
Compact Attribute-Based Encryption and
Signcryption for General Circuits from Multilinear

Maps∗

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur

Kharagpur-721302, India
{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. Designing attribute-based systems supporting highly expressive access policies has been
one of the principal focus of research in attribute-based cryptography. While attribute-based encryp-
tion (ABE) enables fine-grained access control over encrypted data in a multi-user environment,
attribute-based signature (ABS) provides a powerful tool for preserving signer anonymity. Attribute-
based signcryption (ABSC), on the other hand, is a combination of ABE and ABS into a unified
cost-effective primitive. In this paper, we start by presenting a key-policy ABE supporting general
polynomial-size circuit realizable decryption policies and featuring compactness. More specifically,
our ABE construction exhibits short ciphertexts and shorter decryption keys compared to existing
similar works. We then proceed to design a key-policy ABSC scheme which enjoys several interesting
properties that were never achievable before. It supports arbitrary polynomial-size circuits, thereby
handles highly sophisticated control over signing and decryption rights. Besides, it generates short
ciphertext as well. Our ABE construction employs multilinear map of level n + l + 1, while that
used for our ABSC scheme has level n + n′ + l + 1, where n, n′, and l represent respectively the
input length of decryption policy circuits, input size of signing policy circuits, and depth of both
kinds of circuits. Selective security of our constructions are proven in the standard model under the
Multilinear Decisional Diffie-Hellman and Multilinear Computational Diffie-Hellman assumptions
which are standard complexity assumptions in the multilinear map setting. Our key-policy construc-
tions can be converted to the corresponding ciphertext-policy variants achieving short ciphertext by
utilizing the technique of universal circuits.

Keywords: ABE for circuits, ABSC for circuits, polynomial-size circuits, multilinear map.

1 Introduction

ABE: The recent advancements in online social networks and cloud technology have triggered an
emerging trend among individuals and organizations to outsource potentially sensitive private
data to external servers. This necessitates enforcing sophisticated access control while sharing
the outsourced data with other individuals or organizations. Attribute-based encryption (ABE),
introduced by Sahai and Waters [SW05], offers a natural solution to the above scenario by
enabling fine-grained management of decryption rights to encrypted data. ABE comes in two
flavors, namely, key-policy and ciphertext-policy. In the key-policy version of ABE, a ciphertext
encrypts a message M with respect to a public vector, called an encryption input string, x of
Boolean variables representing a set of descriptive attributes. An entity can obtain a private
decryption key SK(DEC)

f from a trusted key generation center only if the center deems that the
requesting entity is entitled to possess the key. Here, f is some Boolean function belonging to
some class of allowable Boolean functions expressing decryption policies. SK(DEC)

f can be utilized
to recover the message M from the ciphertext if and only if f(x) = 1. In a ciphertext-policy ABE
system, the roles of f and x are reversed: They are associated to ciphertexts and decryption
keys respectively.
∗ This is the full version of the paper that appeared in Proceedings of the 16th Progress in Cryptology Conference

(INDOCRYPT 2015), LNCS 9462, pp. 3–24, Springer.

2 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

A central theme of research in the field of ABE has been to expand the class of admissible
decryption policies in view of implementing ABE in more complicated settings. However, until
recently candidate constructions of ABE were limited to restricted class of decryption policies,
namely, polynomial-size Boolean formulas or circuits with fan-out one [GPSW06], [Wat11]. In
2013, the independent breakthrough works due to Garg et al. [GGH+13b] and Gorbunov et al.
[GVW13] on ABE systems were able to realize decryption policies representable as polynomial-
size Boolean circuits with arbitrary fan-out. Besides, tackling the issue of complex access control
in diverse multi-user digital communication and storage systems, ABE for general circuits has
found countless applications in cryptography, most notably for publicly verifiable two message
delegation scheme with a preprocessing phase [PRV12], succinct one-query functional encryp-
tion [GKP+13a], reuse garbled circuits [BGG+14], token-based obfuscation [GKP+13a], and
homomorphic encryption for Turing machines [GKP+13b].

Following Garg et al. [GGH+13b] and Gorbunov et al. [GVW13], a series of distinguished
works have contributed in making ABE for general circuits more practical in terms of both ef-
ficiency and security [BGG+14], [GGHZ14], [Att14]. The ABE schemes of [GVW13], [BGG+14]
are based on lattices, while others [GGH+13b], [GGHZ14], [Att14] employ multilinear map
[GGH13a], [CLT13], [CLT15]. However, in all the existing ABE constructions supporting arbi-
trary circuits (except the multilinear map-based scheme of [BGG+14]), the number of ciphertext
components proliferates with (I) the number of associated Boolean variables [GGH+13b], [Att14],
(II) depth of the decryption policy circuits [GVW13], or (III) size of the decryption policy circuits
[GGHZ14]. The ABE scheme from multilinear map developed in [BGG+14] achieves short cipher-
text but the number of decryption key components grows quadratically with the input length of
the decryption policy circuits. This can be a serious bottleneck if the allowable decryption policy
circuits have large input size. Moreover, the security of this construction is derived from the Mul-
tilinear Diffie-Hellman Exponent assumption which holds in generic multilinear map framework.

ABSC: Attribute-based signcryption (ABSC) is a logical mixture of attribute-based encryption
(ABE) and attribute-based signature (ABS) into an unified cost-effective primitive. ABS aims to
allow signers to preserve their anonymity while signing digital documents. As for ABE, ABS
is also classified into key-policy and ciphertext-policy variants. In a key-policy ABS, a message
M is signed relative to a public vector, known as a signature input string, y of Boolean vari-
ables representing certain authorization credentials using a signing key SK(SIG)

g obtained from
a trusted key generation center. Here, g is some Boolean function from a designated class of
permissable Boolean functions characterizing signing capabilities such that g(y) = 1. A verifier
is only assured of the validity of such an endorsement. The cipertext-policy variant interchanges
the roles of g and y in an analogous fashion as for ABE. Being a combination of ABE and ABS,
ABSC also inherits a categorization similar to that of ABE and ABS.

ABSC resolves the issue of managing sophisticated authentication and decryption rights
simultaneously in large distributed networks with better efficiency compared to a sequential
implementation of ABE and ABS. For instance, in cloud-based data sharing systems, storing
sensitive information securely to the cloud may not be sufficient. The data owner should also be
able to prove its genuineness at the cloud as well as to the data recipients to avoid illegal data
storage by the cloud server.

A desirable property of an ABSC scheme is public verifiability meaning that any party can
verify the authenticity of a ciphertext even without the knowledge of the signcrypted message or a
valid decryption key. This feature is especially appealing in real-life applications such as filtering
out the spams in secure email systems. Here, a spam filter can check whether a signcrypted
email is generated from a source with claimed credentials or not before sending to inbox, without
knowing the original message. If an email does not satisfy the public verifiability mechanism, it
can be treated as spam and can be sent to the spam folder.

Compact ABE and ABSC for General Circuits from Multilinear Maps 3

Designing efficient ABSC schemes for highly expressive signing and decryption policies is
a challenging task and have received considerable attention to the recent research community
[GNSN10], [EMR12], [WHL14], [RD14a], [RD14b], [WH11]. Further, the works of [GNSN10],
[RD14a], [RD14b] achieve public verifiability. However, the most significant drawback of all the
aforementioned ABSC schemes is that the classes of admissible signing and decryption policies
have been restricted to circuits of fan-out one. As explained in [GGH+13b] for ABE, “backtrack-
ing” attack can be mounted on the signing and decryption policy circuits respectively to forge a
signcryption and break the confidentiality of a ciphertext if the current ABSC constructions are
applied for circuits of fan-out greater than one.

Our Contribution: In this paper, we propose two attribute-based cryptographic constructions:

– A key-policy ABE scheme supporting arbitrary polynomial-size circuits with short ciphertext
and shorter decryption keys compared to existing similar works under standard complexity
assumption.

– The first key-policy ABSC scheme for general circuits of polynomial-size achieving public
verifiability and featuring compact ciphertext as well.

More precisely, similar to [GGH+13b], [GVW13], [BGG+14], [Att14], our ABE construction
permits circuits of arbitrary polynomial-size and unbounded fan-out with bounded depth and
input sizes that are fixed at the setup. We develop our ABE scheme in current multilinear
map setting [GGH13a], [CLT13], [CLT15] with multilinearity level n + l + 1, where n and l
denote respectively the input length and depth of the decryption policy circuits. To realize short
ciphertext, we adopt the technique of [HSW13] in developing a full domain hash from multilinear
map. Specifically, our encryption procedure computes a “hash value” of the encryption input
string using multilinear map and includes that hash value within the factor used to mask the
message, thereby compressing the ciphertext to involve only two group elements (or encodings).
The structure of our decryption keys is similar to that of [GGH+13b], [BGG+14] except that the
key components corresponding to the input wires of the decryption policy circuits are suitably
modified. This enables us to apply the “move forward and shift” mechanism of [GGH+13b],
[BGG+14] in decrypting our newly structured ciphertext. More interestingly, this modification
is in favor of shortening of the decryption key size. Only a single group element is sufficient to
be provided for each input wire of the decryption policy circuits. This is less than all previous
multilinear map-based constructions.

We prove selective security of our ABE construction against chosen plaintext attack (CPA)
under the Multilinear Decisional Diffie-Hellman assumption. This is a standard complexity as-
sumption in the sense that its validity in current multilinear map candidates has been justified
by means of rigorous cryptanalysis rather than using the folklore generic multilinear map frame-
work. A standard complexity leveraging argument, as in [BB11], can be applied to our selectively
secure construction in order to realize adaptive security. Note that the recent improved multi-
linear map candidate proposed in [CLT15] claims to fix all known attacks against the previous
candidates [GGH13a], [CLT13], especially the “zeroizing attack” due to Cheon et al. [CHL+14],
and, to the best of our knowledge, no further attack against this new candidate has been re-
ported till date. Thus, one can securely instantiate schemes based on Multilinear Decisional
Diffie-Hellman assumption using this multilinear map candidate.

The second and more significant contribution of this paper is an ABSC scheme of the
key-policy category. This scheme also supports signing and decryption policies realizable by
polynomial-size circuits of arbitrary fan-out having bounded depths and input lengths. This
scheme is developed by augmenting our ABE construction with an attribute-based authentica-
tion functionality. We utilize a multilinear map of multilinearity level n+n′+ l+ 1, where n, n′,
and l represent respectively the input length of decryption policy circuits, input size of signing
policy circuits, and depth of both types of circuits. Roughly speaking, our ABSC construction

4 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

works as follows: We break the master secret exponent into two parts and provide an encoding of
one part in appropriate multilinear group while embed the other part within the signing keys of
the signcrypters. In order to pool these two segments to reconstruct the master secret exponent
and compute a valid signcryption of some message, the signcrypter should possess a signing key
associated with some signing policy circuit that evaluates to 1 on the claimed signature input
string, against which the authenticity of the ciphertext would be verified. The unsigncryption
procedure is similar to the decryption algorithm of our ABE construction except with an added
check step for authenticity verification. We emphasize that the validity confirming step can be
performed utilizing only publicly available information empowering our scheme with the public
verifiability feature.

Our ABSC construction is proven selectively message confidential against chosen-plaintext
attack (CPA) and selectively ciphertext unforgeable against chosen message attack (CMA) un-
der the Multilinear Decisional Diffie-Hellman and Multilinear Computational Diffie-Hellman
assumption respectively. The number of group elements comprising our ABSC ciphertext is also
constant– 3 to be exact.

