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Abstract

Multi-input functional encryption (MIFE) was introduced by Goldwasser et al. (EUROCRYPT 2014)
as a compelling extension of functional encryption. In MIFE, a receiver is able to compute a joint function
of multiple, independently encrypted plaintexts. Goldwasser et al. (EUROCRYPT 2014) show various
applications of MIFE to running SQL queries over encrypted databases, computing over encrypted data
streams, etc.

The previous constructions of MIFE due to Goldwasser et al. (EUROCRYPT 2014) based on in-
distinguishability obfuscation had a major shortcoming: it could only support encrypting an a priori

bounded number of message. Once that bound is exceeded, security is no longer guaranteed to hold. In
addition, it could only support selective-security, meaning that the challenge messages and the set of
“corrupted” encryption keys had to be declared by the adversary up-front.

In this work, we show how to remove these restrictions by relying instead on sub-exponentially secure

indistinguishability obfuscation. This is done by carefully adapting an alternative MIFE scheme of
Goldwasser et al. that previously overcame these shortcomings (except for selective security wrt. the
set of “corrupted” encryption keys) by relying instead on differing-inputs obfuscation, which is now
seen as an implausible assumption. Our techniques are rather generic, and we hope they are useful in
converting other constructions using differing-inputs obfuscation to ones using sub-exponentially secure
indistinguishability obfuscation instead.
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1 Introduction
In traditional encryption, a receiver in possession of a cipher-text either has a corresponding decryption
key for it, in which case it can recover the underlying message, or else it can get no information about
the underlying message. Functional encryption (FE) [SW05, BSW11, GKP+13, GGH+13] is a vast new
paradigm for encryption in which the decryption keys are associated to functions, whereby a receiver in
possession of a cipher-text and a decryption key for a particular function can recover that function of the
underlying message. Intuitively, security requires that it learns nothing else. Due to both theoretical appeal
and practical importance, FE has gained tremendous attention in recent years.

In particular, this work concerns a compelling extension of FE called multi-input functional encryption
(MIFE), introduced by Goldwasser et al. [GGG+14]. In MIFE, decryption operates on multiple cipher-texts,
such that a receiver with some decryption key is able to recover the associated function applied to all of the
underlying plaintexts (i.e., the underlying plaintexts are all arguments to the associated function). MIFE
enables an number of important applications not handled by standard (single-input) FE. On the theoretical
side, MIFE has interesting applications to non-interactive secure multiparty computation [BGI+14]. On the
practical side, we reproduce the following example from [GGG+14]

Running SQL queries over encrypted data: Suppose we have an encrypted database. A natural goal
in this scenario would be to allow a party Alice to perform a certain class of general SQL queries over
this database. If we use ordinary functional encryption, Alice would need to obtain a separate secret key
for every possible valid SQL query, a potentially exponentially large set. Multi-input functional encryption
allows us to address this problem in a flexible way. We highlight two aspects of how Multi-Input Functional
Encryption can apply to this example:

� Let f be the function where f(q, x) first checks if q is a valid SQL query from the allowed class, and if so
f(q, x) is the output of the query q on the database x. Now, if we give the decryption key corresponding
to f and the encryption key ek1 (corresponding to the first input of the function f) to Alice, then
Alice can choose a valid query q and encrypt it under her encryption key EK1 to obtain ciphertext c1.
Then she could use her decryption key on ciphertexts c1 and c2, where c2 is the encrypted database,
to obtain the results of the SQL query.

� Furthermore, if our application demanded that multiple users add or manipulate different entries in
the database, the most natural way to build such a database would be to have different ciphertexts
for each entry in the database. In this case, for a database of size n, we could let f be an (n+ 1)-ary
function where f(q, x1, . . . , xn

) is the result of a (valid) SQL query q on the database (x1, . . . , xn

).

Goldwasser et al. [GGG+14] discuss various other application of MIFE to non-interactive differentially
private data release, delegation of computation, and, computing over encrypted streams, etc. We refer
the reader to [GGG+14] for a more complete treatment. Besides motivating the notion, Goldwasser et
al. [GGG+14] gave various flavors of definitions for MIFE and its security, as well as constructions based on
different forms of program obfuscation. First of all, we note a basic observation about MIFE: in the public-
key setting, functions for which one can hope to have any security at all are limited. In particular, a dishonest
decryptor in possession of public key PP, a secret key SK

f

for (say) a binary function f , and cipher-text CT
encrypting message m, can try to learn m by repeatedly choosing some m0 and learning f(m,m0), namely by
encrypting m0 under PP to get CT0 and decrypting C,C0 under SK

f

. This means one can only hope for a very
weak notion of security in such a case. As a result, in this work we focus on a more general setting where
the functions have say a fixed arity n and there are encryption keys EK1, . . . ,EKn

corresponding to each
index (i.e., EK

i

is used to encrypt a message which can then be used as an i-th argument in any function via
decryption with the appropriate key). Only some subset of these keys (or maybe none of them) are known
to the adversary. Note that this subsumes both the public key and the secret key setting (in which a much
more meaningful notion of security maybe possible). In this setting, [GGG+14] presented an MIFE scheme
based on indistinguishability obfuscation (iO) [BGI+01, GGH+13].

Bounded-message security: The construction of Goldwasser et al. [GGG+14] based on iO has a severe
shortcoming namely that it could only support security for an encryption of an a priori bounded number of



messages1. This bound is required to be fixed at the time of system setup and, if exceeded, would result
in the guarantee of semantic security not holding any longer. In other words, the number of challenge
messages chosen by the adversary in the security game needed to be a priori bounded. The size of the public
parameters in [GGG+14] grows linearly with the number of challenge messages.

Now we go back to the previous example of running SQL queries over encrypted databases where each
entry in the database is encrypted individually. This bound would mean that the number of entries in the
database would be bounded at the time of the system setup. Also, the number of updates to the database
would be bounded as well. Similar restrictions would apply in other applications of MIFE: e.g., while
computing over encrypted data streams, the number of data streams would have to be a priori bounded,
etc. In addition, the construction of Goldwasser et al. [GGG+14] could only support Selective-security: The
challenge messages and the set of “corrupted” encryption keys needed by the adversary is given out at the
beginning of the experiment.2

Let us informally refer to an MIFE construction that does not have these shortcomings as unbounded-
message secure or simply fully-secure. In addition to the main construction based on iO, Goldwasser et
al. [GGG+14] also showed a construction of adaptively-secure MIFE (except wrt. the subset of encryption
keys given to the advesary, so we still do not call it fully-secure) that relies on a stronger form of obfuscation
called differing-inputs obfuscation (diO) [BGI+01, ABG+13, BCP14].3 Roughly, diO says that for any two
circuits C0 and C1 for which it is hard to find an input on which their outputs differ, it should be hard to
distinguish their obfuscations, and moreover given such a distinguisher one can extract such a differing input.
Unfortunately, due to recent negative results [GGHW14], diO is now viewed as an implausible assumption.
The main question we are concerned with in this work is: Can fully-secure MIFE can be constructed from
iO?

1.1 Our Contributions
Our main result is a fully-secure MIFE scheme from sub-exponentially secure iO. More specifically, we use
the following primitives: (1) sub-exponentially secure iO, (2) sub-exponentially secure injective one-way
functions, and (3) standard public-key encryption (PKE). Here “sub-exponential security” refers to the fact
that advantage of any (efficient) adversary should be sub-exponentially small. For primitive (2), this should
furthermore hold against adversaries running in sub-exponential time.

A few remarks about these primitives are in order. First, the required security will depend on the
function arity, but not on the number of challenge messages. Indeed, Goldwasser et al. already point out
that selective-security (though not bounded-message security, which instead has to do with their use of
statistically sound non-interactive proofs) of their MIFE scheme based on iO can be overcome by standard
complexity leveraging. However, in that case the required security level would depend on the the number
of challenge messages. As in most applications we expect the number of challenge messages to be orders
of magnitude larger than the function arity, this would result in much larger parameters than our scheme.
Second, we only use a sub-exponentially secure injective one-way function (i.e., primitive (2)) in our security
proof, not in the scheme itself. Thus it suffices for such an injective one-way function to simply exist for
security of our MIFE scheme, even if we do not know an explicit candidate.

1.2 Our Techniques
The starting point of our construction is the fully-secure construction of MIFE based on diO due to Gold-
wasser et al. [GGG+14] mentioned above. In their scheme, the encryption key for an index i 2 [n] (where n
is the function arity) is a pair of public keys (pk0

i

, pk1
i

) for an underlying PKE scheme, and a ciphertext for
index i consists of encryptions of the plaintext under pk0

i

, pk1
i

respectively, along with a simulation-sound
non-interactive zero knowledge proof that the two ciphertexts are well-formed (i.e., both encrypting the

1
We note that, since we do not work in the public-key setting, there is no generic implication of single-message to multi-

message security.

2
Corruption of encryption keys EK1, . . . ,EKn is an aspect of MIFE security not present for single-input FE; note that in

[GGG

+
14], some subset of these keys could not be requested adaptively by the adversary - they were to be chosen even before

the setup was done.

