Efficient Signature Schemes from R-LWE

Ting Wang, Jianping Yu, Guoqiang Han, Peng Zhang

Abstract
Compared to the classical cryptography, lattice-based cryptography is more secure, flexible and simple, and it is believed to be secure against quantum computers. In this paper, an efficient signature scheme is proposed from the ring learning with errors (R-LWE), which avoids sampling from discrete Gaussians and has the characteristics of the much simpler description etc. Then, the scheme is implemented in C/C++ and makes a comparison with the RSA signature scheme in detail. Additionally, a linearly homomorphic signature scheme without trapdoor is proposed from the R-LWE assumption. The security of the above two schemes are reducible to the worst-case hardness of shortest vectors on ideal lattices. The security analyses indicate the proposed schemes are unforgeable under chosen message attack model, and the efficiency analyses also show that the above schemes are much more efficient than other correlative signature schemes.

Keywords:
signature; R-LWE; linearly homomorphic; lattice

1. Introduction

Digital signature is one of the most important and widely used cryptographic primitives. At present all signature schemes from classical cryptography were proved to be either insecure or function-limited especially under quantum attacks [1-3], so lattice-based cryptography has become a hot research topic because of its security. Since new trapdoors for hard lattices were developed successfully [4], many lattice-based signature schemes have been proposed owing to the excellent algebraic characteristic, implementation simplicity, stronger security proofs of the lattice cryptography [5-7].

Homomorphic signature is intriguing because which has been proved to be well-suited to guarantee information security in message-operated scenario, such as network coding, sensor networks and cloud storage etc [1, 8-12]. Homomorphic signature can sign n-dimensional vectors \(v_1, \cdots, v_l \) from a message space \(\mathcal{M} \) and outputs the signature \(\sigma_i \) of every vector \(v_i \). Given these signatures, the homomorphic
property of signature scheme is that anyone can evaluate a signature on the vector \(v = f(v_1, \cdots, v_l) \) in \(\mathcal{M} \).

Homomorphic signature schemes were first given by Micali and Rivest for undirected graphs [13]. Subsequently Johnson proposed the basic definitions of homomorphic signature scheme and showed that a variety of homomorphic signature schemes can be designed [14]. The signature scheme from [5] was the first linear homomorphic scheme that authenticated vectors from binary fields, and its security was based on a new lattice problem, which is named \(k - \text{SIS} \). Based on the trapdoor functions with preimage sampling [4] and a homomorphic hash function family, WANG FengHe gave a linely homomorphic signature scheme over binary field [15]. Using ideal lattices, Boneh et al presented the first homomorphic signature scheme for polynomial functions [6], and then Catalano, Fiore and Warinschi provided an alternative to the homomorphic signature scheme of Boneh and Freeman [16]. All of the above homomorphic signature schemes have their corresponding advantages and application scenes. However, they tend to be inefficient for practical applications.

In order to resolve the efficiency problem, unlike GPV08 scheme that needs to generate a trapdoor and sample from discrete Gaussians, we give a more efficient signature scheme from the ring learning with errors (R-LWE) using the idea from Lyubashevsky [17]. Subsequently, based on the work of WANG FengHe, a more efficient linearly homomorphic signature scheme without trapdoor on signed data is presented in this paper. Because of the much more compact algebraic structure of the R-LWE problem, the efficiency of the proposed signature schemes is improved greatly, and the analyses show that schemes are secure in adaptive chosen message attack model, assuming that it is hard for probabilistic polynomial-time even quantum adversary to resolve the shortest vector problem on ideal lattices.

The remainder of this paper is arranged as follows. In Section 2, the preliminaries are introduced firstly, and then a general lattice-based signature scheme is given and discussed in detail in Section 3. In Section 4, the definition of homomorphic signature is expounded firstly. Secondly, we propose an efficient linearly homomorphic signature scheme from R-LWE assumption. Finally, the security and the efficiency are analyzed in this Section. The whole paper is concluded in Section 5.

2. Preliminaries

2.1. Lattices

Lattice can be regarded as the set of discrete points with a regular structure in geometry, which can be described formally as follows.

Definition 1. Suppose that \(b_1, \cdots, b_n \in \mathbb{R}^n \) are linearly independent \(n \)-dimensional vectors, then the lattice can be defined as

\[
L(b_1, \cdots, b_n) = \left\{ \sum_{i=1}^{n} x_i b_i \mid x_i \in \mathbb{Z}, 1 \leq i \leq n \right\}
\]
Where \(b_1, \ldots, b_n \) is a basis of the lattice, and its rank is \(n \).