Finally, we demonstrate in Appendix C that using the technique of universal circuits, as in
[GGH+13b], [Att14], both of our constructions can be utilized to realize their corresponding
ciphertext-policy variants for arbitrary bounded-size circuits featuring short ciphertext as well.

2 Preliminaries

2.1 Circuit Notation

We adopt the same notations for circuits as in [GGH+13b], [Att14]. First note that without loss
of generality we can consider only those circuits which are monotone, where gates are either OR
or AND having fan-in two, and layered since, as mentioned in [GGH+13b] using De Morgan’s
law one can build a general circuit from a monotone circuit with negation only appearing at the
input wires and an arbitrary circuit can be transformed into a layered one for the same function
with a small amount of overhead. Our circuits will have a single output gate. A circuit will be
represented as a six-tuple f = (n, q, l,A,B,GateType). Here, n and q respectively denote the
length of the input and the number of gates, while l represents the depth of the circuit which is
one plus the length of the shortest path from the output wire to any input wire. We designate the
set of input wires as Input = {1, . . . , n}, the set of gates as Gates = {n+ 1, . . . , n+ q}, the total
set of wires in the circuit as W = Input ∪ Gates = {1, . . . , n+ q}, and the wire n+ q to be the
output wire. Let A,B : Gates→W\{n+q} be functions where for all w ∈ Gates, A(w) and B(w)
respectively identify w’s first and second incoming wires. Finally, GateType : Gates→ {AND,OR}
defines a functions that identifies a gate as either an AND or an OR gate. We follow the convention
that w > B(w) > A(w) for any w ∈ Gates.

We also define a function depth : W → {1, . . . , l} such that if w ∈ Inputs, depth(w) = 1,
and in general depth(w) of wire w is equal to one plus the length of the shortest path from w
to an input wire. Since our circuit is layered, we have, for all w ∈ Gates, if depth(w) = j then
depth(A(w)) = depth(B(w)) = j − 1.

We will abuse notation and let f(x) be the evaluation of the circuit f on input x ∈ {0, 1}n,
and fw(x) be the value of wire w of the circuit f on input x.

2.2 The Notion of ABE for General Circuits

� Syntax of ABE for circuits: Consider a circuit family Fn,l that consists of all circuits f
with input length n and depth l characterizing decryption rights. A key-policy attribute-
based encryption (ABE) scheme for circuits in Fn,l with message space M consists of the
following algorithms:

Compact ABE and ABSC for General Circuits from Multilinear Maps 5

ABE.Setup(1λ, n, l): The trusted key generation center takes as input a security parameter
1λ, the length n of Boolean inputs to decryption policy circuits, and the allowed depth l
of the decryption policy circuits. It publishes the public parameters PP, while keeps the
master secret key MK to itself.

ABE.KeyGen(PP,MK, f): On input the public parameters PP, the master secret key MK,
and the description of a decryption policy circuit f ∈ Fn,l from a decrypter, the key
generation center provides a decryption key SK(DEC)

f to the decrypter.

ABE.Encrypt(PP, x,M): Taking as input the public parameters PP, an encryption input
string x ∈ {0, 1}n, and a message M ∈M, the encrypter prepares a ciphertext CTx.

ABE.Decrypt(PP,CTx,SK(DEC)
f): A decrypter takes as input the public parameters PP, a

ciphertext CTx encrypted for x, and its decryption key SK(DEC)
f corresponding to circuit

f ∈ Fn,l. It attempts to decrypt the ciphertext and outputs the message M ∈ M if suc-
cessful; otherwise, it outputs the distinguished symbol ⊥.

� Correctness: Consider all messages M ∈ M, encryption input strings x ∈ {0, 1}n, and de-
cryption policy circuit f ∈ Fn,l such that f(x) = 1, i.e., f evaluated on input x outputs 1. If
ABE.Encrypt(PP, x,M) outputs CTx and ABE.KeyGen(PP,MK, f) generates SK(DEC)

f , where
PP,MK are created by ABE.Setup(1λ, n, l), then ABE.Decrypt(PP,CTx,SK(DEC)

f) outputs M .

� Security Definition: The security notion for ABE supporting general circuits is presented
in Appendix A.1.

2.3 The Notion of ABSC for General Circuits

� Syntax of ABSC for circuits: Consider a circuit family F(DEC)
n,l consisting of all circuits f

with input length n and depth l expressing decryption access structures along with a circuit
class F(SIG)

n′,l containing all circuits g of input length n′ and depth l characterizing signing
rights. A key-policy attribute-based signcryption (ABSC) scheme for circuits in F(DEC)

n,l and
F(SIG)
n′,l with message space M consists of the following algorithms:

ABSC.Setup(1λ, n, n′, l): The trusted key generation center takes as input a security param-
eter 1λ, the length n of Boolean inputs to decryption policy circuits, the length n′ of
Boolean inputs to signing policy circuits, and the common allowed depth l of both types
of circuits. It publishes the public parameters PP and keeps the master secret key MK to
itself.

ABSC.SKeyGen(PP,MK, g): On input the public parameters PP, the master secret key MK,
and the description of a signing policy circuit g ∈ F(SIG)

n′,l from a signcrypter, the key
generation center provides a signing key SK(SIG)

g to the signcrypter.

ABSC.DKeyGen(PP,MK, f): Taking as input the public parameters PP, the master secret
key MK, and the description a decryption policy circuit f ∈ F(DEC)

n,l from a decrypter, the
key generation center hands a decryption key SK(DEC)

f to the decrypter.

ABSC.Signcrypt(PP, SK(SIG)
g , x, y,M): A signcrypter takes as input the public parameters

PP, its signing key SK(SIG)
g corresponding to some circuit g ∈ F(SIG)

n′,l , an encryption in-

6 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

put string x ∈ {0, 1}n describing a set of legitimate decrypter, a signature input string
y ∈ {0, 1}n′ such that g(y) = 1, and a message M ∈M. It outputs a ciphertext CTx,y.

ABSC.Unsigncrypt(PP,CTx,y, SK(DEC)
f): A decrypter takes as input the public parameters

PP, a ciphertext CTx,y signcrypted with x, y, and its decryption key SK(DEC)
f correspond-

ing to circuit f ∈ F(DEC)
n,l . It attempts to unsigncrypt the ciphertext and outputs the

message M ∈ M if successful; otherwise, it outputs ⊥ indicating that either the cipher-
text is invalid or the ciphertext cannot be decrypted.

� Correctness: Consider all messages M ∈M, encryption input string x ∈ {0, 1}n, signature
input string y ∈ {0, 1}n′ , and decryption policy circuit f ∈ F(DEC)

n,l satisfying f(x) = 1. If
ABE.Signcrypt(PP, SK(SIG)

g , x, y,M) with g(y) = 1 for some g ∈ F(SIG)
n′,l outputs CTx,y while

ABSC.DKeyGen(PP,MK, f) forms SK(DEC)
f , where SK(SIG)

g is generated by ABSC.SKeyGen(PP,
MK, g) and PP,MK are outputted by ABSC.Setup(1λ, n, n′, l), then ABSC.Unsigncrypt(PP,
CTx,y,SK(DEC)

f) outputs M .

� Security Definitions: An ABSC scheme has two security requirements, namely, (I) message
confidentiality and (II) ciphertext unforgeability which are described in Appendix B.1.

2.4 Multilinear Maps and Complexity Assumption

Here we review multilinear maps [BS03], [CLT13], [GGH13a]. A (leveled) multilinear map con-
sists of the following two algorithms:

(i) G(1λ, k): It takes as input a security parameter 1λ and a positive integer k indicating the
number of allowed pairing operations. It outputs a sequence of groups #»G = (G1, . . . ,Gk)
each of large prime order p > 2λ together with the canonical generators gi of Gi. We call
G1 the source group, Gk the target group, and G2, . . . ,Gk−1 intermediate groups.

(ii) ei,j(g, h) (for i, j ∈ {1, . . . , k} with i + j ≤ k): On input two elements g ∈ Gi and h ∈ Gj

with i+ j ≤ k, it outputs an element of Gi+j such that ei,j(gai , gbj) = gabi+j for a, b ∈ Zp. We
often omit the subscripts and just write e. We can also generalize e to multiple inputs as
e(h(1), . . . , h(t)) = e(h(1), e(h(2), . . . , h(t))).

We refer gai as a level-i encoding of a ∈ Zp. The scalar a itself is referred to as a level-0
encoding of a. Then the map e combines a level-i encoding of an element a ∈ Zp and a level-j
encoding of another element b ∈ Zp, and produces level-(i+ j) encoding of the product ab.

We note that current candidates of multilinear maps, also known as graded encoding systems
(GES) [GGH13a], [CLT13], [CLT15], depart from the ideal notions of multilinear maps described
above. In particular, in these candidates representations of group elements are not unique and
contain a noise term that can cause errors during group and multilinear operations. Although
we present our ABE and ABSC constructions using ideal multilinear maps for simplicity, our
constructions can be instantiated using current non-ideal candidates of multilinear map in a
manner analogous to [GGH+13b], [BGG+14].

Assumption 1 (k-Multilinear Decisional Diffie-Hellman: k-MDDH [GGH13a]). The k-
Multilinear Decisional Diffie-Hellman (k-MDDH) problem is to guess b ∈ {0, 1} given %b =

Compact ABE and ABSC for General Circuits from Multilinear Maps 7

(#»G, g1, S, C1, . . . , Ck, Tb) generated by Gk-MDDH
b

(1λ), where

Gk-MDDH
b

(1λ) : It runs G(1λ, k) to generate #»G = (G1, . . . ,Gk) with g1, . . . , gk of order p;
picks random s, c1, . . . , ck ∈ Zp and computes S = gs1, C1 = gc1

1 , . . . , Ck = gck1 ;

sets T0 = g
s
∏k

j=1 cj

k , T1 = some random element in Gk;
returns %b = (#»G, g1, S, C1, . . . , Ck, Tb).

The advantage of a probabilistic algorithm B in solving the k-MDDH problem is defined as

Advk-MDDH
B (λ) = |Pr[B(1λ, %0)→ 1]− Pr[B(1λ, %1)→ 1]|.

The k-MDDH assumption is that for all PPT algorithms B, Advk-MDDH
B (λ) is at most negligible.

Assumption 2 (k-Multilinear Computational Diffie-Hellman: k-MCDH [HSW13]). The
k-multilinear computational Diffie-Hellman (k-MCDH) problem is to output T given % = (#»G, g1,
C1, . . . , Ck) generated by Gk-MCDH(1λ), where

Gk-MCDH(1λ) : It runs G(1λ, k) to generate #»G = (G1, . . . ,Gk) with g1, . . . , gk of order p;
picks random c1, . . . , ck ∈ Zp and computes C1 = gc1

1 , . . . , Ck = gck1 ;
returns % = (#»G, g1, C1, . . . , Ck);

and T = g

∏k

i=1 ci
k−1 . The advantage of a probabilistic algorithm B in solving the k-MCDH problem

is defined as
Advk-MCDH

B (λ) = Pr[B(1λ, %)→ T].
The k-MCDH assumption is that for all PPT algorithms B, Advk-MCDH

B (λ) is at most negligible.

