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ABSTRACT

This paper is devoted to the design of a 258-bittiplier for computing pairings over Barreto-Naah(BN)
curves at 128-bit security level. The proposed gtess optimized for Xilinx field programmable gateray
(FPGA). Each 258-hit integer is represented as lgnpmial with five, 65 bit signed integer, coeffinis.
Exploiting this splitting we designed a pipelinegHit multiplier based on new Karatsuba- Ofman astriusing
non-standard splitting to fit to the Xilinx embeddeigital signal processor (DSP) blocks. We protetype
coprocessor in two architectures pipelined andaben a Xilinx Virtex-6FPGAusing around 17000 slices and L1
DSPs in the pipelined design and 7 DSPs in thalsditie pipelined 128-bit pairing is computed i8Ins running
at 225MHz and the serial is performed in 2.2 msnimg at 185MHz. To the best of our knowledge, this
implementation outperforms all reported hardwarggtes in term of DSP use.

Keywor ds-Cryptography, Field Programmable Gate Array (FP@AQdular Multiplication, Non-Standard Splitting,

Pairing-Friendly Curves

1 INTRODUCTION

A bilinear pairing is a mag,; X G, » G where
G, andG, are typically additive groups ar@. is a
multiplicative group and the map is linear in each

Let PEG,, PEG, andt = p + 1 —#E(Fp)
be the trace of Frobenius, then,
k_
a(P,Q) = (fio1,o(P)® /"

is non-degenerate bilinear, and computable

component. Many pairings used in cryptography such P&iring, itis the ate pairing

as the Tate pairing [1], R-ate pairing [2], ateripaj
[3] and optimal pairings [4], choogg andG, to be
specific cyclic subgroups (E(Fpk), andGr to be a
subgroup oF*pk.

11 Atepairing
Let F, be a finite field and leE be an elliptic
curve defined ovelf,,. Letr be a large prime dividing
#E(F,) and k the embedding degree BffF,) with
respect tar, namely, the smallest positive inteder
such thatr|(p* — 1). For any finite extension field
of F,, denote withE (F,)[r] the K-rationalr —torsion
group of the curve. Fa? €E (K) and an integes, let
0 be the infinity point o andf;, be aK —rational
function or Miller function with divisor
(fs.p) = s(P) = ([sIP) — (s = 1)(0)

let G, = E(F,)[r],G;, = E(F ) n Ker(m, — [p]),
where m, is the pt" power of Frobenius
endomorphism;

T, E - E

(x,y) = (xP,y7)

andGr = p, © F"k

1.2  Pairing-Friendly Curves
An elliptic curve E over F, is called pairing-

friendly whenever there exists a large prinE (F),)

with 7 >V/p and the embedding degréeis small
enough, i.e.k <log,(r)/8. Many construction
methods result in a parametrized family of elliptic
curves, i.er andp are given by the evaluation of
polynomialsr(u) andp(u) at an integer valug. One

of the most important examples of such families are
the Barreto- Naehrig (BN) curves [5], ideally sbiga

for implementing pairings at the 128-bit security
level. These curves hake= 12 are defined by

p(uw) = 36u* + 36ud+24u?+ 6u + 1

r(u) = 36u*+ 36u’+ 18u?+ 6u + 1

for someu € Z such that is prime. We show
that when we choosa = 2% + s, wheres is a
reasonably small number, the modular multiplication
in E, can be substantially improved.

The R-ate pairing [2] is a generalization of ate
pairing and can be seen as an instantiation ofrapbti
pairings [4]. Since the definition of the optimadka
pairing really depends on the particular elliptic\e
one is using, we only provide the definition in tizse
of BN curves: using the sam@ andG, as for ate
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pairing, the optimal ate pairing on BN curves is accelerate DSP applications, e.g., Finite Impulse

defined as [6], Response (FIR) filters, etc. However, these aritione
o(P,Q) units can be programmed to perform universal
4 k_ arithmetic functions not limited to the scope of S
= wk-1y/r P
. (f' la@Q(m) (a0 +0)a0(P)) filter  applications; they  support  generic

wherea = 6u +2, f = fzo(P) andl,  denotes  myjtiplication, addition and subtraction of (un)ségl
the line through pointd andB integers [7].

