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Abstract. We introduce a homomorphic batching technique that can
be used to pack multiple ciphertext messages into one ciphertext for par-
allel processing. One is able to use the method to batch or unbatch mes-
sages homomorphically to further improve the flexibility of encrypted
domain evaluations. In particular, we show various approaches to im-
plement Number Theoretic Transform (NTT) homomorphically in FFT
speed. Also, we present the limitations that we encounter in application
of these methods. We implement homomorphic batching in various set-
tings and present concrete performance figures. Finally, we present an
implementation of a homomorphic NTT method which we process each
element in an independent ciphertext. The advantage of this method is
we are able to batch independent homomorphic NTT evaluations and
achieve better amortized time.

Keywords: Homomorphic encryption, homomorphic batching, homo-
morphic number theoretic transform.

1 Introduction

Fully Homomorphic Encryption (FHE) is an encryption method that allows to
perform arbitrary circuit or function evaluations on encrypted data without the
need for decryption of the ciphertexts. The first FHE scheme is lattice-based
construction introduced by Gentry [12] in 2009. In 2010, Gentry and Halevi [15]
simplified the construction and completed the first practical FHE implementa-
tion. Even with the optimizations the FHE scheme lacked in performance, since
a crucial operation called recryption had to be performed after each bit AND
operation which was taking 30 seconds. After the first FHE implementation
many various schemes [13, 9, 4, 5, 14, 3] have emerged with different optimiza-
tion techniques on fully or somewhat homomorphic encryption (SHE). In [26]
batching and SIMD operations were introduced to pack multiple messages into
a ciphertext and thereby allow for parallel homomorphic evaluations. Other op-
erations such as bootstrapping [12], relinearization [23], modulus reduction [5,
3], key switching [3] and flattening [17] are used as key and noise management
techniques permitting the evaluation of deeper circuits with similar parameter
sizes.

In [3] Brakerski, Gentry and Vaikuntanathan implemented a leveled FHE
scheme that is capable of evaluating polynomial-size circuits by using noise man-
agement techniques. Their scheme is based on learning with error (LWE) prob-
lem. Later, the BGV scheme was implemented as a software library HElib [19]



using C++. The library was used to re-implement the homomorphic evaluation
of an earlier AES circuit [16] by Gentry, Halevi and Smart. They achieved an
amortized time of 2 seconds for 120 blocks of AES implementation. Later, [2]
presented a new tensor product technique that reduces the noise from quadratic
to linear growth. The technique is applicable to LWE schemes, i.e. BGV style
schemes. Later, López-Alt, Tromer and Vaikuntanathan (LTV) [23] proposed
an FHE scheme based on a variant of NTRU [28] that has multi key support.
Doröz, Hu and Sunar implemented the proposed LTV scheme and using it eval-
uated a custom AES circuit and a level optimized Prince block cipher circuit
[10, 11] homomorphically. These implementations were later accelerated using a
GPU by Dai et. al. [7, 8]. With GPU support, amortized timings of homomor-
phic Prince and AES evaluations reduced to 24 msec and 7.3 sec respectively.
Recently, a new approximate eigenvector FHE scheme with reduction to LWE
was proposed by Gentry, Shai and Waters (GSW) [17]. The approximate eigen-
vector, eigenvalue pairs are used in the construction and they introduce a new
noise management technique called flattening. GSW is asymptotically faster due
to the use of standard matrix operations in order to apply homomorphic addition
and multiplications. With flatting the need for costly relinearization operations
and any association storage of massive evaluation keys is eliminated.

Applications. The increasing number of new FHE schemes proposed along with
a variety of optimizations, motivated researchers to conduct experiments on their
practicality in applications. For example, Lagendijk et al. [20] give details on ap-
plicability of homomorphic encryption and multi-party computation for signal
processing operations. These signal processing operations include but are not
limited to linear filters, correlation evaluations, thresholding, signal transforma-
tions, inner product calculations and dimension reduction.

