
Constructing and Understanding Chosen Ciphertext Security via
Puncturable Key Encapsulation Mechanisms⋆

Takahiro Matsuda and Goichiro Hanaoka

National Institute of Advanced Industrial Science and Technology (AIST), Japan
{t-matsuda,hanaoka-goichiro }@aist.go.jp

Abstract. In this paper, we introduce and study a new cryptographic primitive that we callpuncturable key encap-
sulation mechanism(PKEM), which is a special class of KEMs that satisfy some functional and security require-
ments that, combined together, imply chosen ciphertext security (CCA security). The purpose of introducing this
primitive is to capture certain common patterns in the security proofs of the several existing CCA secure public
key encryption (PKE) schemes and KEMs based on general cryptographic primitives which (explicitly or implic-
itly) use the ideas and techniques of the Dolev-Dwork-Naor (DDN) construction (STOC’91), and “break down”
the proofs into smaller steps, so that each small step is easier to work with/verify/understand than directly tackling
CCA security.
To see the usefulness of PKEM, we show (1) how several existing constructions of CCA secure PKE/KEM con-
structed based on general cryptographic primitives can be captured as a PKEM, which enables us to understand these
constructions via a unified framework, (2) its connection to detectable CCA security (Hohenberger et al. EURO-
CRYPT’12), and (3) a new security proof for a KEM-analogue of the DDN construction from a set of assumptions:
sender non-committing encryption(SNCE) and non-interactive witness indistinguishable proofs.
Then, as our main technical result, we show how to construct a PKEM satisfying our requirements (and thus a CCA
secure KEM) from a new set of general cryptographic primitives:SNCEandsymmetric key encryption secure for
key-dependent messages(KDM secure SKE). Our construction realizes the “decrypt-then-re-encrypt”-style validity
check of a ciphertext which is powerful but in general has a problem of the circularity between a plaintext and
a randomness. We show how SNCE and KDM secure SKE can be used together to overcome the circularity. We
believe that the connection among three seemingly unrelated notions of encryption primitives, i.e. CCA security,
the sender non-committing property, and KDM security, to be of theoretical interest.

Keywords: public key encryption, puncturable key encapsulation mechanism, chosen ciphertext security, sender
non-committing encryption, key-dependent message secure symmetric-key encryption.

⋆ c⃝IACR 2015. This article is a minor revision of the version that appears in the proceedings of TCC 2015.

Table of Contents

1 Introduction . 3
2 Preliminaries . 5

2.1 Sender Non-committing Public Key Encryption . 6
2.2 Symmetric Key Encryption . 8

3 Chosen Ciphertext Security from Puncturable KEMs . 9
3.1 Syntax . 9
3.2 Security Requirements . 10
3.3 CCA Secure KEM from a Puncturable KEM . 11
3.4 Understanding the Existing Constructions ofCCA Secure KEMs via Puncturable KEM 12
3.5 DCCA Secure Detectable KEM from a Puncturable KEM . 14

4 Puncturable KEM from Sender Non-committing Encryption and KDM Secure SKE 15
5 Dolev-Dwork-Naor KEM Revisited . 18
A Basic Cryptographic Primitives . 21

A.1 Public Key Encryption . 21
A.2 (Detectable) Key Encapsulation Mechanisms . 21
A.3 Signature . 22
A.4 Non-interactive Argument Systems . 23
A.5 Universal One-Way Hash Functions . 24

B Some Useful Facts . 25
B.1 Useful Facts on (Sender Non-committing) Public Key Encryption . 25
B.2 Statistical Properties of Basic Primitives . 26

C On Capturing ABO-XHPS-Based KEMs via Puncturable KEM . 28
D Postponed Proofs . 29

D.1 Proof of Theorem 1:CCA Security of a PKEM . 29
D.2 Proof of Lemma 1: Strong Decapsulation Soundness ofΓDDN . 31
D.3 Proof of Lemma 2: Strong Punctured Decapsulation Soundness ofΓDDN 32
D.4 Proof of Lemma 3:eCPA Security ofΓDDN . 32
D.5 Proof of Lemma 4: Strong Decapsulation Soundness ofΓ̂ . 35
D.6 Proof of Lemma 5: Strong Punctured Decapsulation Soundness ofΓ̂ . 35
D.7 Proof of Lemma 6:eCPA Security ofΓ̂ . 36
D.8 Proof of Lemma 7:eCPA Security ofΓDDN from Different Assumptions 39

E Unpredictability of the Proposed PKEMs . 41
E.1 Strong Unpredictability ofΓDDN . 41
E.2 Strong Unpredictability of̂Γ . 42

1 Introduction

In this paper, we continue a long line of work studying the constructions of public key encryption (PKE)
schemes and its closely related primitive calledkey encapsulation mechanism(KEM) that are secure against
chosen ciphertext attacks (CCA) [58, 63, 29] from general cryptographic primitives. CCA secure PKE/KEM
is one of the most important cryptographic primitives that has been intensively studied in the literature,
due to not only its implication to strong and useful security notions such as non-malleability [6, 12, 61]
and universal composability [20, 24], but also its resilience and robustness against practical attacks such as
Bleichenbacher’s attack [16, 5].

There have been a number of works that show CCA secure PKE/KEMs from general cryptographic
primitives: These include trapdoor permutations [29, 35, 36] (with some enhanced property [37]), identity-
based encryption [23] and a weaker primitive called tag-based encryption [48, 45], lossy trapdoor function
[62] and trapdoor functions with weaker functionality/security properties [65, 54, 46, 67], PKE with weaker
than but close to CCA security [43, 47, 26], a combination of chosen plaintext secure (CPA secure) PKE and
a hash function with some strong security [53], and techniques from program obfuscation [66, 52].

One of the ultimate goals of this line of researches is to clarify whether one can construct CCA secure
PKE only from CPA secure one (and in fact, a partial negative result is known [34]). This problem is
important from both theoretical and practical points of view. To obtain insights into this problem, clarifying
new classes of primitives that serve as building blocks is considered to be important, because those new class
of primitives can be a new target that we can try constructing from CPA secure PKE schemes (or similarly
standard primitives such as one-way injective trapdoor functions and permutations).

Our Motivation. Although differing in details, the existing constructions of CCA secure PKE schemes and
KEMs from general cryptographic primitives [29, 62, 65, 67, 52, 53, 26] often employ the ideas and tech-
niques of the Dolev-Dwork-Naor (DDN) construction [29], which is the first construction of CCA secure
PKE from general primitives. The security proofs of these constructions are thus similar in a large sense, and
it is highly likely that not a few future attempts to constructing CCA secure PKE/KEMs from general crypto-
graphic primitives will also follow the DDN-style construction and security proof. Therefore, it will be useful
and helpful for future research and also for understanding the existing works of this research direction if we
can extract and abstract the common ideas and techniques behind the security proofs of the original DDN
and the existing DDN-like constructions, and formalize them as a cryptographic primitive with a few formal
functionality and security requirements (rather than heuristic ideas and techniques), so that most of the ex-
isting DDN-style constructions as well as potential future constructions are captured/explained/understood
in a unified way, and in particular these are more accessible and easier-to-understand.

Our Contributions.Based on the motivation mentioned above, in this paper, we introduce and study a new
cryptographic primitive that we callpuncturable key encapsulation mechanism(PKEM). This is a class
of KEMs that has two kinds of decryption procedures, and it is required to satisfy three simple security
requirements,decapsulation soundness, punctured decapsulation soundness, and extended CPA security
which we show in Section 3.3 that, combined together, implies CCA security. The intuition of these security
notions as well as their formal definitions are explained in Section 3.2. The purpose of introducing this
primitive is to capture certain common patterns in the security proofs of the several existing CCA secure
PKE schemes and KEMs based on general cryptographic primitives which (explicitly or implicitly) use
the ideas and techniques of the DDN construction [29], and “break down” the proofs into smaller steps,
so that each small step is easier to work with/verify/understand than directly tackling CCA security. Our
formalization of PKEM is inspired (and in some sense can be seen an extension of) the notion ofpuncturable

3

tag-based encryption[53] (which is in turn inspired by the notion ofpuncturable pseudorandom function
[66]), and we explain the difference from [53] in the paragraph “Related Work” below.

To see the usefulness of our framework of PKEM, we show (1) how the KEM-analogue of the original
DDN [29] and several existing DDN-like constructions (e.g. [62, 65, 67, 52, 53]) can be understood as a
PKEM in Section 3.4, (2) its connection to detectable CCA security which is a weaker security notion than
CCA security introduced by Hohenberger et al. [43] in Section 3.5, and (3) a new security proof for a KEM-
analogue of the DDN construction from a set of assumptions that are different from the one used in its
known security proof:sender non-committing encryption(SNCE, see below) and non-interactive witness
indistinguishable proofs. (For the purpose of exposition, this last result is shown in Section 5.)

Then, as our main technical result, in Section 4 we show how to construct a PKEM satisfying our
requirements (and thus a CCA secure KEM) from a new set of general cryptographic primitives:SNCEand
symmetric key encryption secure for key-dependent messages(KDM secure SKE) [15]. Roughly speaking,
a SNCE scheme is a special case of non-committing encryption [22] and is a PKE scheme which is secure
even if the sender’s randomness used to generate the challenge ciphertext is corrupted by an adversary. See
Section 2.1 where we define SNCE formally, explain the difference among related primitives, and how it
can be realized from the standard cryptographic assumptions such as the decisional Diffie-Hellman (DDH),
quadratic residuosity (QR), and decisional composite residuosity (DCR). The function class with respect to
which we require the building block SKE scheme to be KDM secure, is a class of efficiently computable
functions whose running time is a-priori fixed. Due to Applebaum’s result [1] (and its efficient variant [9,
§7.2]) we can realize a KDM secure SKE scheme satisfying our requirement from standard assumptions
such as DDH, QR, DCR. For more details on KDM secure SKE, see Section 2.2.

Our proposed PKEM has a similarity with the “double-layered” construction of Myers and Shelat [56]
and its variants [43, 50, 26], in which a plaintext is encrypted twice: firstly by the “inner” scheme, and sec-
ondly by “outer” scheme. Strictly speaking, however, our construction is not purely double-layered, but in
some sense is closer to “hybrid encryption” of a PKE (seen as a KEM) and a SKE schemes, much similarly
to the recent constructions by Matsuda and Hanaoka [52, 53]. Furthermore, our construction realizes the
“decrypt-then-re-encrypt”-style validity check of a ciphertext, which is a powerful approach that has been
adopted in several existing constructions that construct CCA secure PKE/KEM from general cryptographic
primitives [32, 62, 65, 56, 46, 43, 52, 53, 26]. In general, however, this approach has a problem of the circu-
larity between a plaintext and a randomness, and previous works avoid such a circularity using a random
oracle [32], a trapdoor function [62, 65, 46], a PKE scheme which achieves some security which is (weaker
than but) close to CCA security [56, 43, 26], or a power of additional building blocks with (seemingly very
strong) security properties [52, 53]. We show how SNCE and KDM secure SKE can be used together to
overcome the circularity. Compared with the structurally similar constructions [43, 52, 53, 26], the assump-
tions on which our construction is based could be seen weak, in the sense that the building blocks are known
to be realizable from fairly standard computational assumptions such as the DDH, QR, and DCR assump-
tions. We believe that the connection among three seemingly unrelated notions of encryption primitives, i.e.
CCA security, the sender non-committing property, and KDM security, to be of theoretical interest.

Open Problems.We believe that our framework of PKEM is useful for constructing and understanding the
current and the potential future constructions of CCA secure PKE/KEMs based on the DDN-like approach,
and motivates further studies on it. Our work leaves several open problems. Firstly, our framework of PKEM
actually does not capture the recent construction by Dachman-Soled [26] who constructs a CCA secure PKE
scheme from a PKE scheme that satisfies (standard model) plaintext awareness and some simulatability
property. The construction in [26] is similar to our proposed (P)KEM in Section 4 and the recent similar

4

constructions [52, 53]. (Technically, to capture it in the language of PKEM, slight relaxations of some of the
security requirements will be necessary, due to its double-layered use of PKE schemes similarly to [56].)

Secondly and perhaps more importantly, it will be worth clarifying whether it is possible to construct
a PKEM satisfying our requirements only from CPA secure PKE or (an enhanced variant of) trapdoor per-
mutations in a black-box manner. Note that a negative answer to this question will also give us interesting
insights, as it shows that to construct a CCA secure PKE/KEM from these standard primitives, we have to
essentially avoid the DDN-like construction.

Finally, it would also be interesting to find applications of a PKEM other than CCA secure PKE/KEMs.

Related Work.The notion of CCA security for PKE was formalized by Naor and Yung [58] and Rackoff and
Simon [63]. We have already listed several existing constructions of CCA secure PKE/KEMs from general
primitives in the second paragraph of Introduction. In our understanding, the works [29, 62, 65, 67, 52, 53,
26] are based on the ideas and techniques from the DDN construction [29].

As mentioned above, our notion of PKEM is inspired by the notion ofpuncturable tag-based encryption
(PTBE) that was recently introduced by Matsuda and Hanaoka [53]. Similarly to PKEM, PTBE is a special
kind of tag-based encryption [48, 45] with two modes of decryption. (Roughly, in PKEM, a secret key can
be punctured by a ciphertext, but in PTBE, a secret key is punctured by a tag.) Matsuda and Hanaoka [53]
introduced PTBE as an abstraction of the “core” structure that appears in the original DDN construction
(informally, it is the original DDN construction without a one-time signature scheme and a non-interactive
zero-knowledge proof), and they use it to mainly reduce the “description complexity” of their proposed
construction [53] and make it easier to understand the construction. However, they did not study it as a
framework for capturing and understanding the existing DDN-style constructions (as well as potential future
constructions) in a unified manner as we do in this paper. We note that Matsuda and Hanaoka [53] also
formalized the security requirement calledeCPA securitywhose formalization is a PTBE-analogue ofeCPA

security for a PKEM (and thus we borrow the name). However, they did not formalize the security notions
for PTBE that correspond todecapsulation soundnessandpunctured decapsulation soundnessfor a PKEM.

Paper Organization.The rest of the paper is organized as follows: In Section 2 (and in Appendix A), we
review the notation and definitions of cryptographic primitives. In Section 3, we introduce and study PKEM,
where in particular we show its implication to CCA security and how some of the existing constructions of
KEMs can be interpreted and explained as a PKEM. In Section 4, we show our main technical result: a
PKEM from SNCE and KDM secure SKE, which by the result in Section 3 yields a new CCA secure KEM
from general assumptions. In Section 5, we show the CCA security of the DDN-KEM based on SNCE and
non-interactive witness indistinguishable arguments.

2 Preliminaries

In this section, we give the definitions for sender non-committing encryption (SNCE) and symmetric key
encryption (SKE) and its key-dependent message (KDM) security that are used in our main result in Sec-
tion 4. The basic definitions for standard cryptographic primitives that are not reviewed in this section are
given in Appendix A, which include PKE, (detectable) KEMs, signature schemes, non-interactive argument
systems, and universal one-way hash functions (UOWHFs). (The reader familiar with them need not check
Appendix A at the first read, and can do so when he/she wants to check the details of the definitions.)

5

Basic Notation.N denotes the set of all natural numbers, and form,n ∈ N, we define[n] := {1, . . . , n}.
“x ← y” denotes thatx is chosen uniformly at random fromy if y is a finite set,x is output fromy if y
is a function or an algorithm, ory is assigned tox otherwise. Ifx andy are strings, then “|x|” denotes the

bit-length ofx, “x∥y” denotes the concatenationx andy, and “(x
?
= y)” is the operation which returns1

if x = y and0 otherwise. “(P)PTA” stands for a(probabilistic) polynomial time algorithm. For a finite set
S, “ |S|” denotes its size. IfA is a probabilistic algorithm then “y ← A(x; r)” denotes thatA computesy
as output by takingx as input and usingr as randomness. Furthermore, for an algorithm or a functionO,
“AO” denotes an algorithmA with oracle access toO. A functionϵ(k) : N→ [0, 1] is said to benegligible
if for all positive polynomialsp(k) and all sufficiently largek ∈ N, we haveϵ(k) < 1/p(k). Throughout
this paper, we use the character “k” to denote a security parameter.

2.1 Sender Non-committing Public Key Encryption

Roughly, a SNCE scheme is a PKE scheme that remains secure even against an adversary who may obtain
sender’s randomness used to generate the challenge ciphertext. This security is ensured by requiring that
there be an algorithm that generates a “fake transcript”pk andc that denote a public key and a ciphertext,
respectively, so that the pair(pk, c) can be later explained as a transcript of an arbitrary messagem. Our
syntax of SNCE loosely follows that of sender-equivocable encryption [31, 44], but departs from it because
we need perfect correctness (or at least almost-all-keys-perfect correctness [30]) so that error-less decryption
is guaranteed, which cannot be achieved by sender-equivocable encryption. We also note that recently, Hazay
and Patra [40] introduced (among other notions) the notion that they callNCE for the Sender(NCES), which
is a notion very close to SNCE we consider here. We will discuss the correctness and the difference between
our definition and that of [40] later in this subsection.

Formally, a sender non-committing (public key) encryption (SNCE) schemeΠ consists of the five PP-
TAs (PKG,Enc,Dec,Fake,Explain) where(PKG,Enc,Dec) constitutes a PKE scheme (where definitions
for ordinary PKE can be found in Appendix A.1), andFake andExplain are the simulation algorithms with
the following syntax:

Fake: This is the “fake transcript” generation algorithm that takes1k as input, and outputs a “fake” pub-
lic key/ciphertext pair(pk, c) and a corresponding state informationω (that will be used in the next
algorithm).

Explain: This is the (deterministic) “explanation” algorithm that takes a state informationω (whereω is
computed by(pk, c, ω) ← Fake(1k)) and a plaintextm as input, and outputs a randomnessr that
“explains” the transcript(pk, c) corresponding toω. Namely, it is required thatEnc(pk,m; r) = c hold.

SNC Security. For a SNCE schemeΠ = (PKG,Enc,Dec,Fake,Explain) (where the randomness space of
Enc isR = (Rk)k∈N) and an adversaryA = (A1,A2), we define theSNC- Real experimentExptSNC- Real

Π,A (k)

and theSNC- Sim experimentExptSNC- Sim
Π,A (k) as in Fig. 1 (left and center, respectively).

Definition 1. We say that a SNCE schemeΠ is SNC secure if for all PPTAsA, the advantageAdvSNCΠ,A(k) :=

|Pr[ExptSNC- Real
Π,A (k) = 1]− Pr[ExptSNC- Sim

Π,A (k) = 1]| is negligible.

The Difference among Non-committing Encryption and Related Primitives.The original definition of non-
committing encryption by Canetti et al. [22] ensures security under both the sender and receiver’s corruption.
This is ensured by requiring that the “explaining” algorithm output not only the sender’s randomness but
also receiver’s (i.e. randomness used to generate public/secret keys). The original definition in [22] (and

6

ExptSNC- Real
Π,A (k) :

(m, st)← A1(1
k)

(pk, sk)← PKG(1k)
r ←Rk

c← Enc(pk,m; r)
b′ ← A2(st, pk, c, r)
Returnb′.

ExptSNC- Sim
Π,A (k) :

(m, st)← A1(1
k)

(pk, c, ω)← Fake(1k)
r ← Explain(ω,m)
b′ ← A2(st, pk, c, r)
Returnb′.

ExptOTKDME,F,A(k) :

(f, st)← A1(1
k)

K ← Kk

m1 ← f(K); m0 ←Mk

b← {0, 1}
c∗ ← SEnc(K,mb)
b′ ← A2(st, c

∗)

Return(b′
?
= b).

Fig. 1.Security experiments for defining theSNC security of a SNCE scheme (left and center) and that for theF-OTKDM security of
a SKE scheme (right).

several works [28, 33]) allows multi-round interaction between a sender and a receiver (and even the multi-
party case), but in this paper we only consider the public-key case (equivalently, the one-round two-party
protocol case). A SNCE scheme is a non-committing encryption scheme that only takes care of the sender’s
side corruption.

Sender-equivocable encryption [31, 44] is a special case of a SNCE scheme in which a sender can, under
an honestly generated public key, generate a fake ciphertext that can be later explained as an encryption of
an arbitrary message (while a SNCE scheme allows that even a public key is a fake one).

Deniable encryption [21, 59, 14, 66] has an even stronger property in which an honestly generated ci-
phertext under an honestly generated public key can be later explained as an encryption of an arbitrary
message. For details on deniable encryption, we refer the reader to the papers [59, 14].

The difference among these primitives is very important in our paper, as we explain below.