Algorithm 10ptimal Ate Pairing over BN Curves 14  Outline
The remainder of this paper is organized as
follows: Section Il studies the most important érig

Input: a = |6u + 2| = %325 a;2', P€E(F,)Ir],

Q € E(Fy12)[r] n ker(m, — [p]) works related to efficient hardware implementations
Output: p(P,Q) € F 12 of multiplication over F,suitable for computing
1T« Q,f <1 pairings over BN curves. Section Il introduces our
2fori = s — 2 downto( hardware design of 65 x 65 bit multiplier based on
5 T« 2T, f « f2 11 (P) DSP macro for Virtex-6 and performance
+  ifa;=1then comparison. Section IV focuses on the hardware
s T«T+Q,f« flro(P) implementation and performance comparison of our
6  endif 258 bit multiplier. Finally, section V provides
7.end for conclusion and future works.

p k_1y/r
of < (f-(f-lage(P)) - lntageerag PP > RELATED WORKS

oreturnf ) . .
Since 2009, many hardware implementations of

Algorithm 1 used arithmetic ifF,:= based on multiplication overF,, suitable for computing pairings
irreducible binomials through a tower of extensions ©n BN curves was described. The first work was

In our paper we present the towering scheme as: described by Fan et al. [8]. Their proposed
F,2 = Fylil/(i* = B), wherep = —1 arch]te.cture was based on Hypn_d Montgomery
Fyo=F [s]/(s? — &), whereé = i + 1 Multlpll|er (HMM) where multiplication and
Fou = Foalt] /(6% — $) = Fo[]/(z° — &) redupuop was mt_qleaved. In same year, a new

L _ P ’ Application Specific Integrated Circuit (ASIC)

The choice of this towering,> — F,« > F,12 makes implementation of pairings over BN curves was

the final exponentiation much cheaper than other proposed. In 2010 Fan et al. [6] proposed a new
choices. Also we chooge= 3 mod 4 to accelerate  pipelined and parallelized version of their HMM [8]
arithmetic inF 2 since multiplication by8 = -1 is In 2011, Corona et al. [9] proposed a new hardware
simple subtraction. For BN curve we chodsg? = implementation of 258 bit multiplier suitable for
x® + 2 andu = —(2% + 857). This choice of curve =~ computing pairings over BN curves. They used an
parameters will simplify and speed up the reduction asymmetric divide and conquer approach to
phases of the proposed Modular Integer Polynomial efficiently implement their 65x65 bit multiplier HEir
Montgomery Multiplier. design used only 12 DSP slices on a Xilinx Virtex 6
In same year, Yao et al. [10] proposed a new hamwa
13 FPGAresources implementation of optimal ate pairing on Virtex 6.
FPGA manufacturers integrate more and more of The design computed multiplication ovgrusing32

dedicated function blocks into modern devices. For pgp gjices. They combined Lazy reduction with RNS
example, Xilinx Virtex-6 FPGAs include separate representation.

columns of additional function hard cores for meynor

(BRAM) and arithmetic DSP operations. The DSP

blocks are grouped in pairs that span the heigtouf 3 F NlT_E _FI EI_'D MODULAR M ULTI PLIER

or five CLBs, respectively. The dual-ported BRAM  Multiplication is one of the major elements of a
matches the height of the pair of DSP blocks and Pairing coprocessor. In this paper, we propose a
supports a fast data path between memory and theModular Integer Polynomial Montgomery Multiplier
DSP elements. Of particular interest is the ushefe ~ (MIPMM) based on 5-Term Karatsuba. It is hybrid
memory elements and DSP blocks for efficient Multiplier that computation is achieved in four
Boolean and integer arithmetic operations with low dependent phases. In open literature there is many
signal propagation time. Large devices of Xilinx Works propose_d to _eff|C|ent |mplement serialization
Virtex-6 class are equipped with up to thousand Of Karatsuba in pairing computation. Few papers
individual function blocks of these dedicated meynor ~ Presented implementation in prime fields [6], [§][9
and arithmetic units. Originally, the integrated®S  This paper focuses on the Karatsuba serialization i
blocks as indicated by their name were designed to Prime field,