In [24], Lauter et al. focus on simple statistical operations that can be used
in real-life cloud services for medical or financial applications such as finding
the mean, the standard deviation and the logistical regression. Since these func-
tions do not have high multiplicative depth, they are not necessarily required to
be implemented using a FHE scheme, but an SHE construction is sufficient. In
the same work, they also implement the SHE scheme of Brakerski and Vaikun-
tanathan [4] using Magma algebra program. The same reference discussed how to
pack multiple message bits into a ciphertext. As noted, even though it is possible
to pack multiple ciphertexts into a single ciphertext, there are some problems.
First of all, they state that there is no known technique to unpack the messages
in the encrypted form, so they cannot retrieve the messages within a packed ci-
phertext. Secondly, arithmetic operations become limited, i.e. we cannot perform
multiplication without destroying the messages in the ciphertext.

Later, in [21] Lauter et al. investigate another homomorphic application:
genomic data computation algorithms. They measure the performance of algo-
rithms such as Pearson Goodness-of-Fit test, the D’ and r2-measures of linkage
disequilibrium, the Estimation Maximization algorithm for haplotyping, and the
Cochran-Armitage Test for Trend. Another homomorphic encryption application
on medical data is performed in [1] by Bos et al. The technique is applied on



medical data to perform private predictive analysis on the probability of cardio-
vascular disease.

There are many other homomorphic applications from various fields that are
implemented by various groups of researchers. A machine learning algorithm,
i.e. Linear Means Classifier and Fisher’s Linear Discriminant Classifier on the
Wisconsin Breast Cancer Data set, is implemented in [18] by Graepel et al..
Another application is dynamic programming that is presented by Cheon et al.
[6]. They implemented algorithms such as Hamming distance, edit distance, and
the Smith-Waterman algorithm on genomic data.

2 Motivation

The recent progress in fully homomorphic encryption schemes motivated re-
searchers to investigate applications of FHE schemes in real life problems. In
these applications, researchers face difficulties to evaluate some of the basic
primitive operations homomorphically. The lack of these homomorphic primi-
tive operations limits the applications or forces protocol changes, e.g. by moving
some of the more difficult operations to the client side. Among these primitive
operations an important and yet still open one is the homomorphic unbatching
operation. Another important operation we wish to support using a similar ap-
proach is the homomorphic evaluation of a NTT operation with applications in
signal processing. The details are as follows:

– Homomorphic Unbatching. This problem was explicitly posed by Lauter
et al. in [24]: How can we unpack information belonging to numerous clients
packed at the beginning of a homomorphic evaluation session into a single
ciphertext for efficiency. The authors mention that if there was a method
for homomorphic unbatching, a server might easily batch messages of dif-
ferent clients on a single ciphertext, process the ciphertext and later it can
homomorphically unbatch the individual results to different ciphertexts to
be delivered to the respective clients. Basically, this method helps to signif-
icantly improve the computational performance on servers by compressing
the different ciphertext messages from users into a single ciphertext for par-
allel processing. In addition it gives the option to separate these results into
different ciphertexts so that the result is only send to the owner. Here we
show a way to achieve homomorphic unbatching by using Number Theoretic
Transform homomorphically. We focus on ways to implement the homo-
morphic NTT and show the difficulties of achieving Fast Fourier Transform
(FFT) speed for homomorphic unbatching.

– Homomorphic NTT. Later, we implement homomorphic NTT using an-
other method with a focus on achieving FFT speed by holding each input
and output elements of the homomorphic NTT in a different ciphertext.
Although it is not usable for homomorphic unbatching, it can be used for
any homomorphic NTT/FFT application, e.g. filtering, large integer and
polynomial multiplication, Chebyshev approximation, efficient matrix-vector
multiplication, etc.



Our Contribution. In this work we present an array of solutions to improve
the versatility of homomorphic NTT, specifically:

– We tackle the problem of computing a number theoretical transform homo-
morphically over the domain defined by the message space. It turns out that
noise growth is a significant issue and FFT speed evaluation is difficult to
achieve without homomorphic modular reduction. We work out a solution
and provide concrete performance figures.

– Empowered by homomorphic NTT we define homomorphic batching / un-
batching which allows us to move the coefficients of encrypted message poly-
nomials into message slots and vice versa. Using homomorphic batching one
may unpack message polynomials, i.e. extract coefficients from encrypted
message polynomials; and more broadly change the processing domain on-
the-fly while evaluation proceeds.

– From a security perspective, homomorphic batching / unbatching allows
us to prevent information leakage through partial evaluation results that
accumulate in batched messages. This is of utmost concern in multi-user
settings where multiple streams of information are bundled together and
processed simultaneously.