On Correctness of SNCE Schemes.In this paper, unlike most of the papers that treat (sender) non-committing
encryption schemes and related primitives such as sender-equivocable encryption and deniable encryption,
we require a SNCE scheme satisfy perfect correctness or at least almost-all-keys perfect correctness [30].
This is because our proposed constructions follow the Dolev-Dwork-Naor-style construction [29] which re-
quires error-less decryption (under all but negligible fraction of key pairs) for a building block PKE scheme.
Here, the non-committing property and (perfect or almost-all-keys perfect) correctness might sound con-
tradicting. This is indeed the case for ordinary (i.e. bi-) and “receiver” non-committing encryption, sender-
equivocable encryption, and deniable encryption, and thus we cannot use these primitives in our proposed
constructions. However, “sender” non-committing encryption can avoid such an incompatibility, because
the fake transcript generation algorithmFake can generate(pk, c) such thatpk is not in the range of the
normal key generation algorithmPKG. Moreover, as we will see below,SNC secure SNCE schemes with
perfect correctness (and even practical efficiency) can be realized from standard assumptions.

Concrete Instantiations of SNCE Schemes.Bellare et al. [11] formalized the notion oflossy encryption[11],
which is a PKE scheme that has the “lossy key generation” algorithm. It outputs a “lossy public key” which
is indistinguishable from a public key generated by the ordinary key generation algorithm, and an encryption
under a lossy public key statistically hides the information of a plaintext. Bellare et al. [11] also introduced
an additional property for lossy encryption calledefficient openability, in which the lossy key generation
algorithm outputs a trapdoor in addition to a lossy public key, and by using the trapdoor, an encryption
under the lossy public key can be efficiently “explained” as a ciphertext of any plaintext.

We note that any lossy encryption with efficient openability yields aSNC secure SNCE scheme: the
algorithmFake generates a lossy public keypk as well as an encryptionc of some plaintext, and keeps
the trapdoor corresponding topk asω.; the algorithmExplain on inputω and a plaintextm outputs a

7

randomnessr that explains thatc = Enc(pk,m; r) holds. Hence, we can use the existing lossy encryption
schemes with efficient openability that are based on standard assumptions. These include the scheme based
on the quadratic residuosity (QR) assumption [11,§ 4.4] (which is essentially the multi-bit version of the
Goldwasser-Micali scheme [38]), the scheme based on the decisional Diffie-Hellman (DDH) assumption
[13, § 5.4] (which is the “bit-wise” encryption version of the DDH-based lossy encryption scheme [11,
§ 4.1]), and the scheme based on the decisional composite residuosity (DCR) assumption [41] (which shows
that the original Paillier scheme [60] and the Damgård-Jurik scheme [27] can be extended to lossy encryption
with efficient openability). In particular, the DCR-based schemes [60, 27, 41] have a compact ciphertext
whose size does not grow linearly in the length of plaintexts.

On the Difference from the Formalization of “NCE for the Sender” in [40].The definition of NCE for
the Sender in [40] explicitly requires that the scheme have the “fake” key generation algorithm that out-
puts a “fake” public key together with a trapdoor, with which one can “equivocate” (or in our terminology,
“explain”) any ciphertext as an encryption of arbitrary plaintextm. Therefore, it seems to us that their for-
malization is close to lossy encryption with efficient openability [11]. On the other hand, our formalization
requires that only a pair(pk, c) of public key and a ciphertext (or a “transcript” in a one-round message
transmission protocol between two parties) be explained. We can construct a SNCE scheme in our formal-
ization from NCE for the Sender of [40] (in essentially the same manner as we do so from lossy encryption
with efficient openability), while we currently do not know if the converse implication can be established.
Therefore, in the sense that currently an implication of only one direction is known, our formalization is
weaker.

2.2 Symmetric Key Encryption

A symmetric key encryption (SKE) schemeE with key spaceK = {Kk}k∈N and plaintext spaceM =
{Mk}k∈N1 consists of the following two PPTAs(SEnc, SDec):

SEnc: The encryption algorithm that takes a keyK ∈ Kk and a plaintextm ∈ Mk as input, and outputs a
ciphertextc.

SDec: The (deterministic) decryption algorithm that takesK ∈ Kk andc as input, and outputs a plaintext
m which could be the special symbol⊥ (which indicates thatc is an invalid ciphertext underK).

Correctness.We require for allk ∈ N, all keysK ∈ Kk, and all plaintextsm ∈ Mk, it holds that
SDec(K, SEnc(K,m)) = m.

One-Time Key-Dependent Message Security.Let E = (SEnc,SDec) be a SKE scheme with key space
K = {Kk}k∈N and plaintext spaceM = {Mk}k∈N. Let F = {Fk}k∈N be an ensemble (which we call
function ensemble) where for eachk, Fk is a set of efficiently computable functions with their domainKk

and rangeMk.
For the SKE schemeE, the function ensembleF , and an adversaryA = (A1,A2), we define the

F-OTKDM experimentExptOTKDME,F ,A(k) as in Fig. 1 (right). In the experiment, it is required thatf ∈ Fk.

Definition 2. We say that a SKE schemeE is OTKDM secure with respect toF (F-OTKDM secure, for short)
if for all PPTAsA, the advantageAdvOTKDME,F ,A(k) := 2 · |Pr[ExptOTKDME,F ,A(k) = 1]− 1/2| is negligible.

1 In this paper, for simplicity, we assume that the key spaceK and plaintext spaceM of a SKE scheme satisfy the following
conditions: For eachk ∈ N, (1) every element inKk has the same length, (2) every element inMk has the same length, (3) both
Kk andMk are efficiently recognizable, and (4) we can efficiently sample a uniformly random element from bothKk andMk.

8

We would like to remark that our definition ofOTKDM security is considerably weak: it is a single instance
definition that need not take into account the existence of other keys, and an adversary is allowed to make a
KDM encryption query (which is captured byf) only once.

Concrete Instantiations ofOTKDM Secure SKE Schemes.In our proposed construction in Section 4, the
class of functions with respect to which a SKE scheme isOTKDM secure needs to be rich enough to be
able to compute the algorithmExplain in a SNCE scheme multiple (an a-priori bounded number of) times.
Fortunately, Applebaum [1] showed how to generically convert any SKE scheme which is many-time KDM
secure (i.e. secure for many KDM encryption queries) with respect to “projections” (i.e. functions each of
whose output bit depends on at most one bit of inputs) into a SKE scheme which is many-time KDM secure
(and thusOTKDM secure), with respect to a family of functions computable in a-priori fixed polynomial time.
(We can also use a more efficient construction shown by Bellare et al. [9,§7.2].) This notion is sufficient
for our proposed construction. Since most SKE and PKE schemes KDM secure with respect to the class
of affine functions can be interpreted as (or easily converted to) “projection”-KDM secure SKE schemes
[3, §A], we can use the existing (many-time) “affine”-KDM secure SKE schemes as a building block, and
apply Applebaum’s conversion (or that of [9,§7.2]). Therefore, for example, one can realize aOTKDM secure
SKE scheme with respect to fixed poly-time computable functions, based on the DDH assumption [17], the
QR assumption [19], the DCR assumption [19, 49], the learning with errors (LWE) assumption [4], and the
learning parity with noise (LPN) assumption [4, 2]. Very recently, Bellare et al. [7, 8] introduced a notion of
a family of hash function calleduniversal computational extractor(UCE) which is seemingly quite strong
(almost random oracle-like) but a standard model assumption. Using a version of UCE assumption, they [8]
showed (among many other things) how to construct a SKE scheme which is non-adaptively KDM secure (in
which encryption queries have to be made in parallel) with respect to any efficiently computable functions.
OTKDM security is the special case of non-adaptive KDM security, and hence we can also use the result of
[8] in our proposed construction.

3 Chosen Ciphertext Security from Puncturable KEMs

In this section, we introduce the notion of apuncturable KEM(PKEM) and show several results on it.
This section is organized as follows: In Sections 3.1 and 3.2, we define the syntax and the security

requirements of a PKEM, respectively. Then in Sections 3.3 and 3.5, we show the implication of a PKEM
to aCCA secure KEM and aDCCA secure detectable KEM, respectively. We also explain how a wide class of
the existing constructions ofCCA secure KEMs can be understood via a PKEM in Section 3.4.

3.1 Syntax

Informally, a PKEM is a KEM that has additional procedures for “puncturing secret keys according to a
ciphertext” and “punctured decapsulation.” In a PKEM, one can generate a “punctured” secret keyŝkc∗ from
an ordinarysk and a ciphertextc∗ via the “puncturing” algorithmPunc. Intuitively, although an ordinary
secret keysk defines a map (viaDecap) whose domain is the whole of the ciphertext space,ŝkc∗ only defines
a map whose domain is the ciphertext space that has a “hole” produced by the puncture of the ciphertext
c∗. This “punctured” secret keŷskc∗ can be used in the “punctured” decapsulation algorithmPDecap to
decapsulate all ciphertexts that are “far” fromc∗ (or, those that are not in the “hole” produced byc∗), while
ŝkc∗ is useless for decapsulating ciphertexts that are “close” toc∗ (or, those that are in the “hole” including
c∗ itself), where what it means for a ciphertext to be close to/far fromc∗ is decided according to a publicly
computable predicateF, which is also a part of a PKEM.

9

ExptDSNDΓ,A(k) :

(pk, sk)← KKG(1k)
(c∗,K∗)← Encap(pk)

c′ ← ADecap(sk,·)(pk, c∗,K∗)
Return1 iff (a) ∧ (b) ∧ (c):
(a) F(pk, c∗, c′) = 1
(b) c′ ̸= c∗

(c) Decap(sk, c′) ̸= ⊥

ExptPDSNDΓ,A (k) :

(pk, sk)← KKG(1k)
(c∗,K∗)← Encap(pk)

ŝkc∗ ← Punc(sk, c∗)

c′ ← APDecap(ŝkc∗ ,·)(pk, c∗,K∗)
Return1 iff (a) ∧ (b):
(a) F(pk, c∗, c′) = 0
(b) Decap(sk, c′) ̸=

PDecap(ŝkc∗ , c
′)

ExpteCPAΓ,A(k) :

(pk, sk)← KKG(1k)
(c∗,K∗

1)← Encap(pk)

ŝkc∗ ← Punc(sk, c∗)
K∗

0 ← {0, 1}k
b← {0, 1}
b′ ← A(pk, ŝkc∗ , c

∗,K∗
b)

Return(b′
?
= b).

ExptsDSNDΓ,A (k) :

(pk, sk)← KKG(1k)
(c∗,K∗)← Encap(pk)
c′ ← A(pk, sk, c∗,K∗)
Return1 iff (a) ∧ (b) ∧ (c):
(a) F(pk, c∗, c′) = 1
(b) c′ ̸= c∗

(c) Decap(sk, c′) ̸= ⊥

ExptsPDSNDΓ,A (k) :

(pk, sk)← KKG(1k)
(c∗,K∗)← Encap(pk)
c′ ← A(pk, sk, c∗,K∗)
Return1 iff (a) ∧ (b):
(a) F(pk, c∗, c′) = 0
(b) Decap(sk, c′) ̸=

PDecap(Punc(sk, c∗), c′)

Definitions of Advantages:
ForXXX ∈ {DSND, sDSND, PDSND, sPDSND}:
AdvXXXΓ,A(k) := Pr[ExptXXXΓ,A(k) = 1]

eCPA security:
AdveCPAΓ,A(k) :=

2 · |Pr[ExpteCPAΓ,A(k) = 1]− 1
2
|

Fig. 2.Security experiments for a PKEM and the definitions of an adversary’s advantage in each experiment.

Formally, a puncturable KEM consists of the six PPTAs(KKG,Encap,Decap,F,Punc,PDecap), where
(KKG,Encap,Decap) constitute a KEM, and the latter three algorithms are deterministic algorithms with
the following interface:

F: The predicate that takes a public keypk (output byKKG(1k)) and two ciphertextsc andc′ as input,
wherec has to be in the range ofEncap(pk) (but c′ need not), and outputs0 or 1.

Punc: The “puncturing” algorithm that takes a secret keysk (output byKKG(1k)) and a ciphertextc∗

(output byEncap(pk)) as input, and outputs a punctured secret keyŝkc∗ .
PDecap: The “punctured” decapsulation algorithm that takesŝkc∗ (output byPunc(sk, c∗)) and a ciphertext

c as input, and outputs a session-keyK which could be the special symbol⊥ (meaning that “c cannot
be decapsulated bŷskc∗”).

The predicateF is used to definedecapsulation soundnessandpunctured decapsulation soundness, which
we explain in the next subsection. Its role is very similar to the predicate used to defineDCCA security and
unpredictability of detectable PKE in [43]. As mentioned above, intuitively, the predicateF(pk, c∗, ·) divides
the ciphertext space into two classes: ciphertexts that are “close” toc∗ and those that are “far” fromc∗, and
for each of the classes, we expect the decapsulation algorithmsDecap andPDecap to work “appropriately,”
as we will see below.

3.2 Security Requirements

For a PKEM, we consider the three kinds of security notions:decapsulation soundness, punctured decapsu-
lation soundness, andextended CPA security. The intuition for each of the security notions as well as formal
definitions are explained below. Furthermore, for the first two notions, we consider two flavors: the ordinary
version and the strong version (where the latter formally implies the former). We only need the ordinary
notions for showing theCCA security of a PKEM, while the strong notions are usually easier to work with.

Decapsulation Soundness.This security notion is intended to capture the intuition that the only valid ci-
phertext which is “close” toc∗ is c∗ itself: It requires that given the challenge ciphertext/session-key pair

10

(c∗,K∗), it is hard to come up with another ciphertextc′ ̸= c∗ that is (1) “close” toc∗ (i.e.F(pk, c∗, c′) = 1),
and (2) valid (i.e.Decap(sk, c′) ̸= ⊥).

Formally, for a PKEMΓ and an adversaryA, consider the decapsulation soundness (DSND) experiment
ExptDSNDΓ,A (k) and the strong decapsulation soundness (sDSND) experimentExptsDSNDΓ,A (k) defined as in Fig. 2
(left-top/bottom). The adversaryA’s advantage in each experiment is defined as in Fig. 2 (right-bottom).
Note that in the “strong” version (sDSND), an adversary is even given a secret key (which makes achieving
the notion harder, but makes the interface of the adversary simpler).

Definition 3. We say that a PKEMΓ satisfiesdecapsulation soundness(resp.strong decapsulation sound-
ness) if for all PPTAsA, the advantageAdvDSNDΓ,A (k) (resp.AdvsDSNDΓ,A (k)) is negligible.

Punctured Decapsulation Soundness.This security notion is intended to capture the intuition that the “punc-
tured” decapsulation byPDecap(ŝkc∗ , ·) works as good as the normal decapsulation byDecap(sk, ·) for all
“far” ciphertextsc′: It requires that given the challenge ciphertext/session-key pair(c∗,K∗), it is hard to
come up with another ciphertextc′ that is (1) “far” fromc∗ (i.e. F(pk, c∗, c′) = 0), and (2) the decapsula-
tions under two algorithmsDecap(sk, c′) andPDecap(ŝkc∗ , c′) disagree.

Formally, for a PKEMΓ and an adversaryA, consider the punctured decapsulation soundness (PDSND)
experimentExptPDSNDΓ,A (k) and the strong punctured strong decapsulation soundness (sPDSND) experiment
ExptsPDSNDΓ,A (k) defined as in Fig. 2 (center-top/bottom). The adversaryA’s advantage in each experiment is
defined as in Fig. 2 (right-bottom). Note that as in thesDSND experiment, in the “strong” version (sPDSND),
an adversary is even given a secret key (which makes achieving the notion harder, but makes the interface
of the adversary simpler).

Definition 4. We say that a PKEMΓ satisfiespunctured decapsulation soundness(resp.strong punctured
decapsulation soundness) if for all PPTAsA, the advantageAdvPDSNDΓ,A (k) (resp.AdvsPDSNDΓ,A (k)) is negligible.

Extended CPA Security: CPA security in the presence of a punctured secret key. Extended CPA security
(eCPA security, for short) requires that the CPA security hold even in the presence of the punctured secret
key ŝkc∗ corresponding to the challenge ciphertextc∗.

Formally, for a PKEMΓ and an adversaryA, consider theeCPA experimentExpteCPAΓ,A (k) defined as in
Fig. 2 (right-top). We define the advantage of an adversary as in Fig. 2 (right-bottom).

Definition 5. We say that a PKEMΓ is eCPA secure if for all PPTAsA, the advantageAdveCPAΓ,A (k) is
negligible.

3.3 CCA Secure KEM from a Puncturable KEM

Here, we show that a PKEM satisfying all security notions introduced in Section 3.2 yields aCCA secure
KEM. (The formal proof is given in Appendix D.1.)

Theorem 1. LetΓ = (KKG,Encap,Decap,F,Punc,PDecap) be a PKEM satisfying decapsulation sound-
ness, punctured decapsulation soundness, andeCPA security. Then,Γ ∗ = (KKG,Encap,Decap) is a CCA

secure KEM. Specifically, for any PPTAA that attacks theCCA security ofΓ ∗ and makes in totalQ =
Q(k) > 0 decapsulation queries, there exist PPTAsBd, Ba, andBe such that

AdvCCAΓ ∗,A(k) ≤ 2 · AdvDSNDΓ,Bd(k) + 2Q · AdvPDSNDΓ,Ba (k) + AdveCPAΓ,Be (k). (1)

11

Furthermore, ifΓ additionally satisfiesstrongpunctured decapsulation soundness, we have tight secu-
rity reduction. Specifically, for any PPTAA that attacks theCCA security ofΓ ∗, there exist PPTAsBd, Ba,
andBe such that

AdvCCAΓ ∗,A(k) ≤ 2 · AdvDSNDΓ,Bd(k) + 2 · AdvsPDSNDΓ,Ba (k) + AdveCPAΓ,Be (k). (2)

Proof Sketch of Theorem 1.The proofs for the both reductions proceed almost identically. LetA be any
PPTA adversary that attacks the KEMΓ ∗ in the sense ofCCA security. Consider the following sequence of
games:

Game 1: This is theCCA experimentExptCCAΓ ∗,A(k) itself.
Game 2: Same as Game 1, except that all decapsulation queriesc satisfyingF(pk, c∗, c) = 1 are answered

with ⊥.
Game 3: Same as Game 2, except that all decapsulation queriesc satisfyingF(pk, c∗, c) = 0 are answered

with PDecap(ŝkc∗ , c), whereŝkc∗ = Punc(sk, c∗).

Fori ∈ [3], letSucci denote the event that in Gamei,A succeeds in guessing the challenge bit (i.e.b′ = b
occurs). We will show that|Pr[Succi]−Pr[Succi+1]| is negligible for eachi ∈ [2] and that|Pr[Succ3]−1/2|
is negligible, which proves the theorem.

Firstly, note that Game 1 and Game 2 proceed identically unlessA makes a decapsulation queryc
satisfyingF(pk, c∗, c′) = 1 andDecap(sk, c) ̸= ⊥, and hence|Pr[Succ1] − Pr[Succ2]| is upperbounded
by the probability ofA making such a query in Game 1 or Game 2. Recall that by the rule of theCCA

experiment,A’s queriesc must satisfyc ̸= c∗. But F(pk, c∗, c′) = 1, c ̸= c∗, andDecap(sk, c) ̸= ⊥ are
exactly the conditions of violating the decapsulation soundness, and the probability ofA making a query
satisfying these conditions is negligible.

Secondly, note that Game 2 and Game 3 proceed identically unlessA makes a decapsulation query
c satisfyingF(pk, c∗, c) = 0 andDecap(sk, c) ̸= PDecap(ŝkc∗ , c), whereŝkc∗ = Punc(sk, c∗). Hence
|Pr[Succ2]−Pr[Succ3]| is upperbounded by the probability ofAmaking such a query in Game 2 or Game 3.
However, since these conditions are exactly those of violating the punctured decapsulation soundness, the
probability ofAmaking a query satisfying the above conditions is negligible. (The tightness of the reduction
differs depending on whether we can assume “strong” puncutred decapsulation soundness. For the details,
see the explanation in Appendix D.1.)

Finally, we can upperbound|Pr[Succ3] − 1/2| to be negligible directly by theeCPA security of the
PKEMΓ . More specifically, anyeCPA adversaryBe, which receives(pk, ŝkc∗ , c∗,K∗b) as input, can simulate

Game 3 forA, whereA’s decapsulation oracle in Game 3 is simulated perfectly by usingŝkc∗ , so thatBe’s
eCPA advantage is exactly2 · |Pr[Succ3]− 1/2|. This shows that|Pr[Succ3]− 1/2| is negligible. ⊓⊔

3.4 Understanding the Existing Constructions ofCCA Secure KEMs via Puncturable KEM

To see the usefulness of a PKEM and the result in Section 3.3, here we demonstrate how the existing
constructions ofCCA secure KEMs can be understood via a PKEM.