3 Our ABE Scheme

The Construction

ABE.Setup(1λ, n, l): The trusted key generation center takes as input a security parameter 1λ,
the length of Boolean inputs n to the decryption policy circuits, and the allowed depth l of
decryption policy circuits. It proceeds as follows:
1. It runs G(1λ, k = n+ l + 1) to produce group sequence #»G = (G1, . . . ,Gk) of prime order
p > 2λ with canonical generators g1, . . . , gk.

2. It selects random α ∈ Zp together with random (a1,0, a1,1), . . . , (an,0, an,1) ∈ Z2
p, and

computes
H = gαl+1, Ai,β = g

ai,β
1 for i = 1, . . . , n; β ∈ {0, 1}.

3. It publishes the public parameters PP consisting of the group sequence description along
with H and {Ai,β}i=1,...,n; β∈{0,1}. The master secret key MK = gαl is kept to itself.

ABE.KeyGen(PP,MK, f): The key generation center takes as input the public parameters PP,
the master secret key MK, and the description f = (n, q, l,A,B,GateType) of a decryption
policy circuit from a decrypter. Our circuit has n + q wires {1, . . . , n + q} where {1, . . . , n}
are n input wires, {n + 1, . . . , n + q} are q gates (OR or AND gates), and the wire n + q
designated as the output wire. It performs the following steps:
1. It chooses random r1, . . . , rn+q ∈ Zp where we think of randomness rw as being associated

with wire w ∈ {1, . . . , n+ q}. It produces the “header” component

K = gαl g
−rn+q
l = g

α−rn+q
l ,

where gαl is obtained from MK.

8 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

2. Next, it generates key components for every wire w. The structure of the key component
depends upon the category of w, i.e., whether w is an Input wire, an OR gate, or an AND
gate. We describe how it generates the key components in each case.

• Input wire: If w ∈ {1, . . . , n} then it corresponds to the w-th input. It computes the
key component

Kw = e(Aw,1, g1)rw = g
rwaw,1
2 .

• OR gate: Suppose that wire w ∈ Gates, GateType(w) = OR, and j = depth(w). It
picks random bw, dw ∈ Zp and creates the key component

Kw =
(
Kw,1 = gbw1 ,Kw,2 = gdw1 ,Kw,3 = g

rw−bwrA(w)
j ,Kw,4 = g

rw−dwrB(w)
j

)
.

• AND gate: Let wire w ∈ Gates, GateType(w) = AND, and j = depth(w). It selects
random bw, dw ∈ Zp and forms the key component

Kw =
(
Kw,1 = gbw1 ,Kw,2 = gdw1 ,Kw,3 = g

rw−bwrA(w)−dwrB(w)
j

)
.

3. It provides the decryption key SK(DEC)
f = (f,K, {Kw}w∈{1,...,n+q}) to the decrypter.

ABE.Encrypt(PP, x,M): Taking as input the public parameters PP, an encryption input string
x = x1 . . . xn ∈ {0, 1}n, and a message M ∈ Gk, the encrypter forms the ciphertext as follows:
1. It picks random s ∈ Zp and computes

CM = e(h,A1,x1 , . . . , An,xn)sM = g
αs
∏n

i=1 ai,xi
n+l+1 M = g

αsδ(x)
k M,

where we define δ(x) =
∏n
i=1 ai,xi for the ease of exposition. It also computes C = gs1.

2. It outputs the ciphertext CTx = (x,CM , C).

ABE.Decrypt(PP,CTx, SK(DEC)
f): A decrypter, on input the public parameters PP, a ciphertext

CTx = (x,CM , C) encrypted for encryption input string x = x1 . . . xn ∈ {0, 1}n, along with
its decryption key SK(DEC)

f = (f,K, {Kw}w∈{1,...,n+q}) corresponding to its decryption policy
circuit f = (n, q, l,A,B,GateType), outputs ⊥, if f(x) = 0; otherwise, (i.e., if f(x) = 1)
proceeds as follows:
1. First, there is a header computation, where it computes

D = e(A1,x1 , . . . , An,xn) = gδ(x)
n

followed by Ê = e(K, D,C) = e(gα−rn+q
l , gδ(x)

n , gs1) = g
(α−rn+q)sδ(x)
k

by extracting {Ai,xi}i=1,...,n from PP.
2. Next, it evaluates the circuit from the bottom up. For every wire w with corresponding

depth(w) = j, if fw(x) = 0, nothing needs to be computed for that wire, otherwise (if
fw(x) = 1), it attempts to compute Ew = g

rwsδ(x)
n+j+1 as described below. The decrypter

proceeds iteratively starting with computing E1 and moves forward in order to finally
compute En+q. Note that computing these values in order ensures that the computation
on a wire w with depth(w) = j − 1 that evaluates to 1 will be defined before computing
for a wire w with depth(w) = j. The computation procedure varies with the category of
the wire, i.e., whether the wire is an Input wire, an OR gate, or an AND gate.

• Input wire: If w ∈ {1, . . . , n} then it corresponds to the w-th input. Suppose that
xw = fw(x) = 1. The decrypter extracts {Ai,xi}i,...,n from PP and computes

Ew = e(Kw, A1,x1 , . . . , Aw−1,xw−1 , Aw+1,xw+1 , . . . , An,xn , C)

= e(grwaw,xw2 , g
a1,x1
1 , . . . , g

aw−1,xw−1
1 , g

aw+1,xw+1
1 , . . . , g

an,xn
1 , gs1) = g

rwsδ(x)
n+2 .

Compact ABE and ABSC for General Circuits from Multilinear Maps 9

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and j = depth(w).
Assume that fw(x) = 1. Then either fA(w)(x) = 1 or fB(w)(x) = 1. If fA(w)(x) = 1,
i.e., the first input of gate w evaluates to 1, then the decrypter computes

Ew = e(EA(w),Kw,1)e(Kw,3, D,C)

= e(grA(w)sδ(x)
n+j , gbw1)e(grw−bwrA(w)

j , gδ(x)
n , gs1) = g

rwsδ(x)
n+j+1 .

Note that EA(w) is already computed at this stage in the bottom-up circuit evaluation
as depth(A(w)) = j − 1.
Alternatively, if fA(w)(x) = 0 but fB(w)(x) = 1, then it computes

Ew = e(EB(w),Kw,2)e(Kw,4, D,C) = g
rwsδ(x)
n+j+1 .

• AND gate: Consider a wire w ∈ Gates with GateType(w) = AND and j = depth(w).
Suppose that fw(x) = 1. Then fA(w)(x) = fB(w)(x) = 1. The decrypter computes

Ew = e(EA(w),Kw,1)e(EB(w),Kw,2)e(Kw,3, D,C)

= e(grA(w)sδ(x)
n+j , gbw1)e(grB(w)sδ(x)

n+j , gdw1)e(grw−bwrA(w)−dwrB(w)
j , gδ(x)

n , gs1) = g
rwsδ(x)
n+j+1 .

In this process, the decrypter ultimately computes En+q = g
rn+qsδ(x)
k , as f(x) = fn+q(x) =

1.
3. Finally, the decrypter computes E = ÊEn+q = g

αsδ(x)
k and retrieves the message by the

computation CME
−1 = g

αsδ(x)
k M(gαsδ(x)

k)−1 = M .

Security

The security property of the above ABE construction is formally stated in the following theorem,
the proof of which is presented in Appendix A.2.

Theorem 1 (Security of ABE). The ABE scheme of Section 3 supporting arbitrary circuits
of depth l and input length n, characterizing decryption rights achieves selective CPA-security as
per the security model of Appendix A.1 under the k-MDDH assumption where k = n+ l + 1.

Efficiency

Table 1 compares the communication and storage requirements of our proposed ABE scheme with
previously known multilinear map-based ABE constructions supporting general circuits in terms
of the number of group elements comprising the public parameters PP, ciphertext CTx, and
decryption key SK(DEC)

f . As is clear from the table, the most significant achievement of our con-
struction is that our ABE ciphertext involves only 2 (constant) group elements which is smaller
than all earlier constructions. Also, our decryption key contains only a single group element
corresponding to each input wire of the decryption policy circuits. In all existing constructions,
number of group elements required for each input wire of the decryption policy circuits is strictly
greater than one.

Looking from a different view point, observe that in current non-ideal multilinear map can-
didates [GGH13a], [CLT13], [CLT15], the bit length of an encoding is Õ(kλ2) where k is the
maximum allowed multilinearity level and λ is the underlying security parameter. Thus, our
ABE ciphertext has bit size Õ((n + l)λ2), in contrast to Õ(nlλ2) for [GGH+13b], [Att14], or
Õ((nq+ q2)λ2) for [GGHZ14]. Consequently, we can see that, in terms of bit length as well, our
ciphertext is shorter compared to [GGH+13b], [Att14], [GGHZ14]. The multilinear map based
ABE construction of [BGG+14] has ciphertext bit length Õ(lλ2), while its decryption key size is
Õ((n+n2+q)lλ2) which is larger than the corresponding value Õ((n2+(n+q)l)λ2) for our scheme.

10 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Table 1: Communication and storage comparison
ABE Security Complexity Assumptions k |PP| |CTx| |SK(DEC)

f
|

[GGH+13b] selective MDDH l + 1 n+ 1 n+ 2 2n+ 4q + 1

[BGG+14] selective MDHE l + 1 n+ 1 3 n+ n2 + 4q + 1

[GGHZ14] adaptive 3 new non-standard assumptions n+ 2q + 2 2n+ 4q + 3 4q + 3 4q + 2

[Att14] adaptive SD1, SD2,EMDDH1,EMDDH2 3l n+ 4 n+ 4 2n+ 4q + 3

Ours selective MDDH n+ l + 1 2n+ 1 2 n+ 4q + 1

Here, MDDH,MDHE, SD1, SD2,EMDDH1,EMDDH2 stand respectively for the Multilinear Decisional Diffie-
Hellman [GGH+13b], Multilinear Diffie-Hellman Exponent [BGG+14], two variants of Multilinear Subgroup De-
cision [Att14], and the two versions of the Expanded Multilinear Decisional Diffie-Hellman assumptions [Att14].
In this table, k denotes the maximum multilinearity level of the underlying multilinear maps, n, q, and l represent
respectively the input length, number of gates, and depth of the decryption policy circuits, while |PP|, |CTx|, and
|SK(DEC)

f
| stand respectively for the number of group elements comprising PP,CTx, and SK(DEC)

f
.

Table 2: Comparison of multilinear operation count
ABE ABE.Setup ABE.KeyGen ABE.Encrypt ABE.Decrypt

[GGH+13b] n+ 2 3n+ 4q + 1 n+ 2 2n+ 3q + 1

[BGG+14] n+ 2 n2 + 2n+ 4q + 1 3 2n+ 3q + 1

Ours 2n+ 2 2n+ 4q + 1 3 n+ 3q + 3

In this table, n and q denote respectively the input size and number of gates
in the decryption policy circuits.

Further, the selective security of the multilinear map based ABE construction of [BGG+14] is
derived from the Multilinear Diffie-Hellman Exponent assumption which is proven to hold in
the generic multilinear map model [BGG+14]. On the contrary, the validity of our complexity
assumption, namely, the Multilinear Decisional Diffie-Hellman assumption in present multilinear
map candidates has been established [GGH13a], [CLT13], [CLT15] without using such a folklore
framework.