– We implement homomorphic NTT using another method in which we en-
crypt the elements of the NTT in different ciphertexts and perform levels of
NTT computations on these ciphertexts. In the end we achieve the elements
of NTT result in different ciphertexts. This way we are able to achieve the
FFT speed, batch independent NTT operations for parallel processing and
achieve amortized time. However we are unable to compute batch/unbatch
homomorphically.

– Also, we give run-time complexity analysis on both of the proposed homo-
morphic NTT methods.

– Finally we note that homomorphic NTT is of independent interest to nu-
merous applications, e.g. filtering in digital signal processing, spectral de-
composition and analysis, etc.

3 Background

In this work, we use customized leveled FHE implementation propsed by Doröz,
Hu and Sunar (DHS) [10]. The library is written in C++ and it uses NTL soft-
ware with GMP support. The library supports the leveled multi-key FHE scheme
implementation proposed by 2012 López-Alt, Tromer and Vaikuntanathan (LTV)
[23]. It is based on a variant of Stehlé and Steinfeld’s [27] NTRU encryption with
new operation called relinearization and existing operation modulus switching
to control noise. Although, the scheme can support support multi-keys (users)
the implemented library focuses on single-key (user) implementation.

The LTV scheme is build on using the following primitives; they select a
polynomial ring as Rq = Zq[x]/〈xN + 1〉 with N being the polynomial degree
and q being the prime modulus. They also select a message prime modulus p.



In the scheme, polynomials are sampled using a truncated discrete Gaussian
distribution χ. These are also B-bounded polynomials which each coefficient of
the polynomial is selected between [−B,B]. The scheme consist of the following
primitive functions: KeyGen, Encrypt, Decrypt and Eval. The primitive Eval
consist of a multiplication operation which is later followed by a relinearization
and modulus switch operation. The relinearization and modulus switch opera-
tions are used to reduce the noise caused by the multiplication. Here we describe
the primitive functions of the LTV scheme:

KeyGen. In the scheme modulus q is decreasing sequence of prime numbers for
each level: q0 > q1 > q2 · · · > qd. We select the two consecutive modulus qi by
the size of noise at that level. We sample two polynomials g(i) ∈ χ and u(i) ∈ χ
to compute secret keys f (i) = pu(i) + 1 and public key h(i) = pg(i)f−(i) for each

level. We evaluate the evaluation keys ζ
(i)
ρ (x) = h(i)s

(i)
ρ + pe

(i)
ρ + 2ρf2(i−1) which

{s(i)ρ , e
(i)
ρ } ∈ χ and ρ = [0, blog (qi)c] for each level i.

Encrypt. We encrypt a message b ∈ Zp (or it can be a message polynomial
b(x) ∈ Zp[x]) by evaluating c(i) = h(i)s(i) + pe(i) + b by sampling {s(i), e(i)} ∈ χ
for ith level.
Decrypt. The decryption for ith level is simply achieved by evaluating: m =
c(i)f (i) (mod p).
Eval. The multiplication and summation of the ciphertexts corresponds to mul-
tiplication and addition of messages in modular p. These operations increase the
noise level of the ciphertexts and multiplication explicitly outweighs addition in
terms of noise creation. The scheme uses two significant operations to control
noise growth; relinearization and modulus switching. We summarize these two
operations as follows:

– Modulus Switching. This operation is a way of reducing the existing noise
in the ciphertexts. Basically, we perform c̃(i)(x) = b qi

qi−1
c̃(i−1)(x)ep on each

coefficient of the ciphertxt. We achieve following two things; a reduction in
the noise by log (qi/qi−1) bits and a new field Zqi for modular arithmetic. The
ceil/floor operation b·ep refers to rounding to match the parity for modular
p. An advantage of the scheme is that its performance is increased as we
switch levels due to a smaller modulus qi.

– Relinearization. This operations is necessary after each multiplication op-
eration in order to prevent the noise growth and the increase of inverse pow-
ers of secret keys f (i). Simply we are switching square power of secret key
f−2(i−1) for level i− 1 with the new secret key f (−i) of level i. We evaluate

the relinearization operation by computing: c̃(i)(x) =
∑
ρ ζ

(i)
ρ (x)c̃

(i−1)
ρ (x).

In the equation c̃
(i−1)
ρ (x) are binary polynomials that forms c̃(i−1)(x) =∑

ρ 2ρc̃
(i−1)
ρ (x).