2
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Algorithm 2 Modular Integer Polynomial Montgomery
Multiplier (MIPMM) for BN curves

Input:  a(u) = Yl oaul,b(w) = X, bl
p(uw) = 36u* + 36ud+24u?+ 6u + 1
Output: v(u) = a(u).b(w).u> mod p(u)
1. Phasel: Polynomial Multiplication
2.c(u) = Y8 ciul = a(w). b(w)
/*computed by algorithm 3*/
3.Phase 2: Partial coefficient reduction
s.fori =0 to4
5 qi=c¢; div2% 1, =c;mod 2"
6 Cip1=Ciy1tqi ¢ =1,—5.q;
7. end for
8.Phase 3: Polynomial reduction
at(u) = (—64 +6(c3 —2c; — 6(cy — 960))) u?
0. +(—c3+6(c; — 2¢; — 6¢9) Jud
1. +(—cy + 6(c; — 2¢))u?
1z +(—=cy + 6co)u
13. h(u) = 36t,us
12 +36(ty + t3)u?
15. +12(2t4 + 3(t3 + tz))u
16, +6(ty + 4tz + 6(t; +t1))
17 v(w) = c(u)/u’ + h(w)
18. Phase 4: Coefficient reduction
19. for i = 0 to3
20. q; =v;div 2" 1, =v; mod 2"
2L Viy1 = Viy1 T4 Vi =T —S.q;
22. end for
23. returnv(u)

This multiplier consists of 258 bits five terms
Karatsuba multiplication which is constructed byon
65x65 bhits multiplier basic core. There is register

units to save intermediate results to be used. [ater
main contributions of this paper are the efficiase

of in-built features offered by modern FPGA devices
We also
designed two variants of basic 65x65 bits multiplie
using respectively 7 and 11 DSP slices. Our pragose
serialization exploits the independence in eacls@ha
and between phases to reduce the cycle count.g=igur
1 depicts the top level of the proposed design of
Modular Integer Polynomial Montgomery Multiplier

DSP, adders, subtractors, shift registers...

for BN curves.

a@) b(w) p(w)

Ll

3.1 Fiveterm Karatsuba Multiplier

The first work to compute Karatsuba using more
than three terms was proposed by Peter Montgomery
hardware
implementation because the large number of addition
and subtraction. Corona et al. [9] proposed new
scheduling for addition and subtraction to fit
hardware design. In this work we propose a more
to achieve one 258 bit

[11]. But it was not suitable for

efficient scheduling
multiplication in only 22 cycles. Algorithm 3

describes our Five term Karatsuba Multiplier. This
multiplier is based on basic 65 bit multiplier core

described in the next subsection

Algorithm 3 Proposed Five Term Karatsuba

Input:  a(u) = Xioau',b(u) = Xi, b
Output: c(w) = Y2_, c;ut
1po = aobo

2p1 =a4by; ng=ag+ay;; ny=by+b

3.p, = Ngny

4.p3 = azbz,' ny, = ap + Ay, N3z = bO + b2

5.p4 = Nyng

6.p5 = a3b3,' ng =a + az;, Ns = b2 + b3

7P =NyNs; Ng=az+ay;; ny =bz+ by

8.p7 = NgNy; Ng =Ny +Ny; Ng =Ny +Ng

9.Ppg = Ngng

10. pg = a4b4,' Nig = Qg + Ay, N1 = bo + b4

11 P1o = NyoMyy; Maz = Mo+ Ay Mz =7Ng + by
12. P11 = NypMyz; NMya = Ay + Ay Ny = by + by
18. P12 = MyaMys; Ny = Nyg + a3 Ny = Nys + bs
14. P12 = M1eM17