3
Actually, [GGG

+
14] required even a stronger form of diO called strong differing-inputs obfuscation or differing-inputs

obfuscation secure in presence of an oracle.



same underlying message). The secret key for a function f is an obfuscation of a program that takes as
input n ciphertext pairs with proofs (c01, c

1
1,⇡1), . . . , (c0

n

, c1
n

,⇡
n

), and, if the proofs verify, decrypts the first
ciphertext from each pair using the corresponding secret key, and finally outputs f applied to the resulting
plaintexts. Note that it is important for the security proof to assume diO, since one needs to argue when
the function keys are switched to decrypting the second ciphertext in each pair instead, an adversary who
detects the change can be used to extract a false proof.

We will develop modifications that this scheme so that we can instead leverage a result of [BCP14]
that any indistinguishability obfuscator is in fact a differing-inputs obfuscator on circuits which differ on
polynomially many points. In fact, we we will only need to use this result for circuits which differ on a single
point. But, we will need to require the extractor to work given an adversary with even exponentially-small
distinguishing gap on the obfuscations of two such circuits, due to the exponential number of hybrids in our
security proof. Fortunately, [CGJS15] recently showed the result of [BCP14] extends to this case of we start
with an indistinguishability obfuscator that is sub-exponentially secure.

Specifically, we need to make the proofs of well-formedness described above unique for every ciphertext
pair, so that there is only one differing input point in the corresponding hybrids in our security proof. To
achieve this, we design novel “special-purpose” proofs built from iO and punctured pseudorandom functions
(PRFs) [BW13, BGI13, KPTZ13],4 which works as follows. We include in the public parameters an ob-
fuscated program that takes as input two cipher-texts and a witness that they are well-formed (i.e., the
message and randomness used for both the cipher-texts), and, if this check passes, outputs a (puncturable)
PRF evaluation on those ciphertexts. Additionally, the secret key for a function f will now be an obfuscation
of a program which additionally has this PRF key hardwired keys and verifies the “proofs” of well-formedness
by checking that PRF evaluations are correct. Interestingly, in the security proof, we will switch to doing
this check via an injective one-way function applied to the PRF values (i.e., the PRF values themselves are
not compared, but rather the outputs of an injective one-way function applied to them). This is so that
extracting a differing input at this step in the security proof will correspond to inverting an injective one-way
function; otherwise, the correct PRF evaluation would still be hard-coded in the obfuscated function key
and we do not know how to argue security.

We now sketch the sequence of hybrids in our security proof. The proof starts from a hybrid where each
challenge ciphertext encrypts m0

i

for i 2 [n]. Then we switch to a hybrid where each c1
i

is an encryption of m1
i

instead. These two hybrids are indistinguishable due to security of the PKE scheme. Let ` denote the length
of a ciphertext. For each index i 2 [n] we define hybrids indexed by x, for all x 2 [22n`], in which function key
SK

f

decrypts the first ciphertext in the pair using SK0
i

when (c01, c
1
1, .., c

0
n

, c1
n

) < x and decrypts the second
ciphertext in the pair using SK1

i

otherwise. Parse x = (x0
1, x

1
1, .., x

0
n

, x1
n

). Hybrids indexed by x and x+1 can
be proven indistinguishable as follows: We first switch to sub-hybrids that puncture the PRF key at {x0

i

, x1
i

},
changes a function key SK

f

to check correctness of an PRF value by applying an injective one-way function
as described above, and hard-coded the output of the injective one-way function at the PRF evaluation at
the punctured point. Now if the two hybrids differ at an input of the form (x0

1, x
1
1,↵1, .., x

0
n

, x1
n

,↵
n

) where
↵
i

is some fixed value (a PRF evaluation of (x0
i

, x1
i

)), extracting the differing input can be used to invert the
injective one-way function on random input (namely the ↵

i

).
Finally, we note that exponentially many hybrids are indexed by all possible ciphertext vectors that could

be input to decryption (i.e., vectors of length the arity of the functionality) and not all possible challenge
ciphertext vectors. This allows us to handle any unbounded (polynomial) number of ciphertexts for every
index.

Our techniques further demonstrate the power of the exponentially-many hybrids technique, together
with the iO=>one-point-diO, which have also been used recently in works such as [CGJS15, BPR15].

1.3 Related Work, Open Problems
In this work we focus on an indistinguishability-based security notion for MIFE. This is justified as Goldwasser
et al. [GGG+14] show that an MIFE meeting a stronger simulation-based security definition in general
implies black-box obfuscation [BGI+01] and hence is impossible. They also point out that in the secret-key
setting with small function arity, an MIFE scheme meeting indistinguishability-based security notion can

4
Due to the number of hybrids in our proof, we will also need the punctured PRFs to be sub-exponentially secure, but this

already follows from a sub-exponentially secure injective one-way function.



be “compiled” into a simulation-secure one, following the work of De Caro et al. [CIJ+13]; in such a setting
we can therefore achieve simulation-based secuirty as well. We note that a main problem left open by our
work is whether iO without sub-exponential security implies MIFE, which would in some sense show these
two primitives are equivalent (up to the other primitives used in the construction). Another significant open
problem is removing the bound a function’s arity in our construction, as well as the bound on the message
length, perhaps by building on recent work in the setting of single-input FE [KLW15].

Initial constructions of single-input FE from iO [GGH+13] also had the shortcomings we are concerned
with removing for constructions of MIFE in this work, namely selective and bounded-message security.
These restrictions were similarly first overcome using differing-inputs obfuscation [ABG+13, BCP14], and
later removed while only relying on iO [ABSV14, Wat14]. Unfortunately, we have not been able to make
the techniques of these works apply to the MIFE setting, which is why we have taken a different route. If
they could, this would be a path towards solving the open problem of relying on iO with standard security
mentioned above.

[BKS15] construct an adaptively secure multi-input functional encryption scheme in the secret key setting
for any number of cipher-texts from any secret key functional encryption scheme. Their construction builds
on a clever observation that function keys of a secret-key function-hiding functional encryption can be used
to hide any message. This provides a natural ‘arity amplification’ procedure that allows us to go from a t
arity secret key MIFE to a t+ 1 arity MIFE. However, because the arity is amplified one by one, it leads to
a blow up in the scheme, so the arity of the functions had to be bounded by O(loglogk). [AJ15] builds on
similar techniques but considers construction of secret key MIFE from a different view-point (i.e. building
iO from functional encryption).

Finally, we note that the source of trouble in achieving differing-inputs obfuscation is the auxiliary
input provided to the distinguisher. Another alternative to using differing-inputs obfuscation is public-coin
diO [IPS15], where this auxiliary input is simply a uniform random string as done in [BGJS] (they however
achieve selective security). There are no known implausibility results for public-coin diO, and it is interesting
to give an alternative construction of fully-secure MIFE based on it. Our assumption seems incomparable,
as we only need iO but also sub-exponential security.

1.4 Organisation
The rest of this paper is organized as follows: In Section 2, we recall some definitions and primitives used
in the rest of the paper. In Section 3 we formally define MIFE and present our security model. Finally in
Section 4, we present our construction and its security proof.

2 Preliminaries
In this section we recall various concepts on which the paper is built upon. We assume the familiarity of a
reader with concepts such as public key encryption, one way functions and omit formal description in the
paper. For the rest of the paper, we denote by N the set of natural numbers {1, 2, 3, ..}. Sub-exponential
indistinguishability obfuscation and sub-exponentially secure puncturable pseudo-random functions have
been used a lot recently such as in the works of [CLTV15, BV15, KLW15]. For completeness, we present
these notions below:

2.1 Indistinguisability Obfuscation
The following definition has been adapted from [GGH+13]:

Definition 1. A uniform PPT machine iO is an indistinguishability obfuscator for a class of circuits
{C

n

}
n2N if the following properties are satisfied.

Correctness: For every k 2 N, for all {C
k

}
k2N, we have

Pr[C 0  iO(1k, C) : 8x,C 0(x) = C(x)] = 1



Security: For any pair of functionally equivalent equi-sized circuits C0, C1 2 C
k

we have that: For every
non uniform PPT adversary A there exists a negligible function ✏ such that for all k 2 N,

| Pr[A(1n, iO(1k, C0), C0, C1, z) = 1]� Pr[A(1k, iO(1k, C1), C0, C1, z) = 1] | ✏(k)

We additionally say that iO is sub-exponentially secure if there exists some constant ↵ > 0 such that for
every non uniform PPT A the above indistinguishability gap is bounded by ✏(k) = O(2�k

↵

)

Definition 2 (Indistinguishability obfuscation for P/poly). iO is a secure indistinguishability obfuscator for
P/Poly, if it is an indistinguishability obfuscator for the family of circuits {C

k

}
k2N where C

k

is the set of all
circuits of size k.

2.2 Puncturable Psuedorandom Functions
A PRF F : K

k2N ⇥ X ! Y
k2N is a puncturable pseudorandom function if there is an additional key space

K
p

and three polynomial time algorithms (F.setup, F.eval, F.puncture) as follows:

� F.setup(1k) a randomized algorithm that takes the security parameter k as input and outputs a de-
scription of the key space K, the punctured key space K

p

and the PRF F .

� F.puncture(K,x) is a randomized algorithm that takes as input a PRF key K 2 K and x 2 X , and
outputs a key K{x} 2 K

p

.