Specializations. In DHS library [10], the decreasing modulus sequence is
selected as a power of a fixed prime, i.e. qi = σk−i. Here prime number σ is equal
to noise cutting size for each level and k is circuit depth plus one. This special
ring structure is used to promote evaluation keys to the next level when needed,



i.e. ζ
(i)
ρ (x) = ζ

(0)
ρ (x) mod qi. This reduce the key store significantly from k + 1

level of evaluation keys to 1 level of evaluation key.

3.1 Fourier Transform

Fourier Transform (FT) is a signal transformation method that is used in many
mathematical and scientific applications such as filtering, time domain and fre-
quency domain conversions, large integer multiplications and sine/cosine wave
transformations. For practical applications, Discrete Fourier Transform (DFT),
finite version of the FT, is used. DFT can be computed by simply evaluating:

Xk =

N−1∑
j=0

xje
−2πik jN ,

for each k ∈ N . This operation can also be represented as a matrix multiplica-
tion of a vector input −→x = [x0, x1, x2, . . . , xN−2, xN−1] with a special Fourier
Transform matrix W, i.e. X = W · −→x . This special Fourier Transform matrix

W has the structure of a Vandermonde matrix with entries αi,j =
(
αi
)j

and
can be represented as follows:

α0 α0 α0 . . . α0 α0

α0 α1 α2 . . . αN−2 αN−1

α2·0 α2·1 α2·2 . . . α2·(N−2) α2·(N−1)

...
...

...
. . .

...
...

α(N−2)·0 α(N−2)·1 α(N−2)·2 . . . α(N−2)·(N−2) α(N−2)·(N−1)

α(N−1)·0 α(N−1)·1 α(N−1)·2 . . . α(N−1)·(N−2) α(N−1)·(N−1)


where α = e

−2πi
N . In a näıve implementation the time complexity of the DFT

becomes O(N2). However, by using a Fast Fourier Transform (FFT) algorithm
namely Cooley-Tukey method, we can reduce the cost of the evaluation to
O(N log (N) log log (N)). The Cooley-Tukey algorithm is based on re-expressing
the DFT equation into summation of two sub-DFT equations:

Xk =

N−1∑
j=0

xje
−i2πk jN =

N/2−1∑
m=0

x2me
−i2πk m

N/2

︸ ︷︷ ︸
Even

+ e
−2πik
N

N/2−1∑
m=0

x2m+1e
−i2πk m

N/2

︸ ︷︷ ︸
Odd

As shown on the equation above, summation on the left calculates the DFT of
the even indices and the summation on the right calculates the DFT of the odd
indicies. These odd/even DFT summations can also be re-expressed as summa-
tion of sub -odd and -even indicies. This procedure can be applied recursively
until the DFT size is small enough to be evaluated fast enough. Later, the FFT
can be calculated by reconstructing the calculated sub-DFT’s by going into up-
per levels in the recursive function.



3.2 Number Theoretic Transform

Number Theoretic Transform is a specialization of DFT over the ring Z/pZ by

replacing e−i2πk
j
N with N th primitive root of unity ω. One of the most common

usage of the method is to evaluate large integer or polynomial multiplications.
It prevents the errors that might be caused by the floating point arithmetic of
FFT and provides precise arithmetic evaluations. We can compute the NTT by
simply evaluating:

Xk =

N−1∑
j=0

xjω
k·j (mod p),

where −→x is again the input vector, p is the prime modulus and k ∈ N . The

inverse-NTT of the evaluated vector
−→
X is computed using the same equation by

replacing ω with ω−1 (mod p):

xk =

N−1∑
j=0

Xjω
−k·j (mod p).

Thus the transformation matrix W and the inverse transformation matrix W−1

becomes:
1 1 . . . 1
1 ω . . . ωN−1

...
...

. . .
...

1 ωN−1 . . . ω(N−1)·(N−1)

 and


1 1 . . . 1
1 ω−1 . . . ω−(N−1)

...
...

. . .
...

1 ω−(N−1) . . . ω−(N−1)·(N−1)


respectively. Using the Cooley-Tukey approach that is explained in the previous
section, the NTT conversion can achieve runtime of O(N log (N) log log (N)).