Regarding computational efficiency, notice that unlike traditional bilinear map setting, in
current multilinear map candidates [GGH13a], [CLT13], [CLT15], exponentiation is also realized
through multilinear operation. Since multilinear operations are costlier compared to group op-
erations in multilinear groups, we consider the count of multilinear operations required in each
algorithm of ABE scheme as a parameter for comparing computational cost. Table 2 demon-
strates the number of multilinear operations involved in the setup, key generation, encryption
and decryption algorithms of our ABE scheme in comparison to existing multilinear map-based
selectively secure ABE constructions for arbitrary circuits. From the table it readily follows that
the key generation, encryption, as well as decryption algorithms of our scheme requires the least
number of multilinear operations among all the three schemes. We exclude the adaptively secure
constructions [GGHZ14], [Att14] from the comparative analysis of computational complexity as
the adaptive security of those constructions has been achieved at the expense of computational
efficiency.

Compact ABE and ABSC for General Circuits from Multilinear Maps 11

4 Our ABSC Scheme

The Construction

ABSC.Setup(1λ, n, n′, l): The trusted key generation center takes as input a security parameter
1λ, the length n of inputs to decryption policy circuits, the length n′ of inputs to signing
policy circuits, and the common allowed depth l of both types of circuits. It proceeds as
follows:
1. It runs G(1λ, k = n + n′ + l + 1) to produce group sequence #»G = (G1, . . . ,Gk) of prime

order p > 2λ with canonical generators g1, . . . , gk.
2. It selects random α1, α2 ∈ Zp along with random (a1,0, a1,1), . . . , (an,0, an,1), (b1,0, b1,1), . . . ,

(bn′,0, bn′,1) ∈ Z2
p, sets α = α1 +α2, and computes H = gα1

l+1, Ai,β = g
ai,β
1 , Bt,β = g

bt,β
1 for

i = 1, . . . , n; t = 1, . . . , n′; β ∈ {0, 1}.
3. Additionally, it chooses random θ ∈ Zp and computes Θ = gθn, Y = gθα2

n+l+1.
4. It publishes the public parameters PP consisting of the group sequence description to-

gether with {Ai,β}i=1,...,n; β∈{0,1}, {Bt,β}t=1,...,n′; β∈{0,1}, H,Θ, Y , while keeps the master
secret key MK = (gαl , g

α2
l).

ABSC.SKeyGen(PP,MK, g): On input the public parameters PP, the master secret key MK, and
the description g = (n′, q′, l,A,B,GateType) of a signing policy circuit from a signcrypter,
the key generation center forms a signing key as described below. Recall that the circuit g
has n′+ q′ wires {1, . . . , n′+ q′} with n′ input wires {1, . . . , n′}, q′ gates {n′+ 1, . . . , n′+ q′},
and the wire n′ + q′ designated as the output wire.
1. It chooses random r′1, . . . , r

′
n′+q′−1 ∈ Zp and sets r′n′+q′ = α2, where again we will think

of the random value r′w as being associated with the wire w.
2. It proceeds to generate the key components for every wire w. Here also the structure

of the key component depends upon the category of the wire w ∈ {1, . . . , n′ + q′}, i.e.,
whether w is an Input wire, an OR gate, or an AND gate. We describe how it generates
the key component in each case.

• Input wire: If w ∈ {1, . . . , n′} then it corresponds to the w-th input. It computes the
key component

K′w = e(Bw,1, g1)r′w = g
r′wbw,1
2 .

• OR gate: Suppose that wire w ∈ Gates, GateType(w) = OR, and j = depth(w). It
picks random b′w, d

′
w ∈ Zp and creates the key component

K′w =
(
K ′w,1 = g

b′w
1 ,K ′w,2 = g

d′w
1 ,K ′w,3 = g

r′w−b′wr′A(w)
j ,K ′w,4 = g

r′w−d′wr′B(w)
j

)
.

• AND gate: Let wire w ∈ Gates, GateType(w) = AND, and j = depth(w). It selects
random b′w, d

′
w ∈ Zp and generates the key component

K′w =
(
K ′w,1 = g

b′w
1 ,K ′w,2 = g

d′w
1 ,K ′w,3 = g

r′w−b′wr′A(w)−d
′
wr
′
B(w)

j

)
.

Notice that while computing the key component K′n′+q′ for the output gate n′+ q′ which

has depth l, the required g
r′
n′+q′
l = gα2

l is retrieved from MK.
3. It gives the signing key SK(SIG)

g = (g, {K′w}w∈{1,...,n′+q′}) to the signcrypter.

ABSC.DKeyGen(PP,MK, f): Taking as input the public parameters PP, the master secret key
MK, and the description f = (n, q, l,A,B,GateType) of a decryption policy circuit from a de-
crypter, the key generation center creates a decryption key SK(DEC)

f = (f,K, {Kw}w∈{1,...,n+q})

12 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

in the same manner as the ABE.KeyGen(PP,MK, f) algorithm described in Section 3 using
{Ai,β}i=1,...,n; β∈{0,1} obtained from PP and gαl extracted from MK. We omit the details here.
It hands the decryption key SK(DEC)

f to the decrypter.

ABSC.Signcrypt(PP,SK(SIG)
g , x, y,M): A signcrypter takes as input the public parameters PP,

its signing key SK(SIG)
g = (g, {K′w}w∈{1,...,n′+q′}) corresponding to some signing policy circuit

g = (n′, q′, l,A,B,GateType), an encryption input string x = x1 . . . xn ∈ {0, 1}n, a signature
input string y = y1 . . . yn′ ∈ {0, 1}n

′ satisfying g(y) = 1, and a message M ∈ Gk. It prepares
the ciphertext as follows:
1. It first evaluates the signing policy circuit from the bottom up. As before, we define
δ(x) =

∏n
i=1 ai,xi and δ′(y) =

∏n′
t=1 bt,yt for improving readability. It starts by computing

D′ = e(B1,y1 , . . . , Bn′,yn′) = g
δ′(y)
n′ ,

where {Bt,yt}t=1,...,n′ are extracted from PP. For every wire w in g with corresponding
depth(w) = j, if gw(y) = 0 then nothing needs to be computed for that wire; on the other
hand, if gw(y) = 1 then it computes E′w = g

r′wδ
′(y)

n′+j as described below. The signcrypter
proceeds iteratively starting with computing E′1 and moves forward in order to ultimately
compute E′n′+q′ = g

r′
n′+q′δ

′(y)
n′+l = g

α2δ′(y)
n′+l . Note that r′n′+q′ has been set to α2 by the key

generation center. Moreover, observe that computing the E′w values in order ensures that
the computation on a wire w with depth(w) = j − 1 that evaluates to 1 will be defined
before computing for a wire w with depth(w) = j. The computation procedure varies
with the category of the wire, i.e., Input wire, OR gate, or AND gate in this case as well.

• Input wire: If w ∈ {1, . . . , n′} then it corresponds to the w-th input. Suppose that
yw = 1. The signcrypter computes

E′w = e(K′w, B1,y1 , . . . , Bw−1,yw−1 , Bw+1,yw+1 , . . . , Bn′,yn′) = g
r′wδ
′(y)

n′+1 .

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and j = depth(w).
Assume that gw(y) = 1. Then either gA(w)(y) = 1 or gB(w)(y) = 1. If gA(w)(y) = 1
then the signcrypter computes

E′w = e(E′A(w),K
′
w,1)e(K ′w,3, D′) = g

r′wδ
′(y)

n′+j .

Alternatively, if gA(w)(y) = 0 but gB(w)(y) = 1 then it computes

E′w = e(E′B(w),K
′
w,2)e(K ′w,4, D′) = g

r′wδ
′(y)

n′+j .

• AND gate: Consider a wire w ∈ Gates with GateType(w) = AND and j = depth(w).
Suppose that gw(y) = 1. Hence gA(w)(y) = gB(w)(y) = 1. The signcrypter computes

E′w = e(E′A(w),K
′
w,1)e(E′B(w),K

′
w,2)e(K ′w,3, D′) = g

r′wδ
′(y)

n′+j .

2. Next the signcrypter picks random s ∈ Zp and computes

CM =
(
e(H,A1,x1 , . . . , An,xn , D

′)e(E′n′+q′ , A1,x1 , . . . , An,xn , g1)
)s
M = g

αsδ(x)δ′(y)
k M,

C = gs1, C
′ = e(Θ,E′n′+q′) = g

θα2δ′(y)
k−1 .

Here, H, Θ, and {Ai,xi}i=1,...,n are extracted from PP.
3. The signcrypter outputs the ciphertext CTx,y = (x, y, CM , C, C ′).

Compact ABE and ABSC for General Circuits from Multilinear Maps 13

ABSC.Unsigncrypt(PP,CTx,y,SK(DEC)
f): A decrypter takes as input the public parameters PP,

a ciphertext CTx,y = (x, y, CM , C, C ′) signcrypted with an encryption input string x =
x1 . . . xn ∈ {0, 1}n and a signature input string y = y1 . . . yn′ ∈ {0, 1}n

′ , as well as its
decryption key SK(DEC)

f = (f,K, {Kw}w∈{1,...,n+q}) corresponding to its legitimate decryption
circuit f = (n, q, l,A,B,GateType). It performs the following steps:
1. It first computes D′ = e(B1,y1 , . . . , Bn′,yn′) = g

δ′(y)
n′ and checks the validity of the cipher-

text as
e(C ′, g1) = e(Y,D′).

Note that if the ciphertext is valid then both sides of the above equality should evaluate
to gθα2δ′(y)

k . If the above equation is invalid then it outputs ⊥; otherwise, it proceeds to
the next step.

2. If f(x) = 0 then it outputs ⊥; on the other hand, if f(x) = 1 then it proceeds in the
same way as in the case of ABE.Decrypt(PP,CTx, SK(DEC)

f) algorithm of Section 3 to
compute the header Ê = g

(α−rn+q)sδ(x)
n+l+1 followed by a computation of the circuit from the

bottom up ultimately obtaining En+q = g
rn+qsδ(x)
n+l+1 . In this computation it makes use of

C obtained from CTx,y and {Ai,xi}i=1,...,n extracted from PP along with its decryption
key components. We omit the details here.

3. Finally, the decrypter retrieves the message by computing

CM
[
e(ÊEn+q, D

′)
]−1 = g

αsδ(x)δ′(y)
k M

[
e(g(α−rn+q)sδ(x)

n+l+1 g
rn+qsδ(x)
n+l+1 , g

δ′(y)
n′)

]−1 = M.

Security

The security of the proposed ABSC construction is captured by the following two theorems, the
proofs of which are given in Appendix B.2.

Theorem 2 (Message Confidentiality of ABSC). The ABSC scheme supporting arbitrary
decryption policy circuits of input length n and depth l, as well as, arbitrary signing policy
circuits of input length n′ and the same depth l, described in Section 4, achieves selective message
confidentiality against CPA as per the model of Appendix B.1 under the k-MDDH assumption,
where k = n+ n′ + l + 1.

Theorem 3 (Ciphertext Unforgeability of ABSC). The ABSC scheme supporting arbitrary
decryption policy circuits of input length n and depth l, as well as, arbitrary signing policy circuits
of input length n′ and depth l, described in Section 4, achieves selective ciphertext unforgeability
against CMA as per the model of Appendix B.1 under the k-MCDH assumption, where k =
n+ n′ + l + 1.