� F.Eval(K,x0) is a deterministic algorithm that takes as input a punctured key K{x} 2 K
p

and x0 2 X .
Let K 2 K, x 2 X and K{x} F.puncture(K,x).

The primitive satisfies the following properties:

1. Functionality is preserved under puncturing: For every x⇤ 2 X ,

Pr[F.eval(K{x⇤}, x) = F (K,x)] = 1

here probability is taken over randomness in sampling K and puncturing it.

2. Psuedo-randomness at punctured point: For any poly size distinguisher D, there exists a negli-
gible function µ(·), such that for all k 2 N and x⇤ 2 X ,

| Pr[D(x⇤,K{x⇤}, F (K,x⇤)) = 1]� Pr[D(x⇤,K{x⇤}, u) = 1] | µ(k)

where K  F.Setup(1k), K{x⇤} F.puncture(K,x⇤) and u
$ � Y

k

We say that the primitive is sub-exponentially secure if µ is bounded by O(2�k

c

PRF ), for some constant
0 < c

PRF

< 1. We also abuse the notation slightly and use F (K, ·) and F.Eval(K, ·) to mean one and same
thing irrespective of whether key is punctured or not.

2.3 Injective One-Way Function
A one-way function with security (s, ✏) is an efficiently evaluable function P : {0, 1}⇤ ! {0, 1}⇤ and
Pr

x

$ �{0,1}n

[P (A(P (x))) = P (x)] < ✏(n) for all circuits A of size bounded by s(n). It is called an injec-

tive one-way function if it is injective in the domain {0, 1}n for all sufficiently large n.
In this work we require that there exists5 (s, ✏) injective one-way function with s(n) = 2n

c

owp1 and ✏ =
2�n

c

owp2 for some constants 0 < c
owp1, cowp2 < 1. This assumption is well studied, [Hol06, Wee07] have used

(2cn, 1/2cn) secure one-way functions and permutations for some constant c.
This is a reasonable assumption due to following result from [GGKT05]

Lemma 1. Fix s(n) = 2n/5. For all sufficiently large n, a random permutation ⇡ is (s(n), 1/2n/5) secure
with probability at least 1� 2�2n/2

.
5
We however do not require that the injective one-way function can be sampled efficiently



Such assumptions have been made and discussed in works of [Hol06, Wee05, Wee07]. In particular, we
require the following assumption:

Assumption 1: For any adversary A with running time bounded by s(n) = O(2n
c

owp1
), for any apri-

ori bounded polynomial p(n) there exists an injective one-way function P such that,

Pr[r
i

⇠ {0, 1}n8i 2 [p],AO(P (r1), .., P (r
p

)) = (r1, .., rp)] < O(2�n

c

owp2
)

for some constant 0 < c
owp1 , cowp2 < 1 . Here, oracle O can reveal at most p� 1 values out of r1, .., rp. Note

that this assumption follows from the assumption described above with a loss p in the security gap.

2.4 (d, �)-Weak Extractability Obfuscators
The concept of weak extractability obfuscator was first introduced in [BCP14] where they claimed that if
there is an adversary that can distinguish between indistinguishability obfuscations of two circuits that differ
on polynomial number of inputs with noticable probability, then there is a PPT extractor that extracts
a differing input with overwhelming probability. [CGJS15] generalised the notion to what they call (d, �)
weak extractability obfuscator, where they require that if there is any PPT adversary that can distinguish
between obfuscations of two circuits ( that differ on at most d inputs ) with atleast ✏ > � probability, then
there is an explicit extractor that extracts a differing input with overwhelming probability and runs in time
poly(1/✏, d, k) time. Such a primitive can be constructed from a sub-exponentially secure indistinguishability
obfuscation. (1, 2�k) weak extractability obfuscation will be crucially used in our construction for our MIFE
scheme. We believe that in various applications of differing inputs obfuscation, it may suffice to use this
primitive along with other sub-exponentially secure primitives.
Definition 3. A uniform transformation weO is a (d, �) weak extractability obfuscator for a class of circuits
C = {C

k

} if the following holds. For every PPT adversary A running in time tA and 1 � ✏(k) > �, there
exists a algorithm E for which the following holds. For all sufficiently large k, and every pair of circuits on
n bit inputs, C0, C1 2 C

k

differing on at most d(k) inputs, and every auxiliary input z,

| Pr[A(1k, weO(1k, C0), C0, C1, z) = 1]� Pr[A(1k, weO(1k, C1), C0, C1, z) = 1] |� ✏

) Pr[x E(1k, C0, C1, z) : C0(x) 6= C1(x) � 1� negl(k)

and the expected runtime of E is O(p
E

(1/✏, d, tA, n, k)) for some fixed polynomial p
E

. In addition, we
also require the obfuscator to satisfy correctness.
Correctness: For every n 2 N, for all {C

n

}
n2N, we have

Pr[C 0  weO(1n, C) : 8x,C 0(x) = C(x)] = 1

We now construct a (1, 2�k) input weak extractability obfuscator from sub-exponentially secure indistin-
guishability obfuscation. Following algorithm describes the obfuscation procedure.

weO(1k, C) : The procedure outputs C 0  iO(1k
1/↵

, C). Here, ↵ > 0 is a constant chosen such that any
polynomial time adversary against indistinguishability obfuscation has security gap upper bounded by 2�k/4.

The proof of the following theorem is given in the appendix A.
Theorem 1. Assuming sub-exponentially secure indistinguishability obfuscation, there exists (1, �) weak
obfuscator for P/poly for any � > 2�k, where k is the size of the circuit.

In general, assuming sub-exponential security one can construct (d, �) extractability obfuscator for any
� > 2�k. Our construction is as follows:
weO(C) : Let ↵ be the security constant such that iO with parameter 1k

1/↵

has security gap upper bounded
by O(2�3k). This can be found due to sub exponential security of indistinguishability obfuscation. The
procedure outputs C 0  iO(1k

1/↵

, C).
We cite [BCP14] for the proof of the following theorem.
Theorem 2 ([BCP14]). Assuming sub-exponentially secure indistinguishability obfuscation, there exists (d, �)
weak extractability obfuscator for P/poly for any � > 2�k.



3 Multi-Input Functional Encryption
Let X = {X

k

}
k2N and Y = {Y

k

}
k2N denote ensembles where each X

k

and Y
k

is a finite set. Let F = {F
k

}
k2N

denote an ensemble where each F
k

is a finite collection of n-ary functions. Each f 2 F
k

takes as input n
strings x1, .., xn where each xi 2 X

k

and outputs f(x1, .., xn) 2 Y
k

. We now describe the algorithms.

� MIFE.Setup(1, n): is a PPT algorithm that takes as input the security parameter  and the function
arity n. It outputs n encryption keys EK1, ..,EKn and a master secret key MSK.

� MIFE.Enc(EK,m): is a PPT algorithm that takes as input an encryption key EKi 2 (EK1, ..,EKn) and
an input message m 2 X

k

and outputs a ciphertext CTi which denotes that the encrypted plaintext
constitutes an ith input to a function f.

� MIFE.Keygen(MSK, f): is a PPT algorithm that takes as input the master secret key MSK and a n�ary
function f 2 F

k

and outputs a corresponding decryption key SKf .

� MIFE.Dec(SKf ,CT1, ..,CTn) : is a deterministic algorithm that takes as input a decryption key SKf and
n ciphertexts CTi, ..,CTn and outputs a string y 2 Y

k

.

The scheme is said to satisfy correctness if for honestly generated encryption and function key and any
tuple of honestly generated ciphertexts, decryption of the cipher-texts with function key for f outputs the
joint function value of messages encrypted inside the ciphertexts with overwhelming probability.

Definition 4. Let {f} be any set of functions f 2 F


. Let [n] = {1, .., n} and I ✓ [n]. Let X0 and X1 be
a pair of input vectors, where Xb = {xb

1,j , .., x
b

n,j

}q
j=1. We define F and (X0, X1) to be I-compatible if they

satisfy the following property: For every f 2 {f}, every I
0
= {i1, .., it} ✓ I, every j1, .., jn�t

2 [q] and every
x

0

i1
, .., x

0

i

t

2 X


,

f(< x0
i1,j1

, .., x0
i

n�t

,j

n�t

, x
0

i1
, .., x

0

i

t

>) = f(< x1
i1,j1

, .., x1
i

n�t

,j

n�t

, x
0

i1
, .., x

0

i

t

>)

where < y
i1 , ..., yin > denotes a permutation of the values y

i1 , .., yin such that the value y
i

j

is mapped to the
lth location if y

i

j

is the lth input (out of n inputs) to f .

IND-Secure MIFE: Security definition in [GGG+14] was parameterized by two parameters (t, q) where
t denotes the number of encryption keys known to the adversary, and q denotes the number of challenge
messages per encryption key. Since, our scheme can handle any unbounded polynomial q and any t  n, we
present a definition independent of these parameters.