The Dolev-Dwork-Naor KEM.We first show how a security proof of the KEM version of the DDN con-
struction [29], which we call theDDN-KEM, can be understood via a PKEM. This is the KEM obtained
from the original DDN construction (which is a PKE scheme) in which we encrypt a random value and
regard it as a session-key.

12

KKGDDN(1
k) :

∀(i, j) ∈ [k]× {0, 1} :
(pk

(j)
i , sk

(j)
i)← PKG(1k)

crs← CRSG(1k)
κ← HKG(1k)

PK ← ((pk
(j)
i)i,j , crs, κ)

SK ← ((sk
(j)
i)i,j , PK)

Return(PK,SK).
EncapDDN(PK) :

((pk
(j)
i)i,j , crs, κ)← PK

K ← {0, 1}k
r1, . . . , rk ← Rk

(vk, sigk)← SKG(1k)
h← Hκ(vk)

View h as(h1∥ . . . ∥hk) ∈ {0, 1}k.
∀i ∈ [k] : ci ← Enc(pk

(hi)
i ,K; ri)

x← ((pk
(hi)
i)i, (ci)i)

w ← ((ri)i,K)
π ← Prove(crs, x, w)
σ ← Sign(sigk, ((ci)i, π))
C ← (vk, (ci)i, π, σ).
Return(C,K).

DecapDDN(SK,C) :

((sk
(j)
i)i,j , PK)← SK

((pk
(j)
i)i,j , crs, κ)← PK

(vk, (ci)i, π, σ)← C
If SVer(vk, ((ci)i, π), σ) = ⊥

then return⊥.
h← Hκ(vk)

View h as(h1∥ . . . ∥hk) ∈ {0, 1}k.
x← ((pk

(hi)
i)i, (ci)i)

If PVer(crs, x, π) = ⊥ then return⊥
ReturnK ← Dec(sk

(h1)
1 , c1).

FDDN(PK,C,C′) :

((pk
(j)
i)i,j , crs, κ)← PK

(vk, (ci)i, π, σ)← C
(vk′, (c′i)i, π

′, σ′)← C′

Return(Hκ(vk)
?
= Hκ(vk

′)).

PuncDDN(SK,C∗) :

((sk
(j)
i)i,j , PK)← SK

((pk
(j)
i)i,j , crs, κ)← PK

(vk∗, (c∗i)i, π
∗, σ∗)← C

h∗ ← Hκ(vk
∗)

View h∗ as(h∗
1∥ . . . ∥h∗

k) ∈ {0, 1}k.

ŜKC∗ ← (h∗, (sk
(1−h∗

i)
i)i, PK)

ReturnŜKC∗ .

PDecapDDN(ŜKC∗ , C) :

(h∗, (sk
(1−h∗

i)
i)i, PK)← ŜKC∗

((pk
(j)
i)i,j , crs, κ)← PK

(vk, (ci)i, π, σ)← C
If SVer(vk, ((ci)i, π), σ) = ⊥ then return⊥.
h← Hκ(vk)
If h∗ = h then return⊥.
View h∗ as(h∗

1∥ . . . ∥h∗
k) ∈ {0, 1}k.

View h as(h1∥ . . . ∥hk) ∈ {0, 1}k.
ℓ← min{i ∈ [k] : h∗

i ̸= hi}
x← ((pk

(hi)
i)i, (ci)i)

If PVer(crs, x, π) = ⊥ then return⊥.

ReturnK ← Dec(sk
(1−h∗

ℓ)

ℓ , cℓ).

Fig. 3.The PKEMΓDDN based on a PKE schemeΠ and a non-interactive argument systemP. In the figure, “(ri)i” and “(pk(j)
i)i,j”

are the abbreviations of “(ri)i∈[k]” and “(pk(j)
i)i∈[k],j∈{0,1}”, respectively, and we use a similar notation for other values.

Let Π = (PKG,Enc,Dec) be a PKE scheme whose plaintext space is{0, 1}k and whose randomness
space (for security parameterk) isRk. Consider the NP languageL = {Lk}k∈N where eachLk is defined
as follows:

Lk :=
{
((pki)i∈[k], (ci)i∈[k])

∣∣∣ ∃((ri)i∈[k],K) ∈ (Rk)
k × {0, 1}k s.t.∀i ∈ [k] : Enc(pki,K; ri) = ci

}
.

Let P = (CRSG,Prove,PVer) be a non-interactive argument system for the languageL. Moreover, let
Σ = (SKG,Sign, SVer) andH = (HKG,H) be a signature scheme and a UOWHF, respectively. (The defi-
nitions of an ordinary PKE scheme, a signature scheme, a non-interactive argument system, and a UOWHF,
can be found in Appendices A.1, A.3, A.4, and A.5 respectively.) Then we construct the PKEMΓDDN =
(KKGDDN,EncapDDN,DecapDDN,FDDN,PuncDDN,PDecapDDN), which is based on the DDN-KEM, as in Fig. 3.
The original DDN-KEMΓ ∗DDN is (KKGDDN,EncapDDN,DecapDDN).

For the PKEMΓDDN, the three security requirements are shown as follows: (The formal proofs of Lem-
mas 1, 2, and 3 are given in Appendices D.2, D.3, and D.4, respectively.)

Lemma 1. If H is a UOWHF andΣ is aSOT secure signature scheme, then the PKEMΓDDN satisfies strong
decapsulation soundness.

Lemma 2. If the non-interactive argument systemP satisfies adaptive soundness, then the PKEMΓDDN

satisfies strong punctured decapsulation soundness.

Lemma 3. If the PKE schemeΠ is CPA secure and the non-interactive argument systemP is ZK secure,
then the PKEMΓDDN is eCPA secure.

13

The first two lemmas are almost trivial. Specifically, letC∗ = (vk∗, (c∗i)i, π
∗, σ∗) be the challenge cipher-

text, and letC ′ = (vk′, (c′i)i, π
′, σ′) be a ciphertext output by an adversary in thesDSND experiment or

thesPDSND experiment (recall that the interface of an adversary in these experiments is the same). Then, a
simple observation shows that ifC ′ is a successful ciphertext that violates strong decapsulation soundness,
thenC ′ must satisfy one of the following two conditions: (1)Hκ(vk

∗) = Hκ(vk
′) andvk∗ ̸= vk′, or (2)

SVer(vk′, ((c′i)i, π
′), σ′) = ⊤, ((c∗i)i, π

∗, σ∗) ̸= ((c′i)i, π
′, σ′), andvk∗ = vk′. However, a ciphertext with

the first condition is hard to find due to the security of the UOWHFH, and a ciphertext with the second
condition is hard to find due to theSOT security of the signature schemeΣ. Similarly, again a simple obser-
vation shows that in order forC ′ to be a successful ciphertext that violates strong punctured decapsulation

soundness,C ′ has to satisfyPVer(crs, x′, π′) = ⊤ andx′ /∈ Lk wherex′ = ((pk
(h′

i)
i)i, (c

′
i)i), and hence

the adaptive soundness of the non-interactive argument systemP guarantees that the probability that an ad-
versary coming up with such a ciphertext in thesPDSND experiment is negligible. TheeCPA security is also
easy to see. Specifically, we can first consider a modified experiment in whichcrs andπ are respectively
generated by using the simulation algorithmsSimCRS andSimPrv which exist by theZK security ofP. By
theZK security, aneCPA adversary cannot notice this change. Then, theCPA security of the underlying PKE
scheme directly shows that the information of a session-key does not leak, leading to theeCPA security.

Capturing Other Existing Constructions.Our framework with a PKEM can explain other existing construc-
tions that, explicitly or implicitly, follow a similar security proof to the DDN construction. For example,
the Rosen-Segev construction based on an injective trapdoor function (TDF) secure under correlated inputs
[65], the Peikert-Waters construction [62] based on a lossy TDF and an all-but-one lossy TDF (ABO-TDF)
in which the ABO-TDF is instantiated from a lossy TDF (see this construction in [62,§2.3]). Moreover,
the construction based on CPA secure PKE and an obfuscator for point functions (with multi-bit output) by
Matsuda and Hanaoka [52] and one based on CPA secure PKE and a hash function family satisfying the
strong notion (called UCE security [7]) from the same authors [53] can also be captured as a PKEM.

Furthermore, our framework with a PKEM can also capture KEMs based onall-but-one extractable hash
proof systems(ABO-XHPS) by Wee [67] (and its extension by Matsuda and Hanaoka [51]), by introducing
some additional property for underlying ABO-XHPS. Although the additional property that we need is
quite subtle, it is satisfied by most existing ABO-XHPS explained in [67, 51]. Since a number of recent
practicalCCA secure KEMs (e.g. [18, 25, 39, 42]) are captured by the framework of ABO-XHPS, our result
is also useful for understanding practical KEMs. We expand the explanation for capturing ABO-XHPS-
based KEMs in Appendix C.

3.5 DCCA Secure Detectable KEM from a Puncturable KEM

Here, we show that even if a PKEM does not have decapsulation soundness, it still yields aDCCA secure
detectable KEM [43, 50]. Therefore, if a PKEM satisfying punctured decapsulation soundness andeCPA

security additionally satisfies theunpredictability2 (which we recall in Appendix A.2), it can still be used as
a building block in the constructions [43, 50] to obtain fullyCCA secure PKE/KEM.3

2 Note that we treat unpredictability andDCCA security of a detectable KEM as separate security notions (as opposed to treat the
former as a requirement of the latter [43]), which we believe is more convenient to understand the connection between a PKEM
and a detectable KEM.

3 As discussed in [50], it is easy to achieve a detectable PKE scheme withDCCA security and unpredictability from a detectable
KEM satisfying the same security notions, by combining the detectable KEM with a one-time secure SKE scheme (i.e. a SKE
scheme which is secure under one-time encryption query).

14

Theorem 2. LetΓ = (KKG,Encap,Decap,F,Punc,PDecap) be a PKEM satisfying punctured decapsula-
tion soundness andeCPA security. Then,Γ † = (KKG,Encap,Decap,F) is aDCCA secure detectable KEM.

Proof Sketch of Theorem 2.The proof of this theorem is straightforward given the proof of Theorem 1 (it is
only simpler), and thus we omit a formal proof. The reason why we do not need decapsulation soundness is
that an adversary in theDCCA experiment is not allowed to ask a decapsulation queryc with F(pk, c∗, c) = 1,
and we need not care the behavior ofDecap for “close” ciphertexts. Thus, as in the proof of Theorem 1, the
punctured decapsulation soundness guarantees thatPDecap(ŝkc∗ , ·) works as good asDecap(sk, ·) for all
“far” ciphertextsc with F(pk, c∗, c) = 0, and then theeCPA security guarantees the indistinguishability of a
real session-keyK∗1 and a randomK∗0 . ⊓⊔

On Unpredictability of PKEMs.We note that the DDN-KEM reviewed in Section 3.4 and our proposed
KEM in Section 4 achieve strong unpredictabiilty (based on the security of the building blocks), which we
show in Appendices E.1 and E.2, respectively.

4 Puncturable KEM from Sender Non-committing Encryption and KDM Secure SKE

In this section, we show our main technical result: a PKEM that uses a SNCE scheme and aOTKDM secure
SKE scheme (with respect to efficiently computable functions). By Theorem 1, this yields aCCA secure
KEM. Therefore, this result clarifies a new set of general cryptographic primitives that impliesCCA secure
PKE/KEM.

The construction of the proposed PKEM is as follows: LetΠ = (PKG,Enc,Dec,Fake,Explain) be
a SNCE scheme such that the plaintext space is{0, 1}n (for some polynomialn = n(k) > 0) and the
randomness space ofEnc isRk. Let E = (SEnc,SDec) be a SKE scheme whose key space and plaintext
space (for security parameterk) areKk andMk, respectively. We requireKk ⊆ {0, 1}n and(Rk)

k+1 ×
{0, 1}k ⊆ Mk. Furthermore, letH = (HKG,H) be a hash function family (which is going to be assumed

to be a UOWHF). Then we construct a PKEM̂Γ = (K̂KG, Êncap, D̂ecap, F̂, P̂unc, P̂Decap) as in Fig. 4.

Function Ensemble forOTKDM Security. For showing theeCPA security ofΓ̂ , we need to specify a function
ensembleF = {Fk}k∈N with respect to whichE is OTKDM secure. For eachk ∈ N, define a setFk of
efficiently computable functions as follows:

Fk :=

{
fz : Kk →Mk given by
fz(α) := ((Explain(ωi, α))i∈[k+1],K)

∣∣∣∣z = ((ωi)i∈[k+1],K) whereK ∈ {0, 1}k
and eachωi is output fromFake(1k)

}
(3)

Note that each function inFk is parameterized byz, and is efficiently computable.

Security ofΓ̂ . The three security requirements of the PKEM̂Γ can be shown as follows: (The formal proofs
of Lemmas 4, 5, and 6 are given in Appendices D.5, D.6, and D.7, respectively.)

Lemma 4. If H is a UOWHF, then the PKEM̂Γ satisfies strong decapsulation soundness.

Lemma 5. The PKEMΓ̂ satisfies strong punctured decapsulation soundness (even against computationally
unbounded adversaries) unconditionally.

Lemma 6. If the SNCE schemeΠ is SNC secure and the SKE schemeE isF-OTKDM secure, then the PKEM
Γ̂ is eCPA secure.

15

K̂KG(1k) :
∀(i, j) ∈ [k]× {0, 1} :

(pk
(j)
i , sk

(j)
i)← PKG(1k)

(pkk+1, skk+1)← PKG(1k)
κ← HKG(1k)

PK ← ((pk
(j)
i)i,j , pkk+1, κ)

SK ← ((sk
(j)
i)i,j , PK)

Return(PK,SK).

Êncap(PK) :

((pk
(j)
i)i,j , pkk+1, κ)← PK

α← Kk

((ri)i∈[k+1],K)← (Rk)
k+1 × {0, 1}k

β ← ((ri)i∈[k+1],K)
c̃← SEnc(α, β)
ck+1 ← Enc(pkk+1, α; rk+1)
h← Hκ(ck+1∥c̃)
View h as(h1∥ . . . ∥hk) ∈ {0, 1}k.
∀i ∈ [k] : ci ← Enc(pk

(hi)
i , α; ri)

C ← (h, (ci)i, c̃).
Return(C,K).

D̂ecap(SK,C) :

((sk
(j)
i)i,j , PK)← SK

((pk
(j)
i)i,j , pkk+1, κ)← PK

(h, (ci)i, c̃)← C

View h as(h1∥ . . . ∥hk) ∈ {0, 1}k.
α← Dec(sk

(h1)
1 , c1)

If α = ⊥ then return⊥.
β ← SDec(α, c̃)
If β = ⊥ then return⊥.
((ri)i∈[k+1],K)← β
ck+1 ← Enc(pkk+1, α; rk+1)
If (a) ∧ (b) then returnK else return⊥:
(a) ∀i ∈ [k] : Enc(pk

(hi)
i , α; ri) = ci

(b) Hκ(ck+1∥c̃) = h

F̂(PK,C,C′) :
(h, (ci)i, c̃)← C
(h′, (c′i)i, c̃

′)← C′

Return(h
?
= h′).

P̂unc(SK,C∗) :

((sk
(j)
i)i,j , PK)← SK

(h∗, (c∗i)i, c̃
∗)← C∗

View h∗ as(h∗
1∥ . . . ∥h∗

k) ∈ {0, 1}k.

ŜKC∗ ← (h∗, (sk
(1−h∗

i)
i)i, PK)

ReturnŜKC∗ .

P̂Decap(ŜKC∗ , C) :

(h∗, (sk
(1−h∗

i)
i)i, PK)← ŜKC∗

(h, (ci)i, c̃)← C
If h∗ = h then return⊥.
View h∗ as(h∗

1∥ . . . ∥h∗
k) ∈ {0, 1}k.

View h as(h1∥ . . . ∥hk) ∈ {0, 1}k.
ℓ← min{i ∈ [k] : h∗

i ̸= hi}
α← Dec(sk

(1−h∗
ℓ)

ℓ , cℓ)

Run exactly aŝDecap from
the sixth step and return the result.

Fig. 4.The PKEMΓ̂ based on a SNCE schemeΠ and a SKE schemeE. In the figure, “(ri)i” and “(pk(j)
i)i,j” are the abbreviations

of “(ri)i∈[k]” and “(pk(j)
i)i∈[k],j∈{0,1}”, respectively, and we use similar notation for other values.

Here, we explain high-level proof sketches for each lemma.

Regarding strong decapsulation soundness (Lemma 4), recall that in thesDSND experiment, in order for a
ciphertextC ′ = (h′, (c′i)i, c̃

′) to violate (strong) decapsulation soundness, it must satisfyF̂(PK,C∗, C ′) = 1

(which impliesh∗ = h′), C ′ ̸= C∗, andD̂ecap(SK,C ′) ̸= ⊥, which (among other conditions) implies
h∗ = Hκ(c

∗
k+1∥c̃∗) = Hκ(c

′
k+1∥c̃′) = h′, where the values with asterisk are those related to the challenge

ciphertextC∗ = (h∗, (c∗i)i, c̃
∗) and c′k+1 is the intermediate value calculated during the computation of

D̂ecap(SK,C ′). On the other hand, a simple observation shows that the above conditions also imply another
condition(c∗k+1, c̃

∗) ̸= (c′k+1, c̃
′). This means that a successful ciphertext that violates (strong) decapsulation

soundness leads to a collision for the UOWHFH, which is hard to find by the security of the UOWHFH.

Regarding punctured decapsulation soundness (Lemma 5), we show that for any (possibly invalid) ci-
phertextC ′ = (h′, (c′i)i, c̃

′), if h′ ̸= h∗, then it always holds that̂Decap(SK,C ′) = P̂Decap(ŜKC∗ , C ′).
This can be shown due to the correctness of the building block SNCE schemeΠ and the validity check
by re-encryption performed at the last step of̂Decap and P̂Decap. In particular, the validity check by re-
encryption works like a non-interactive proof with perfect soundness in the DDN construction, and hence
for any adversary, itssPDSND advantage is zero.

Finally, we explain how theeCPA security (Lemma 6) is proved. LetA be anyeCPA adversary. Consider
the following sequence of games:

Game 1: This is theeCPA experiment itself. To make it easier to define the subsequent games, we change
the ordering of the operations as follows (note that this does not changeA’s view):

16

Game 1:
α∗ ← Kk;
For i ∈ [k + 1] :

(pk′
i, sk

′
i)← PKG(1k);

r∗i ←Rk;
c∗i ← Enc(pk′

i, α
∗; r∗i);

End For
K∗

1 ← {0, 1}k;
(Continue to the center column↗)

β∗ ← ((r∗i)i∈[k+1],K
∗
1);

c̃∗ ← SEnc(α∗, β∗);
κ← HKG(1k);
h∗ = (h∗

1∥ . . . ∥h∗
k)← Hκ(c

∗
k+1∥c̃∗);

For i ∈ [k] :

pk
(h∗

i)
i ← pk′

i;

(pk
(1−h∗

i)
i , sk

(1−h∗
i)

i)← PKG(1k);
End For
(Continue to the right column↗)

PK ← ((pk
(j)
i)i,j , pk

′
k+1, κ);

C∗ ← (h∗, (c∗i)i, c̃
∗);

ŜKC∗ ← (h∗, (sk
(1−h∗

i)
i)i, PK);

K∗
0 ← {0, 1}k;

b← {0, 1};
b′ ← A(PK, ŜKC∗ , C∗,K∗

b)

Game 2: Same as Game 1, except that we generate each tuple(pk
(h∗

i)
i , c∗i , r

∗
i) and (pkk+1, c

∗
k+1, r

∗
k+1)

by using the simulation algorithmsFake andExplain of the SNCE schemeΠ. More precisely, in this
game, the step with the underlinein Game 1 is replaced with: “(pk′i, c

∗
i , ω
∗
i) ← Fake(1k); r∗i ←

Explain(ω∗i , α
∗).”

Game 3: Same as Game 2, except that the information ofβ∗ = ((r∗i)i∈k+1,K
∗
1) is erased from̃c∗. More

precisely, in this game, the step “c̃∗ ← SEnc(α∗, β∗)” in Game 2 is replaced with the steps “β′ ←
Mk; c̃∗ ← SEnc(α∗, β′).”