Efficiency

Regarding communication and storage complexity of the proposed ABSC construction, the num-
ber of multilinear group elements comprising the public parameters PP, ciphertext CTx,y, de-
cryption key SK(DEC)

f , and signing key SK(SIG)
g are respectively 2n+ 2n′ + 3, 3, n+ 4q + 1, and

n′ + 4q′ where we have used a multilinear map with multilinearity level k = n+ n′ + l + 1, n, q
being respectively the input length and number of gates of the decryption policy circuits, n′, q′
being the corresponding values for the signing policy circuits, and l being the allowed depth of
both kinds of circuits. On the other hand, about computational cost, notice that the count of
multilinear operations involved in the setup, signing key generation, decryption key generation,
encryption, and decryption algorithms of our ABSC scheme are respectively 2n+2n′+3, 2n′+4q′,
2n + 4q + 1, n′ + 3q′ + 6, and n + 3q + 5. We emphasize that our ABSC construction supports
arbitrary polynomial-size circuits of unbounded fan-out, whereas, all the earlier constructions

14 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

could support at most circuits of fan-out one. Moreover, our scheme utilizes multilinear map
whose implementation is completely different from that of the bilinear map employed in all
existing ABSC schemes.

5 Conclusion

In this work, we designed an ABE scheme followed by an ABSC scheme both supporting general
circuit realizable access policies. Our constructions were proven selectively secure under Multilin-
ear Decisional Diffie-Hellman and Multilinear Computational Diffie-Hellman assumptions. The
ciphertext sizes of both our constructions are very short. Most importantly, our ABSC scheme
is the first to support signing and decryption policies representable as arbitrary polynomial-
size circuits which are highly expressive. It is worth noting that although our selectively secure
constructions can be made adaptively secure using the technique of complexity leveraging, the
reduction would lose an exponential factor. Constructing adaptively secure ABE and ABSC fea-
turing a constant number of ciphertext components with only a polynomial loss in the security
reduction would be of immense theoretical and practical significance.

References
[Att14] Nuttapong Attrapadung. Fully secure and succinct attribute based encryption for circuits from

multi-linear maps. Technical report, IACR Cryptology ePrint Archive, 2014: 772, 2014.
[BB11] Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without random oracles.

Journal of Cryptology, 24(4):659–693, 2011.
[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod

Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit abe and compact garbled circuits. In Advances in Cryptology–EUROCRYPT 2014, pages
533–556. Springer, 2014.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Contemporary
Mathematics, 324(1):71–90, 2003.

[CHL+14] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis
of the multilinear map over the integers. Technical report, IACR Cryptology ePrint Archive, 2014:
906, 2014.

[CLT13] Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps over
the integers. In Advances in Cryptology–CRYPTO 2013, pages 476–493. Springer, 2013.

[CLT15] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. New multilinear maps over the
integers. Technical report, IACR Cryptology ePrint Archive, 2015: 162, 2015.

[EMR12] Keita Emura, Atsuko Miyaji, and Mohammad Shahriar Rahman. Dynamic attribute-based sign-
cryption without random oracles. International Journal of Applied Cryptography, 2(3):199–211,
2012.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In
Advances in Cryptology–EUROCRYPT 2013, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for circuits from multilinear maps. In Advances in Cryptology–CRYPTO 2013, pages 479–499.
Springer, 2013.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure attribute based en-
cryption from multilinear maps. Technical report, IACR Cryptology ePrint Archive, 2014: 622,
2014.

[GKP+13a] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
Reusable garbled circuits and succinct functional encryption. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 555–564. ACM, 2013.

[GKP+13b] Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. How to run turing machines on encrypted data. In Advances in Cryptology–CRYPTO
2013, pages 536–553. Springer, 2013.

[GNSN10] Martin Gagné, Shivaramakrishnan Narayan, and Reihaneh Safavi-Naini. Threshold attribute-based
signcryption. In Security and Cryptography for Networks, pages 154–171. Springer, 2010.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Proceedings of the 13th ACM conference on Computer
and communications security, pages 89–98. ACM, 2006.

Compact ABE and ABSC for General Circuits from Multilinear Maps 15

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for cir-
cuits. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages
545–554. ACM, 2013.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In Advances in Cryptology–CRYPTO 2013, pages
494–512. Springer, 2013.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In Theory of Cryptography, pages 422–
439. Springer, 2012.

[RD14a] Y Sreenivasa Rao and Ratna Dutta. Expressive attribute based signcryption with constant-size
ciphertext. In Progress in Cryptology–AFRICACRYPT 2014, pages 398–419. Springer, 2014.

[RD14b] Y Sreenivasa Rao and Ratna Dutta. Expressive bandwidth-efficient attribute based signature and
signcryption in standard model. In Information Security and Privacy, pages 209–225. Springer,
2014.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in Cryptology–
EUROCRYPT 2005, pages 457–473. Springer, 2005.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably
secure realization. In Public Key Cryptography–PKC 2011, pages 53–70. Springer, 2011.

[WH11] Changji Wang and Jiasen Huang. Attribute-based signcryption with ciphertext-policy and claim-
predicate mechanism. In Computational Intelligence and Security–CIS 2011, Seventh International
Conference on, pages 905–909. IEEE, 2011.

[WHL14] Jianghong Wei, Xuexian Hu, and Wenfen Liu. Traceable attribute-based signcryption. Security
and Communication Networks, 7(12):2302–2317, 2014.

A Security Analysis of the ABE Scheme of Section 3

A.1 Security Definition for ABE
The selective security notion of ABE for circuits against chosen plaintext attack (CPA) is defined
in terms of the following game between a probabilistic adversary A and a probabilistic challenger
B:

Init: A commits to a challenge encryption input string x∗ ∈ {0, 1}n that would be used by
B to create the challenge ciphertext.

Setup: B performs ABE.Setup(1λ, n, l) to obtain PP,MK, and hands PP to A.

Query Phase 1: A may adaptively make any polynomial number of decryption key queries
for circuit description f ∈ Fn,l of its choice subject to the restriction that f(x∗) = 0. B returns
the corresponding decryption keys SK(DEC)

f to A by executing ABE.KeyGen(PP,MK, f).

Challenge: A submits two equal length messages M∗0 ,M∗1 ∈ M. Then B flips a random coin
b ∈ {0, 1}, and computes the challenge ciphertext CT∗ by running ABE.Encrypt(PP, x,Mb). The
challenge ciphertext CT∗ is given to A.

Query Phase 2: A may continue adaptively to make decryption key queries as in Query
Phase 1 with the same restriction as above.

Guess: A eventually outputs a guess b′ for b and wins the game if b′ = b.

The advantage of the adversary A in the above game is defined as

AdvABE,s-IND-CPA
A (λ) = |Pr[b′ = b]− 1/2|.

Definition 1. An ABE scheme for circuits is defined to be selectively secure against CPA if for
all probabilistic polynomial-time (PPT) adversaries A, AdvABE,s-IND-CPA

A (λ) is at most negligible.

16 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

A.2 Proof of Theorem 1

Theorem 1 (Security of ABE). The ABE scheme of Section 3 supporting arbitrary circuits
of depth l and input length n, characterizing decryption rights achieves selective CPA-security
as per the security model of Appendix A.1 under the k-MDDH assumption where k = n+ l + 1.
More precisely, for any PPT adversary A against the ABE scheme of Section 3, there exists a
probabilistic algorithm B, whose running time is essentially the same as that of A, such that for
any security parameter λ, AdvABE,s-IND-CPA

A (λ) = Advk-MDDH
B (λ).

Proof. Suppose there exists a PPT adversary A that breaks with non-negligible advantage the se-
lective CPA security of the ABE scheme supporting arbitrary circuits of depth l and input length
n, described in Section 3. We construct a PPT algorithm B that attempts to solve an instance
of the k-MDDH problem, where k = n+ l+1, using A as a sub-routine. B is given an instance of
the k-MDDH problem %b = (#»G, g1, S, C1, . . . , Ck, Tb) such that S = gs1, C1 = gc1

1 , . . . , Ck = gck1 . B
plays the role of the challenger in the selective CPA-security game of Appendix A.1 and interacts
with A as follows:

Init: A declares the challenge encryption input string x∗ = x∗1 . . . x
∗
n ∈ {0, 1}n to B.

Setup: B chooses random z1, . . . , zn ∈ Zp and sets ai,β = ci implicitly, if β = x∗i , while ai,β = zi,
if β 6= x∗i , for i = 1, . . . , n; β ∈ {0, 1}. This corresponds to setting Ai,β = Ci = gci1 , if β = x∗i ,
while Ai,β = gzi1 , if β 6= x∗i , for i = 1, . . . , n; β ∈ {0, 1}. Observe that the values Ai,β are
distributed identically as in the real scheme. In addition B picks random ξ ∈ Zp and implic-
itly sets α = ξ +

∏l+1
h=1 cn+h. For enhancing readability we define γ(u, v) =

∏v
h=u ch for posi-

tive integers u and v. Then, B’s view point of α is α = ξ + γ(n + 1, n + l + 1). B computes
H = e(Cn+1, . . . , Cn+l+1)gξl+1 = gαl+1. B hands the public parameters PP consisting of the group
sequence description together with H, {Ai,β}i=1,...,n; β∈{0,1} to A.

Query Phase 1 and Query Phase 2: Both the key query phases are executed in the same
manner by B. So, we describe them once here. A queries a decryption key for a circuit f =
(n, q, l,A,B,GateType) to B subject to the restriction that f(x∗) = 0. As in [GGH+13b], we will
think of the proof as having some invariant property on the depth of the wire we are looking
at. Consider a wire w with depth(w) = j and B’s view point (symbolically) of rw. If fw(x∗) = 0,
then B will implicitly view rw as the term γ(n+ 1, n+ j + 1) plus some additional known ran-
domization term. On the other hand, if fw(x∗) = 1 then B will view rw as 0 plus some additional
known randomization term. Keeping this property intact for simulating the keys up the circuit,
B will ultimately view rn+q as γ(n+1, n+ l+1) plus some additional known randomization term
since fn+q(x∗) = f(x∗) = 0. As will be demonstrated shortly, this would allow B to simulate the
header component K by cancelation.

The bottom up simulation of the key component for each wire w by B varies depending on
whether w is an Input wire, an OR gate, or an AND gate.

• Input wire: Consider w ∈ {1, . . . , n}, i.e., an input wire.
– If x∗w = 1, then B picks random rw ∈ Zp (as is done honestly) and sets the key component

Kw = e(Cw, g1)rw = grwcw2 = g
rwaw,1
2 .

– Otherwise, if x∗w = 0, then B implicitly lets rw = γ(n+ 1, n+ 2) + ηw, where ηw ∈ Zp is
randomly selected by B, and sets the key component

Kw = (e(Cn+1, Cn+2)gηw2)zw = g
(γ(n+1,n+2)+ηw)zw
2 = g

rwaw,1
2 .

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and j = depth(w).

Compact ABE and ABSC for General Circuits from Multilinear Maps 17

– If fw(x∗) = 1, then fA(w)(x∗) = 1 or fB(w)(x∗) = 1. B chooses random bw, dw, rw ∈ Zp as
in the real scheme, and forms the key component as

Kw =
(
Kw,1 = gbw1 ,Kw,2 = gdw1 ,Kw,3 = g

rw−bwrA(w)
j ,Kw,4 = g

rw−dwrB(w)
j

)
.

Observe that, due to the bottom up simulation, rA(w) and rB(w) are already selected or
implicitly set by B according as the corresponding gates, i.e., A(w) and B(w), evaluate
to 1 or 0 upon input x∗. Note that even if A(w) or B(w) gate evaluates to 0 upon input
x∗, B can still simulate its corresponding component, i.e., Kw,3 or Kw,4 in Kw using
multilinear map. For instance, fA(w)(x∗) = 0 implies rA(w) has been implicitly set as
γ(n+1, n+j)+ηA(w) by B, as depth(A(w)) = j−1 for the reason that our circuit is layered.
Thus, in this case B can create Kw,3 as Kw,3 = e(Cn+1, . . . , Cn+j)−bwgrwj = g

rw−bwrA(w)
j .