15. Cog = Po

16. My = p1 + Po; My = P1 — Po;

17. ¢4 = Py — My, Mg = pPg + My

.My =P1+C1; Mig =P +pP3

19.My =Py —P3; M5 =Pyt

20. Cp =My + My; M3 = p3+ps

21. §1 = Pg —M3;, Mg =M3 — Mg

22.My; = Mg+ S1; My =S — My

23. Mg = Pg — P7

24. C3 = Mg —My7; Myg = P1o +P7

25. C4 = My +Mg; M3 = P11 — P10

26. C5 = My3 —Myq; Mys = P12 + Ps

21. C = My5 — Mqy; Mye = P13 — 51

28. C7 = Mqg — My5

20. returnc(u)

=
ol

3.2 Basic 65 bit multiplier core

Karatsuba

[€---— I —

5-Term »] Partial

Coefficient

Coefficient
Reduction

| Control

€----

Lemeepy

l

v(w)

Polynomial
Reduction

Figure 1 Top level of MIPMM

The five term Karatsuba multiplier turned around
this module. We propose two different architectures
to perform asymmetric multiplication using common
non-standard splitting technique. For instance, the
asymmetric operands can be computed by the
following equation with 25 and 18 bits to fit DSére
of the FPGA. We reserve the most significant bit as
operand’s sign. Let

64

7= AB—(Z @a2)(). bi2')
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We decide to not perform full DSP computation for
the last core Bs;¢4dp23 t0 avoid non-useful
operations. So, we can Writ€ = Z, + 2%*Z; +
2487, as described in Figure 2 For example we can
split the operands df,, as

ZO = BO:16A0:23 + 217(317:33A0:23
+ 217(334:50A0:23
+ 217(351:64A0:23)))

In this work we propose two designs called
respectively full pipelined and serial architecture
depicted respectively. In the first design, we o<
three sets of DSP cores arrangem@pi4; and Z,):
the two first sets have the same design and eadh se
performed by four DSP slices

64 51 34 17 0

P3 P2 P1 PO

24

P7 P6 P5 P4

48

P9 P9

P10

48 24
Figure 3 Proposed tilling

The last set is computed by only three slices. ¥ézlu

in the basic core three DSP parameterization @ettail
as eight 25x18 bit, two 25x15 and one 18x18 DSP
configuration. This idea reduces the frequencyhef t
multiplier but let us reduce power consumption by
saving extra registers and non-useful operatiohis T
first design achieves one 65x65 bit multiplication
seven cycles using eleven DSP cores.

B[51:64]
A[0:23]
B[34:50]
A[0:23]

B[17:33]
A[0:23]
B[0:16]

A[0:23]

Figure 4 Proposed hardware design of the first B&P

Figure 5 delay constrained of the full pipelined
architecture

In the second design, we rearrange operationske ma
Z, andZ, share the same hardware. So, we compute
Z, andZ, in parallel. To get results at same time we
added a pipeline stage in the DSP set,0fAt the5t"

we have our outputs. In the second cycle, we ettere
the operands af, to get it at thes™ cycle. At this
time we have also the result of the additigr= Z, +
2487, . The adder is an in-built feature of the FPGA
configured to give result after one cycle. Finallye
performed the last addition, configured also with
latency one, giving full result after seven cyalsing
only seven DSP slices. In this second architectgre
have added extra hardware finite state machine,
multiplexers and demultiplexers.