Definition 5. (Indisitinguishability based security). We say that a multi-input functional encryption scheme
MIFE for for n ary functions F is fully IND-secure if for every PPT adversary A, the advantage of A defined
as

AdvMIFE,IND
A (1) = |Pr[INDMIFE

A ]� 1/2|
is negl(), where:

Experiment INDMIFE
A (1)

(EK,MSK) MIFE.Setup(1, n)
b {0, 1}
b
0  AMIFE.Keygen(MSK,·),O(EK,·),E(EK,b,·)(1)

Output (b = b
0
)

Figure 1: Security Game

Valid adversaries: In the above experiment, O(EK, ·) is an oracle that takes an index i and outputs EK
i

.
Let I be the set of queries to this oracle. E(EK, b, ·) on a query (x0

1,j , .., x
0
n,j

), (x1
1,j , .., x

1
n,j

) (where j denotes



the query number) outputs CT
i,j

 MIFE.Enc(EK
i

, xb

i,j

) 8i 2 [n]. If q is the total number of queries to this
oracle then let Xl = {xl

1,j , .., x
l

n,j

}q
j=1 and l 2 {0, 1}. Also, let {f} denote the entire set of function key

queries made by A. Then, the challenge message vectors X0 and X1 chosen by A must be I�compatible
with {f}. The scheme is said to be secure if for any valid adversary A the advantage in the game described
above is negligible.

4 Our MIFE Construction
Notation: Let k denote the security parameter and n = n(k) denote the bound on arity of the function for
which the keys are issued. By PRF = (PRF.Setup,PRF.Puncture,PRF.Eval) denote a sub-exponentially secure
puncturable PRF with security constant c

PRF

and PKE denote a public key encryption scheme. Let P be
any one-one function (in the security proof we instantiate with a sub-exponentially secure injective one-way
function with security constants c

owp1 and c
owp2). Finally, let O denote a (1, 2�3nl�k) weak extractability

obfuscator (here l is the length of the cipher-text of PKE). In particular, for any two equivalent circuits
security gap of the obfuscation is bounded by 2�3nl�k (any algorithm that distinguishes obfuscations of two
circuits with more than this gap will yield an algorithm that extracts a differing point).

MIFE.Setup(1k, n) : Sample K
i

 PRF.Setup(1�) and {(PKb

i

, SKb

i

)}
b2{0,1}  PKE.Setup(1k). Let PP

i

be the circuit as in figure 2. EK
i

is declared as the set EK
i

= {PK0
i

, PK1
i

, ˜PP
i

= O(PP
i

), P} and

Hard-wired: PK0
i

, PK1
i

,K
i

.
Input: c0

i

, c1
i

,m, r0
i

, r1
i

The program does the following:

� Check that c0
i

= PKE.Enc(PK0
i

,m; r0) and c
i

= PKE.Enc(PK1
i

,m; r1). If the check fails output
?.

� Output PRF.Eval(K
i

, c0
i

, c1
i

)

Figure 2: Program Encrypt

MSK = {SK0
i

, SK1
i

,K
i

, P}
i2[n]. Here injective function P takes as input elements from the co-domain

the PRF. � is set greater than (3nl + k)1/cPRF and so that the length of output of the PRF is at least
max{(5nl + 2k)1/cowp1 , (3nl + k)1/cowp2} long.

MIFE.Enc(EK
i

,m) : To encrypt a message m, encryptor computes c0
i

= PKE.Enc(PK0
i

,m; r0) and c1
i

=
PKE.Enc(PK1

i

,m; r1) and computes ⇡
i

 ˜PP
i

(c0
i

, c1
i

,m, r0, r1). Output CT
i

= (c0
i

, c1
i

,⇡
i

).

MIFE.KeyGen(MSK, f) : Let G0
f

be the circuit described below. Key for f is output as K
f

 O(G0
f

)

Hard-wired: {SK0
i

,K
i

, P}
i2[n].

Input: {c0
i

, c1
i

,⇡
i

}
i2[n]

The program does the following:

� For all i 2 [n], check that P (PRF.Eval(K
i

, c0
i

, c1
i

)) = P (⇡
i

). If the check fails output ?.

� Output f(PKE.Dec(SK0
1 , c

0
1), ..,PKE.Dec(SK

0
n

, c0
n

)).

Figure 3: Program G0
f

MIFE.Decrypt(K
f

, {c0
i

, c1
i

,⇡
i

}
i2[n]) : Output K

f

(c01, c
1
1,⇡1, .., c

0
n

, c1
n

,⇡
n

).
Remark:



1. We also assume that the circuits are padded appropriately before they are obfuscated.

2. Note that in the scheme, circuit for the key for a function f , G0
f

is instantiated with any one-one
function (denoted by P ). In the proofs we replace it with a sub-exponentially secure injective one-way
function. We see that the input output behaviour of G0

f

do not change when it is instantiated with any
one-one function, hence we can switch to a hybrid when it is instantiated by sub-exponentially secure
injective one way function and due to the security of obfuscation these two hybrids are close.

4.1 Proof Overview
The starting point of our construction is the fully-secure construction of MIFE based on diO due to Gold-
wasser et al. [GGG+14] mentioned above. In their scheme, the encryption key for an index i 2 [n] (where n
is the function arity) is a pair of public keys (pk0

i

, pk1
i

) for an underlying PKE scheme, and a ciphertext for
index i consists of encryptions of the plaintext under pk0

i

, pk1
i

respectively, along with a simulation-sound
non-interactive zero knowledge proof that the two ciphertexts are well-formed (i.e., both encrypting the
same underlying message). The secret key for a function f is an obfuscation of a program that takes as
input n ciphertext pairs with proofs (c01, c

1
1,⇡1), . . . , (c0

n

, c1
n

,⇡
n

), and, if the proofs verify, decrypts the first
ciphertext from each pair using the corresponding secret key, and finally outputs f applied to the resulting
plaintexts. Note that it is important for the security proof to assume diO, since one needs to argue when
the function keys are switched to decrypting the second ciphertext in each pair instead, an adversary who
detects the change can be used to extract a false proof.

We develop modifications that this scheme so that we can instead leverage a result of [BCP14] that any
indistinguishability obfuscator is in fact a differing-inputs obfuscator on circuits which differ on polynomially
many points. In fact, we we will only need to use this result for circuits which differ on a single point. But,
we will need to require the extractor to work given an adversary with even exponentially-small distinguishing
gap on the obfuscations of two such circuits, due to the exponential number of hybrids in our security proof.
We make use of sub-exponentially secure obfuscation to achieve this.

Specifically, we make the proofs of well-formedness described above unique for every ciphertext pair,
so that there is only one differing input point in the corresponding hybrids in our security proof. To
achieve this, we design novel “special-purpose” proofs built from iO and punctured pseudorandom functions
(PRFs) [BW13, BGI13, KPTZ13],6 which works as follows. We include in the public parameters an obfus-
cated program that takes as input two cipher-texts and a witness that they are well-formed (i.e., the message
and randomness used for both the cipher-texts), and, if this check passes, outputs a (puncturable) PRF eval-
uation on those ciphertexts. Additionally, the secret key for a function f will now be an obfuscation of a
program which additionally has this PRF key hardwired keys and verifies the “proofs” of well-formedness by
checking that PRF evaluations are correct. Interestingly, in the security proof, we will switch to doing this
check via an injective one-way function applied to the PRF values (i.e., the PRF values themselves are not
compared, but rather the outputs of injective one-way function applied to them). This is so that extracting
a differing input at this step in the security proof will correspond to inverting a injective one-way function;
otherwise, the correct PRF evaluation would still be hard-coded in the obfuscated function key and we do
not know how to argue security.

We now sketch the sequence of hybrids in our security proof. The proof starts from a hybrid where each
challenge ciphertext encrypts m0

i

for i 2 [n]. Then we switch to a hybrid where each c1
i

is an encryption of m1
i

instead. These two hybrids are indistinguishable due to security of the PKE scheme. Let ` denote the length
of a ciphertext. For each index i 2 [n] we define hybrids indexed by x, for all x 2 [22n`], in which function key
SK

f

decrypts the first ciphertext in the pair using SK0
i

when (c01, c
1
1, .., c

0
n

, c1
n

) < x and decrypts the second
ciphertext in the pair using SK1

i

otherwise. Parse x = (x0
1, x

1
1, .., x

0
n

, x1
n

). Hybrids indexed by x and x+1 can
be proven indistinguishable as follows: We first switch to sub-hybrids that puncture the PRF key at {x0

i

, x1
i

},
changes a function key SK

f

to check correctness of an PRF value by applying an injective one-way function
as described above, and hard-coded the output of the injective one-way function at the punctured point.
Now if the two hybrids differ at an input of the form (x0

1, x
1
1,↵1, .., x

0
n

, x1
n

,↵
n

) where ↵
i

is some fixed value
(a PRF evaluation of (x0

i

, x1
i

)), extracting the differing input can be used to invert the injective one-way
6
Due to the number of hybrids in our proof, we will also need the punctured PRFs to be sub-exponentially secure, but this

already follows from sub-exponentially secure injective one-way functions.



function on random input (namely the ↵
i

). As in [BCP14], this inverter runs in time inversely proportional
to the distinguishing gap between the two consecutive hybrids (which is sub-exponentially small). Hence,
we require a sub-exponential secure injective one-way function to argue security.

Finally, we note that exponentially many hybrids are indexed by all possible ciphertext vectors that could
be input to decryption (i.e., vectors of length the arity of the functionality) and not all possible challenge
ciphertext vectors. This allows us to handle any unbounded (polynomial) number of ciphertexts for every
index.