– On the other hand, if fw(x∗) = 0, then fA(w)(x∗) = fB(w)(x∗) = 0. B picks random
ψw, φw, ηw ∈ Zp, implicitly sets bw = cn+j+1 + ψw, dw = cn+j+1 + φw, and rw = γ(n +
1, n+j+1)+ηw, and creates the decryption key component Kw = (Kw,1,Kw,2,Kw,3,Kw,4)
where

Kw,1 = Cn+j+1g
ψw
1 = gbw1 ,Kw,2 = Cn+j+1g

φw
1 = gdw1 ,

Kw,3 = e(Cn+j+1, gj−1)−ηA(w)e(Cn+1, . . . , Cn+j)−ψwg
ηw−ψwηA(w)
j

= g
ηw−cn+j+1ηA(w)−ψw(γ(n+1,n+j)+ηA(w))
j = g

rw−bwrA(w)
j ,

Kw,4 = e(Cn+j+1, gj−1)−ηB(w)e(Cn+1, . . . , Cn+j)−φwg
ηw−φwηB(w)
j

= g
ηw−cn+j+1ηB(w)−φw(γ(n+1,n+j)+ηB(w))
j = g

rw−dwrB(w)
j .

Note that according to our bottom up simulation, rA(w) has been implicitly set as rA(w) =
γ(n+ 1, n+ j) + ηA(w) by B and similarly for rB(w). Therefore,

rw − bwrA(w) = (γ(n+ 1, n+ j + 1) + ηw)− (cn+j+1 + ψw)(γ(n+ 1, n+ j) + ηA(w))
= ηw − cn+j+1ηA(w) − ψw(γ(n+ 1, n+ j) + ηA(w))

which enables B to simulate Kw,3 and analogously Kw,4 in this case.

• AND gate: Consider wire w ∈ Gates with GateType(w) = AND and j = depth(w).
– If fw(x∗) = 1, then fA(w)(x∗) = fB(w)(x∗) = 1. B selects random bw, dw, rw ∈ Zp and

forms the key component as

Kw =
(
Kw,1 = gbw1 ,Kw,2 = gdw1 ,Kw,3 = g

rw−bwrA(w)−dwrB(w)
j

)
.

Notice that since fA(w)(x∗) = fB(w)(x∗) = 1, rA(w) and rB(w) are random values which
have already been chosen by B in the course of simulation.

– Alternatively, if fw(x∗) = 0, then fA(w)(x∗) = 0 or fB(w)(x∗) = 0. If fA(w)(x∗) = 0,
then B selects random ψw, φw, ηw ∈ Zp, implicitly lets bw = cn+j+1 + ψw, dw = φw,
and rw = γ(n + 1, n + j + 1) + ηw, and forms the decryption key component as Kw =
(Kw,1,Kw,2,Kw,3) where

Kw,1 = Cn+j+1g
ψw
1 = gbw1 ,Kw,2 = gφw1 = gdw1 ,

Kw,3 = e(Cn+j+1, gj−1)−ηA(w)e(Cn+1, . . . , Cn+j)−ψwg
ηw−ψwηA(w)−φwrB(w)
j

= g
ηw−cn+j+1ηA(w)−ψw(γ(n+1,n+j)+ηA(w))−φwrB(w)
j

= g
rw−bwrA(w)−dwrB(w)
j .

18 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Observe that B can form Kw,3 due to a similar cancelation as explained in case of OR
gates since, the A(w) gate being evaluated to 0, rA(w) = γ(n+1, n+j)+ηA(w) has already
been implicitly set by B. Moreover, grB(w)

j is always computable by B from the available
information regardless of whether fB(w)(x∗) = 1, in which case rB(w) is a random value
chosen by B itself, or fB(w)(x∗) = 0, for which rB(w) has been implicitly set to be rB(w) =
γ(cn+1, cn+j) + ηB(w) by B and, hence, B can compute e(Cn+1, . . . , Cn+j)g

ηB(w)
j = g

rB(w)
j .

The case where fB(w)(x∗) = 0 and fA(w)(x∗) = 1 is performed in a symmetric manner,
with the roles of bw and dw reversed.

Since f(x∗) = fn+q(x∗) = 0, rn+q at the output gate is implicitly set as γ(n+ 1, n+ l+ 1) + ηn+q
by B. This allows B to perform a final cancelation in computing the “header” component of the
key as K = g

ξ−ηn+q
l = g

α−rn+q
l . B provides the decryption key SK(DEC)

f = (f,K, {Kw}w∈{1,...,n+q})
to A.

Challenge: A submits two challenge messages M∗0 ,M∗1 ∈ Gk to B. B flips a random coin
b ∈ {0, 1}, implicitly views s as the randomness used in generating the challenge ciphertext, and
sets challenge ciphertext

CT∗ = (x∗, C∗M = Tbe(S,C1, . . . , Cn, g
ξ
l)M

∗
b = Tbg

ξsγ(1,n)
k M∗b , C

∗ = S),

and gives it to A.

Guess: B eventually receives back the guess b′ ∈ {0, 1} from A. If b = b′, B outputs b′ = 1;
otherwise, it outputs b′ = 0.

Note that if b = 0, the challenge ciphertext CT∗ is properly generated by B. On the other
hand, if b = 1 the challenge ciphertext is random. Hence the theorem. ut

B Security Analysis of the ABSC Scheme of Section 4

B.1 Security Definition for ABSC
The notions of message confidentiality and ciphertext unforgeability for ABSC supporting arbi-
trary circuits are discussed below:

(I) Message Confidentiality: We define this security notion on indistinguishability of ci-
phertexts under chosen plaintext attack (CPA) in the selective encryption input string model
through the following game between a probabilistic adversary A and a probabilistic challenger B:

Init: A commits to a challenge encryption input string x∗ ∈ {0, 1}n that will be used to create
the challenge ciphertext.

Setup: B performs ABSC.Setup(1λ, n, n′, l) to obtain PP,MK and hands PP to A.

Query Phase 1: A may adaptively make any polynomial number of queries which may be
of the following types to be answered by B.

. Signing key query: Upon receiving a signing key query corresponding to a circuit g ∈ F(SIG)
n′,l

from A, B returns SK(SIG)
g by running ABSC.SKeyGen(PP,MK, g).

. Decryption key query: When A queries a decryption key for a circuit f ∈ F(DEC)
n,l subject to the

constraint that f(x∗) = 0, B provides SK(DEC)
f to A by executing ABSC.DKeyGen(PP,MK, f).

Compact ABE and ABSC for General Circuits from Multilinear Maps 19

. Signcryption query: In response to a signcryption query made by A for a message M , a
signature input string y ∈ {0, 1}n′ , and an encryption input string x ∈ {0, 1}n, B sam-
ples a signing policy circuit g ∈ F(SIG)

n′,l such that g(y) = 1 and sends the ciphertext CTx,y
to A by performing ABSC.Signcrypt(PP, SK(SIG)

g , x, y,M). Here SK(SIG)
g is obtained from

ABSC.SKeyGen(PP,MK, g) by B.

Challenge: A submits two equal length messages M∗0 ,M∗1 and a signature input string y∗. B
picks a signing policy circuit g∗ ∈ F(SIG)

n′,l such that g∗(y∗) = 1 and gives the challenge cipher-
text CT∗ to A by executing ABSC.Signcrypt(PP,ABSC.SKeyGen(PP,MK, g∗), x∗, y∗,M∗b) where
b ∈ {0, 1} is a random coin chosen by B.

Query Phase 2: A may continue adaptively to make queries as in Query Phase 1 sub-
ject to the same restrictions as earlier and B keeps on answering those queries.

Guess: A eventually outputs a guess b′ for b and wins the game if b′ = b.

The advantage of the adversary A in the above game is defined as

AdvABSC,s-IND-CPA
A (λ) = |Pr[b′ = b]− 1/2|.

Definition 2. An ABSC scheme for circuits is defined to be selectively message confidential
against CPA if for all PPT adversaries A, AdvABSC,s-IND-CPA

A (λ) is at most negligible.

(II) Ciphertext Unforgeability: We define this notion of security on existential unforgeabil-
ity under adaptive chosen message attack (CMA) in the selective signature input string model
through the following game between a probabilistic adversary A and a probabilistic challenger B.

Init: A declares a signature input string y∗ ∈ {0, 1}n′ to B that will be used to forge a signcryp-
tion.

Setup: B runs ABSC.Setup(1λ, n, n′, l) to obtain PP,MK and hands PP to A.

Query Phase: A may adaptively make a polynomial number of queries of the following types
to B and B provides the answer to them.

. Signing key query: Upon receiving a signing key query from A corresponding to a signing
policy circuit g ∈ F(SIG)

n′,l subject to the constraint that g(y∗) = 0, B returns the SK(SIG)
g to A

by executing ABSC.SKeyGen(PP,MK, g).

. Decryption key query: When A queries a decryption key for a decryption policy circuit
f ∈ F(DEC)

n,l , B gives SK(DEC)
f to A by performing ABSC.DKeyGen(PP,MK, f).

. Signcryption query: A queries a signcryption of a message M for a signature input string
y(6= y∗) ∈ {0, 1}n′ along with an encryption input string x ∈ {0, 1}n. B samples a signing pol-
icy circuit g ∈ F(SIG)

n′,l such that g(y) = 1 and returns the ciphertext CTx,y to A by performing
ABSC.Signcrypt(PP,SK(SIG)

g , x, y,M), where SK(SIG)
g is got from ABSC.SKeyGen(PP,MK, g)

by B.

20 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

. Unsigncryption query: In response to a unsigncryption query from A for a ciphertext CTx,y
under the decryption policy circuit f ∈ F(DEC)

n,l , B obtains the decryption key SK(DEC)
f by run-

ning ABSC.DkeyGen(PP,MK, f) and sends output of ABSC.Unsigncrypt(PP, CTx,y, SK(DEC)
f)

to A.

Forgery: A eventually outputs a forgery CT∗ for some message M∗ with the signature input
string y∗ and an encryption input string x∗. A wins the game if the ciphertext CT∗ is valid, i.e.,
M∗(6= ⊥) is the output of ABSC.Unsigncrypt(PP,CT∗, SK(DEC)

f∗) for any f∗ ∈ F(DEC)
n,l satisfying

f∗(x∗) = 1, and CT∗ is not obtained from any signcryption query to B.

The advantage of A in the above game is defined as

AdvABSC,s-UF-CMA
A (λ) = Pr[A wins].

Definition 3. An ABSC scheme for circuits is defined to be selectively ciphertext unforgeable
against CMA if for all PPT adversaries A, AdvABSC,s-UF-CMA

A (λ) is at most negligible.

B.2 Proofs of Theorems 2 and 3

Theorem 2 (Message Confidentiality of ABSC). The ABSC scheme supporting arbitrary
decryption policy circuits of input length n and depth l, as well as, arbitrary signing policy
circuits of input length n′ and the same depth l, described in Section 4, achieves selective message
confidentiality against CPA as per the model of Appendix B.1 under the k-MDDH assumption,
where k = n+ n′+ l+ 1. More precisely, for any PPT adversary A against the ABSC scheme of
Section 4, there exists a probabilistic algorithm B, whose the running time is essentially the same
as that of A, such that for any security parameter λ, AdvABSC,s-IND-CPA

A (λ) = Advk-MDDH
B (λ).