For i ∈ [3], let Succi be the event thatA succeeds in guessing the challenge bit (i.e.b′ = b occurs). We will
show that|Pr[Succi]− Pr[Succi+1]| is negligible for eachi ∈ [2], and thatPr[Succ3] = 1/2, which proves
theeCPA security of the PKEMΓ̂ .

Firstly, we can show that|Pr[Succ1] − Pr[Succ2]| is negligible due to theSNC security of the(k + 1)-
repetition constructionΠk+1, which in turn follows from theSNC security of the underlying SNCE scheme
Π by a standard hybrid argument (see Lemma 10 in Appendix B.1).

Secondly, we can show that|Pr[Succ2] − Pr[Succ3]| is negligible due to theF-OTKDM security of the
SKE schemeE. Here, the key idea in this proof is that we view the plaintextβ∗ = ((r∗i)i∈[k+1],K

∗
1) =

((Explain(ω∗i , α
∗)i∈[k+1],K

∗) which will be encrypted under the keyα∗ as a “key-dependent message” of
the keyα∗. More specifically, in the full proof we show how to construct aOTKDM adversaryBe that uses the
KDM function f ∈ Fk defined byf(α∗) = ((Explain(ω∗i , α

∗)i∈[k+1],K
∗) (where(ω∗i)i∈[k+1] andK∗1 are

viewed as fixed parameters hard-coded inf) for the challenge KDM query, and depending onBe’s challenge
bit, Be simulates Game 2 or Game 3 perfectly forA so thatAdvOTKDME,F ,Be(k) = |Pr[Succ2]− Pr[Succ3]|.

Finally, observe that in Game 3, the challenge ciphertextC∗ is independent ofK∗1 , and the input(PK,

ŜKC∗ , C∗,K∗b) toA is distributed identically for bothb ∈ {0, 1}. This impliesPr[Succ3] = 1/2.

Our construction of the PKEM̂Γ , and the combination of Lemmas 4 to 6 and Theorem 1 lead to our
main result in this paper:

Theorem 3. If there exist aSNC secure SNCE scheme and a SKE scheme that isOTKDM secure with respect
to efficiently computable functions, then there exist aCCA secure PKE scheme/KEM.

Finally, it would be worth noting that our construction of aCCA secure PKE (via a PKEM) is black-
box, in the sense that the construction uses the building blocks in a black-box manner, while our security
reductions of theeCPA security is non-black-box, in the sense that our reduction algorithm needs to use the
description of theExplain algorithm as a KDM encryption query. Such a situation was encountered in [55,
26] where these constructions use the building block PKE scheme in a black-box manner, while the security
proof (reduction) is non-black-box because they need to rely on its plaintext awareness. Specifically, in the
security proofs of [55, 26], reduction algorithms need to use a “(plaintext) extractor” that is dependent on
the description of aCCA adversary (and the building block PKE scheme for which plaintext awareness is
assumed).

17

5 Dolev-Dwork-Naor KEM Revisited

In this section, we show that theeCPA security of the DDN-PKEMΓDDN (Fig. 5) that we reviewed in Sec-
tion 3.4 can be shown from different assumptions on the PKE schemeΠ and the non-interactive argument
systemP. More specifically, we show that ifΠ is aSNC secure SNCE scheme andP is WI secure, then we
can still show that the PKEMΓDDN is eCPA secure. We emphasize that this change of assumptions doesnot
affect the other assumptions used for decapsulation soundness and punctured decapsulation soundness, and
thus we see that this result is a concrete evidence of the usefulness of “breaking down” the steps in a secu-
rity proof into small separate steps. By Theorem 1, we obtain a newCCA security proof for the DDN-KEM
based on a SNCE scheme and a non-interactive witness indistinguishable argument system (in the common
reference string model).

We believe this new proof for the classical construction with different set of assumptions to be theoreti-
cally interesting, and another qualitative evidence of the usefulness of SNCE in the context of constructing
CCA secure PKE/KEM. In particular, compared with the original DDN-KEM, our result here shows a trade-
off among assumptions on building blocks: a stronger assumption on a PKE scheme and instead a weaker
assumption on a non-interactive argument system. Our result shows that the difference between aCPA secure
PKE scheme and aSNC secure SNCE scheme is as large/small as the difference between theZK security and
WI security of a non-interactive argument system.

Lemma 7. If Π is a SNC secure SNCE scheme and the non-interactive argument systemP is WI secure,
then the PKEMΓDDN is eCPA secure.

The formal proof is given in Appendix D.8. Here, we explain some intuition on the proof of Lemma 7.
Recall that in the proof based on theCPA security ofΠ and theZK security ofP, we first use theZK

security ofP to “cut” the relation between the components(c∗i)i and the proofπ∗, and then use theCPA
security of thek-repetition constructionΠk (which in turn follows from theCPA security ofΠ) to “hide”
the information of the challenge bit. The proof of Lemma 7 in Appendix D.8 uses the properties of the
building blocks in the reversed order: we first use theSNC security of thek-repetition constructionΠk to

generate each tuple(pk
(h∗

i)
i , c∗i , r

∗
i) using the simulation algorithmsFake andExplain of the SNCE scheme

Π. Because now eachc∗i can be explained as an encryption of not justK∗1 but any plaintext due to the
simulation algorithmsFake andExplain, this change “cut” the relation between the components(c∗i)i and
the proofπ∗. Furthermore, due to theSNC security, aneCPA adversary cannot notice this difference from the
originaleCPA experiment. Then, we use theWI security of the non-interactive argument systemP to “erase”
the information of the challenge bitb. That eachc∗i can be explained as an encryption of any plaintext means

that there are many witnesses for the statementx∗ = ((pk
(h∗

i)
i)i, (c

∗
i)i) ∈ Lk, and hence theWI security

suffices to “hide” the information onb. For more formal details, see Appendix D.8.

Acknowledgement

The authors would like to thank the members of the study group “Shin-Akarui-Angou-Benkyou-Kai” and
the anonymous reviewers for their invaluable comments and suggestions.

References

1. B. Applebaum. Key-dependent message security: Generic amplification and completeness. InProc. of EUROCRYPT 2011,
volume 6632 ofLNCS, pages 527–546. Springer, 2011.

18

2. B. Applebaum. Garbling XOR gates “for free” in the standard model. InProc. of TCC 2013, volume 7785 ofLNCS, pages
162–181. Springer, 2013.

3. B. Applebaum. Key-dependent message security: Generic amplification and completeness.J. of Cryptology, 27(3):429–451,
2014.

4. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure encryption based on hard
learning problems. InProc. of CRYPTO 2009, volume 5677 ofLNCS, pages 595–618. Springer, 2009.

5. R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, and J.-K. Tsay. Efficient padding oracle attacks on cryptographic
hardware. InProc. of CRYPTO 2012, volume 7417 ofLNCS, pages 608–625. Springer, 2012.

6. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key encryption schemes.
In Proc. of CRYPTO 1998, volume 1462 ofLNCS, pages 26–45. Springer, 1998.

7. M. Bellare, V.T. Hoang, and S. Keelveedhi. Instantiating random oracles via UCEs. InProc. of CRYPTO 2013(2), volume
8043 ofLNCS, pages 398–415. Springer, 2013.

8. M. Bellare, V.T. Hoang, and S. Keelveedhi. Instantiating random oracles via UCEs, 2013. Updated full version of [7]. Available
at http://eprint.iacr.org/2013/424/.

9. M. Bellare, V.T. Hoang, and P. Rogaway. Foundations of garbled circuits, 2012. Full version of [10].
http://eprint.iacr.org/2012/265.

10. M. Bellare, V.T. Hoang, and P. Rogaway. Foundations of garbled circuits. InProc. of CCS 2012, pages 784–796. ACM, 2012.
11. M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption and commitment secure under

selective opening. InProc. of EUROCRYPT 2009, volume 5479 ofLNCS, pages 1–35. Springer, 2009.
12. M. Bellare and A. Sahai. Non-malleable encryption: Equivalence between two notions, and indistinguishability-based charac-

terization. InProc. of CRYPTO 1999, volume 1666 ofLNCS, pages 519–536. Springer, 1999.
13. M. Bellare and S. Yilek. Encryption schemes secure under selective opening attack, 2012. This is an updated full version of a

preliminary version with Hofheinz [11]. http://eprint.iacr.org/2009/101.
14. R. Bendlin, J.B. Nielsen, P.S. Nordholt, and C. Orlandi. Lower and upper bounds for deniable public-key encryption. InProc.

of ASIACRYPT 2011, volume 7073 ofLNCS, pages 125–142. Springer, 2011.
15. J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-dependent messages. InProc. of

SAC 2002, volume 2595 ofLNCS, pages 62–75. Springer, 2003.
16. D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. InProc. of

CRYPTO 1998, volume 1462 ofLNCS, pages 1–12. Springer, 1998.
17. D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from decision Diffie-Hellman. InProc. of

CRYPTO 2008, volume 5157 ofLNCS, pages 108–125. Springer, 2008.
18. X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-based techniques. InProc. of CCS 2005,

pages 320–329. ACM, 2005.
19. Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under subgroup indistinguishability - (or:

Quadratic residuosity strikes back). InProc. of CRYPTO 2010, volume 6223 ofLNCS, pages 1–20. Springer, 2010.
20. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. InProc. of FOCS 2001, pages

136–145. IEEE Computer Society, 2001.
21. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. InProc. of CRYPTO 1997, volume 1294 ofLNCS,

pages 90–104. Springer, 1997.
22. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. InProc. of STOC 1996, pages

639–648. ACM, 1996.
23. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. InProc. of EUROCRYPT 2004,

volume 3027 ofLNCS, pages 207–222. Springer, 2004.
24. R. Canetti, H. Krawczyk, and J.B. Nielsen. Relaxing chosen-ciphertext security. InProc. of CRYPTO 2003, volume 2729 of

LNCS, pages 565–582. Springer, 2003.
25. D. Cash, E. Kiltz, and V. Shoup. The twin Diffie-Hellman problem and applications. InProc. of EUROCRYPT 2008, volume

4965 ofLNCS, pages 127–145. Springer, 2008.
26. D. Dachman-Soled. A black-box construction of a CCA2 encryption scheme from a plaintext aware (sPA1) encryption scheme.

In Proc. of PKC 2014, volume 8383 ofLNCS, pages 37–55. Springer, 2014.
27. I. Damg̊ard and M. Jurik. A generalization, a simplification and some applications of Paillier’s probabilistic public-key system.

In Proc. of PKC 2001, volume 1992 ofLNCS, pages 119–136. Springer, 2001.
28. I. Damg̊ard and J.B. Nielsen. Improved non-committing encryption schemes based on a general complexity assumption. In

Proc. of CRYPTO 2000, volume 1880 ofLNCS, pages 432–450. Springer, 2000.
29. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. InProc. of STOC 1991, pages 542–552. ACM, 1991.
30. C. Dwork, M. Naor, and O. Reingold. Immunizing encryption schemes from decryption errors. InProc. of EUROCRYPT

2004, volume 3027 ofLNCS, pages 342–360. Springer, 2004.

19

31. S. Fehr, D. Hofheinz, E. Kiltz, and H. Wee. Encryption schemes secure against chosen-ciphertext selective opening attacks. In
Proc. of EUROCRYPT 2010, volume 6110 ofLNCS, pages 381–402. Springer, 2010.

32. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes.J. of Cryptology, 26(1):80–
101, 2013.

33. J.A. Garay, D. Wichs, and H.-S. Zhou. Somewhat non-committing encryption and efficient adaptively secure oblivious transfer.
In Proc. of CRYPTO 2009, volume 5677 ofLNCS, pages 505–523. Springer, 2009.

34. Y. Gertner, T. Malkin, and S. Myers. Towards a separation of semantic and CCA security for public key encryption. InProc.
of TCC 2007, volume 4392 ofLNCS, pages 434–455. Springer, 2007.

35. O. Goldreich.Foundations of Cryptography - Volume 1. Cambridge University Press, 2001.
36. O. Goldreich.Foundations of Cryptography - Volume 2. Cambridge University Press, 2004.
37. O. Goldreich. Basing non-interactive zero-knowledge on (enhanced) trapdoor permutations: The state of the art. InStudies in

Complexity and Cryptography, volume 6650 ofLNCS, pages 406–421. Springer, 2011.
38. S. Goldwasser and S. Micali. Probabilistic encryption.J. of Computer and System Sciences, 28(2):270–299, 1984.
39. G. Hanaoka and K. Kurosawa. Efficient chosen ciphertext secure public key encryption under the computational Diffie-Hellman

assumption. InProc. of ASIACRYPT 2008, volume 5350 ofLNCS, pages 308–325. Springer, 2008.
40. C. Hazay and A. Patra. One-sided adaptively secure two-party computation. InProc. of TCC 2014, volume 8349 ofLNCS,

pages 368–393. Springer, 2014.
41. B. Hemenway, B. Libert, R. Ostrovsky, and D. Vergnaud. Lossy encryption: Constructions from general assumptions and

efficient selective opening chosen ciphertext security. InProc. of ASIACRYPT 2011, volume 7073 ofLNCS, pages 70–88.
Springer, 2011.

42. D. Hofheinz and E. Kiltz. Practical chosen ciphertext secure encryption from factoring. InProc. of EUROCRYPT 2009, volume
5479 ofLNCS, pages 313–332. Springer, 2009.

43. S. Hohenberger, A. Lewko, and B. Waters. Detecting dangerous queries: A new approach for chosen ciphertext security. In
Proc. of EUROCRYPT 2012, volume 7237 ofLNCS, pages 663–681. Springer, 2012.

44. Z. Huang, S. Liu, and B. Qin. Sender-equivocable encryption schemes secure against chosen-ciphertext attacks revisited. In
Proc. of PKC 2013, volume 7778 ofLNCS, pages 369–385. Springer, 2013.

45. E. Kiltz. Chosen-ciphertext security from tag-based encryption. InProc. of TCC 2006, volume 3876 ofLNCS, pages 581–600.
Springer, 2006.

46. E. Kiltz, P. Mohassel, and A. O’Neill. Adaptive trapdoor functions and chosen-ciphertext security. InProc. of EUROCRYPT
2010, volume 6110 ofLNCS, pages 673–692. Springer, 2010.

47. H. Lin and S. Tessaro. Amplification of chosen-ciphertext security. InProc. of EUROCRYPT 2013, volume 7881 ofLNCS,
pages 503–519. Springer, 2013.

48. P. MacKenzie, M.K. Reiter, and K. Yang. Alternatives to non-malleability: Definitions, constructions and applications. In
Proc. of TCC 2004, volume 2951 ofLNCS, pages 171–190. Springer, 2004.

49. T. Malkin, I. Teranishi, and M. Yung. Efficient circuit-size independent public key encryption with KDM security. InProc. of
EUROCRYPT 2011, volume 6632 ofLNCS, pages 507–526. Springer, 2011.

50. T. Matsuda and G. Hanaoka. Achieving chosen ciphertext security from detectable public key encryption efficiently via hybrid
encryption. InProc. of IWSEC 2013, volume 8231 ofLNCS, pages 226–243. Springer, 2013.

51. T. Matsuda and G. Hanaoka. Key encapsulation mechanisms from extractable hash proof systems, revisited. InProc. of PKC
2013, volume 7778 ofLNCS, pages 332–351. Springer, 2013.

52. T. Matsuda and G. Hanaoka. Chosen ciphertext security via point obfuscation. InProc. of TCC 2014, volume 8349 ofLNCS,
pages 95–120. Springer, 2014.

53. T. Matsuda and G. Hanaoka. Chosen ciphertext security via UCE. InProc. of PKC 2014, volume 8383 ofLNCS, pages 56–76.
Springer, 2014.

54. P. Mol and S. Yilek. Chosen-ciphertext security from slightly lossy trapdoor functions. InProc. of PKC 2010, volume 6056 of
LNCS, pages 296–311. Springer, 2010.

55. S. Myers, M. Sergi, and A. Shelat. Blackbox construction of a more than non-malleable CCA1 encryption scheme from
plaintext awareness. InProc. of SCN 2012, volume 7485 ofLNCS, pages 149–165. Springer, 2012.

56. S. Myers and A. Shelat. Bit encryption is complete. InFOCS 2009, pages 607–616. IEEE Computer Society, 2009.
57. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. InProc. of STOC 1989, pages

33–43. ACM, 1989.
58. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. InProc. of STOC 1990,

pages 427–437. ACM, 1990.
59. A. O’Neill, C. Peikert, and B. Waters. Bi-deniable public-key encryption. InProc. of CRYPTO 2011, volume 6841 ofLNCS,

pages 525–542. Springer, 2011.

20

60. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. InProc. of EUROCRYPT 1999, volume
1592 ofLNCS, pages 223–238. Springer, 1999.

61. R. Pass, A. Shelat, and V. Vaikuntanathan. Relations among notions of non-malleability for encryption. InProc. of ASIACRYPT
2007, volume 4833 ofLNCS, pages 519–535. Springer, 2007.

62. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. InProc. of STOC 2008, pages 187–196. ACM,
2008.

63. C. Rackoff and D.R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. InProc. of
CRYPTO 1991, volume 576 ofLNCS, pages 433–444. Springer, 1992.

64. J. Rompel. One-way functions are necessary and sufficient for secure signatures. InProc. of STOC 1990, pages 387–394.
ACM, 1990.

65. A. Rosen and G. Segev. Chosen-ciphertext security via correlated products. InProc. of TCC 2009, volume 5444 ofLNCS,
pages 419–436. Springer, 2009.

66. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption, and more. InProc. of STOC 2014,
pages 475–484. ACM, 2014.

67. H. Wee. Efficient chosen-ciphertext security via extractable hash proofs. InProc. of CRYPTO 2010, volume 6223 ofLNCS,
pages 314–332. Springer, 2010.

A Basic Cryptographic Primitives

A.1 Public Key Encryption

A public key encryption (PKE) schemeΠ consists of the following three PPTAs(PKG,Enc,Dec):

PKG: The key generation algorithm that takes1k as input, and outputs a public/secret key pair(pk, sk).
Enc: The encryption algorithm that takespk and a plaintextm as input, and outputs a ciphertextc.
Dec: The (deterministic) decryption algorithm that takessk andc as input, and outputs a plaintextm which

could be the special symbol⊥meaning “c is invalid under(pk, sk).”

Correctness.We require for allk ∈ N, all (pk, sk) output byPKG(1k), and all plaintextsm, it holds that
Dec(sk,Enc(pk,m)) = m.

CPA Security.For a PKE schemeΠ = (PKG,Enc,Dec) and an adversaryA = (A1,A2), we define theCPA
experimentExptCPAΠ,A(k) as follows:

ExptCPAΠ,A(k) : [(pk, sk)← PKG(1k); (m0,m1, st)← A1(pk); b← {0, 1}; c∗ ← Enc(pk,mb);

b′ ← A2(st, c
∗); Return (b′

?
= b)],

where it is required that|m0| = |m1|.
Definition 6. We say that a PKE schemeΠ is CPA secure if for all PPTAsA, the advantageAdvCPAΠ,A(k) :=

2 · |Pr[ExptATKΠ,A(k) = 1]− 1/2| is negligible.

A.2 (Detectable) Key Encapsulation Mechanisms

A key encapsulation mechanism (KEM)Γ consists of the following three PPTAs(KKG,Encap,Decap):

KKG: The key generation algorithm that takes1k as input, and outputs a public/secret key pair(pk, sk).
Encap: The encapsulation algorithm that takespk as input, and outputs a ciphertext/session-key pair(c,K).
Decap: The decapsulation algorithm that takessk andc as input, and outputs a session-keyK which could

be the special symbol⊥meaning that “c is invalid under(pk, sk).”

For simplicity but without loss of generality, in this paper the session-key space of a KEM is assumed to be
{0, 1}k whenEncap andDecap are used with keys(pk, sk) output fromKKG(1k).

21

Correctness.We require for allk ∈ N, all (pk, sk) output byKKG(1k), and all(c,K) output byEncap(pk),
it holds thatDecap(sk, c) = K.

Detectable KEM.In this paper, we will treat the KEM-analogue of a detectable PKE scheme [43], and thus
we introduce it here.

A tuple of PPTAsΓ = (KKG,Encap,Decap,F) is said to be adetectableKEM if the tuple (KKG,
Encap,Decap) constitutes a KEM, andF is a predicate that takes a public keypk and two ciphertextsc, c′

as input and outputs either0 or 1. (The interface is exactly the same as that of the predicateF of a PKEM
introduced in Section 3.) The predicateF is used to define the security notions (detectable CCA securityand
unpredictability) for a detectable KEM.