4.2 Proof of Security
Theorem 3. Assuming an existence of a sub-exponentially secure indistinguishability obfuscator, injective
one-way function and a polynomially secure public-key encryption scheme there exists a fully IND secure
multi-input functional encryption scheme for any polynomially apriori bounded arity n.

Proof. We start by giving a lemma that will be crucial to the proof.

Lemma 2. Let X and Y denote two (possibly correlated) random variables from distribution X and Y, with
support |X | and |Y|, and U(X,Y ) denote an event that depends on X,Y . We say that U(X,Y ) = 1 if the
event occurs, and U(X,Y ) = 0 otherwise. Suppose Pr(X,Y )⇠X ,Y [U(X,Y ) = 1] = p. We say that a transcript
X falls in the set ‘good’ if Pr

Y⇠Y [U(X,Y |X = X) = 1] � p/2. Then, Pr
X⇠X [X 2 good] � p/2.

Proof. We prove the lemma by contradiction. Suppose Pr
X⇠X [X 2 good] = c < p

2 . Then,

Pr(X,Y )⇠(X ,Y)[U(X,Y ) = 1] = Pr(X,Y )⇠(X ,Y)[U(X,Y ) = 1|X 2 good] · Pr
X⇠X [X 2 good]

+ Pr(X,Y )⇠(X ,Y)[U(X,Y ) = 1|X 62 good] · Pr
X⇠X [X 62 good]

By definition of the set good, Pr(X,Y )⇠(X ,Y)[U(X,Y ) = 1|X 62 good] < p

2 . Then, p = Pr[U(X,Y ) = 1] <
1 · c + (1 � c) · p/2. Then, if c < p

2 , we will have that p < p

2 + p

2 , which is a contradiction. This proves our
lemma.

We proceed listing hybrids where the first hybrid corresponds to the hybrid where the challenger encrypts
message m0

i,j

for all i 2 [n] and the last hybrid corresponds to the hybrid where the challenger encrypts m1
i,j

.
We then prove that each consecutive hybrid is indistinguishable from each other. Then, we sum up all the
advantages between the hybrids and argue that the sum is negligible.

H0

1. Challenger does setup to compute encryption keys EK
i

8i 2 [n] and MSK as described in the algorithm.

2. A may query for encryption keys EK
i

for some i 2 [n], function keys for function f and ciphertext
queries in an interleaved fashion.

3. If it asks for an encryption key for index i, it is given EK
i

.

4. When A queries keys for n ary function f
j

and challenger computes keys honestly using MSK.

5. A may also ask encryptions of message vectors Mh = {(mh

1,j , ..,m
h

n,j

)} where h 2 {0, 1}, where j
denotes the encryption query number. The message vectors has to satisfy the constraint as given in
the security definition.

6. For all queries j, challenger encrypts CT
i,j

8i 2 [n] as follows: c0
i,j

= PKE.Enc(PK0
i

,m0
i,j

) and
c1
i,j

= PKE.Enc(PK1
i

,m0
i,j

) and ⇡
i,j

 PRF.Eval(K
i

, c0
i,j

, c1
i,j

). Then the challenger outputs CT
i,j

=
(c0

i,j

, c1
i,j

,⇡
i,j

).

7. A can ask for function keys for functions f
j

, encryption keys EK
i

’s and cipher-texts as long as they
satisfy the constraint given in the security definition.

8. A now outputs a guess b0 2 {0, 1}.



H1 : Let q denote the number of cipher-text queries. This hybrid is same as the previous one except that for
all indices i 2 [n], j 2 [q] challenge cipher-text cipher-text component c1

i,j

is set as c1
i,j

= PKE.Enc(PK1
i

,m1
i,j

).

H
x2[2,22ln+2] : This hybrid is same as the previous one except key for every function query f is generated as

an obfuscation of program 4 by hard-wiring x (along with SK0
i

, SK1
i

,K
i

, P ).

Hard-wired: {SK0
i

, SK1
i

,K
i

, x, P}
i2[n].

Input: {c0
i

, c1
i

,⇡
i

}
i2[n]

The program does the following:

� For all i 2 [n], check that P (PRF.Eval(K
i

, c0
i

, c1
i

)) = P (⇡
i

). If the check fails output ?.

� If (c01, c11, .., c0n, c1n) < x�2, output f(PKE.Dec(SK1
1 , c

1
1), ..,PKE.Dec(SK

1
n

, c1
n

)) otherwise output
f(PKE.Dec(SK0

1 , c
0
1), ..,PKE.Dec(SK

0
n

, c0
n

)).

Figure 4: Program G
f,x

H22ln+3 : This hybrid is same as the previous one except that function keys for any function f is generated
by obfuscating program 5.

Hard-wired: {SK1
i

,K
i

, P}
i2[n].

Input: {c0
i

, c1
i

,⇡
i

}
i2[n]

The program does the following:

� For all i 2 [n], check that P (PRF.Eval(K
i

, c0
i

, c1
i

)) = P (⇡
i

). If the check fails, output ?.

� Output f(PKE.Dec(SK1
1 , c

1
1), ..,PKE.Dec(SK

1
n

, c1
n

)).

Figure 5: Program G1
f

H22ln+4 : Let q denote the number of cipher-text queries made by the adversary. This hybrid is same as
the previous one except that for all indices i 2 [n], j 2 [q], challenge cipher-text component c0

i,j

is generated
as c0

i,j

= PKE.Enc(PK0
i

,m1
i,j

).

H22ln+4+x|x2[22ln+1] : This hybrid is same as the previous one except key for a function f is generated
by obfuscating program 4 by hard-wiring 22ln + 3� x (along with SK0

i

, SK1
i

,K
i

, P ).

H2.22ln+6 : This hybrid corresponds to the real security game when b = 1.

We now argue indistinguishability by describing following lemmas.

Lemma 3. For any PPT distinguisher D, | Pr[D(H0) = 1]� Pr[D(H1) = 1] |< negl(k).

Proof. This lemma follows from the security of the encryption scheme PKE. In these hybrids, all function
keys only depend on one secret key SK0

i

for all i 2 [n] and SK1
i

never appears in the hybrids. If there is
a distinguisher D that distinguishes between the hybrids then there exists an algorithm A that breaks the
security of the encryption scheme with the same advantage. A gets set of public keys PK1, .., PK

n

from the
encryption scheme challenger and samples public keys (PK0

i

, SK0
i

)8i 2 [n] himself and sets PK1
i

= PK
i

8i 2
[n]. It also samples PRF keys K

i

8i 2 [n]. Using these keys, it generates encryption keys EK
i

8i 2 [n]. Then,
it invokes D and answers queries for encryption keys EK

i

’s and function keys. A generates function keys
using only as obfuscation of G0

f

. Finally, D declares M b = {(mb

1,j , ..,m
b

n,j

)}
j2[q]. A sends (M0,M1) to the

encryption challenger and gets c
i,j

8i 2 [n], j 2 [q] from the challenger. A computes c0
i,j

 PKE.Enc(PK0
i ,m

0
i,j).

Then evaluates ⇡
i,j

 PRF.Eval(K
i

, c0
i,j

, c
i,j

). Then it sets, CT
i,j

= (c0
i,j

, c
i,j

,⇡
i,j

) and sends it to D. After
that D may query keys for functions and encryption keys and the response is given as before. D now submits



a guess b0 which is also output by A as its guess for the encryption challenge. If c
i,j

is an encryption of
m0

i,j

then D0s view is identical to the view in H1 otherwise its view is identical to the view in H2. Hence,
distinguishing advantage of D in distinguishing hybrids is less than the advantage of A in breaking the
security of the encryption scheme.

Lemma 4. For any PPT distinguisher D, | Pr[D(H1) = 1]� Pr[D(H2) = 1] |< negl(k).

Proof. For simplicity, we consider the case when there is only single function key query f . General case can
be argued by introducing v many intermediate hybrids where v is the number of keys issued to the adver-
sary. Indistinguishability of these hybrids follows from the fact that circuit G0

f

and G
f,x=2 are functionally

equivalent. Hence, due to the security of indistinguishability obfuscation property of the weak extractability
obfuscator the lemma holds. For completeness, we describe the reduction. Namely, we construct an adver-
sary A that uses D to break the security of weak extractability obfuscator. A invokes D and does setup (by
sampling PKE encryption key pairs and PRF keys for all indices) and answers cipher-text queries as in the
previous hybrid H1. On query f from D, it sends G0

f

and G
f,x

to the obfuscation challenger. It receives K
f

and sends it to A. A sends it to D. It replies to the encryption key queries to D using the sampled PKE
keys and PRF keys. Then it outputs whatever D outputs. Note that view of D is identical to the view in H1

(if K
f

is an obfuscation of G0
f

) or H2 (if K
f

is an obfuscation of G
f,x=2). Hence, advantage of A is atleast

the advantage of D in distinguishing hybrids. Due to security of obfuscation claim holds.

Lemma 5. For any PPT distinguisher D, | Pr[D(H22ln+2) = 1]� Pr[D(H22ln+3) = 1] |< negl(k).

Proof. This follows from the indistinguishability obfuscator O. For any function f , G1
f

is functionally
equivalent to G

f,x=22ln+2. Proof of the lemma is similar to the proof of lemma 4.