Proof. Suppose there exists a PPT adversary A that breaks with non-negligible advantage the
selective CPA message confidentiality of the ABSC scheme supporting decryption policy circuit of
input length n and depth l, as well as, signing policy circuits of input length n′ and same depth
l, described in Section 4. We construct a PPT algorithm B that attempts to solve an instance of
the k-MDDH problem, where k = n+n′+l+1, using A as a sub-routine. B is given an instance of
the k-MDDH problem %b = (#»G, g1, S, C1, , . . . , Ck, Tb) such that S = gs1, C1 = gc1

1 , . . . , Ck = gck1 .
B plays the role of the challenger in the selective CPA message confidentiality game of Appendix
B.1 and interacts with A as follows:

Init: A declares the challenge encryption input string x∗ = x∗1 . . . x
∗
n ∈ {0, 1}n to B.

Setup: B chooses random z1, . . . , zn ∈ Zp and sets ai,β = ci implicitly, if β = x∗i , while
ai,β = zi, if β 6= x∗i , for i = 1, . . . , n; β ∈ {0, 1}. This corresponds to setting Ai,β = Ci = gci1 ,
if β = x∗i , whereas, Ai,β = gzi1 , if β 6= x∗i , for i = 1, . . . , n; β ∈ {0, 1}. B also picks random
z′1, . . . , z

′
n′ ∈ Zp and implicitly sets bt,β = cn+t, if β = 1, whereas bt,β = cn+t + z′t, if β = 0,

for t = 1, . . . , n′. This is equivalent to setting Bt,β = Cn+t, if β = 1, and Bt,β = Cn+tg
z′t
1 ,

if β = 0, for t = 1, . . . , n′. Observe that the values Ai,β and Bt,β are distributed identically
as in the real scheme. Here also we will use the notation γ(u, v) to denote

∏v
h=u ch for inte-

gers u and v. In addition, B selects ξ1 ∈ Zp, implicitly views α1 = ξ1 + γ(n + n′ + 1, n +
n′ + l + 1), and computes H = e(Cn+n′+1, . . . , Cn+n′+l+1)gξ1

l+1 = gα1
l+1. Moreover, B chooses

random θ, α2 ∈ Zp and computes Θ = gθn, Y = gθα2
n+l+1 as is done in the real scheme. B

hands the public parameters PP consisting of the group sequence description together with
{Ai,β}i=1,...,n; β∈{0,1}, {Bt,β}t=1,...,n′; β∈{0,1}, H,Θ, Y to A. Observe that all the simulated PP

Compact ABE and ABSC for General Circuits from Multilinear Maps 21

components are identically distributed as in the original scheme.

Query Phase 1 and Query Phase 2: Both the query phases are executed in same fashion by
B, so we describe them once here.

. Signing key query: Note that B knows α2 and {Bt,β}t=1,...,n′; β∈{0,1}, therefore, B can provide
signing keys corresponding to any signing policy circuit g = (n′, q′, l,A,B,GateType) queried
by A.

. Decryption key query: A queries a decryption key for a decryption policy circuit f =
(n, q, l,A,B, GateType) to B subject to the restriction that f(x∗) = 0. Note that the structure
of the decryption keys of our ABSC and ABE constructions are analogous. Thus, as for the
simulation in the proof of Theorem 1, we will maintain an invariant property on the depth
of the wire of f we are looking at. Consider a wire w with depth(w) = j. If fw(x∗) = 0
then B will view rw as the term γ(n + n′ + 1, n + n′ + j + 1) plus some additional known
randomization term. On the other hand, if fw(x∗) = 1 then B will view rw as 0 plus some
additional known randomization term. The key components Kw corresponding to the input
wires, OR, and AND gates are simulated in an identical manner as in the proof of Theorem
1. Thus, B will ultimately view rn+q = γ(n+ n′ + 1, n+ n′ + l+ 1) + ηn+q, where ηn+q ∈ Zp
is randomly chosen by B, and computes the header component K = g

ξ1+α2−ηn+q
l = g

α−rn+q
l .

B returns the queried decryption key SK(DEC)
f = (f,K, {Kw}w∈{1,...,n+q}) to A.

. Signcryption query: A queries a signcryption of some message M corresponding to some en-
cryption input string x = x1 . . . xn ∈ {0, 1}n and signing input string y = y1 . . . yn′ ∈ {0, 1}n

′ .
B knows ξ1, α2, extracts Θ, {Ai,xi}i=1,...,n, {Bt,yt}t=1,...,n′ from PP, and uses the elements
{Cn+n′+h}h=1,...,l+1 from the given k-MDDH instance to simulate the query as follows: B
picks random s ∈ Zp and computes

CM =
(
e(Cn+n′+1, . . . , Cn+n′+l+1, A1,x1 , . . . , An,xn , B1,y1 , . . . , Bn′,yn′)·

e(gξ1+α2
l+1 , A1,x1 , . . . , An,xn , B1,y1 , . . . , Bn′,yn′)

)s
M

=
(
g
γ(n+n′+1,n+n′+l+1)δ(x)δ′(y)
k · g(ξ1+α2)δ(x)δ′(y)

k

)s
M = g

αsδ(x)δ′(y)
k M,

C = gs1, C
′ = e(gα2

l , Θ,B1,y1 , . . . , Bn′,yn′) = g
θα2δ′(y)
k−1 ,

where α = α1 + α2 = γ(n + n′ + 1, n + n′ + l + 1) + ξ1 + α2, δ(x) =
∏n
i=1 ai,xi , and

δ′(y) =
∏n′
t=1 bt,yt . B gives the ciphertext CTx,y = (x, y, CM , C, C ′) to A.

Challenge: A submits two challenge messages M∗0 ,M∗1 ∈ Gk along with a signature input string
y∗ = y∗1 . . . y

∗
n′ ∈ {0, 1}n

′ . B flips a random coin b ∈ {0, 1}, implicitly views s as the randomness
in creation of the challenge ciphertext and computes components of the challenge ciphertext as

C∗M = TbZM
∗
b , C

∗ = S,C ′∗ = e(gα2
l , Θ,B1,y∗1 , . . . , Bn′,y∗n′

),

where Z = gϑk such that ϑ = αsδ(x∗)δ′(y∗) − sγ(1, k) = (γ(n + n′ + 1, n + n′ + l + 1) + ξ1 +
α2)sγ(1, n)δ′(y∗)−sγ(1, k). The fact that Z is computable by B from available information using
the multilinear map can be understood from the following: Note that δ′(y∗) = γ(n+1, n+n′)+κ
where all the terms contained in κ include a product of at most n′ − 1 number of cn+t’s and,
hence,

ϑ =(γ(n+ n′ + 1, n+ n′ + l + 1) + ξ1 + α2)sγ(1, n)(γ(n+ 1, n+ n′) + κ)− sγ(1, n+ n′ + l + 1)
= s(γ(1, n+ n′ + l + 1) + σ)− sγ(1, n+ n′ + l + 1) = sσ

22 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

where σ consists of terms including a product of at most k − 1 number of ch’s. B sends the
challenge ciphertext CT∗ = (x∗, y∗, C∗M , C∗, C ′∗) to A.

Guess: A eventually outputs a bit b′. If b = b′ then, B outputs b′ = 1; otherwise, it out-
puts b′ = 0.

Note that if b = 0 then the challenge ciphertext is properly generated by B. On the other
hand, if b = 1 then the challenge ciphertext is completely random. Hence the theorem. ut

Theorem 3 (Ciphertext Unforgeability of ABSC). The ABSC scheme supporting arbitrary
decryption policy circuits of input length n and depth l, as well as, arbitrary signing policy circuits
of input length n′ and depth l, described in Section 4, achieves selective ciphertext unforgeability
against CMA as per the model of Appendix B.1 under the k-MCDH assumption, where k =
n + n′ + l + 1. More precisely, for any PPT adversary A against the ABSC scheme of Section
4, there exists a probabilistic algorithm B, whose running time is essentially the same as that of
A, such that for any security parameter λ, AdvABSC,s-UF-CMA

A (λ) = Advk-MCDH
B (λ).

Proof. Assume that there exist a PPT adversary A that breaks with non-negligible advantage
the selective CMA ciphertext unforgeability of the ABSC scheme supporting decryption policy
circuits of input length n and depth l, as well as, signing policy circuits of input length n′ and
the same depth l, proposed in Section 4. We construct a PPT algorithm B that attempts to solve
an instance of the k-MCDH problem, where k = n+n′+l+1, using A as a sub-routine. B is given
an instance of the k-MCDH problem % = (#»G, g1, C1, . . . , Ck) such that C1 = gc1

1 , . . . , Ck = gck1 . B
plays the role of the challenger in the selective CMA ciphertext unforgeability game of Appendix
B.1 and interacts with A as follows:

Init: A declares a signature input string y∗ = y∗1 . . . y
∗
n′ ∈ {0, 1}n

′ to B that will be used to
forge a signcryption.

Setup: B picks random ai,β ∈ Zp and computes Ai,β = g
ai,β
1 for i = 1, . . . , n; β ∈ {0, 1} as

is done in the original scheme. Further B selects random z′1, . . . , z
′
n′ ∈ Zp and implicitly sets

bt,β = cn+t, if β = y∗t , and bt,β = z′t, if β 6= y∗t , for t = 1, . . . , n′; β ∈ {0, 1}. This corresponds to
setting Bt,β = Cn+t, if β = y∗t , while Bt,β = g

z′t
1 , if β 6= y∗t , for t = 1, . . . , n′; β ∈ {0, 1}. Addition-

ally, B selects random α ∈ Zp, implicitly lets θ = γ(1, n), α1 = α−γ(n+n′+1, n+n′+l+1), α2 =
γ(n+n′+1, n+n′+l+1), where γ(u, v) =

∏v
h=u ch for integers u, v, and sets Θ = e(C1, . . . , Cn) =

gθn, H = e(Cn+n′+1, . . . , Cn+n′+l+1)−1gαl+1 = gα1
l+1, Y = e(C1, . . . , Cn, Cn+n′+1, . . . , Cn+n′+l+1) =

gθα2
n+l+1. B hands the public parameters PP consisting of the group sequence description plus
{Ai,β}i=1,...,n; β∈{0,1}, {Bt,β}t=1,...,n′; β∈{0,1}, H,Θ, Y to A. Note that all the simulated PP com-
ponents are identically distributed as in the original scheme.

Query Phase: A issues a series of queries to which B answers as follows:
. Signing key query: A queries a signing key for a circuit g = (n′, q′, l,A,B,GateType) sub-

ject to the constraint that g(y∗) = 0. B proceeds to generate the key components from the
bottom up the circuit as described below. Here also we will think the simulation to have
some invariant property on the depth of the wire we are looking at. Consider a wire w with
depth(w) = j. If gw(y∗) = 0, then B will view r′w as γ(n + n′ + 1, n + n′ + j + 1) plus some
additional known randomization term, while if gw(y∗) = 1 then B will view r′w as 0 plus
some additional known randomization term. Keeping this property intact up the circuit, B
will implicitly set r′n′+q′ = γ(n + n′ + 1, n + n′ + l + 1) = α2 as gn′+q′(y∗) = g(y∗) = 0. We
describe how B creates the signing key components for each wire w organizing the simulation
into the following cases:

Compact ABE and ABSC for General Circuits from Multilinear Maps 23

• Input wire: Suppose w ∈ {1, . . . , n′}, i.e., an input wire.
– If y∗w = 1, then B chooses random r′w ∈ Zp and computes

K′w = e(Cn+w, g1)r′w = g
r′wbw,1
2 .