4 Homomorphic NTT

In this section we give two methods to perform homomorphic NTT and discuss
their advantages and disadvantages. In the first method we show that we are
able to homomorphically batch/unbatch messages on a single ciphertext, but
also show that it has limitations to achieve FFT speed. In the second method
we show that we can overcome the problem and achieve FFT speed, but we need
to use N ciphertexts for the input of the NTT. Also, we are able to batch the
messages to form a single ciphertext result but we are unable to unbatch the
messages for further processing.

4.1 Homomorphic Batching/Unbatching

Batching is a powerful data encoding technique when used in homomorphic
computing, yields great versatility in the computations and greatly improves
performance. To this end the data is first embedded into message slots. The



message slot contents are then encoded into a polynomial representation with
the help of the (inverse) Chinese Remainder Theorem. The encoded message
polynomial is then encrypted. Once batched messages are encoded, then they are
processed in independent homomorphic evaluation paths. Once the evaluations
are completed, the output message polynomial is decoded and the message slot
contents are retrieved using the CRT residue computation.

To overcome this difficulty we need a transformation that is capable to bring
the message slot contents into the coefficients in the polynomial representation
and back while all data is maintained in encrypted form. The homomorphic
evaluation needed here is the equivalent to a CRT and its inverse computation.
We briefly define homomorphic batching as follows.

Definition 1 (Homomorphic Batching). The isomorphism Zp[x]/(Φ(x)) ∼=
Zp[x]/(x− ζ)×Zp[x]/(x− ζ2)× · · · ×Zp[x]/(x− ζN−1) where Φ(x) =

∏
(x− ζi)

denotes the characteristic polynomial in Zp of degree N − 1 and ζ denotes N th

root of unity in Zp. We refer to the homomorphic evaluation of the isomorphism
and its inverse as homomorphic unbatching and batching, respectively.

From a computational perspective, the encoding/decoding operations both
amount to the evaluation of a linear transformation on the message slot/polynomial
coefficients, respectively. For instance, the message polynomial m(x) is decoded
as M = 〈m(ζ),m(ζ2), . . . ,m(ζN−1)〉. The encoding function may be computed,
for example, using Lagrange interpolation. For computations may be expressed
as linear transformations as Decode(m(x)) = Wm̄ and Encode(m̄) = W−1M
where [W]ij = ζij ∈ Zp. The operation appears simple enough since modulo p
operations is the natural domain of the homomorphic evaluations and since all
we need to compute is constant multiplications by powers of ζ. Typically, when
batching in cleartext we compute the encoding and decoding operation with the
aid of an N th root of unity ζ ∈ Zp via a number theoretical transform (NTT) to
gain FFT speed, i.e. O(N log(N)) encoding/decoding performance. However, the
structure of the cyclotomic polynomial have limitations that prevents us from
directly evaluating NTT.

Limitations. The message slots present independent computation paths. To
compute the linear transformation we need to sum the scaled message slot con-
tents. Thus we need a means to move the message slot contents. We therefore
use Φ(x) =

∏
i∈[N−1](x − ζb

i

) where b is a primitive element of Z∗N . Then by

evaluating m(xb) will rotate the message slot contents. The side-effect of this
shift operation on a ciphertext is that the key is altered during the evaluation
process:

c(xb) = pg(xb)s(xb)f−1(xb) + pe(xb) +m(xb)

The ciphertext will still decrypt correctly since g(xb), s(xb) and e(xb) will have
small norm. However, to decrypt the ciphertext the key needs to be updated to
f(xb). To restore the original key we may use key switching: L.KeySwitch(c(xb), θ)
where θ =

{
L.Encrypt(wτf(xb)τ ) for τ ∈ [log q]

}
. With this approach we can

rotate the message slot contents an arbitrary i positions by evaluating the ci-



phertext polynomial as c(xb
i

) and then by applying a key switching operation

with f(xb
i

).
Here the problem lies with the selection of cyclotomic polynomial Φ(x) as

the modulus. It gives a decoding matrix W as:
α0 α1 α2 . . . αN−2 αN−1

α2·0 α2·1 α2·2 . . . α2·(N−2) α2·(N−1)

...
...

...
. . .

...
...