The standard worst-case approximation lattice problem \(\text{GapSVP}_r \) is given in the decision version.

Definition 2 (Shortest Vector Problem). Given a lattice basis \(B, d \in R \). If \(\lambda_q(L(B)) \leq d \), it is a YES instance. If \(\lambda_q(L(B)) > \gamma(n) \cdot d \), it is a NO instance, where the parameter \(\gamma(n) \geq 1 \) is a approximation factor and \(\lambda_q(L(B)) \) is the minimum distance of a lattice \(L(B) \).

2.2. Learning with Errors over Rings (R-LWE)

Let \(f(x) = x^n + 1 \in \mathbb{Z}[x] \), where \(n = 2^k (k \in \mathbb{Z}) \) is a security parameter, which makes \(f(x) \) irreducible over the rational number field, \(R = \mathbb{Z}[x]/<f(x)> \) be the integer polynomial ring modulo \(f(x) \), and assume that \(q = 1 \mod 2n \) is a large prime modulus (bounded by \(\text{poly}(n) \)), \(R_q = R/ \langle q \rangle = \mathbb{Z}_q[x]/<f(x)> \) is the integer polynomial ring modulo \(f(x) \) and \(q \). It is obvious that the elements of \(R_q \) are typically represented by integer polynomials of degree less than \(n \), and its coefficients are chosen from \(\{0,1,\ldots,q-1\} \).

In the integer polynomial ring \(R_q \), the R-LWE problem can be defined as follows [18]. For a uniformly random \(s \in R_q \) (secret key), define two distributions on \(R_q \times R_q \):

1. \((a,b = a \times s + e) \in R_q \times R_q \), where \(a \) is chosen uniformly at random from \(R_q \), and \(e \) is an independent error term from the distribution \(\chi \subset R \).
2. \((a,c) \), where \(a, c \leftarrow R_q \) are uniformly random. The R-LWE problem is to distinguish the two distributions described above with non-negligible advantage. In other words, if R-LWE is hard, then the independent samples of ‘random noise equations’ \((a,a \times s + e) \) is pseudorandom, and all operations are performed in \(R_q \).

Lyubashevsky, Peikert and Regev proved that the R-LWE problem is hard under the
worst-case assumptions on ideal lattices [18] (see Theorem 1).

Theorem 1. For an approximation factor $\gamma \geq 1$ (bounded by a fixed $\text{poly}(n)$), assume that it is hard for any polynomial-time even quantum algorithms to find an approximation of the shortest vector on ideal lattices. Then any $\text{poly}(n)$ independent samples $(a_i, a_i \times s + e_i)$ from the R-LWE distribution $A_{i, \chi} \subset R_q \times R_q$ are pseudorandom.

2.3. A hash function family

Lyubashevsky et al. [19] defined a hash function family $\mathcal{H}_{Z_q, n}$ that maps Z_q^n to Z_q. The function $h \in \mathcal{H}_{Z_q, n}$ is indexed by a certain fixed vector $\alpha = (a_1, \ldots, a_n) \in Z_q^n$. h takes as input an element $\beta = (b_1, \ldots, b_n) \in Z_q^n$, and the output is the dot product as $\alpha \circ \beta = a_1 b_1 + \cdots + a_n b_n$. It is denoted by $h_\alpha(\beta) = \alpha \circ \beta$. The hardness of the hash function is based on the approximate worst-case lattice problems, and the hash function is a collision resistant hash.

$\mathcal{H}_{Z_q, n}$ is a linear hash function family. That is to say, for every $\beta, \gamma \in Z_q^n$, $k \in Z_q$ and $h_\alpha \in \mathcal{H}_{Z_q, n}$, the following two properties are satisfied: (1) $h_\alpha(\beta + \gamma) = h_\alpha(\beta) + h_\alpha(\gamma)$, (2) $h_\alpha(k \beta) = k h_\alpha(\beta)$.