3.3  Coefficient and polynomial reductions
The architecture describedRipelined

architecture
(b) Serial architecture

Figure 6depicts the top level of each architecture
shows the polynomial reduction phase. It can reduce
the coefficients one by one taking twelve cycles to
achieve the entire reduction. We performed
multiplication bys using shifts and addition. In this
phases, the complexity can be reduced by exploiting
the characteristics of the different constantsc&in
s=252*+23) +2°+ (2* +23) +1,

multiplication bys is performed by three additions in
three cycles. There is also multiplication by the
following constants6,9,12 and6 computed by
shifts and additions, e.gba = 22a + 2a; 9a =
23a+ a; 12a = 23a + 2%a; 36a = 2%a + 2%aq;

34 Delay constrained of MIPMM

As mentioned before, the 65x65 bit multiplication
takes seven cycles to achieve one multiplicatioe. W
get all partial products (PPpicr133 Shown in
algorithm 3 after 13 cycles. However the delay of
datapath for the post partial products combinedh wit
PP is two clock cycles. As result, five term Kaudiz
gives the first output after 22 clock cycles. Asis@as
eachc;eqo,7; gets out from the pipelined PP core, it is

The diagram in describes the delay constrained of scheduled on the fly to be partially reduced. This

the full pipelined architecture that takes sevetley
to achieve 65x65 bit multiplication.

So =2y +2%*Z

Z() Zz 0 0 1
Result

Zy

S =S, + 2%z,

n
>

So
L
T
6

N o 0

'
T
Cycles 5

phase ends at the 22 second clock cycle. Other
reduction phases also combined with phase one take
13 cyclesTherefore, to sum up, the cost of the entire
multiplier is 35 clock cycles.
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Ao ——>l Dsp 7 1====1 Control FSM
setl 0 i :
1
By —p 4o i i s
+ So 4 ' DSP 4 Zy K24 + >
i set 1
4 = <
1 B
—>» o 0 TLP
set 2 Ly B B, + So
By +
7,24 4, ———» psp id
set3 7,48
42— DSP B, —P
set3
B, —p 7,448

(a) Pipelined architecture

(b) Serial architecture

Figure 6 Top level design of proposed pipelined serial architectures

4 PAIRING DESIGN

Most operations in optimal pairing algorithm
steps of are performed I),:2. Many techniques give
efficient computation in extended fields with low
complexity. We choose methods with minimum
squaring and multiplication. The underlying

operations are computed in base field. Therefore we

design our coprocessor as scheduling Bf

operations.
As shown in Algorithm 1, Miller loop phase

consists of the following major operations:

- Doubling step, is the elliptic curve point doubling
combined with the computation of the lihe

- Addition step, is the elliptic curve point addition
combined with the computation of the lihe

- Squaring of the Miller functiorf.

- Spare multiplication of by having only half of
non-zero coefficients.

We adopt homogenous coordinates proposed in
[12] to efficient compute the different curve
operations in the Miller loop. The listed abovepste
need arithmetic inF,z such as multiplication and

squaring. We propose Karatsuba method described by

the following equation to compute multiplication.
Vo = agbo; V1 = a;by

Co=Vo— M1

c1 = (ag + a;)(by + by) — vy — vy

We also refer to complex method to perform
squaring inF 2. First, we precompute, = aya;.
Then, the square = a? is computed as
co = (ap + ay)(ag —ay)
¢ = 21,

Multiplication and squaring operations need
respectively 36 and 39 cycles to get out theirltesu
To efficient compute Miller loop we made
rearrangements and scheduling in each step tarfit o

5

design. In the doubling step we have to computeethr
squaring and two multiplications which are
equivalent to 12F, multiplications in the first part.
They takes 48 cycles. In the second part, we h@ve 1
FE, multiplications giving results out in the ©4ycle.
The f? and f.l need 111F, multiplications
computed in 3.885 cycles. To sum up, each Miller
loop iteration takes 3.979 clock cycles. Using the
same strategy in curve rearrangement additionistep
achieved in 3,385 clock cycles. As result, Milleop
takes 277.000 cycles.