α(N−2)·0 α(N−2)·1 α(N−2)·2 . . . α(N−2)·(N−2) α(N−2)·(N−1)

α(N−1)·0 α(N−1)·1 α(N−1)·2 . . . α(N−1)·(N−2) α(N−1)·(N−1)


and an encoding matrix W−1 (mod p). The formed matrices W and W−1 of
Φ(x) are not Vandermonde matrices, therefore we are unable to apply Cooley-
Tukey’s algorithm. Since we cannot apply the even-odd splitting trick, we are
unable to apply fast NTT.

We can solve W and W−1 not being Vandermonde matrices by switching
the cyclotomic polynomial Φ(x) with xN − 1 which has the following form:

xN − 1 = (x− 1) · Φ(x) =

i=N−1∏
i=0

(x− ζi),

where N is power of 2. This converts the batching operation to be applicable
using Vandermonde matrix multiplication which is suitable for fast NTT using
Cooley-Tukey. Although scheme is suitable for fast NTT, we are not able to
rotate the messages as in cyclotomic polynomials. The message in the first slot,
i.e. in (x− ζ0), never rotates in function f(xb

i

) for any i.

Homomorphic Batch/Unbatch. With the issues addressed above, we are
able to compute homomorphic unbatching by the following equation:

L.Unbatch(c) =
∑
s∈N

c(s) · Encode
(
(Wrot)>[s]

)
.

Here c(s) represents the rotated versions of the ciphertext (and message) coeffi-
cients by s positions. Wrot is the transformation matrix where each row index
i is rotated by i. The symbol > represents the transpose of the matrix and [s]
is used for the row index s of the matrix. In case of batching we only replace
W with W−1. The all operation requires only one level of circuit depth for
evaluation.

Packing/Unpacking. Packing and unpacking messages in homomorphic en-
cryption is useful for processing the information in parallel by batching/unbatching
multi-user information. In multi-user scenarios where we have many users that
provides input for a process, we can pack the informations to efficiently process.
In word message space we can input N user information into the same chipertext
that will provide N times speedup for information processing. In [24] Lauter et



al. show how to pack the messages from multiple ciphertexts into one cipher-
text. They mention that they cannot present a technique to unpack messages
which restricts their computations. After a packing operation the polynomial
multiplications rounds and deforms the information because of the polynomial
modulus. Our main motivation here was to transfer the message slot contents
into the polynomial coefficients and back. However, we achieve unpacking, which
is regarded as difficult to achieve, with the aid of homomorphic batching. We

may unpack the kth coefficient c(k) = L.Encrypt(mkx
k) and c =

(∑
i∈[N ]mix

i
)

with the following steps:

– Push coefficients into the message slots c̃ = L.Unbatch(c) ∈ R,
– Filter desired coefficient(s) by multiplying with constant cleartext mask
µk(x) = NTT−1(Ik),

– Push message slot contents back into coefficients by homomorphic batching
c(k) = L.Batch( ˜cµk(x)) ∈ R.

The packing/unpacking operation enables to do privatization in the homo-
morphic encryption. We may easily batch the information for parallel processing
and later send the result informations for filtering the results for each users in
multi-user scenarios. This prevents the information leaks while returning the re-
sults to the users, since we are able to eliminate the results of other users from
the ciphertext.

4.2 Homomorphic NTT Using Parallel Batching

There is an alternative and straightforward way to implement homomorphic
NTT that is not limited by the issues given in the previous section. We can
encrypt each message to be used in the NTT separately: ci = hsi + pei + mi.
Then, we can compute the fast NTT using the Cooley-Tukey as:

Ck =

N−1∑
j=0

cjζ
jk =

N/2−1∑
j=0

c2jζ
2jk

︸ ︷︷ ︸
Even

+ ζjk
N/2−1∑
j=0

c2j+1ζ
2jk

︸ ︷︷ ︸
Odd

, where ζ is the N th primitive root of p. Since each message is in an independent
ciphertext, we can easily divide them into even and odd indicies. This way we
can easily compute the fast NTT of the input. However there are two main issues
with the scheme that limits the operation:

– The modulo p reduction does not take place until the very end of the de-
cryption step, i.e. L.Decrypt(c) = dcfcq mod p. Therefore, intermediate re-
sults will accumulate powers of w, which likely will cause a wraparound and
decryption failure. One alternative is to aggressively apply noise reduction,
e.g. modulus switching, even for the constant multiplications. However, this
will increase the evaluation levels significantly. For instance, even a moderate
N = 213 would add 13 evaluation levels. To overcome noise accumulation we



abandon FFT style evaluation and instead only multiply with precomputed

W,W−1 ∈ Z(N−1)×(N−1)
p̃ .