Lemma 6. For any PPT distinguisher D, | Pr[D(H22ln+3) = 1]� Pr[D(H22ln+4) = 1] |< negl(k).

Proof. This follows from the security of encryption scheme PKE. Note that in both the hybrids SK0
i

is not
used anywhere. Proof is similar to the proof of lemma 3.

Lemma 7. For any PPT distinguisher D, | Pr[D(H22ln+4) = 1]� Pr[D(H22ln+5) = 1] |< negl(k).

Proof. This follows from the security of indistinguishability obfuscator O. Proof is similar to the proof of
lemma 4.

Lemma 8. For any PPT distinguisher D, | Pr[D(H2.22ln+5) = 1]� Pr[D(H2.22ln+6) = 1] |< negl(k).

Proof. This follows from the security of indistinguishability obfuscator O. Proof is similar to the proof of
lemma 4.

Lemma 9. For any PPT distinguisher D and x 2 [2, 22ln + 1], | Pr[D(H
x

) = 1] � Pr[D(H
x+1) = 1] |<

O(v · 2�2ln�k) for some polynomial v.

Proof. We now list following sub hybrids and argue indistinguishability between these hybrids.

H
x,1

1. Challenger samples key pairs (PK0
i

, SK0
i

), (PK1
i

, SK1
i

) for each i 2 [n].

2. Parses x� 2 = (x0
1, x

1
1, .., x

0
n

, x1
n

) and computes (a0
i

, a1
i

) (PKE.Dec(SK0
i

, x0
i

),PKE.Dec(SK1
i

, x1
i

)).

3. Samples puncturable PRF’s keys K
i

8i 2 [n].

4. Denote by set Z ⇢ [n] such that i 2 Z if a0
i

6= a1
i

. Computes ↵
i

 PRF.Eval(K
i

, x0
i

, x1
i

) and derives
punctured keys K 0

i

 PRF.Puncture(K
i

, x0
i

, x1
i

) for all i 2 [n].

5. If A queries for encryption keys for any index i, for any i in Z, ˜PP
i

is generated as an obfuscation of
circuit in figure 2 instantiated with the punctured key K 0

i

(↵
i

will never be accessed by the circuit PP
i

in this case). For all other indices i, P̃P
i

is constructed by using the punctured key K 0
i

and hard-coding
the value ↵

i

(for input (x0
i

, x1
i

)) as done in figure 6. These P̃P
i

are used to respond to the queries for
EK

i

.



6. If A queries keys for n ary function f
j

and challenger computes keys honestly as in H
x

using MSK.

7. If A releases message vectors Mh = {(mh

1,j , ..,m
h

n,j

)} where h 2 {0, 1}, challenger encrypts CT
i,j

8i 2
[n], j 2 [q] as follows: c0

i,j

= PKE.Enc(PK0
i

,m0
i,j

) and c1
i,j

= PKE.Enc(PK1
i

,m1
i,j

). If (c0
i,j

, c1
i,j

) =
(x0

i

, x1
i

) set ⇡
i,j

= ↵
i

otherwise set ⇡
i,j

 PRF.Eval(K
i

, c0
i,j

, c1
i,j

). Then the challenger outputs CT
i,j

=
(c0

i,j

, c1
i,j

,⇡
i,j

). Here q denotes the total number of encryption queries.

8. Challenger can ask for function keys for functions f
j

and encryption keys EK
i

as long as they satisfy
the constraint with the message vectors.

9. A now outputs a guess b0 2 {0, 1}.

Hard-wired: PK0
i

, PK1
i

,K 0
i

,↵
i

, x0
i

, x1
i

.
Input: c0

i

, c1
i

,m, r0
i

, r1
i

The program does the following:

� Checks that c0
i

= PKE.Enc(PK0
i

,m; r0) and c
i

= PKE.Enc(PK1
i

,m; r1). If the check fails output
?.

� If (c0
i

, c1
i

) = (x0
i

, x1
i

) output ↵
i

otherwise output PRF.Eval(K 0
i

, c0
i

, c1
i

)

Figure 6: Program Encrypt*

H
x,2 : This hybrid is similar to the previous one except that function key for any function f is generated as

an obfuscation of program 7 by hard-wiring (SK0
i

, SK1
i

,K
0

i

, P, P (↵
i

), x0
i

, x1
i

)8i 2 [n].

Hard-wired: {SK0
i

, SK1
i

,K
0

i

, P, P (↵
i

), x0
i

, x1
i

}
i2[n].

Input: {c0
i

, c1
i

,⇡
i

}
i2[n]

The program does the following:

� For any i 2 [n], if (c0
i

, c1
i

) = (x0
i

, x1
i

) check that P (↵
i

) = P (⇡
i

). If the check fails output ?.

� Otherwise, for i 2 [n], check that P (PRF.Eval(K
i

, c0
i

, c1
i

)) = P (⇡
i

). If the check fails output ?.

� If (c01, c11, .., c0n, c1n) < x�2, output f(PKE.Dec(SK1
1 , c

1
1), ..,PKE.Dec(SK

1
n

, c1
n

)) otherwise output
f(PKE.Dec(SK0

1 , c
0
1), ..,PKE.Dec(SK

0
n

, c0
n

)).

Figure 7: Program G⇤
f,x

H
x,3 This hybrid is similar to the previous hybrid except that for all i 2 [n], ↵

i

is chosen randomly from the
domain of the injective one way function function P .

H
x,4 : This hybrid is similar to the previous hybrid except that the function key is generated as an ob-

fuscation program 7 initialised x+ 1.

H
x,5: This hybrid is the same as the previous one except that ↵

i

8i 2 [n] is chosen as actual PRF val-
ues at (x0

i

, x1
i

) using the key K
i

.

H
x,6: This hybrid is the same as the previous one except that key for the function f , keys are gener-

ated as obfuscation of program 4 initialised with x+ 1.

H
x,7: This hybrid is the same as the previous one except for all i 2 [n], P̃P

i

is generated as an obfus-
cation of 2 initialised with genuine PRF key K

i

. This hybrid is identical to the hybrid H
x+1



Claim 1. For any PPT distinguisher D, | Pr[D(H
x

) = 1]� Pr[D(H
x,1) = 1] |< O(n · 2�3nl�k).

Proof. This claim follows from the indistinguishability security of weak extractability obfuscator. We have
that circuits for i 2 Z, circuit in figure 2 initialised with regular PRF key K

i

is functionally equivalent to
when it is initialised with punctured key K 0

i

. This is because for i 2 Z, (x0
i

, x1
i

) never satisfies the check and
the PRF is never evaluated at this point and also the fact the punctured key outputs correctly at all points
except the point at which the PRF is punctured. For i 2 [n] \ Z, program in figure 2 initialised with K

i

is
functionally equivalent to the program in 6 initialised with (K 0

i

,↵
i

).
From the above observation, we can prove the claim by at most n intermediate hybrids where we switch one
by one obfuscation P̃P

i

to use the punctured key and each intermediate hybrid is indistinguishable due to
the security of obfuscation.

Claim 2. For any PPT distinguisher D, | Pr[D(H
x,1) = 1]� Pr[D(H

x,2) = 1] |< O(p(k) · 2�3nl�k). Here,
p(k) is some polynomial.

Proof. This follows from the indistinguishability obfuscation property of the weak extractability obfuscator
O. The proof follows by at most p intermediate hybrids where each queried K

f

is switched to an obfuscation
of program 4 (with hard-wired values SK0

i

, SK1
i

,K
i

, x, P ) to an obfuscation of program 7 (with hard-wired
values SK0

i

, SK1
i

,K 0
i

, P, P (↵
i

), x). Note that in this hybrids, both these programs are functionally equivalent.
This reduction is straight forward and we omit details.

Claim 3. For any PPT distinguisher D, | Pr[D(H
x,2) = 1]� Pr[D(H

x,3) = 1] |< O(n · 2�2nl�k).

Proof. This claim follows from the property that puncturable PRF’s value is psuedo-random at punctured
point given the punctured key (sub-exponential security of the puncturable PRF). This proof goes through
by a sequence of at most n hybrids where for each index i 2 [n], (K 0

i

,↵
i

= PRF.Eval(K
i

, x0
i

, x1
i

)) is replaced
with (K 0

i

,↵
i

 R) for all i 2 [n]. This can be done because in both these hybrids, function keys and the
encryption keys use only the punctured keys and a the value of the PRF at the punctured point. Here R is
the co-domain of the PRF, which is equal to the domain of the injective one way function P . Since, PRF is
sub exponentially secure with parameter c

PRF

(c
PRF

be the security constant of the PRF ) when PRF is
initialised with parameter greater than (2nl+k)1/cPRF , distinguishing advantage between each intermediate
hybrid is bounded by O(2�2nl�k). The reduction is straight forward and we omit the details.

Claim 4. For any PPT distinguisher D, | Pr[D(H
x,3) = 1] � Pr[D(H

x,4) = 1] |< O(p(k).2�2nl�k). for
some polynomial p(k)

Proof. We prove this claim for a simplified case when only one function key is queried. The general case by
considering a sequence of intermediate hybrids where function keys are changed one by one, hence the factor
p(k). Assume that there is a PPT algorithm D such that | Pr[D(H

x,3) = 1]�Pr[D(H
x,4) = 1] |> ✏ > 2�2nl�k.