The final exponentiation consists of final addition
and final exponentiation. Table 1 gives the diffeere
operation in this step and the cycle count.

step F, multiplications
Final Addition | 204
fp5—1 579
JL 768
fPe-p*+i/n 1813
Others 356
Cycle count 130.200

Table 1 Cycle count of the final exponentiation

5 RESULTSAND COMPARISON

The hole design has been done in VHDL using
Xilinx ISE design suite on a Virtex-6 xc6vIx240t-
3ff784 FPGA. It used in total 17560 slices, 7 add 1
DSP cores in our serial and pipelined architectures
respectively. It runs at 185Mhz and finishes pajrin
computation on BN curve at 128 bit security level i
2.2ms.

Table 2 lists the performance hardware
implementations reported in recent literature.
Compared with the other hardware implementation
[6] our design saves DSP cores
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Designs Curve | Architecture Target Area Frequency Cycles | Delay
MHz X10° ms
This work | BNos Pipelined Xc6vIx240t 17560 slices, 11 DSP 225 407 1.8
BNi2s Serial Xc6vIx240t 14890 slices, 7 DSH 185 407 2.2
[8] BN126 HMM digit-serial | ASIC 130mm | 183k Gates 204 861 4.2
[6] BN12s HMM parallel Xc6vix240t 4014 slices, 42 DSH 210 524 | 1.17
[13] BNi2s Blakley Xc4vIx200 52000 slices 50 821 16.4
[14] BN126 Montgomery Xc6vIx240t 3813 slices, 144 DSP 166 70| 0.43
[15] BN126 RNS (Parallel) | xc6vix240t 5237 slices, 8DSP | 210 78 0.338

Table 2 Performance comparison of hardware impléatiens of pairings at around 128-bit security

until 90%. Our goal is to keep the design of the Cryptography, SAC 2003.NCS 3897, pages 319-
pairing coprocessor full used by efficient resource 331, 2006.
sharing at high frequency. It is a serial6] J. Fan, F. Vercauteren, and |. Verbauwhede. Efficie
implementation with minimum area use. The current hardware implementation of Fp-arithmetic for
design not only gains in in-built DSP slices with pairing-friendly ~ curves. Computers, IEEE
comparable pairing computation time but also shows Transactions on61(5), 2012, 676-685.
that modern FPGA can be able to perform pairif@] T.Guneysu. Utilizing hard cores of modern FPGA
with high complexity at higher security level on devices for high-performance cryptograpfgurnal
different friendly curves with large algebraic alos. of Cryptographic Engineerind(1), 2011, 37-55.

[8] J. Fan, F. Vercauteren, and I. Verbauwhede. FBpter

Arithmetic for Cryptographic Pairings on Barreto-

6 CONCLUSION Naehrig CurvesCHES 2009, volume 5747 of Lecture
Notes in Computer Sciengeages 240-253. Springer,
20009.
[9] C. Corona, C., Moreno, E. F., & Henriquez, F. R.

Due to deep arrangement and careful scheduling of qudware design of a 256'b|t prime field mu_lt_|pI|er
suitable  for computing bilinear  pairings.

differen; steps oflthe cop:jocesior our design SaVES | ternational  Conference  on Reconfigurable
90% of DSP slices and achieves one pairing . . i
computation in 1.8 ms. Our future work will be the (zlggnputmg and FPGAs (ReConFig 2012011, 229
multi-pairing computation to respond faster to ma 0]G ' X Yao. J. Fan. R. C. Cheun
client requests. We plan also to implement other o o oo 9,

curves and different types of pairings on this . : ,
architecture. Furthermore, we will provide an ofatim usw;]g RNS an? tlj?zy frEdUCt'ﬁmr?;?tOIng ePnnt/
arameter set and pairing implementations for highe Archive, ~Available from http://eprint.iacr.org/.
P Report 2011/2582011

security level including 192-bit or 256-bit secyrit

In this paper we introduce a new hardware design
to efficiently serialize polynomial integer
multiplication on BN curves over large prime field

and |.
Verbauwhede. A high speed pairing coprocessor

[11] P. L. Montgomery. Five, six, and seven-term
Karatsuba-like formulae,|EEE Transactions on
Computersvol. 54(3), 362-369
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