As in the case of a PKEM, intuitively, the predicateF(pk, c∗, ·) divides the ciphertext space into two
classes: ciphertexts that are “close” fromc∗ and those that are “far” fromc∗. In the spirit of [43], the
predicateF indicates whether the decapsulation of ciphertextsc is “dangerous”: Namely, the decapsulation
of a close ciphertextc (such thatF(pk, c∗, c) = 1) may help an adversary to obtain some useful information
about (the decapsulation of) the challenge ciphertextc∗.

CPA/DCCA/CCA Security.For a (detectable) KEMΓ = (KKG,Encap,Decap) and an adversaryA, we define
theCCA experimentExptCCAΓ,A(k) as in Fig. 5 (left), where in the experiment,A is not allowed to submitc∗ to
the oracle. We define theDCCA experimentExptDCCAΓ,A (k) in the same way as theCCA experiment, except thatA
is not allowed to submit a queryc satisfyingF(pk, c∗, c) = 1. Furthermore, theCPA experimentExptCPAΓ,A(k)
is also defined similarly to theCCA experiment, except thatA is not allowed to submit any query.

Definition 7. LetATK ∈ {CPA, DCCA, CCA}. We say that a (detectable) KEMΓ isATK secure if for all PPTAs
A, the advantageAdvATKΓ,A(k) := 2 · |Pr[ExptATKΓ,A(k) = 1]− 1/2| is negligible.

Unpredictability of a Detectable KEM.Here, we recall the definition of unpredictability and strong unpre-
dictability of a detectable KEM, which are straightforward KEM-analogues of those of a detectable PKE
scheme defined by Hohenberger et al. [43]. (The ordinary (i.e. non-strong) version of unpredictability of a
detectable KEM was also defined in [50].) Informally, this security notion requires that it is hard to find a
ciphertextc′ such that it is “close” to any unseen ciphertextc∗ (i.e.F(pk, c∗, c′) = 1).

Formally, for a detectable KEMΓ and an adversaryA, consider theUNP experimentExptUNPΓ,A(k) and the
sUNP experimentExptsUNPΓ,A (k) as in Fig. 5 (center and right, respectively).

Definition 8. We say that a detectable KEMΓ satisfiesunpredictability(resp.strong unpredictability) if for
all PPTAsA, the advantageAdvUNPΓ,A(k) := Pr[ExptUNPΓ,A(k) = 1] (resp.AdvsUNPΓ,A (k) := Pr[ExptsUNPΓ,A (k) = 1])
is negligible.

Like the security notions of a PKEM, in order to use a detectable KEM as a building block to construct
fully CCA secure PKE/KEM via the constructions of [43, 50], the ordinary unpredictability suffices. However,
the strong version is usually easier to work with.

A.3 Signature

A signature schemeΣ consists of the following three PPTAs(SKG, Sign,SVer):

SKG: The key generation algorithm that takes1k as input, and outputs a verification/signing key pair
(vk, sigk).

Sign: The signing algorithm that takessigk and a messagem as input, and outputs a signatureσ.
SVer: The verification algorithm that takesvk and a message/signature pair(m,σ) as input, and outputs

either⊤ (meaning “accept”) or⊥ (meaning “reject”).

22

ExptCCAΓ,A(k) :

(pk, sk)← KKG(1k)
(c∗,K∗

1)← Encap(pk)
K∗

0 ← {0, 1}k
b← {0, 1}
b′ ← ADecap(sk,·)(pk, c∗,K∗

b)

Return(b′
?
= b).

ExptUNPΓ,A(k) :

(pk, sk)← KKG(1k)

c′ ← ADecap(sk,·)(pk)
(c∗,K∗)← Encap(pk)
ReturnF(pk, c∗, c′).

ExptsUNPΓ,A(k) :

(pk, sk)← KKG(1k)
c′ ← A(pk, sk)
(c∗,K∗)← Encap(pk)
ReturnF(pk, c∗, c′).

Fig. 5.Security experiments for a (detectable/ordinary) KEM.

Correctness.We require for allk ∈ N, all (vk, sigk) output bySKG(1k), and all messagesm, it holds that
SVer(vk,m, Sign(sigk,m)) = ⊤.

Strong One-time Unforgeability.Here we recall the strong unforgeability under one-time chosen message
attacks (SOT security, for short).

Definition 9. We say that a signature schemeΣ = (SKG, Sign, SVer) is strongly unforgeable under one-
time chosen message attacks (SOT secure, for short), if for all PPTAsA = (A1,A2), the advantage
AdvSOTΣ,A(k) := Pr[ExptSOTΣ,A(k) = 1] is negligible, where the experimentExptSOTΣ,A(k) is defined as follows:

ExptSOTΣ,A(k) : [(vk, sigk)← SKG(1k); (m, st)← A1(vk); σ ← Sign(sigk,m);

(m′, σ′)← A2(st, σ); Return 1 iff SVer(vk,m′, σ′) = ⊤ ∧ (m′, σ′) ̸= (m,σ)].

A SOT secure signature scheme can be built from any one-way function [57, 64].

A.4 Non-interactive Argument Systems

Let L = {Lk}k∈N be an NP language (for simplicity, we assume thatL consists of setsLk parameterized
by the security parameterk). A non-interactive argument systemP for L consists of the following three
algorithms(CRSG,Prove,PVer):

CRSG: The common reference string (CRS) generation algorithm that takes1k as input, and outputs a
common reference stringcrs. We assume thatcrs implicitly contains the information onk, and specifies
the setLk of statements whose validity can be proved and verified by the following algorithms.

Prove: The prover algorithm that takescrs, a statementx ∈ Lk, and a witnessw for the fact thatx ∈ Lk

as input, and outputs a proofπ.
PVer: The verification algorithm that takescrs, and a statement/proof pair(x, π) ∈ {0, 1}∗ × {0, 1}∗ as

input, and outputs either⊤ (meaning “accept”) or⊥ (meaning “reject”).

Correctness.We require perfect correctness for non-interactive argument systems: for allk ∈ N, all crs←
CRSG(1k), and all statement/witness pairs(x,w) ∈ Lk × {0, 1}∗ (wherew is a witness for the fact that
x ∈ Lk), it holds thatPVer(crs, x,Prove(crs, x, w)) = ⊤.

Security Definitions of Non-interactive Argument Systems.Here, we recall the basic security definitions for
a non-interactive argument system:adaptive soundness, witness indistinguishability, andzero-knowledge.

We first recall the definition ofadaptive soundness. We note that in our proposed construction, we need
the adaptive soundness in which the (false) statementx output by an adversary can depend on a common
reference stringcrs.

23

ExptSoundP,A (k) :

crs← CRSG(1k)
(x, π)← A(crs)
Return1 iff (a)∧ (b):
(a) x /∈ Lk

(b) PVer(crs, x, π) = ⊤

ExptWIP,A(k) :

(x,w0, w1, st)← A1(1
k)

crs← CRSG(1k)
b← {0, 1}
π ← Prove(crs, x, wb)
b′ ← A2(st, crs, π)

Return(b′
?
= b).

ExptZK- Real
P,A (k) :

(x,w, st)← A1(1
k)

crs← CRSG(1k)
π ← Prove(crs, x, w)
Returnb′ ← A2(st, crs, π).

ExptZK- Sim
P,S,A(k) :

(x,w, st)← A1(1
k)

(crs, td)← SimCRS(1k)
π ← SimPrv(td, x)
Returnb′ ← A2(st, crs, π).

Fig. 6.Security experiments for a non-interactive argument system.

Definition 10. We say that a non-interactive argument systemP for a languageL satisfiesadaptive sound-
nessif for all PPTAsA, the advantageAdvSoundP,A (k) := Pr[ExptSoundP,A (k) = 1] is negligible, where theSound
experimentExptSoundP,A (k) is defined as in Fig. 6 (leftmost).

We next recall the definition ofwitness indistinguishability(WI security, for short). We note that unlike
soundness, we donot need a version of theWI security in which a statement (and witnesses) may depend on
a common reference string.

Definition 11. We say that a non-interactive argument systemP for an NP languageL satisfieswitness
indistinguishability(WI security, for short) if for all PPTAsA = (A1,A2), the advantageAdvWIP,A(k) is
negligible, where theWI experimentExptWIP,A(k) is defined as in Fig. 6 (second-left), and it is required that
x ∈ Lk, and bothw0 andw1 are witnesses for the fact thatx ∈ Lk in theWI experiment.

Finally, we recall the definition of thezero-knowledge property(ZK security, for short). Again as inWI
security, in this paper we do not need “adaptive” version of theZK security in which a statement (and a
witness) dependent on a common reference string is taken into account.

Definition 12. We say that a non-interactive argument systemP for an NP languageL satisfies thezero-
knowledgeproperty (ZK secure, for short) if there exists a pair of PPTAsS = (SimCRS, SimPrv) satisfying
the following properties:

– (Syntax:) (SimCRS, SimPrv) has the following interface:
SimCRS: This algorithm is the “simulated common reference string” generation algorithm that takes

1k as input, and outputscrs and a corresponding trapdoortd.
SimPrv: This algorithm is the “simulated proof” generation algorithm that takestd (output bySimCRS)

and a statementx ∈ {0, 1}∗ (which may not belong toLk) as input, and outputs a “simulated proof”
π.

– (Zero-Knowledge:) For all PPTAsA = (A1,A2), the advantageAdvZKP,S,A(k) := |Pr[ExptZK- Real
P,A (k) =

1] − Pr[ExptZK- Sim
P,S,A (k) = 1]| is negligible, where theZK- Real experimentExptZK- Real

P,A (k) and the
ZK- Sim experimentExptZK- Sim

P,S,A (k) are defined as in Fig. 6 (second-right and rightmost, respectively),
and furthermore it is required thatx ∈ Lk andw is a witness for the fact thatx ∈ Lk in both of the
experiments.

A.5 Universal One-Way Hash Functions

Here, we recall the definition of a universal one-way hash function (UOWHF) [57].

Definition 13. We say that a pair of PPTAsH = (HKG,H) is a universal one-way hash function (UOWHF)
if the following two properties are satisfied:

24

– (Syntax:)On input1k, HKG outputs a hash-keyκ. For any hash-keyκ output fromHKG(1k), H defines
an (efficiently computable) function of the formHκ : {0, 1}∗ → {0, 1}k.

– (Universal One-wayness:)For all PPTAsA = (A1,A2), the advantageAdvUOWH,A(k) := Pr[ExptUOWH,A(k)

= 1] is negligible, where the experimentExptUOWH,A(k) is defined as follows:

ExptUOWH,A(k) : [(m, st)← A1(1
k); κ← HKG(1k); m′ ← A2(st, κ);

Return 1 iff Hκ(m
′) = Hκ(m) ∧m′ ̸= m].

A UOWHF can be built from any one-way function [57, 64].

B Some Useful Facts

In this section, we review several useful facts used in this paper.

B.1 Useful Facts on (Sender Non-committing) Public Key Encryption

Extending the Plaintext Space by Concatenation.The plaintext space of a SNCE scheme can be extended
by considering a simple contatenation.

Formally, letΠ = (PKG,Enc,Dec,Fake,Explain) be a SNCE scheme whose plaintext space is{0, 1}
and whose randomness space (ofEnc for security parameterk) is Rk, and letn = n(k) be a positive
polynomial. Then a simplen-wise “concatenation” constructionΠ∥n = (PKG∥n,Enc∥n,Dec∥n,Fake∥n,
Explain∥n) given in Fig. 7 (left) is a SNCE scheme whose plaintext space is{0, 1}n.

The security of then-wise concatenation construction is guaranteed by the following lemmas (which
can be proved by applying a standard hybrid argument, and thus omitted).

Lemma 8. Let n be a positive polynomial. If the SNCE schemeΠ is SNC secure, then so is then-wise
concatenation constructionΠ∥n. In particular, for any positive polynomialn and any PPTAA, there exists
a PPTAB such thatAdvSNC

Π∥n,A(k) ≤ n · AdvSNCΠ,B(k).

Repetition Construction.It is a well-known fact that theCPA security of a PKE scheme is preserved even if
we encrypt a same plaintext under multiple independently generated public keys. Similarly, theSNC security
of a SNCE scheme is preserved even if we encrypt a same plaintext under multiple independently generated
public keys.

Formally, letΠ = (PKG,Enc,Dec,Fake,Explain) be a SNCE scheme whose randomness space (of
Enc for security parameterk) is Rk, and letn = n(k) be a positive polynomial. Then then-repetition
constructionΠn = (PKGn,Encn,Decn,Faken,Explainn) based onΠ is as in Fig. 7 (right). (For an ordinary
PKE scheme, we do not consider simulation algorithmsFake andExplain.)

The security of then-repetition construction is formally stated by the following lemmas (which can be
proved by applying a standard hybrid argument, and thus omitted).

Lemma 9. Let n be a positive polynomial. IfΠ is a CPA secure PKE scheme, then so is then-repetition
constructionΠn. In particular, for any positive polynomialn and any PPTAA, there exists a PPTAB such
thatAdvCPAΠn,A(k) ≤ n · AdvCPAΠ,B(k).

Lemma 10. Letn be a positive polynomial. IfΠ is aSNC secure SNCE scheme, then so is then-repetition
constructionΠn. In particular, for any positive polynomialn and any PPTAA, there exists a PPTAB such
thatAdvSNCΠn,A(k) ≤ n · AdvSNCΠ,B(k).

25

PKG∥n(1k) :

∀i ∈ [n] : (pki, ski)← PKG(1k)
PK ← (pki)i∈[n]

SK ← (ski)i∈[n]

Return(PK,SK).
Enc∥n(PK,m;R) :
(pki)i∈[n] ← PK
Parsem as(m1, . . . ,mn) ∈ {0, 1}n.
ParseR as(r1, . . . , rn) ∈ (Rk)

n.
∀i ∈ [n] : ci ← Enc(pki,mi; ri)
ReturnC ← (ci)i∈[n].

Dec∥n(SK,C) :
(ski)i∈[n] ← SK
(ci)i∈[n] ← C
∀i ∈ [n] : mi ← Dec(ski, ci)
If ∃i s.t.mi = ⊥ then return⊥.
Returnm← (m1∥ . . . ∥mn).

Fake∥n(1k) :
∀i ∈ [n] : (pki, ci, ωi)← Fake(1k)
PK ← (pki)i∈[n]

C ← (ci)i∈[n]

W ← (ωi)i∈[n]

Return(PK,C,W).
Explain∥n(W,m) :
(ωi)i∈[n] ←W
Parsem as(m1, . . . ,mn) ∈ {0, 1}n.
∀i ∈ [n] : ri ← Explain(ωi,mi)
ReturnR← (ri)i∈[n].

PKGn(1k) :

∀i ∈ [n] : (pki, ski)← PKG(1k)
PK ← (pki)i∈[n]

SK ← (ski)i∈[n]

Return(PK,SK).
Encn(PK,m;R) :
(pki)i∈[n] ← PK
ParseR as(r1, . . . , rn) ∈ (Rk)

n.
∀i ∈ [n] : ci ← Enc(pki,m; ri)
ReturnC ← (ci)i∈[n].

Decn(SK,C) :
(ski)i∈[n] ← SK
(ci)i∈[n] ← C
∀i ∈ [n] : mi ← Dec(ski, ci)
If m1 = · · · = mk

then returnm1 else return⊥.
Faken(1k) :
∀i ∈ [n] : (pki, ci, ωi)← Fake(1k)
PK ← (pki)i∈[n]

C ← (ci)i∈[n]

W ← (ωi)i∈[n]

Return(PK,C,W).
Explainn(W,m) :
(ωi)i∈[n] ←W
∀i ∈ [n] : ri ← Explain(ωi,m)
ReturnR← (ri)i∈[n].

Fig. 7. Then-wise concatenation constructionΠ∥n (left) and then-repetition constructionΠn (right) of a PKE/SNCE scheme
based on a base PKE/SNCE schemeΠ.

B.2 Statistical Properties of Basic Primitives

To show the strong unpredictability of the PKEMs in Appendix E, we use the following simple statistical
properties of aSOT signature scheme and a UOWHF (where the formal definitions of these primitives and
their security can be found in Appendices A.3 and A.5, respectively).

Statistical Property of aSOT Secure Signature Scheme.The following lemma states that if a signature
scheme isSOT secure, then it is information-theoretically hard to guess an “unseen” verification key.

Lemma 11. Let Σ = (SKG, Sign,SVer) be aSOT secure signature scheme. Then, the following quantity
(which we call thesmoothnessof verification keys ofΣ):

SmthΣ(k) := max
h∈{0,1}∗

Pr[(vk, sigk)← SKG(1k) : vk = h]

is negligible.

Proof of Lemma 11.Fork ∈ N and a stringh ∈ {0, 1}∗, letPk(h) = Pr[(vk, sigk)← SKG(1k) : vk = h].
Furthermore, leth∗k be a string such thatPk(h

∗
k) ≥ Pk(h) for any stringh ∈ {0, 1}∗. (If there are more than

one suchh∗k, then choose the lexicographically smallest.) Note thatSmthΣ(k) = Pk(h
∗
k).

Consider aSOT adversaryA = (A1,A2) againstΣ that is defined as follows:

26

A1(vk) : A1 picks any messagem, and runs(vk′, sigk′) ← SKG(1k). If vk′ = vk, thenA1 setsst ←
(A1’s entire view). Otherwise (i.e.vk′ ̸= vk), thenA1 prepares a state informationst that tellsA2 that
A1 has given up. Finally,A1 terminates with output(m, st).

A2(st, σ) : A2 first checks whetherA1 has given up by looking atst, and aborts if this is the case. Otherwise,
A2 picks any messagem′ ̸= m, runsσ′ ← Sign(sigk′,m′), and terminates with output(m′, σ′).

The above completes the description ofA. Note thatA is a PPTA, and if (and only if)vk′ = vk occursA
succeeds in outputting a forged message/signature pair due to the correctness of the signature schemeΣ.
Therefore,A’s SOT advantage can be calculated as follows:

AdvSOTΣ,A(k) = Pr[(vk, sigk), (vk′, sigk′)← SKG(1k) : vk′ = vk]

≥ Pr[(vk, sigk), (vk′, sigk′)← SKG(1k) : vk = h∗k ∧ vk′ = h∗k]

=
(

Pr[(vk, sigk)← SKG(1k) : vk = h∗k]
)2

= Pk(h
∗
k)

2 = SmthΣ(k)
2,

Therefore, we have

SmthΣ(k) ≤
√

AdvSOTΣ,A(k).

SinceA is a PPTA andΣ is SOT secure, the right hand side of the above inequality is negligible. This
completes the proof of Lemma 11. ⊓⊔

Statistical Property of a UOWHF.The following lemma says that if the input of a UOWHF is chosen
according to a distribution with high min-entropy, then it is information-theoretically hard to guess the
evaluation result, even if a hash index is given in advance.

Lemma 12. Let H = (HKG,H) be a UOWHF, and letX be an efficiently samplable distribution such
thatH∞(X) ∈ ω(log k). LetFk be the set of all functions of the formF : [HKG(1k)] → {0, 1}k (where
“ [HKG(1k)]” denotes the support ofHKG(1k) andF may not be efficiently computable). Then, the following
quantity (which we call the smoothness ofH)

SmthH(k) := max
F∈Fk

Pr[κ← HKG(1k);x← X : Hκ(x) = F (κ)]

is negligible. (Here, two functions inFk having the same input-output behavior are identified as a single
function.)

Proof of Lemma 12. For eachk ∈ N andF ∈ Fk, let Pk(F) = Pr[κ ← HKG(1k);x ← X : Hκ(x) =
F (κ)]. Furthermore, letF ∗k ∈ Fk be a function such thatPk(F

∗
k) ≥ Pk(F) for any functionF ∈ Fk. (If

there are multiple such functions that maximizePk(Fk), choose the “first” one in some canonical ordering
of the functions inFk.) Note thatSmthH(k) = Pk(F

∗
k).