– If y∗w = 0, then B picks random η′′w ∈ Zp, implicitly lets r′w = γ(n+n′+1, n+n′+2)+η′w,
and sets

K′w =
(
e(Cn+n′+1, Cn+n′+2)gη

′
w

2
)z′w = g

r′wbw,1
2 .

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and j = depth(w).
– If gw(y∗) = 1, then gA(w)(y∗) = 1 or gB(w)(y∗) = 1. B chooses random b′w, d

′
w, r
′
w ∈ Zp

as in the real scheme, and creates the key component as

K′w =
(
K ′w,1 = g

b′w
1 ,K ′w,2 = g

d′w
1 ,K ′w,3 = g

r′w−b′wr′A(w)
j ,K ′w,4 = g

r′w−d′wr′B(w)
j

)
.

Observe that, due to the bottom up simulation, r′A(w) and r′B(w) are already selected
or implicitly set by B according as the corresponding gates, i.e., A(w) and B(w),
evaluate to 1 or 0 upon input y∗. Note that even if A(w) or B(w) gate evaluates to 0
upon input y∗, B can still simulate its corresponding component, i.e., K ′w,3 or K ′w,4 in
K′w using multilinear map in a similar fashion as in simulating the queried decryption
key components for OR gates in analogous situation in proof of Theorem 1.

– On the other hand, if gw(y∗) = 0, then gA(w)(y∗) = gB(w)(y∗) = 0. B chooses random
ψ′w, φ

′
w, η

′
w ∈ Zp, implicitly lets b′w = cn+n′+j+1 + ψ′w, d

′
w = cn+n′+j+1 + φ′w, and

r′w = γ(n+n′+ 1, n+n′+ j + 1) + η′w, and sets K′w = (K ′w,1,K ′w,2,K ′w,3,K ′w,4) where

K ′w,1 = Cn+n′+j+1g
ψ′w
1 = g

b′w
1 ,K ′w,2 = Cn+n′+j+1g

φ′w
1 = g

d′w
1 ,

K ′w,3 =e(Cn+n′+j+1, gj−1)−η
′
A(w)e(Cn+n′+1, . . . , Cn+n′+j)−ψ

′
wg

η′w−ψ′wη′A(w)
j = g

r′w−b′wr′A(w)
j ,

K ′w,4 =e(Cn+n′+j+1, gj−1)−η
′
B(w)e(Cn+n′+1, . . . , Cn+n′+j)−φ

′
wg

η′w−φ′wη′B(w)
j = g

r′w−d′wr′B(w)
j .

Observe that B can form K ′w,3 and K ′w,4 due to a cancelation analogous to the simula-
tion of the decryption key components corresponding to OR gates in similar situation
in proof of Theorem 1, since both the A(w) and B(w) gates being evaluated to 0,
r′A(w) = γ(n+n′+ 1, n+n′+ j) + η′A(w) and similarly r′B(w) have already been implic-
itly set by B in course of the bottom up simulation.

• AND gate: Consider a wire w ∈ Gates with GateType(w) = AND and j = depth(w).
– If g′w(y∗) = 1, then gA(w)(y∗) = gB(w)(y∗) = 1. B selects random b′w, d

′
w, r
′
w ∈ Zp and

forms the key component as

K′w =
(
K ′w,1 = g

b′w
1 ,K ′w,2 = g

d′w
1 ,K ′w,3 = g

r′w−b′wr′A(w)−d
′
wr
′
B(w)

j

)
.

Notice that since gA(w)(y∗) = gB(w)(y∗) = 1, r′A(w) and r′B(w) are random values which
have already been chosen by B in the course of the bottom-up simulation.

– Alternatively, if gw(y∗) = 0, then gA(w)(y∗) = 0 or gB(w)(y∗) = 0. If gA(w)(y∗) = 0,
then B picks ψ′w, φ′w, η′w ∈ Zp, implicitly lets b′w = cn+n′+j+1 + ψ′w, d

′
w = φ′w, and

r′w = γ(n+ n′ + 1, n+ n′ + j + 1) + η′w, and forms K′w = (K ′w,1,K ′w,2,K ′w,3) where

K ′w,1 = Cn+n′+j+1g
ψ′w
1 = g

b′w
1 , K ′w,2 = g

φ′w
1 = g

d′w
1 ,

K ′w,3 = e(Cn+n′+j+1, gj−1)−η
′
A(w)e(Cn+n′+1, . . . , Cn+n′+j)−ψ

′
wg

η′w−ψ′wη′A(w)−φ
′
wr
′
B(w)

j

= g
r′w−b′wr′A(w)−d

′
wr
′
B(w)

j .

24 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Note that B can generate K ′w,3 due to a similar cancelation as in the simulation of
the decryption key components for AND gates in analogous scenario in the proof of
Theorem 1 since, the A(w) gate being evaluated to 0, B has already set r′A(w) =
γ(n+n′+1, n+n′+ j)+η′A(w) implicitly during the bottom up simulation. Moreover,

notice that g
r′B(w)
j is always computable for B regardless of whether gB(w)(y∗) evaluates

to 0 or 1 as g
γ(n+n′+1,n+n′+j)
j is computable using the multilinear map from the

available information for B. The case where gB(w)(y∗) = 0 and gA(w)(y∗) = 1 is
executed in a symmetric manner with the roles of b′w and d′w reversed.

We mention that at the output gate n′ + q′, B will take the additional randomness η′n′+q′
to be zero while setting r′n′+q′ . Observe that this would not prevent the distribution of the
simulated signing keys from being identical to that of the real scheme. B provides the signing
key SK(SIG)

g = (g, {K′w}w∈{1,...,n′+q′}) to A.

. Decryption key query: Note that B knows α, therefore, B can provide the decryption key
SK(DEC)

f corresponding to any decryption policy circuit f = (n, q, l,A,B,GateType) queried
by A.

. Signcryption query: A queries the signcryption of a message M relative to a signature input
string y = y1 . . . yn′(6= y∗) ∈ {0, 1}n′ and an encryption input string x = x1 . . . xn ∈ {0, 1}n.
B chooses random s ∈ Zp and computes

CM = e(gαl+1, A1,x1 , . . . , An,xn , B1,y1 , . . . , Bn′,yn′)
sM = g

αsδ(x)δ′(y)
k M, C = gs1,

where δ(x) =
∏n
i=1 ai,xi , δ

′(y) =
∏n′
t=1 bt,yt . B also computes C ′ as described below. Since

y 6= y∗, there exists some t ∈ {1, . . . , n′} such that yt 6= y∗t and, hence, Bt,yt = g
z′t
1 as per the

simulation. B computes

C ′ = e(Θ,Cn+n′+1, . . . , Cn+n′+l+1, B1,x1 , . . . , Bt−1,yt−1 , Bt+1,yt+1 , . . . , Bn′,yn′)
z′t = g

θα2δ′(y)
n+n′+l .

B gives the ciphertext CTx,y = (x, y, CM , C, C ′) to A.

. Unsigncryption query: Note that B can create the decryption key SK(DEC)
f corresponding to

any decryption policy circuit f . Therefore, when A queries the unsigncryption of a ciphertext
CTx,y under a decryption policy circuit f , B first computes SK(DEC)

f and then provides the
result of ABSC.Unsigncrypt(PP,CTx,y,SK(DEC)

f) to A.

Forgery: A eventually produces a valid forgery CT∗ = (x∗, y∗, C∗M , C∗, C ′∗) for some message
M∗ with an encryption input string x∗ and the committed signature input string y∗. Then B
solves the k-MCDH problem by outputting C ′∗.

Note that, since CT∗ is a valid forgery, we have

C ′∗ = g
θα2
∏n′

i′=1 bi′,yi′
n+n′+l = g

γ(1,n)γ(n+n′+1,n+n′+l+1)γ(n+1,n+n′)
k−1 = g

γ(1,k)
k−1

which is the desired answer of the k-MCDH problem instance given to B. The theorem follows.
ut

C Realizing Ciphertext-Policy ABE and ABSC

� On the Construction of ciphertext-policy ABE: Applying the technique of universal
circuits to our key-policy ABE construction of Section 3 in a manner analogous to [GGH+13b],

Compact ABE and ABSC for General Circuits from Multilinear Maps 25

[Att14], we can obtain a selectively secure ciphertext-policy ABE scheme for arbitrary cir-
cuits of bounded size achieving short ciphertext under the Multilinear Decisional Diffie-
Hellman assumption. More specifically, consider a variant of a universal circuit Ux such that
Ux(C) = C(x), where C is a canonical representation of an arbitrary bounded size circuit by a
bounded size string. In the ciphertext-policy setting, decryption key corresponds to specific
inputs x, and ciphertext corresponds to circuits C. Utilizing our key-policy construction we
can implement this by providing decryption keys corresponding to circuits Ux. Thus, when a
key is used to decrypt a ciphertext associated with a circuit C, the decrypter will be success-
ful if and only if Ux(C) = C(x) = 1, as desired. The number of ciphertext components will
obviously be constant when we will perform encryption with the canonical representation
string C for a circuit using our construction.

� On the Construction of ciphertext-policy ABSC: As for ABE, the method of univer-
sal circuits can be applied to our key-policy ABSC construction of Section 4 in order to
develop a ABSC with ciphertext-policy and claimed predicate mechanism [WH11] for gen-
eral bounded size circuits achieving constant size ciphertext, selective message confidentiality
under the Multilinear Decisional Diffie-Hellman assumption, and selective ciphertext unforge-
ability based on the Multilinear Computational Diffie-Hellman assumption. Here again we
consider the same variant of universal circuits Ux for encryption and U ′y for signing such
that Ux(C) = C(x) and U ′y(C′) = C′(y), where C and C′ are canonical representations of
arbitrary bounded size circuits by bounded-size strings characterizing respective policies em-
bedded in ciphertexts and claimed predicates of signatures. In ciphertext-policy style ABSC
decryption and signing keys correspond to specific inputs x and y respectively, whereas, ci-
phertexts are computed for circuits C and signatures are provided against claimed predicates
C′. Thus, using our ABSC construction, we can implement this by providing decryption and
signing keys respectively for circuits Ux and U ′y enabling a successful decryption if and only if
Ux(C) = C(x) = 1 while a successful signcryption generation if and only if U ′y(C′) = C′(y) = 1.
Observe that due to the use of our ABSC construction, we obtain constant number of cipher-
text components in this case as well.

	Compact Attribute-Based Encryption and Signcryption for General Circuits from Multilinear Maps
	Introduction
	Preliminaries
	Circuit Notation
	The Notion of ABE for General Circuits
	The Notion of ABSC for General Circuits
	Multilinear Maps and Complexity Assumption

	Our ABE Scheme
	The Construction
	Security
	Efficiency

	Our ABSC Scheme
	The Construction
	Security
	Efficiency

	Conclusion
	Security Analysis of the ABE Scheme of Section 3
	Security Definition for ABE
	Proof of Theorem 1

	Security Analysis of the ABSC Scheme of Section 4
	Security Definition for ABSC
	Proofs of Theorems 2 and 3

	Realizing Ciphertext-Policy ABE and ABSC