Note that these hybrids are identical upto the point the adversary asks for a key for a function f . We argue
indistinguishability according to following cases.

1. Case 0: Circuit given in 7 initialised with x is functionally equivalent to circuit 7 initialised with x+1.

2. Case 1: This is the case in which the two circuits described above are not equivalent.

Let Q denote the random variable and Q = 0 if adversary is in case 0, otherwise Q = 1. By ✏
Q=b

denote
the value | Pr[D(H

x,3) = 1/Q = b] � Pr[D(H
x,4) = 1/Q = b] |. It is known that Pr[Q = 0]✏

Q=0 + Pr[Q =
1]✏

Q=1 > ✏.

Now we analyse both these cases:
Pr[Q = 0]✏Q=0 < 2�2nl�k: This claim follows due to the indistinguishability security of (1, 2�3nl�k)

weak extractability obfuscator. Consider an adversary D with Q = 0 and challenger C, we construct an
algorithm A that uses D and breaks the indistinguishability obfuscation of the weak extractability obfuscator
with the same advantage. A works as follows: A invokes C that invokes D. C does the setup as in the hybrid
and responds to the queries of D. D outputs f . A gives G⇤

f,x

and G⇤
f,x+1 to the obfuscation challenger and

gets back K
f

in return which is given to D. D’s queries are now answered by C. A outputs whatever D



outputs. A breaks the indistinguishability obfuscation security of the weak extractability obfuscator with
advantage atleast ✏

Q=0 as the view of D is identical to H
x,3 if G⇤

f,x

was obfuscated and it is identical to H
x,4

otherwise.
Pr[Q = 1]✏Q=1 < 2�2nl�k: The only point at which the two circuits G⇤

f,x

and G⇤
f,x+1 in this case may

differ is (x0
1, x

1,↵1, ..., x
0
n

, xn,↵
n

) where ↵
i

is the inverse of a fixed injective one way function value P (↵
i

).
In this case, due to security of weak extractability obfuscator the claim holds. Assume to the contrary
Pr[Q = 1]✏

Q=1 > � > 2�2nl�k. In this case, let ⌧ be the transcript (including the randomness to generate
PKE keys, PRF keys along with chosen ↵0

i

s) between the challenger and the adversary till the point function
key for function f is queried. We denote ⌧ 2 good if conditioned on ⌧ , ✏

⌧,Q=1 > ✏
Q=1/2. Then, using lemma

2, one can show that Pr[⌧ 2 good] > ✏
Q=1/2.

Now, let us denote by set Z a set that contains indices in i 2 [n] such that a0
i

6= a1
i

. Note that ↵
i

can
be requested by the adversary in one of the two following ways: a0

i

= a1
i

and adversary queries for EK
i

or adversary queries for an encryption of (a0
i

, a1
i

) and challenger sends encryption as (x0
i

, x1
i

,↵
i

) with some
probability. Let E denote the set of indices for which ↵

i

’s queried by the adversary through first method and
S denote the set queried through second method. Then it holds that S [E 6= [n]. This is because adversary
cannot query for such cipher-texts and encryption keys in these hybrids since Q = 1 and in particular it
holds that f(< {a0

i

}
i2Z

, {a0
i

}
i2E

>) 6= f(< {a1
i

}
i2Z

, {a0
i

}
E

>). Here <,> denotes the permutation which
sends a variable with subscript i to index i.
Now we let T ( [n] denote the set of ↵

i

for i 2 [n] requested by D (either by querying cipher-text or by
querying for EK

i

such that a0
i

= a1
i

). We know that conditioned on ⌧ (randomness upto the point f is
queried),

| Pr[D(H
x,3) = 1/Q = 1, ⌧ ]� Pr[D(H

x,4) = 1/Q = 1, ⌧ ] |> ✏
Q=1/2

For all t ( Z,

⌃
t

| Pr[D(H
x,3) = 1 \ T = t/Q = 1, ⌧ ]� Pr[D(H

x,4) = 1 \ T = t/Q = 1, ⌧ ] |> ✏
Q=1/2

Since number of proper subsets of [n] is bounded by 2n, there exists a set t such that

| Pr[D(H
x,3) = 1 \ T = t/Q = 1, ⌧ ]� Pr[D(H

x,4) = 1 \ T = t/Q = 1, ⌧ ] |> ✏
Q=1/2

n+1

Now we construct an adversary A that breaks the security of injective one way function with probability
Pr[Q = 1]✏

Q=1/2n+1 that runs in time O(22n/✏2
Q=1). A runs as follows:

1. A invokes D. Then it does setup and generates PKE keys and punctured PRF keys K 0
i

for all indices
in [n] according to hybrid H

x,3.

2. A gets injective one way function values from the injective one way function challenger (P, P (↵1), .., P (↵
n

)).

3. A now guesses a random proper subset t ⇢ [n].

4. For all indices in i 2 t it gets ↵
i

from the injective one way function challenger.

5. If EK
i

is asked for any i 2 t [ Z, it is generated as in H
x,3 and given out. Otherwise, A aborts. We

call the transcript till here ⌧ .

6. When D asks for a key for f . If f is such that Q = 0, A outputs ?. A now constructs a distinguisher
B of obfuscation of circuits G⇤

f,x

and G⇤
f,x+1 as follows:

� A gets as a challenge obfuscation C̃
f

which is an obfuscation G⇤
f,x

or G⇤
f,x+1.

� A gives this obfuscation to B which invokes D from the point of the transcript ⌧ and gives this
obfuscation to D.
� When D asks for a cipher-text, if the queries are such that B can generate it using ↵

i

8i 2 t then
answer the cipher-text query. Otherwise, it outputs 0.
� If EK

i

is asked by D for any i 2 t [ Z, it is generated as in H
x,3 and given out. If any other

encryption key is queried, it outputs 0.



� If set of indices for which ↵
i

’s used to generate response to the queries (in the transcript ⌧ and the
queries asked by D when run by B) equals t it outputs whatever D outputs otherwise, B outputs
0.

7. If t is correctly guessed as t⇤, it is easy to check that | Pr[B(G⇤
f,x

, G⇤
f,x+1,O(G⇤

f,x

), aux) = 1] �
Pr[B(G⇤

f,x

, G⇤
f,x+1,O(G⇤

f,x+1), aux) = 1] |> ✏
Q=1/2n+1. (Here aux is the information with A required

to run B including ↵
i

8i 2 t, P (↵
i

), PK0
i

, PK1
i

, SK0
i

, SK1
i

,K 0
i

8i 2 [n] and transcript ⌧ till point 4).
This is because,

| Pr[B(G⇤
f,x

, G⇤
f,x+1,O(G⇤

f,x

), aux) = 1]� Pr[B(G⇤
f,x

, G⇤
f,x+1,O(G⇤

f,x+1), aux) = 1] |=

| Pr[D(H
x,3) = 1 \ T = t/Q = 1, ⌧ ]� Pr[D(H

x,4) = 1 \ T = t/Q = 1, ⌧ ] |> ✏
Q=1/2

n+1

8. We finally run the extractor E of the weak extractability obfuscator using B to extract a point
(x0

1, x
1
1,↵1, .., x

0
n

, x1
n

,↵
n

). (This extraction can be run as long as ✏
Q=1/2n+1 > 2�3nl implying ✏

Q=1 >
2�2nl�k as otherwise there is nothing to prove and claim trivially goes through). This extractor runs
in time O(t

D

.22n/✏2
Q=1). Probability of success of this extraction is

Pr[Q = 1] · Pr[⌧ is good] · Pr[ t is guessed correctly] > Pr[Q = 1] · ✏
Q=1/2

n+1

Let µ be the input length for injective one way function. We note the following cases:

Case 0: If Pr[Q = 1]✏
Q=1 < O(2�2nl�k), in this case the claim goes through.

Case 1: If Pr[Q = 1]✏
Q=1/2n+1 < O(2�µ

c

owp2
), in this case the claim goes through if µ is set to be

greater than (3nl + k)1/cowp2 .

Case 2: If case 1 does not occur, then we must have that 22n/✏2
Q=1 > 2µ

c

owp1 , implying that if µ is
greater than (5nl + 2k)1/cowp1 the claim holds (due to the security of injective one way function P ).

Hence, if µ > max{(3nl + k)1/cowp2 , (5nl + 2k)1/cowp1}, Pr[Q = 1]✏
Q=1 < 2�2nl�k and the claim holds.

Claim 5. For any PPT distinguisher D, | Pr[D(H
x,4) = 1]� Pr[D(H

x,5) = 1] |< O(n · 2�2nl�k).

Proof. This claim follows from the security of the puncturable PRF’s. This is similar to the proof of the
claim 3.

Claim 6. For any PPT distinguisher D, | Pr[D(H
x,5) = 1] � Pr[D(H

x,6) = 1] |< O(p(k) · 2�2nl�k). Here
p(·) is a some polynomial

Proof. This claim follows from the indistinguishability obfuscation security of the weak extractability obfus-
cator. This proof is similar the proof of the claim 2.

Claim 7. For any PPT distinguisher D, | Pr[D(H
x,6) = 1]� Pr[D(H

x,7) = 1] |< O(n · 2�2nl�k).