27

Consider aUOW adversaryA = (A1,A2) againstH such that eachAi picksxi ← X and simply outputs
xi. SinceX is efficiently samplable,A is a PPTA. Then,A’s UOW advantage can be calculated as follows:

AdvUOWH,A(k) = Pr[x1, x2 ← X;κ← HKG(1k) : Hκ(x1) = Hκ(x2) ∧ x1 ̸= x2]

= Pr[x1, x2 ← X;κ← HKG(1k) : Hκ(x1) = Hκ(x2)]− Pr[x1, x2 ← X : x1 = x2]

≥ Pr[x1, x2 ← X;κ← HKG(1k) : Hκ(x1) = Hκ(x2)]− 2−H∞(X)

≥ Pr[x1, x2 ← X;κ← HKG(1k) : Hκ(x1) = F ∗k (κ) ∧ Hκ(x2) = F ∗k (κ)]− 2−H∞(X)

= E
κ←HKG(1k)

[
Pr[x1, x2 ← X : Hκ(x1) = F ∗k (κ) ∧ Hκ(x2) = F ∗k (κ)]

]
− 2−H∞(X)

(∗)
= E

κ←HKG(1k)

[(
Pr[x← X : Hκ(x) = F ∗k (κ)]

)2
]
− 2−H∞(X)

(†)
≥

(
E

κ←HKG(1k)

[
Pr[x← X : Hκ(x) = F ∗k (κ)]

])2

− 2−H∞(X)

=
(

Pr[κ← HKG(1k);x← X : Hκ(x) = F ∗k (κ)]
)2
− 2−H∞(X)

= Pk(F
∗
k)

2 − 2−H∞(X)

= SmthH(k)
2 − 2−H∞(X),

where the inequality (*) follows from the fact that the events “Hκ(x1) = F ∗k (κ)” and “Hκ(x2) = F ∗k (κ)”
become independent onceκ is fixed, and the inequality (†) is due to the Jensen’s inequality4. Therefore, we
have

SmthH(k) ≤
√

AdvUOWH,A(k) + 2−H∞(X).

SinceH is a UOWHF,A is a PPTA, andH∞(X) ∈ ω(log k), the right hand side of the above inequality is
negligible. This completes the proof of Lemma 12. ⊓⊔

C On Capturing ABO-XHPS-Based KEMs via Puncturable KEM

Recall that an ABO-XHPS [67] is a special kind of a designated-verifier zero-knowledge proof of knowledge
system for a family of “one-way” relations (one-way relation family)R defined over some setU × S such
that givenu ∈ U , it is hard to finds ∈ S (where we can generate a proof such that “I know the answers
to the problemu”). Proofs produced from ABO-XHPS are “tag-based.” An ABO-XHPS has a normal mode
(called “extraction mode” in [67]) and a simulation mode (called “all-but-one” mode in [67]), where the
former is used for normal operations of a KEM and the latter is used in the security proof, and each mode
has its own key generation to generate a public/secret key pair. A normal key pair(pk, sk) can be generated if
one knows a private parameter of a one-way relation family with which ABO-XHPS is associated. Givensk,
an instanceu of a one-way relation, and a valid proofπ that proves that “I know the answers corresponding
tou”, one can extracts. (In the ABO-XHPS-based KEM [67], a ciphertext consists ofu andπ, ands is used
as a “seed” of a session-key.) Even if one does not know a private parameter of a one-way relation family,
one can generate a “simulated” public/secret key pair(pk, ŝktag∗) for any tagtag∗, so thatpk is statistically

indistinguishable from one in the normal mode. The simulation secret keyŝktag∗ can be used to extract an
answers from an instance/proof pair(u, π), except that it cannot extracts from proofs generated under

4 If X is a random variable andf is a convex function, thenE[f(X)] ≥ f(E[X]). We usef(x) = x2.

28

tag∗, while ŝktag∗ can be used to generate a fake proofπ∗ which looks like a valid proof undertag∗ for any
instanceu.

In [67], Wee showed how to use an ABO-XHPS and its associated one-way relation to construct aCCA

secure KEM. The security proof in [67] (and the other proof with slightly different assumptions on one-way
relation family and ABO-XHPS in [51]) follows a line very similar to the security proof of aCCA security
of a PKEM.

Here, the obstacle that prevents Wee’s KEM to be interpreted as a PKEM is that two different modes
in an ABO-XHPS, namely the normal mode and the simulation mode, have separate setups. Thus, if an
ABO-XHPS has the additional property that enables us to generate a simulation secret keyŝktag∗ for any
tag tag∗ from a normal secret keysk in such a way that (1) the public keypk corresponding tosk is not
changed, and (2)̂sktag∗ generated fromsk and that generated by the “conventional” simulation set up as
defined in the original ABO-XHPS are statistically close, and if ABO-XHPS has the computational security
property calledcomputational soundness(defined in [51]), then we can capture an ABO-XHPS-based KEM
and itsCCA security as a PKEM having the three properties introduced in Section 3.2. (Specifically, strong
decapsulation soundness will follow from the security of a building block UOWHF (or, equivalently, the
security of a target collision resistant hash function), the (ordinary) decapsulation soundness will follow
from the computational soundness of an ABO-XHPS (with the above mentioned additional property), and
the eCPA security will follow from the security of a one-way relation family.) Interestingly, as far as we
know, all existing ABO-XHPS defined/explained in [67, 51] with computational soundness have (or can be
modified to have) the above mentioned additional property, and hence we believe that this property is quite
natural.

Formalizing the above discussion requires some effort and is beyond our scope (the main purpose in this
paper is to show new generic constructions ofCCA secure KEMs from general cryptographic assumptions),
and hence we would like to leave it as our future work.

D Postponed Proofs

D.1 Proof of Theorem 1:CCA Security of a PKEM

In the following we show the first part of the proof of Theorem 1 (i.e. the equation (1)). The proof for the
second part (i.e. the tight version in the equation (2) using strong punctured decapsulation soundness) is
almost the same as that of the first part, and thus we only explain the difference at the end of this subsection.

Let A be any PPTA adversary that attacks theCCA security of the KEMΓ ∗ and makes in totalQ =
Q(k)(> 0) decapsulation queries. Then, consider the following sequence of games:

Game 1: This is the experimentExptCCAΓ ∗,A(k) itself.
Game 2: Same as Game 1, except that all decapsulation queriesc satisfyingF(pk, c∗, c) = 1 are answered

with ⊥.
Game 3: Same as Game 2, except that all decapsulation queriesc satisfyingF(pk, c∗, c) = 0 are answered

with PDecap(ŝkc∗ , c), whereŝkc∗ = Punc(sk, c∗).

For i ∈ [3], let Succi denote the event that in Gamei, A succeeds in guessing the challenge bit (i.e.
b′ = b occurs). Using the above notation,A’s CCA advantage can be calculated as follows:

AdvCCAΓ ∗,A(k) = 2 · |Pr[Succ1]−
1

2
| ≤ 2 ·

∑
i∈[2]

|Pr[Succi]− Pr[Succi+1]|+ 2 · |Pr[Succ3]−
1

2
|. (4)

In the following, we show an upperbound of each term in the right hand side of the above inequality.

29

Claim 1 There exists a PPTABd such thatAdvDSNDΓ,Bd(k) ≥ |Pr[Succ1]− Pr[Succ2]|.

Proof of Claim 1. Fori ∈ {1, 2}, letValidi be the event that in Gamei,A submits at least one decapsulation
queryc satisfyingF(pk, c∗, c) = 1 andDecap(sk, c) ̸= ⊥. Game1 and Game2 proceed identically unless
A makes such a query, and hence we have

|Pr[Succ1]− Pr[Succ2]| ≤ Pr[Valid1] = Pr[Valid2].

Now we show that we can construct a PPTA adversaryBd that attacks the decapsulation soundness of
the PKEMΓ with advantageAdvDSNDΓ,Bd(k) = Pr[Valid1], which, combined with the above inequality, proves
the claim. The description ofBd is as follows:

BDecap(sk,·)
d (pk, c∗,K∗): Bd setsK∗1 ← K∗, picksK∗0 ∈ {0, 1}k andb ∈ {0, 1} uniformly at random,

and runsb′ ← ADecap(sk,·)(pk, c∗,K∗b), whereBd usesBd’s own decapsulation oracle to answer toA’s
decapsulation queries. WhenA terminates,Bd checks whetherA has submitted a queryc satisfying
F(pk, c∗, c) = 1 andDecap(sk, c) ̸= ⊥, which can be checked byBd’s oracle and usingF. If A has
submitted such a query, thenBd outputs one of such queries and terminates. Otherwise,Bd simply gives
up and aborts.

The above completes the description ofBd. It is easy to see thatBd perfectly simulates Game 1 forA. There-
fore, the probability thatA submits a decapsulation queryc satisfyingF(pk, c∗, c) = 1 andDecap(sk, c) ̸=
⊥ is exactlyPr[Valid1]. Moreover, recall thatA’s queriesc must be different fromc∗ according to the rule
of theCCA experiment. Thus, ifA’s queryc satisfies the conditions ofValid1, then the query additionally
satisfiesc ̸= c∗. This means that all conditions that makeBd’s DSND experiment return1 are satisfied. Fur-
thermore, wheneverA submits such a query,Bd can always find such a query by using its oracle andF.
Hence, we haveAdvDSNDΓ,Bd(k) = Pr[Valid1]. This completes the proof of Claim 1. ⊓⊔

Claim 2 There exists a PPTABa such thatAdvPDSNDΓ,Ba (k) ≥ (1/Q) · |Pr[Succ2]− Pr[Succ3]|.

Proof of Claim 2. For i ∈ {2, 3}, letDiffi be the event that in Gamei,A submits at least one decapsulation
queryc satisfyingF(pk, c∗, c) = 0 andDecap(sk, c) ̸= PDecap(ŝkc∗ , c). Game2 and Game3 proceed
identically unlessA makes such a query, and hence we have

|Pr[Succ2]− Pr[Succ3]| ≤ Pr[Diff2] = Pr[Diff3].

Now we show that we can construct a PPTA adversaryBa that attacks the punctured decapsulation
soundness of the PKEMΓ with advantageAdvPDSNDΓ,Ba (k) ≥ (1/Q) · Pr[Diff3], which, combined with the
above inequality, proves the claim. The description ofBa is as follows:

BPDecap(ŝkc∗ ,·)
a (pk, c∗,K∗): Ba setsK∗1 ← K∗, picksK∗0 ∈ {0, 1}k andb ∈ {0, 1} uniformly at random,

and runsb′ ← A(pk, c∗,K∗b), whereBa answers toA’s decapsulation queries as Game 3 does, which

is possible becauseBa has access to the oraclePDecap(ŝkc∗ , ·) andF is publicly computable. WhenA
terminates,Ba picks one ofA’s queries uniformly at random, outputs it, and terminates.

The above completes the description ofBa. SinceBa perfectly simulates Game 3 forA, the probability
thatA submits a decapsulation queryc satisfyingF(pk, c∗, c) = 0 andDecap(sk, c) ̸= PDecap(ŝkc∗ , c) is
exactlyPr[Diff3]. Furthermore, sinceBa picks one ofA’s queries randomly, conditioned on the event that
A submits a query satisfying the conditions ofDiff3, Ba can output such a query with probability at least
1/Q. Therefore, we haveAdvPDSNDΓ,Ba (k) ≥ (1/Q) · Pr[Diff3]. This completes the proof of Claim 2. ⊓⊔

30

Claim 3 There exists a PPTABe such thatAdveCPAΓ,Be (k) = 2 · |Pr[Succ3]− 1/2|.

Proof of Claim 3. We show how to construct a PPTA adversaryBe that attacks theeCPA security of the
PKEM Γ with the claimed advantage. The description ofBe is as follows:

Be(pk, ŝkc∗ , c∗,K∗b): Be runs b′ ← A(pk, c∗,K∗b), whereBe answers toA’s decapsulation queries as

Game 3 does, which is possible becauseBe possesseŝskc∗ andF is publicly computable. Finally,Be
outputsb′ and terminates.

The above completes the description ofBe. Note thatBe perfectly simulates Game 3 forA so thatA’s
challenge bit is that ofBe’s. SinceBe outputsA’s output as it is, the probability thatb′ = b occurs is exactly
Pr[Succ3]. Therefore, we haveAdveCPAΓ,Be (k) = 2 · |Pr[b′ = b]−1/2| = 2 · |Pr[Succ3]−1/2|. This completes
the proof of Claim 3. ⊓⊔

Claims 1 to 3 and the inequality (4) guarantee that there exist PPTAsBd, Ba, andBe satisfying the
inequality (1), as required.

Tight Reduction with Strong Punctured Decapsulation Soundness.In the equation (1), the reason why we
have the factorQ (the number of aCCA adversaryA’s decapsulation queries) in front of the advantage
AdvPDSNDΓ,Ba (k) of the reduction algorithmBa attacking punctured decapsulation soundness, is that the reduc-
tion algorithmBa cannot check whether a ciphertextc′ satisfies the condition (b) of violating punctured
decapsulation soundness, i.e. the conditionDecap(sk, c′) ̸= PDecap(ŝkc∗ , c

′). However, if we instead use a
PKEM with strongpunctured decapsulation soundness, then, when proving security, a reduction algorithm
attackingstrongpunctured decapsulation soundness is given the secret keysk as input, which enables it
to check whether the conditionDecap(sk, c′) ̸= PDecap(ŝkc∗ , c

′) is satisfied. Therefore, the reduction al-
gorithm need not pick one of the decapsulation queries randomly, but can find a ciphertextc′ that violates
the conditions of strong punctured decapsulation soundness whenever the adversaryA asks such a cipher-
text as a decapsulation query. A bit more formally, we can construct a reduction algorithmB′a such that
AdvsPDSNDΓ,B′a (k) ≥ |Pr[Succ2]− Pr[Succ3]| and use this as an alternative of Claim 2. Since the description of
B′a is easily inferred from the explanation here, we do not write down it.

This completes the proof of Theorem 1. ⊓⊔

D.2 Proof of Lemma 1: Strong Decapsulation Soundness ofΓDDN

Let A be a PPTAsDSND adversary. Let(PK,SK,C∗,K∗) be a tuple that is input toA in the sDSND

experiment, wherePK = ((pk
(j)
i)i,j , crs, κ), SK = ((sk

(j)
i)i,j , PK), andC∗ = (vk∗, (c∗i)i, π

∗, σ∗).
Let us callA’s outputC ′ = (vk′, (c′i)i, π

′, σ′) in the sDSND experimentsuccessfulif C ′ satisfies the
conditions that violate the strong decapsulation soundness ofΓDDN, i.e. (a)FDDN(PK,C∗, C ′) = 1, (b)
C ′ ̸= C∗, and (c)DecapDDN(SK,C ′) ̸= ⊥. Note that the condition (a) impliesHκ(vk

′) = Hκ(vk
∗).

Furthermore, the condition (c) impliesSVer(vk′, ((c′i)i, π
′), σ′) = ⊤. Therefore, taking into account the

conditions (a) to (c) and additionally whethervk′ = vk∗ holds or not, any successful ciphertextC ′ can be
classified into the following two types:

Type 1: vk′ ̸= vk∗ ∧ Hκ(vk
′) = Hκ(vk

∗)

Type 2: vk′ = vk∗ ∧ SVer(vk′, ((c′i)i, π
′), σ′) = ⊤ ∧ ((c′i)i, π

′, σ′) ̸= ((c∗i)i, π
∗, σ∗)

31

It is easy to see that the probability thatA succeeds in outputting a ciphertext of type 1 is negligible due to
the security of the UOWHFH, and the probability thatA succeeds in outputting a ciphertext of type 2 is
negligible due to theSOT security of the signature schemeΣ. We can easily describe reduction algorithms
for both cases, and we omit them because they are straightforward. This completes the proof of Lemma 1.

⊓⊔

D.3 Proof of Lemma 2: Strong Punctured Decapsulation Soundness ofΓDDN

LetA be a PPTAsPDSND adversary. Let(PK,SK,C∗,K∗) be the tuple input toA in thesPDSND exper-

iment, wherePK = ((pk
(j)
i)i,j , crs, κ), SK = ((sk

(j)
i)i,j , PK), andC∗ = (vk∗, (c∗i)i, π

∗, σ∗). Further-

more, letŜKC∗ = (h∗, (sk
(1−h∗

i)
i)i, PK) = PuncDDN(SK,C∗), whereh∗ = (h∗1∥ . . . ∥h∗k) = Hκ(vk

∗).
Let us callA’s outputC ′ = (vk′, (c′i)i, π

′, σ′) in thesPDSND experimentsuccessfulif C ′ satisfies the
conditions that violate the strong punctured decapsulation soundness ofΓDDN, namely (a)FDDN(PK,C∗, C ′)

= 0 (which impliesh∗ ̸= h′ = (h′1∥ . . . ∥h′k) = Hκ(vk
′)) and (b)DecapDDN(SK,C ′) ̸= PDecapDDN(ŜKC∗ , C ′).

We first confirm that ifA’s output is successful, then it must be the case thatSVer(vk′, ((c′i)i, π
′), σ′)

= ⊤, PVer(crs, x′, π′) = ⊤, andx′ /∈ Lk wherex′ = ((pk
(h′

i)
i)i, (c

′
i)i). To see this, consider the op-

posite:SVer(vk′, ((c′i)i, π
′), σ′) = ⊥, PVer(crs, x′, π′) = ⊥, or x′ ∈ Lk. Either of the first two condi-

tions makes bothDecapDDN andPDecapDDN output⊥, which contradicts the conditionDecapDDN(SK,C ′) ̸=
PDecapDDN(ŜKC∗ , C ′). Moreover, ifSVer(vk′, ((c′i)i, π

′), σ′) = ⊤ andPVer(crs, x′, π′) = ⊤ hold, then

we have thatDecapDDN(SK,C ′) = Dec(sk
(h′

1)
1 , c′1) andPDecapDDN(ŜKC∗ , C ′) = Dec(sk

(1−h∗
ℓ)

ℓ , c′ℓ) =

Dec(sk
(h′

ℓ)

ℓ , c′ℓ), where the latter equality is becauseh′ℓ = 1 − h∗ℓ . However, ifx′ ∈ Lk, then every compo-

nentc′i is an honestly generated ciphertext of a same plaintextK ′ ∈ {0, 1}k, and thusDec(sk
(h′

1)
1 , c′1) =

Dec(sk
(h′

ℓ)

ℓ , c′ℓ) holds, but this again contradicts the condition ofDecapDDN(SK,C ′) ̸= PDecapDDN(ŜKC∗ , C ′).
Now, we have seen that ifA’s output is successful, then it holds thatPVer(crs, x′, π′) = ⊤ andx′ /∈ Lk.

However, this is exactly the conditions that violate the adaptive soundness of the non-interactive argument
systemP. More specifically, using an adversaryA that outputs a successful ciphertext with non-negligible
advantage in thesPDSND experiment, we can construct another adversaryBs that has non-negligible ad-
vantage in breaking the adaptive soundness of the non-interactive argument systemP. Since the reduction
algorithm is straightforward (which runsA using acrs that it receives, and checks whetherA outputs a
successful ciphertext), we omit the details. This completes the proof of Lemma 2. ⊓⊔

D.4 Proof of Lemma 3:eCPA Security ofΓDDN

Let S = (SimCRS, SimPrv) be the simulation algorithms for the non-interactive argument systemP guar-
anteed by itsZK security.

LetA be any PPTA adversary that attacks theeCPA security ofΓDDN. Consider the following sequence
of games:

Game 1: This is theeCPA experiment itself.
Game 2: Same as Game 1, except that we use the simulation algorithmsSimCRS andSimPrv to gener-

atecrs andπ∗, respectively. More precisely, in this game, the steps “crs ← CRSG(1k)” and “π∗ ←
Prove(crs, x∗, w∗)” in Game 1 are replaced with the steps “(crs, td) ← SimCRS(1k)” and “π∗ ←
SimPrv(td, x∗),” respectively.

32

Game 3: Same as Game 2, except that the information ofK∗1 is erased from the ciphertexts(c∗i)i. More

precisely, in this game, each step “c∗i ← Enc(pk
(h∗

i)
i ,K∗1 ; r

∗
i)” in Game 2 is replaced with the step

“c∗i ← Enc(pk
(h∗

i)
i , 0k; r∗i).”

For i ∈ [3], letSucci be the event thatA succeeds in guessing the challenge bit (i.e.b′ = b occurs) in Game
i. By definition,A’s eCPA advantage can be calculated as follows:

AdveCPAΓDDN,A(k) = 2 · |Pr[Succ1]−
1

2
| ≤ 2 ·

∑
i∈[2]

|Pr[Succi]− Pr[Succi+1]|+ 2 · |Pr[Succ3]−
1

2
|. (5)

In the following we upperbound each term in the right hand side of the above inequality.

Claim 4 There exists a PPTABz such thatAdvZKP,S,Bz(k) = |Pr[Succ1]− Pr[Succ2]|.

Proof of Claim 4. We show how to construct a PPTA adversaryBz that attacks theZK security of the
non-interactive argument systemP with the claimed advantage. The description ofBz = (Bz1,Bz2) as
follows:

Bz1(1k): For every(i, j) ∈ [k]×{0, 1},Bz1 runs(pk(j)i , sk
(j)
i)← PKG(1k). Next,Bz1 picksK∗1 ∈ {0, 1}k

and(r∗i)i ∈ (Rk)
k uniformly at random.Bz1 then executes(vk∗, sigk∗) ← SKG(1k), κ ← HKG(1k),

andh∗ = (h∗1∥ . . . ∥h∗k) ← Hκ(vk
∗). Then, for everyi ∈ [k], Bz1 runs c∗i ← Enc(pk

(h∗
i)

i ,K∗1 ; r
∗
i).