– The number of ciphertexts increase to the number of NTT elements, i.e. N in
our case, from a single ciphertext. This increases the ciphertext input size by
N times and it is equal to N2 log q. More than the computational complexity,
it increases the I/O transactions of the scheme significantly. Although we
have N ciphertexts at the end, we can simply batch them by evaluating:

i=N−1∑
i=0

Ck · xi.

This solves the issue of having many ciphertexts. However, we are unable to
unbatch the values in the equation which limits further processing. We can
access the values individually only after a decryption operation.

Although we are not able to batch the dependent elements in a fast NTT
operation, we are able to batch N independent fast NTT operations. Basically,
we are able to use the empty message slots to evaluate N parallel fast NTT
operations. This way we are able to achieve an amortized time that is N times
better than the total runtime.

5 Complexity Analysis

Here we discuss the complexity of the two proposed algorithms. In homomorphic
batching we need to compute N multiplications of ciphertext with a polynomial
formed by the row values of W. Using a large polynomial multiplication algo-
rithm, such as Schönhage-Strassen algorithm, we achieve a run-time complexity
of O(N logN log logN). Furthermore, we have to perform key-switching opera-
tions to the ciphertexts to correct the public keys that are corrupted in rotation
operation. This is a similar operation to the relinearization, so we can apply the
time complexity of relinearization in [10] for key-switching as well. We have N
key-switching operations with run-time complexity ofO(log (q)N logN log logN).
In total the algorithm has a run-time complexity of O(log (q)N2 logN log logN).

In the second algorithm, i.e. homomorphic NTT using parallel batching, we
have logN stages of NTT operations. Each stage N multiplications of a constant
with a ciphertext which makes N2 coefficient multiplications per stage. In total
the algorithm has run-time of O(N2 logN).

An important thing to note is that the complexity analysis takes into account
only the number of coefficient multiplications. It does not include the run-time
complexity of the coefficient multiplications. In the first case we have small and
fix size coefficients which gives an advantage in real time applications against the
second method. The second method has larger coefficients because of the leveled
implementation. Thus it takes longer time to process the second method even
though the run-time complexity of the method is smaller in terms of number of
coefficient multiplications.



6 Implementation Results

We implemented the algorithms using a leveled LTV scheme using Shoup’s NTL
library version 9.0 [25] compiled with the GMP 5.1.3 package. For parameter
selection we utilized the two Hermite factor analysis using the formula in [22],
i.e. 1.8/ log δ − 110. The security level of the experiments varies on the settings,
but each setting has at least 100-bit security.

In the homomorphic NTT using homomorphic batching we use special cyclo-
tomic polynomial Φm(x), where we set m as a prime number to have Φm(x) =
x0 + x1 + x2 + · · · + xN , to perform faster modular reduction. The results are
summarized in Table 1. In the algorithm we have one constant polynomial mul-
tiplication and N additions, so our prime modulus q does not grow too large.
The values of N are chosen to be close to as powers of two, i.e. 2048, 4096, 8192.
The message slots are used for the same NTT operation so there is no amortized
time.

In the second case, we compute homomorphic NTT by using parallel batch-
ing. We choose the polynomial degreeN = 16384 and modulus bitsize log q = 512
which are slightly higher values compared to the first algorithm. The reason be-
hind this is that we need to handle the noise in stages, so the modulus q grows
significantly. Our implementation achieves a runtime of 108 minutes. Since we
are able to batch N independent homomorphic NTT computation, we achieve
0.4 second of amortized time.

N log q Security Total Time
(in bits) (in minutes)

2080 64 140 2.5
4252 64 400 10.7
8782 64 943 43

Table 1. Timings for Homomorphic Batching/Unbatching operation.

7 Conclusion

To improve the versatility of homomorphic encryption applications, we tack-
led another challenging problem, i.e. the problem of moving data in encrypted
form from the message slots into the message polynomial coefficients and back.
We called this operation homomorphic batching/unbatching. Via homomorphic
batching one can extract coefficients and achieve unpacking operations easily.
In addition, the batching operation enabled via a homomorphic NTT operation,
which will be of interest for numerous signal processing applications.
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