Proof. This claim follows from the indistinguishability obfuscation security of the weak extractability obfus-
cator O. This proof is similar the proof of the claim 1.

Combining all the claims above, we prove the lemma.

Lemma 10. For any PPT distinguisher D and x 2 [22ln], | Pr[D(H22ln+4+x

) = 1] � Pr[D(H22ln+5+x

) =
1] |< O(v(k) · 2�2nl�k) for some polynomial v(k).

Proof. Proof of this lemma is similar to the proof of lemma 9.

Combining all these lemmas above, we get that for any PPT D,

| Pr[D(H0) = 1]� Pr[D(H2.22ln+6) = 1] |< negl(k) + 2.22nlO(v(k) · 2�2nl�k) < negl(k)
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A Completing proofs of (1, �) weak extractability obfuscator
Theorem 4. Assuming sub-exponentially secure indistinguishability obfuscation, there exists (1, �) weak
obfuscator for P/poly for any � > 2�k, where k is the size of the circuit.

Proof. We now construct a (1, 2�k) input weak extractability obfuscator from sub-exponentially secure in-
distinguishability obfuscation. Following algorithm describes the obfuscation procedure.

weO(1k, C) : The procedure outputs C 0  iO(1k
1/↵

, C). Here, ↵ > 0 is a constant chosen such that any
polynomial time adversary against indistinguishability obfuscation has security gap upper bounded by 2�k/4.

Correctness and polynomial slowdown follows from the properties of the indistinguishability obfuscator.
Now we formally describe the extractor E. Let us assume that the circuits (C0, C1) take as n bit inputs and
there is an adversary A for which 1 � ✏(k) > 2�k. Here, 2�k/4 is the indistinguishability gap corresponding
to weO for equivalent circuits of size k and n = O(k) inputs.

We construct an extractor that runs in O(n.(2tA + poly(k)).k.1/✏2) time and extracts the differing input
with overwhelming probability. The algorithm takes as input two circuits, auxillary input to the adversary
z and distinguishing gap ✏ and outputs the differing input d. For simplicity, lets assume that:

Pr[A(1k, weO(1k, C0), C0, C1, z) = 1] < Pr[A(1k, weO(1k, C1), C0, C1, z) = 1]

Otherwise, the extractor can be run twice using the different sign for this advantage.

Our extractor is described in figure 8. For now, assume that there is a single differing input d. Intu-
itively, our extractor predicts the differing input bit by bit. For an index i 2 [n], E defines a circuit C

mid

that on input x computes C
x

i

(x), where x
i

is the ith bit of x. One can check that for b 2 {0, 1}, when d
i

= b,
then C

b

and C
mid

are equivalent. Our extractor, knows that the distinguishing advantage of A satisfies that

Pr[A(1k, weO(1k, C0), C0, C1, z) = 1] + ✏ < Pr[A(1k, weO(1k, C1), C0, C1, z) = 1]

It estimates the advantage of A in distinguishing C0 with C
mid

and similarly the advantage of A in dis-
tinguishing C

mid

with C1 (by repeating experiments many times). Because the advantage of adversary
in distinguishing obfuscation of two equivalent circuits is smaller than 2�k/4 (due to security of indistin-
guishability obfuscation), it compares the the two advantage and if it finds that advantage of distinguishing
obfuscation of C

b

from that of C
mid

is less than the advantage advantage of distinguishing obfuscation of
C1�b

from that of C
mid

, it outputs d
i

= b.

Lemma 11. Suppose there exists circuits C0, C1 2 C
k

(set of circuits with size k) with n = O(k) input bits
and disagreeing on at most single input, and auxiliary input z for which

| Pr[A(1k, weO(1k, C0), C0, C1, z) = 1]� Pr[A(1k, weO(1k, C1), C0, C1, z) = 1] |� ✏(k)

where 2�k < ✏  1 Then the algorithm E on input (1k, C0, C1, z, ✏) terminates within expected time O(n.(2tA+
poly(k)).1/✏2) and it holds that Pr[v  E(1k, C0, C1, z, ✏) : C0(v) 6= C1(v)] � 1� negl(k)

Proof. Lemma follows from the two claims below..



Input: C0, C1, z, ✏

1. initialise d = 0

2. For i = 1 to n

(a) Initialise L
i

= 0, R
i

= 0

(b) For j 2 [t = k/✏2]

i. Using Figure 9 compute, L
i,j

= A(weO(CC0,C1,i

Mid

), C0, C1, z)�A(weO(C0), C0, C1, z)

ii. Using Figure 9 compute, R
i,j

= A(weO(C1), C0, C1, z)�A(weO(CC0,C1,i

Mid

), C0, C1, z)

iii. L
i

= L
i

+ L
i,j

iv. R
i

= R
i

+R
i,j

(c) If L
i

< R
i

set d
i

= 0 else set d
i

= 1

3. Output d if C0(d) 6= C1(d), ? otherwise.

Figure 8: Extractor E

Constants: C0, C1, i 2 [n].
Input: x 2 {0, 1}n

� If x
i

= 0 output C0(x).

� If x
i

= 1 output C1(x).

Figure 9: Program CC0,C1,i

Mid

Claim 8. E runs in expected O(n.(2tA + poly(k)).k.1/✏2) time where tA is the expected running time of the
adversary A.

Proof. Let us analyse expected running time of the algorithm E. The algorithm predicts bit by bit the
differing input d. For each bit i 2 [n], the extractor repeats inner loop t = k/✏2 times. Each execution of
the inner loop has an expected termination time of 2tA+poly(k) where poly(k) represents time to compute
challenge obfuscation and other computation steps. Hence, time taken to run E is O(n.(2tA+poly(k)).1/✏2)

Claim 9. E succeeds with an overwhelming probability.

Proof. Let us analyse the success probability of the extractor. If the circuits are equivalent then differing
advantage of the adversary between the obfuscations of the circuits cannot be greater than or equal to ✏, due
to the sub-exponential security of indistinguishability obfuscation. In this case the extractor always outputs
?.

Assuming that there is a differing input d, then let U
i

denote the event that d
i

is incorrectly predicted
by the extractor in the ith loop. We need to show that Pr[[

i2[n]Ui

] < negl(k). We claim this by bounding
Pr[U

i

] for any i 2 [n] and applying union bound.

Let us calculate the probability that d
i

is incorrectly calculated given that d
i

= 0 (In this case CC0,C1,i

Mid

and C0 are functionally equivalent). This is probability is equal to Pr[R
i

 L
i

/d
i

= 0], where R
i

�L
i

is cal-
culated by the program E during loop i (i.e. when the program predicts d

i

). Z
i

= R
i

�L
i

= ⌃
j2[t]Ri,j

�L
i,j

is a random variable that sums the intermediate summands (R
i,j

� L
i,j

) during the jth execution of the



inner loop, while predicting d
i

. Define Z
i,j

= R
i,j

� L
i,j

. We need to bound Pr[Z
i

 0].

We now use the following chernoff bound for achieving this. Given X = X1 + .. + X
N

where each X
i

8i 2 [N ] are independent random variables in [0, 1] and µ = E(X). Then, for any ↵ � 0 we have that,
Pr[X  (1� ↵)µ]  e�↵

2
µ/2.

In order to apply this chernoff bound, we define Z 0
i,j

= (Z
i,j

+ 2)/4 and Z 0
i

= ⌃
j

(Z
i,j

+ 2)/4 and up-
per bound Pr[Z

i

< 0] = Pr[Z 0
i

< t/2]. Let E(Z
i

) = p.t for some p > 0 (by assumption that Pr[C̃  
weO(1k, C0) : A(1k, C̃, C0, C1, z) = 1] < Pr[C̃  weO(1k, C1) : A(1k, C̃, C0, C1, z) = 1]). On some compu-
tation we get that Pr[Z

i

< 0] = e�p

2
t/8(p+2). Now we compute p.

For any j 2 [t], we have that p = E(R
i,j

/d
i

= 0) � E(L
i,j

/d
i

= 0). It is easy to see that E(R
i,j

/d
i

= 0) is
the advantage of the adversary in distinguishing the obfuscation of CC0,C1,i

Mid

when d
i

= 0 from that of C1

and similarly E(L
i,j

/d
i

= 0) is the advantage of the adversary in distinguishing the obfuscation of CC0,C1,i

Mid

from that of C0 when d
i

= 0 . Note that, E(R
i,j

/d
i

= 0) + E(L
i,j

/d
i

= 0) > ✏ (due to the assumption that,
Pr[A(1k, weO(1k, C0), C0, C1, z) = 1] + ✏ < Pr[A(1k, weO(1k, C1), C0, C1, z) = 1]).

Since d
i

= 0, | E(L
i,j

/d
i

= 0) |< 2�k/4 due to subexponential security of the indistinguishability ob-
fuscation. From these observations, we have that p � ✏� 2.2�k/4. Since ✏ > 2�k, p > ✏/2 hence, when t is
set as k/✏2, Pr[Z

i

< 0]  e�k/16.

Similarly when d
i

= 1, we can upper bound probability of incorrect prediction of d
i

as Pr[R
i

> L
i

]  e�k/16,
when t = k/✏2. This proves 8i 2 [n], P r(U

i

) < negl(k).
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