Finally,Bz1 setsx∗ ← ((pk
(h∗

i)
i)i, (c

∗
i)i), w

∗ ← ((r∗i)i,K
∗
1), andstB ← (Bz1’s entire view), and termi-

nates with output(x∗, w∗, stB).

Bz2(stB, crs, π∗): Bz2 first runsσ∗ ← Sign(sigk∗, ((c∗i)i, π
∗)), and setsPK ← ((pk

(j)
i)i,j , crs, κ), C∗ ←

(vk∗, (c∗i)i, π
∗, σ∗), andŜKC∗ ← (h∗, (sk

(1−h∗
i)

i)i, PK). ThenBz2 picksK∗0 ∈ {0, 1}k andb ∈ {0, 1}
uniformly at random, runsb′ ← A(PK, ŜKC∗ , C∗,K∗b), and terminates with outputγ′ ← (b′

?
= b).

The above completes the description ofBz. Note thatBz2 outputs1 only whenb′ = b occurs.Bz’s ZK

advantage can be estimated as follows:

AdvZKP,S,Bz(k) = |Pr[Expt
ZK- Real
P,Bz (k) = 1]− Pr[ExptZK- Sim

P,S,Bz(k) = 1]|
= |Pr[ExptZK- Real

P,Bz (k) : b′ = b]− Pr[ExptZK- Sim
P,S,Bz(k) : b

′ = b]|.

Consider the case whenBz runs inExptZK- Real
P,Bz (k). It is easy to see that in this case,Bz perfectly sim-

ulates Game 1 forA. In particular, the common reference stringcrs and the proofπ∗ are generated from
CRSG andProve, respectively, which is exacly how they are generated in Game 1. Under this situation, the
probability thatb′ = b occurs is exactly the same as the probability thatA succeeds in guessing its challenge
bit in Game 1, i.e.,Pr[ExptZK- Real

P,Bz (k) : b′ = b] = Pr[Succ1].
WhenBz runs inExptZK- Sim

P,S,Bz(k), on the other hand,crs andπ∗ are genearted fromSimCRS andSimPrv,
respectively, as done in Game 2. Since this is the only change from the above, with a similar argument to
the above, we havePr[ExptZK- Sim

P,S,Bz(k) : b
′ = b] = Pr[Succ2].

In summary, we haveAdvZKP,S,Bz(k) = |Pr[Succ1] − Pr[Succ2]|. This completes the proof of Claim 4.
⊓⊔

Claim 5 There exists a PPTABp such thatAdvCPAΠk,Bp(k) = |Pr[Succ2]− Pr[Succ3]|.

33

Proof of Claim 5. We show how to construct a PPTA adversaryBp that attacks theCPA security of the
k-repetition constructionΠk with the claimed advantage. The description ofBp = (Bp1,Bp2) is as follows:

Bp1(PK ′ = (pk′i)i): Bp1 picksK∗1 ∈ {0, 1}k uniformly at random, sets(M0,M1)← (0k,K∗1) andstB ←
(Bp1’s entire view), and terminates with output(M0,M1, stB).

Bp2(stB, C ′∗ = (c∗i)i): Bp2 runs (vk∗, sigk∗) ← SKG(1k), κ ← HKG(1k), andh∗ = (h∗1∥ . . . ∥h∗k) ←
Hκ(vk

∗). Next, for everyi ∈ [k], Bp2 setspk
(h∗

i)
i ← pk′i and runs(pk

(1−h∗
i)

i , sk
(1−h∗

i)
i) ← PKG(1k).

Bp2 then setsx∗ ← ((pk
(h∗

i)
i)i, (c

∗
i)i), runs (crs, td) ← SimCRS(1k), π∗ ← SimPrv(td, x∗), and

σ∗ ← Sign(sigk∗, ((c∗i)i, π
∗)). Then,Bp2 setsPK ← ((pk

(j)
i)i,j , crs, κ), C∗ ← (vk∗, (c∗i)i, π

∗, σ∗),

and ŜKC∗ ← (h∗, (sk
(1−h∗

i)
i)i, PK). Finally, Bp2 picksK∗0 ∈ {0, 1}k andb ∈ {0, 1} uniformly at

random, runsb′ ← A(PK, ŜKC∗ , C∗,K∗b), and terminates with outputγ′ ← (b′
?
= b).

The above completes the description ofBp. Let γ ∈ {0, 1} beBp’s challenge bit.Bp’s CPA advantage is
estimated as follows:

AdvCPAΠk,Bp(k) = 2 · |Pr[γ′ = γ]− 1

2
| = |Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]|

= |Pr[b′ = b|γ = 1]− Pr[b′ = b|γ = 0]|.

Consider the case whenγ = 1, i.e. eachc∗i is an encryption ofM1 = K∗1 . It is easy to see that in this
case, the challenge ciphertextC∗ is generated in exactly the same way as that in Game 2, andBp simulates
Game 2 perfectly forA. Under this situation, the probability thatb′ = b occurs is exactly the same as the
probability thatA succeeds in guessing the challenge bit in Game 2, i.e.Pr[b′ = b|γ = 1] = Pr[Succ2].

Next, consider the case whenγ = 0. In this case, eachc∗i is an encryption of0k, which is exactly how
it is generated in Game 3. Since this is the only change from the above, with a similar discussion, we have
Pr[b′ = b|γ = 0] = Pr[Succ3].

In summary, we haveAdvCPAΠk,Bp(k) = |Pr[Succ2] − Pr[Succ3]|. This completes the proof of Claim 5.
⊓⊔

Claim 6 Pr[Succ3] = 1/2.

Proof of Claim 6. In Game 3,C∗ is independent ofK∗1 . In particular, each of the componentsc∗i in C∗ is an
encryption of0k. Since bothK∗1 andK∗0 are chosen uniformly at random,A’s view is identically distributed
regardless of the challenge bitb ∈ {0, 1}. This must mean that the probability thatA succeeds in guessing
the challenge bitb is exactly1/2. This completes the proof of Claim 6. ⊓⊔

Claims 4 to 6 and the inequality (5) guarantee that there exist PPTAsBz andBp such that

AdveCPAΓDDN,A(k) ≤ 2 ·
(
AdvZKP,S,Bz(k) + AdvCPAΠk,Bp(k)

)
,

which, due to our assumptions on the building blocks and Lemma 9 (see Appendix B.1), implies that
AdveCPAΓDDN,A(k) is negligible. Recall that the choice of the PPTAeCPA adversaryA was arbitrarily, and thus
for any PPTAeCPA adversaryA we can show a negligible upperbound forAdveCPAΓDDN,A(k) as above. Hence,
the PKEMΓDDN is eCPA secure. This completes the proof of Lemma 3. ⊓⊔

34

D.5 Proof of Lemma 4: Strong Decapsulation Soundness of̂Γ

Let A be a PPTAsDSND adversary. Let(PK,SK,C∗,K∗) be a tuple that is input toA in the sDSND

experiment, wherePK = ((pk
(j)
i)i,j , pkk+1, κ), SK = ((sk

(j)
i)i,j , PK), andC∗ = (h∗, (c∗i)i, c̃

∗).
Let us callA’s outputC ′ = (h′, (c′i)i, c̃

′) in thesDSND experimentsuccessfulif C ′ satisfies the conditions
that make the experiment output1, i.e. F̂(PK,C∗, C ′) = 1 (which is equivalent toh′ = h∗), C ′ ̸= C∗,

and D̂ecap(SK,C ′) ̸= ⊥. Below, we use asterisk (*) to denote the values generated/chosen during the

generation ofC∗, and prime (′) to denote the values generated during the calculation of̂Decap(SK,C ′).
We first confirm that a successful ciphertextC ′ must additionally satisfy(c′k+1, c̃

′) ̸= (c∗k+1, c̃
∗). To

see this, assume the opposite, i.e.(c′k+1, c̃
′) = (c∗k+1, c̃

∗). Here,c′k+1 = c∗k+1 impliesα′ = α∗ (due to the
correctness of the SNCE schemeΠ). This and̃c′ = c̃∗ imply (r′i)i∈[k+1] = (r∗i)i∈[k+1] (due to the correctness
of the SKE schemeE), which in turn implies(c′i)i = (c∗i)i. Hence, it holds thatC ′ = (h′, (c′i)i, c̃

′) =
(h∗, (c∗i)i, c̃

∗) = C∗, but this contradictsC ′ ̸= C∗.
So far, we have seen that a successful ciphertextC ′must satisfyHκ(c

′
k+1∥c̃′) = h′ = h∗ = Hκ(c

∗
k+1∥c̃∗)

and(c′k+1, c̃
′) ̸= (c∗k+1, c̃

∗), which means that(c′k+1∥c̃′) and(c∗k+1∥c̃∗) constitute a collision pair forHκ.
Using this fact, we now show that we can construct a PPTABh whose advantage in theUOW experiment
regardingH is exactly the probability thatA outputs a successful ciphertext in thesDSND experiment,
which combined with the security of the UOWHFH, proves the lemma.

The description ofBh = (Bh1,Bh2) is as follows.

Bh1(1k) : Bh1 picksα∗ ∈ Kk andβ∗ = ((r∗i)i∈[k+1],K
∗) ∈ (Rk)

k+1 × {0, 1}k uniformly at random, and
runs(pkk+1, skk+1) ← PKG(1k), c∗k+1 ← Enc(pkk+1, α

∗; r∗k+1), andc̃∗ ← SEnc(α∗, β∗). ThenBh1
setsstB ← (Bh1’s entire view), and terminates with output((c∗k+1∥c̃∗), stB).

Bh2(st, κ) : Bh2 runs (pk(j)i , sk
(j)
i) ← PKG(1k) for every (i, j) ∈ [k] × {0, 1}, and then setsPK ←

((pk
(j)
i)i,j , pkk+1, κ) andSK ← ((sk

(j)
i)i,j , PK). ThenBh2 executesh∗ = (h∗1∥ . . . ∥h∗k)← Hκ(c

∗
k+1∥c̃∗)

andc∗i ← Enc(pk
(h∗

i)
i , α∗; r∗i) for everyi ∈ [k], setsC∗ ← (h∗, (c∗i)i, c̃

∗), and runsC ′ = (h′, (c′i)i, c̃
′)

← A(PK,SK,C∗,K∗). ThenBh2 executeŝDecap(SK,C ′) until it calculatesc′k+1. If D̂ecap(SK,C ′)
returns⊥ before it calculatesc′k+1, thenBh2 simply gives up and aborts. Otherwise,Bh2 terminates with
output(c′k+1∥c̃′).

The above completes the description ofBh. It is easy to see thatBh simulates thesDSND experiment perfectly
for A, and thusB′h’s advantage in theUOW expriment forH is exactly the probabality thatA outputs a
successful ciphertext, as required. This completes the proof of Lemma 4. ⊓⊔

D.6 Proof of Lemma 5: Strong Punctured Decapsulation Soundness of̂Γ

Let (PK,SK) be the key pair output bŷKKG(1k), wherePK = ((pk
(j)
i)i,j , pkk+1, κ) andSK = ((sk

(j)
i)i,j ,

PK). LetC∗ = (h∗, (c∗i)i, c̃
∗) be a ciphertext output bŷEncap(PK), and let̂SKC∗ = (h∗, (sk

(1−h∗
i)

i)i, PK)

be the punctured secret key generated bŷPunc(SK,C∗). We show that for any ciphertextC = (h, (ci)i, c̃)

(which might be outside the range of̂Encap(PK)) satisfyingF̂(PK,C∗, C) = 0 (i.e. h ̸= h∗), it holds

that D̂ecap(SK,C) = P̂Decap(ŜKC∗ , C). Note that this implies that there exists no ciphertext that vio-
lates (strong) punctured decapsulation soundness of the PKEMΓ̂ , and thus for any (even computationally
unbounded)sPDSND adversaryA, AdvsPDSND

Γ̂ ,A (k) = 0, which will prove the lemma.

To show the above, fix arbitrarily a ciphertextC = (h, (ci)i, c̃) satisfying F̂(PK,C∗, C) = 0 (and
henceh∗ ̸= h) and letℓ = min{i ∈ [k] : h∗i ̸= hi}, where each ofhi andh∗i are thei-th bit of h

35

andh∗, respectively. For notational convenience, letα1 = Dec(sk
(h1)
1 , c1) andαℓ = Dec(sk

(1−h∗
ℓ)

ℓ , cℓ) =

Dec(sk
(hℓ)
ℓ , cℓ), where the latter equality is becauseh∗ℓ ̸= hℓ implies1−h∗ℓ = hℓ. We consider the following

two cases, and show that the results from both of the algorithmŝDecap andP̂Decap always agree.

Caseα1 = αℓ: Both D̂ecap and P̂Decap proceed identically after they respectively computeα1 andαℓ,
and thus the outputs from these algorithms agree.

Caseα1 ̸= αℓ: In this case, botĥDecap andP̂Decap return⊥. Specifically,α1 ̸= αℓ and the correctness
of the SNCE schemeΠ imply that there does not existrℓ such thatEnc(pk(hℓ)

ℓ , α1; rℓ) = cℓ, and thus

D̂ecap returns⊥ in its last step at the latest (it may return⊥ earlier ifα1 = ⊥ or SDec(α1, c̃) = ⊥).

Symmetrically, there does not existr1 such thatEnc(pk(h1)
1 , αℓ; r1) = c1, and thusP̂Decap returns⊥ in

its last step at the latest (it may return⊥ earlier as above).

This completes the proof of Lemma 5. ⊓⊔

D.7 Proof of Lemma 6:eCPA Security of Γ̂

Let A be any PPTA adversary that attacks theeCPA security of Γ̂ . Consider the following sequence of
games:

Game 1: This is theeCPA experiment itself. To make it easier to define the subsequent games, we change
the ordering of the operations as follows (note that this does not changeA’s view):

Game 1:
α∗ ← Kk;
For i ∈ [k + 1] :

(pk′
i, sk

′
i)← PKG(1k);

r∗i ←Rk;
c∗i ← Enc(pk′

i, α
∗; r∗i);

End For
K∗

1 ← {0, 1}k;
(Continue to the center column↗)

β∗ ← ((r∗i)i∈[k+1],K
∗
1);

c̃∗ ← SEnc(α∗, β∗);
κ← HKG(1k);
h∗ = (h∗

1∥ . . . ∥h∗
k)← Hκ(c

∗
k+1∥c̃∗);

For i ∈ [k] :

pk
(h∗

i)
i ← pk′

i;

(pk
(1−h∗

i)
i , sk

(1−h∗
i)

i)← PKG(1k);
End For
(Continue to the right column↗)

PK ← ((pk
(j)
i)i,j , pk

′
k+1, κ);

C∗ ← (h∗, (c∗i)i, c̃
∗);

ŜKC∗ ← (h∗, (sk
(1−h∗

i)
i)i, PK);

K∗
0 ← {0, 1}k;

b← {0, 1};
b′ ← A(PK, ŜKC∗ , C∗,K∗

b)

Game 2: Same as Game 1, except that we generate each tuple(pk
(h∗

i)
i , c∗i , r

∗
i) and (pkk+1, c

∗
k+1, r

∗
k+1)

by using the simulation algorithmsFake andExplain of the SNCE schemeΠ. More precisely, in this
game, the step with the underlinein Game 1 is replaced with: “(pk′i, c

∗
i , ω
∗
i) ← Fake(1k); r∗i ←

Explain(ω∗i , α
∗).”

Game 3: Same as Game 2, except that the information ofβ∗ = ((r∗i)i∈k+1,K
∗
1) is erased from̃c∗. More

precisely, in this game, the step “c̃∗ ← SEnc(α∗, β∗)” in Game 2 is replaced with the steps “β′ ←
Mk; c̃∗ ← SEnc(α∗, β′).”

For i ∈ [3], let Succi be the event thatA succeeds in guessing the challenge bit (i.e.b′ = b occurs). By
definition,A’s eCPA advantage can be calculated as follows:

AdveCPA
Γ̂ ,A (k) = 2 · |Pr[Succ1]−

1

2
| ≤ 2 ·

∑
i∈[2]

|Pr[Succi]− Pr[Succi+1]|+ 2 · |Pr[Succ3]−
1

2
|. (6)

In the following we upperbound each term in the right hand side of the above inequality.

Claim 7 There exists a PPTABp such thatAdvSNCΠk+1,Bp(k) = |Pr[Succ1]− Pr[Succ2]|.

36

Proof of Claim 7. We show how to construct a PPTA adversaryBp that attacks theSNC security of the
(k + 1)-repetition constructionΠk+1 of the SNCE scheme with the claimed advantage. The description of
Bp = (Bp1,Bp2) as follows:

Bp1(1k): Bp1 picksα∗ ∈ Kk uniformly at random. ThenBp1 setsstB ← (Bp1’s entire view), and terminates
with output(α∗, stB) (whereα∗ is regarded asBp’s challenge message).

Bp2(stB, PK ′ = (pk′i)i∈[k+1], C
′∗ = (c∗i)i∈[k+1], R

′∗ = (r∗i)i∈[k+1]): Bp2 picksK∗1 ← {0, 1}k uniformly
at random, setsβ∗ ← ((r∗i)i∈[k+1],K

∗
1), and runs̃c∗ ← SEnc(α∗, β∗), κ ← HKG(1k), andh∗ =

(h∗1∥ . . . ∥h∗k) ← Hκ(c
∗
k+1∥c̃∗). For eachi ∈ [k], Bp2 setspk

(h∗
i)

i ← pk′i and runs(pk
(1−h∗

i)
i , sk

(1−h∗
i)

i)

← PKG(1k). NextBp2 setsPK ← ((pk
(j)
i)i,j , pk

′
k+1, κ), C

∗ ← (h∗, (c∗i)i, c̃
∗), andŜKC∗ ← (h∗,

(sk
(1−h∗

i)
i)i, PK). ThenBp2 picks K∗0 ∈ {0, 1}k and b ∈ {0, 1} uniformly at random, runsb′ ←

A(PK, ŜKC∗ , C∗,K∗b), and terminates with output(b′
?
= b).

The above completes the description ofBp. Note thatBp2 outputs1 only whenb′ = b occurs.Bp’s SNC

advantage can be estimated as follows:

AdvSNCΠk+1,Bp(k) = |Pr[Expt
SNC- Real
Πk+1,Bp (k) = 1]− Pr[ExptSNC- Sim

Πk+1,Bp(k) = 1]|

= |Pr[ExptSNC- Real
Πk+1,Bp (k) : b

′ = b]− Pr[ExptSNC- Sim
Πk+1,Bp(k) : b

′ = b]|.

Consider the case whenBp runs inExptSNC- Real
Πk+1,Bp (k). It is easy to see that in this case,Bp perfectly

simulates Game 1 forA. In particular, everypk(j)i andpkk+1 in PK are generated honestly by running

PKG(1k), and everyc∗i in C∗ is generated asc∗i ← Enc(pk
(h∗

i)
i , α∗; r∗i) whereα∗ ∈ Kk and each ofr∗i ∈

Rk are chosen uniformly at random, as done in Game 1. Under this situation, the probability thatb′ = b
occurs is exactly the same as the probability thatA succeeds in guessing its challenge bit in Game 1, i.e.,
Pr[ExptSNC- Real

Πk+1,Bp (k) : b
′ = b] = Pr[Succ1].

WhenBp runs inExptSNC- Sim
Πk+1,Bp(k), on the other hand, each of pairs(pk

(h∗
i)

i , c∗i) and eachr∗i are generated
by using the simulation algorithmsFake andExplain of the underlying SNCE schemeΠ, in such a way that
the plaintext corresponding toc∗i is “explained” asα∗ ∈ Kk that is chosen uniformly at random, as done in
Game 2. The rest of the procedures remains unchanged from the above case. Therefore, the probability that
b′ = b occurs is exactly the same as the probability thatA succeeds in guessing its challenge bit in Game 2,
i.e.,Pr[ExptSNC- Sim

Πk+1,Bp(k) : b
′ = b] = Pr[Succ2].

In summary, we haveAdvSNCΠk+1,Bp(k) = |Pr[Succ1]− Pr[Succ2]|. This completes the proof of Claim 7.
⊓⊔

Claim 8 There exists a PPTABe such thatAdvOTKDME,F ,Be(k) = |Pr[Succ2]− Pr[Succ3]|.

