squares in Fp2 . For this, we study the linear map

ψ : F∗p2 → F∗p2
x 7→ x2.

The kernel of ψ is of course {±1} so that its image has cardinality p2−1
2 . This

means that there are exactly p2−1
2 squares in F∗p2 . Let us now prove that a is

one of them. Since the conjugate of a is nothing but ap, the norm of a is ap+1.
So we have ap+1 = b2 and we can raise this equality to the power of p−1

2 because
p is odd so we get

a
p2−1

2 = bp−1 = 1.

This means that a is in the kernel of the linear map

ϕ : F∗p2 → F∗p2

x 7→ x
p2−1

2 .

The kernel of this map is the set of all roots of the polynomial X
p2−1

2 − 1 and
there are at most p2−1

2 such roots since Fp2 is a �eld. On the other hand, be-
cause of Lagrange theorem, all the squares of F∗p2 are in kerϕ and we saw that

there are p2−1
2 of them. This means kerϕ is exactly the set of squares in F∗p2 so

that a is a square.

The proof is essentially the same for cubes where the kernel of ψ is made of
third roots of unity which are all lying in Fp2 since 3|p2 − 1. The condition
p = 1 mod 3 is necessary to raise a to the p−1

3 .

Corollary 1. Let p be an odd prime number and n ∈ Fp, then n is always a
square in Fp2 .
Proof. NFp2/Fp

(n) = n2 is a square in Fp so that n is a square in Fp2 according
to proposition 3.
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