Proof of Claim 8. We show how to construct a PPTA adversaryBe that attacks theF-OTKDM security of the
underlying SKE schemeE with the claimed advantage. The description ofBe = (Be1,Be2) is as follows:

Be1(1k): For everyi ∈ [k+1], Be runs(pk′i, c
∗
i , ω
∗
i)← Fake(1k). Then,Be1 picksK∗1 ∈ {0, 1}k uniformly

at random. Next,Be1 specifies the functionf : Kk →Mk which is used as an encryption query in the

OTKDM experiment, defined by:α
f7→ (Explain(ω∗i , α)i∈[k+1],K

∗
1), where eachω∗i andK∗1 are treated as

fixed parameters hard-coded inf . (Note thatf ∈ Fk.) Finally,Be1 setsstB ← (Be1’s entire view), and
terminates with output(f, stB).

37

Be2(stB, c̃∗): Be2 runsκ← HKG(1k) andh∗ = (h∗1∥ . . . ∥h∗k)← Hκ(c
∗
k+1∥c̃∗). Next, for everyi ∈ [k], Be2

setspk
(h∗

i)
i ← pk′i and runs(pk

(1−h∗
i)

i , sk
(1−h∗

i)
i)← PKG(1k). Then,Be2 setsPK ← ((pk

(j)
i)i,j , pk

′
k+1, κ),

C∗ ← (h∗, (c∗i)i, c̃
∗), andŜKC∗ ← (h∗, (sk

(1−h∗
i)

i)i, PK). Be2 picksK∗0 ∈ {0, 1}k andb ∈ {0, 1}
uniformly at random, runsb′ ← A(PK, ŜKC∗ , C∗,K∗b), and terminates with outputγ′ ← (b′

?
= b).

The above completes the description ofBe. Let γ ∈ {0, 1} beBe’s challenge bit.Be’s F-OTKDM advantage
is estimate as follows:

AdvOTKDME,F ,Be(k) = 2 · |Pr[γ′ = γ]− 1

2
| = |Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]|

= |Pr[b′ = b|γ = 1]− Pr[b′ = b|γ = 0]|.

Let α∗ ∈ Kk be the key, andM1 = f(α∗) andM0 ∈ Mk be the plaintexts calculated/chosen in
Be’s OTKDM experiment. Consider the case whenγ = 1, i.e. c̃∗ is an encryption ofM1 = f(α∗) =
((r∗i)i∈[k+1],K

∗
1). Note that by the definition of the experimentExptOTKDME,F ,Be(k), if we regard the keyα∗ ∈

Kk andM∗1 = f(α∗) in ExptOTKDME,F ,Be(k) asα∗ andβ∗ in Game 2, then eachr∗i is generated byr∗i ←
Explain(ω∗i , α

∗), so that the plaintext corresponding to eachc∗i is α∗, which is how these values are gen-
erated in Game 2. Moreover, the public keyPK, the values(c∗i)i∈[k+1] used in the challenge ciphertext

C∗, and the punctured secret keŷSKC∗ are distributed identically to those in Game 2. Hence,Be simulates
Game 2 perfectly forA. Under this situation, the probability thatb′ = b occurs is exactly the same as the
probability thatA succeeds in guessing the challenge bit in Game 2, i.e.Pr[b′ = b|γ = 1] = Pr[Succ2].

Next, consider the case whenγ = 0. In this case,̃c∗ is an encryption of a random messageM0 ∈ Mk

that is independent of any other values. Then, if we regard the keyα∗ and the random messageM0 in
ExptOTKDME,Be (k) asα∗ andβ′ in Game 3, respectively, thenA’s challenge ciphertextC∗ is generated in such a
way that they are distributed identically to those in Game 3, and thusBe simulates Game 3 perfectly forA.
Therefore, with a similar argument to the above, we havePr[b′ = b|γ = 0] = Pr[Succ3].

In summary, we haveAdvOTKDME,F ,Be(k) = |Pr[Succ2] − Pr[Succ3]|. This completes the proof of Claim 8.
⊓⊔

Claim 9 Pr[Succ3] = 1/2.

Proof of Claim 9. In Game 3, the challenge ciphertextC∗ is made independent of the “real” session key
K∗1 , and bothK∗1 andK∗0 are distributed identically (uniformly at random in{0, 1}k). Hence, the challenge
bit b is information-theoretically hidden from the view ofA. This means that the probability thatA succeeds
in guessing the challenge bit is exactly1/2 (even ifA is computationally unbounded). This completes the
proof of Claim 9. ⊓⊔

Claims 7 to 9 and the inequality (6) guarantee that there exist PPTAsBp andBe such that

AdveCPA
Γ̂ ,A (k) ≤ 2 ·

(
·AdvSNCΠk+1,Bp(k) + AdvOTKDME,F ,Be(k)

)
,

which, due to our assumptions on the building blocks and Lemma 10, implies thatAdveCPA
Γ̂ ,A (k) is negligible.

Recall that the choice of the PPTAeCPA adversaryA was arbitrarily, and thus for any PPTAeCPA adversary
A we can show a negligible upperbound forAdveCPA

Γ̂ ,A (k) as above. Hence, the PKEM̂Γ is eCPA secure. This
completes the proof of Lemma 6. ⊓⊔

38

D.8 Proof of Lemma 7:eCPA Security ofΓDDN from Different Assumptions

Let A be any PPTA adversary that attacks theeCPA security ofΓDDN. Consider the following sequence of
games:

Game 1: This is theeCPA experiment itself. To make it easier to define the subsequent games, we change
the ordering of the operations as follows (note that this does not changeA’s view):

Game 1:
K∗

1 ← {0, 1}k;
For i ∈ [k] :

(pk′
i, sk

′
i)← PKG(1k);

r∗i ←Rk;
c∗i ← Enc(pk′

i,K
∗
1 ; r

∗
i);

End For
x∗ ← ((pk′

i)i, (c
∗
i)i);

w∗ ← ((r∗i)i,K
∗
1);

(Continue to the center column↗)

crs← CRSG(1k);
π∗ ← Prove(crs, x∗, w∗);
(vk∗, sigk∗)← SKG(1k);
σ∗ ← Sign(sigk∗, ((c∗i)i, π

∗));
κ← HKG(1k);
h∗ = (h∗

1∥ . . . ∥h∗
k)← Hκ(vk

∗);
For i ∈ [k] :

pk
(h∗

i)
i ← pk′

i;

(pk
(1−h∗

i)
i , sk

(1−h∗
i)

i)← PKG(1k);
End For
(Continue to the right column↗)

PK ← ((pk
(j)
i)i,j , crs, κ);

C∗ ← (vk∗, (c∗i)i, π
∗, σ∗);

ŜKC∗ ← (h∗, (sk
(1−h∗

i)
i)i, PK);

K∗
0 ← {0, 1}k;

b← {0, 1};
b′ ← A(PK, ŜKC∗ , C∗,K∗

b)

Game 2: Same as Game 1, except that we generate each tuple(pk
(h∗

i)
i , c∗i , r

∗
i) by using the simulation

algorithmsFake andExplain of the SNCE schemeΠ. More precisely, in this game, the step with the
underlinein Game 1 is replaced with: “(pk′i, c

∗
i , ω
∗
i)← Fake(1k) andr∗i ← Explain(ω∗i ,K

∗
1).”

Game 3: Same as Game 2, except that the information ofK∗1 is erased from the witnessw∗. More precisely,
in this game, the steps “r∗i ← Explain(ω∗i ,K

∗
1)” and “w∗ ← ((r∗i)i,K

∗
1)” in Game 2 are replaced with

the steps “r′i ← Explain(ω∗i , 0
k)” and “w′ ← ((r′i)i, 0

k),” respectively.

For i ∈ [3], let Succi be the event thatA succeeds in guessing the challenge bit (i.e.b′ = b occurs). By
definition,A’s eCPA advantage can be calculated as follows:

AdveCPAΓDDN,A(k) = 2 · |Pr[Succ1]−
1

2
| ≤ 2 ·

∑
i∈[2]

|Pr[Succi]− Pr[Succi+1]|+ 2 · |Pr[Succ3]−
1

2
|. (7)

In the following we upperbound each term in the right hand side of the above inequality.

Claim 10 There exists a PPTABp such thatAdvSNCΠk,Bp(k) = |Pr[Succ1]− Pr[Succ2]|.

Proof of Claim 10. We show how to construct a PPTA adversaryBp that attacks theSNC security of the
k-repetition constructionΠk of the SNCE scheme with the claimed advantage. The description ofBp =
(Bp1,Bp2) as follows:

Bp1(1k): Bp1 picks K∗1 ∈ {0, 1}k uniformly at random. ThenBp1 setsstB ← (Bp1’s entire view), and
terminates with output(K∗1 , stB) (whereK∗1 is regarded asBp’s challenge message).

Bp2(stB, PK ′ = (pk′i)i∈[k], C
′∗ = (c∗i)i∈[k], R

′∗ = (r∗i)i∈[k]): Bp2 setsx∗ ← ((pk′i)i, (c
∗
i)i) andw∗ ← ((r∗i)i,

K∗1), and runscrs ← CRSG(1k) and π∗ ← Prove(crs, x∗, w∗). Next, Bp2 runs (vk∗, sigk∗) ←
SKG(1k), σ∗ ← Sign(sigk∗, ((c∗i)i, π

∗)), κ ← HKG(1k), andh∗ = (h∗1∥ . . . ∥h∗k) ← Hκ(vk
∗). For

eachi ∈ [k], Bp2 setspk
(h∗

i)
i ← pk′i and generates(pk

(1−h∗
i)

i , sk
(1−h∗

i)
i) ← PKG(1k). Then,Bp2 sets

PK ← ((pk
(j)
i)i,j , crs, κ), C∗ ← (vk∗, (c∗i)i, π

∗, σ∗), andŜKC∗ ← (h∗, (sk
(1−h∗

i)
i)i, PK). Finally,

Bp2 picksK∗0 ∈ {0, 1}k andb ∈ {0, 1} uniformly at random, runsb′ ← A(PK, ŜKC∗ , C∗,K∗b), and

terminates with outputγ′ ← (b′
?
= b).

39

The above completes the description ofBp. Note thatBp2 outputs1 only whenb′ = b occurs.Bp’s SNC

advantage can be estimated as follows:

AdvSNCΠk,Bp(k) = |Pr[Expt
SNC- Real
Πk,Bp (k) = 1]− Pr[ExptSNC- Sim

Πk,Bp (k) = 1]|

= |Pr[ExptSNC- Real
Πk,Bp (k) : b′ = b]− Pr[ExptSNC- Sim

Πk,Bp (k) : b′ = b]|.

Consider the case whenBp runs inExptSNC- Real
Πk,Bp (k). It is easy to see that in this case,Bp perfectly

simulates Game 1 forA. In particular, everypk(j)i in PK is generated honestly by runningPKG(1k),

and everyc∗i in C∗ is generated asc∗i ← Enc(pk
(h∗

i)
i ,K∗1 ; r

∗
i) whereK∗1 ∈ {0, 1}k and each ofr∗i ∈

Rk are chosen uniformly at random, as done in Game 1. Under this situation, the probability thatb′ = b
occurs is exactly the same as the probability thatA succeeds in guessing its challenge bit in Game 1, i.e.,
Pr[ExptSNC- Real

Πk,Bp (k) : b′ = b] = Pr[Succ1].

WhenBp runs inExptSNC- Sim
Πk,Bp (k), on the other hand, each of pairs(pk

(h∗
i)

i , c∗i) and eachr∗i are generated
by using the simulation algorithmsFake andExplain of the underlying SNCE schemeΠ, in such a way that
the plaintext corresponding toc∗i is K∗1 ∈ {0, 1}k that is chosen uniformly at random, as done in Game 2.
The rest of the procedures remains unchanged from the above case. Therefore, the probability thatb′ = b
occurs is exactly the same as the probability thatA succeeds in guessing its challenge bit in Game 2, i.e.,
Pr[ExptSNC- Sim

Πk,Bp (k) : b′ = b] = Pr[Succ2].

In summary, we haveAdvSNCΠk,Bp(k) = |Pr[Succ1] − Pr[Succ2]|. This completes the proof of Claim 10.
⊓⊔

Claim 11 There exists a PPTABw such thatAdvWIP,Bw(k) = |Pr[Succ2]− Pr[Succ3]|.

Proof of Claim 11. We show how to construct a PPTA adversaryBw that attacks theWI security of the under-
lying non-interactive argument systemP with the claimed advantage. The description ofBw = (Bw1,Bw2)
is as follows:

Bw1(1k): For everyi ∈ [k], Bw runs(pk′i, c
∗
i , ω
∗
i) ← Fake(1k). Next,Bw1 picksK∗1 ∈ {0, 1}k uniformly at

random, and for everyi ∈ [k], Bw1 computesr∗i ← Explain(ω∗i ,K
∗
1) andr′i ← Explain(ω∗i , 0

k). Then,
Bw1 setsx∗ ← ((pk′i)i, (c

∗
i)i), w1 ← ((r∗i)i,K

∗
1), andw0 ← ((r′i)i, 0

k). Note that bothw0 andw1 are
witnesses to the fact thatx∗ ∈ Lk. Finally, Bw1 setsstB ← (Bw1’s entire view), and terminates with
output(x∗, w0, w1, stB).

Bw2(stB, crs, π∗): Bw2 runs (vk∗, sigk∗) ← SKG(1k), σ∗ ← Sign(sigk∗, ((c∗i)i, π
∗)), κ ← HKG(1k),

andh∗ = (h∗1∥ . . . ∥h∗k) ← Hκ(vk
∗). Next, for eachi ∈ [k], Bw2 setspk

(h∗
i)

i ← pk′i and generates

(pk
(1−h∗

i)
i , sk

(1−h∗
i)

i)← PKG(1k). Bw2 then setsPK ← ((pk
(j)
i)i,j , crs, κ), C∗ ← (vk∗, (c∗i)i, π

∗, σ∗),

and ŜKC∗ ← (h∗, (sk
(1−h∗

i)
i)i, PK). Bw2 picksK∗0 ∈ {0, 1}k andb ∈ {0, 1} uniformly at random,

runsb′ ← A(PK, ŜKC∗ , C∗,K∗b), and terminates with outputγ′ ← (b′
?
= b).

The above completes the description ofBw. Let γ ∈ {0, 1} beBw’s challenge bit.Bw’s WI advantage is
estimated as follows:

AdvWIP,Bw(k) = 2 · |Pr[γ′ = γ]− 1

2
| = |Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]|

= |Pr[b′ = b|γ = 1]− Pr[b′ = b|γ = 0]|.

40

Consider the case whenγ = 1, i.e.w1 = ((r∗i)i,K
∗
1) is used as a witness for generatingπ∗. It is easy to

see that in this case, the valueC∗ is generated in exactly the same way as that in Game 2, andBw simulates
Game 2 perfectly forA. Under this situation, the probability thatb′ = b occurs is exactly the same as the
probability thatA succeeds in guessing the challenge bit in Game 2, i.e.Pr[b′ = b|γ = 1] = Pr[Succ2].

Next, consider the case whenγ = 0. In this case,w0 = ((r′i)i, 0
k) is used as a witness for generatingπ∗,

which is exactly how it is generated in Game 3. Since this is the only change from the above, with a similar
discussion, we havePr[b′ = b|γ = 0] = Pr[Succ3].

In summary, we haveAdvWIP,Bw(k) = |Pr[Succ2] − Pr[Succ3]|. This completes the proof of Claim 11.
⊓⊔

Claim 12 Pr[Succ3] = 1/2.

Proof of Claim 12. In Game 3,C∗ is independent ofK∗1 . (In particular,π∗ is generated by using a witness
((r′∗i)i, 0

k), and eachr′i is generated byr′∗i ← Explain(ω∗i , 0
k).) Since bothK∗1 andK∗0 are chosen uniformly

at random,A’s view is identically distributed regardless of the challenge bitb ∈ {0, 1}. This must mean that
the probability thatA succeeds in guessing the challenge bitb is exactly1/2. This completes the proof of
Claim 12. ⊓⊔

Claims 10 to 12 and the inequality (7) guarantee that there exist PPTAsBp andBw such that

AdveCPAΓDDN,A(k) ≤ 2 ·
(
AdvSNCΠk,Bp(k) + AdvWIP,Bw(k)

)
,

which, due to our assumptions on the building blocks and Lemma 10, implies thatAdveCPAΓDDN,A(k) is negligible.
Recall that the choice of the PPTAeCPA adversaryA was arbitrarily, and thus for any PPTAeCPA adversary
A we can show a negligible upperbound forAdveCPAΓDDN,A(k) as above. Hence, the PKEMΓDDN is eCPA secure.
This completes the proof of Lemma 7. ⊓⊔

E Unpredictability of the Proposed PKEMs

E.1 Strong Unpredictability of ΓDDN

Lemma 13. If the signature schemeΣ is SOT secure andH is a UOWHF, then the detectable KEMΓ †DDN =
(KKGDDN,EncapDDN,DecapDDN,FDDN) (which is obtained naturally from the PKEMΓDDN in Fig. 3) satisfies
strong unpredictability.

Proof of Lemma 13. LetA be a PPTA adversary that attacks the strong unpredictability of the detectable
KEM Γ †DDN. Let (PK = ((pk

(j)
i)i,j , crs, κ), SK) be a key pair input toA, C ′ = (vk′, (c′i)i, π

′, σ′) beA’s
output, andC∗ = (vk∗, (c∗i)i, π

∗, σ∗) be a ciphertext computed in thesUNP experiment.
Let us callA’s output ciphertextC ′ successfulif C ′makes thesUNP experiment output1, i.e. it holds that

FDDN(PK,C∗, C ′) = 1, which impliesHκ(vk
∗) = Hκ(vk

′). Consider two casesvk∗ ̸= vk′ andvk∗ = vk′.
It is easy to see that an adversaryA which outputs a successful ciphertextC ′ with vk∗ ̸= vk′ can be used to
attack the UOWHFH. (Since this is trivial to see, we omit describing a reduction algorithm). Furthermore,
with an information-theoretic argument, we can bound the probability of the adversaryA outputting a (even
unsuccessful) ciphertextC ′ containingvk∗ to be negligible by theSOT security ofΣ and Lemma 11 (in
Appendix B.2), because it corresponds to guessing an “unseen” verification keyvk∗. This completes the
proof of Lemma 13. ⊓⊔

41

E.2 Strong Unpredictability of Γ̂

Lemma 14. If H is a UOWHF, then the detectable KEM̂Γ † = (K̂KG, Êncap, D̂ecap, F̂) (which is obtained
naturally from the PKEMΓ̂ in Fig. 4) satisfies strong unpredictability (even against computationally un-
bounded adversaries).

Proof of Lemma 14.LetA be any (possibly computationally unbounded) adversary that attacks the strong
unpredictability of the detectable KEM̂Γ †. Fix all randomness in thesUNP experiment except forκ andK∗,
so that they maximizeA’s sUNP advantage. LetrA beA’s random coin fixed in this step.

Let F : [HKG(1k)] → {0, 1}k be the function that takesκ ∈ [HKG(1k)] as input, sets up(PK,SK)
usingκ and the key materials that are already fixed as above, runsC ′ = (h′, (c′i)i, c̃

′) ← A(PK,SK; rA),
and outputsh′.

Let X be the distribution in whichK∗ ∈ {0, 1}k is picked uniformly at random, calculates̃c∗ ←
SEnc(α∗, ((r∗i)i∈[k+1],K

∗); r′) whereα∗, (r∗i)i∈[k+1], andr′ are the values that have been already fixed.
Then,X outputs(c∗k+1∥c̃∗), wherec∗k+1 = Enc(pkk+1, α

∗; r∗i).
Due to the correctness ofE, SEnc(α∗, ·; r′) is injective for anyα∗ ∈ Kk and any randomnessr′, and

thus the min-entropy ofX is exactly that ofK∗, i.e.H∞(X) ≥ k ∈ ω(log k). Furthermore,X is efficiently
samplable becauseSEnc is efficient.

Recall thatF̂(PK,C∗, C ′) = 1 if and only if h∗ = Hκ(c
∗
k+1∥c̃∗) = F (κ) = h′. Therefore, by the

definitions ofF , X, and thesUNP experiment regardinĝΓ †, we have

AdvsUNP
Γ̂ †,A(k) ≤ Pr[κ← HKG(1k); (c∗k+1∥c̃∗)← X : Hκ(c

∗
k+1∥c̃∗) = F (κ)].

Then, by Lemma 12 (in Appendix B.2),AdvsUNP
Γ̂ †,A(k) is negligible. Note that this holds even ifA is compu-

tationally unbounded, because Lemma 12 holds also for inefficient functionsF . This completes the proof of
Lemma 14. ⊓⊔

42