3. Signature Scheme

3.1. Scheme

First we give the probability distribution χ which will be used in the following, and χ is derived from a Gaussian. For any $\beta > 0$, the density function of a Gaussian distribution over the real domain is given by $D_\beta(x) = 1/\beta \cdot \exp(-\pi(x/\beta)^2)$. For an integer $q \geq 2$, define $\tilde{\varphi}_\beta(q)$ to be the distribution on Z_q obtained by drawing $y \leftarrow D_\beta$ and outputting $\left[q \cdot y + 1/2 \right] \pmod{q}$. Let $\chi \subset R_q$ denotes the set of polynomials whose coefficients are chosen from $\tilde{\varphi}_\beta(q)$.
Unlike GPV08 scheme that needs to generate a trapdoor and sample from discrete Gaussians, using the idea from Lyubashevsky, an efficient signature scheme $\mathcal{S} = (\text{KeyGen}, \text{Sign}, \text{Verify})$ from R-LWE problem can be constructed as follows.

Let $n = 2^k (k \in \mathbb{Z})$, a prime number $p << q = 1 \mod (2n)$ (q be a sufficiently large public prime modulus), $\chi \subset R_q$ be the error distribution and $R_q = \mathbb{Z}_q[x]/<x^n + 1>$ be the ring of integer polynomials modulo $x^n + 1$ and q.

- **KeyGen(1^n)**: Choose $s \in R_q$ randomly as the private key. The public key is $(a, b = a \cdot s + pe_i)$, where $a \leftarrow R_q$ is uniformly random and error term e_i is chosen independently from a probability distribution $\chi \subset R_q$. $H : [0,1]^* \rightarrow \mathbb{Z}_q^n$ is a random oracle that maps the space of message to \mathbb{Z}_q^n.

- **Sign(s, m)**: Compute $c = H(m) \in \mathbb{Z}_q^n$ (view it as an element of R_q by using its coordinates as the coefficients of a polynomial), and output the signature $\sigma = s \cdot c + pe_2$, where e_2 is chosen independently from a probability distribution χ.

- **Verify(a, b, m, σ)**: If $\sigma \in R_q$ and $a \cdot \sigma = b \cdot H(m) \pmod{p}$, output 1. Else, output 0.

Polynomial addition is the usual coordinate-wise addition, and multiplication is the usual polynomial multiplication followed by reduction modulo $x^n + 1$.

Claim 1. The signature scheme described above is correct.

Proof. Consider a signature $\sigma = s \cdot c + pe_2$ of a message m under the public key $(a, b = a \cdot s + pe_i)$, then the verification process can be computed as

$$[(a \cdot \sigma - b \cdot H(m)) \pmod{p} = [a \cdot (s \cdot c + pe_2) - (a \cdot s + pe_i) \cdot H(m)] \pmod{p}$$

$$= [p(a \cdot e_2 - e_i \cdot c)] \pmod{p}$$

$$= 0$$

3.2. Security Analysis

Claim 2. The scheme \mathcal{S} described above is secure against chosen-plaintext attacks.
(CPA) in the random oracle model, assuming that the R-LWE is hard and hash function H is secure.

Proof. Let adversary A be a probabilistic polynomial-time (PPT) adversary that makes at most k signature queries. A works as follows:

• **Setup**: Challenger runs $\text{KeyGen}(1^n)$ to get $\{s, (a, b = a \cdot s + pe_i)\}$, and sends public key $(a, b = a \cdot s + pe_i)$ to A.

• **Queries**: A makes k queries to H on messages $m_i(i = 1, \ldots, k)$ and challenger returns $c_i = H(m_i)(i = 1, \ldots, k)$ to A. Following this, A makes signature queries on $c_i(i = 1, \ldots, k)$, the challenger chooses $e_1, e_2, \ldots, e_k \in \mathcal{X}$ at random, runs Sign to get $\sigma_i(i = 1, \ldots, k)$ and sends them to A.

• **Output**: A outputs a tuple of the public key, message and signature $(a^*, b^*, m^*, \sigma^*)$, where $m^* \neq m_i(i = 1, \ldots, k)$.

If the challenger never responds signature queries on messages $m_i(i = 1, \ldots, k)$, A outputs the legal signature σ^* of m^* satisfying $\text{Verify}((a, b), m^*, \sigma^*) = 1$, namely,

$$[a \cdot \sigma^* - b \cdot H(m^*)] \mod p = [a \cdot \sigma^* - (a \cdot s + pe_i) \cdot H(m^*)] \mod p$$

$$= a \cdot [\sigma^* - s \cdot H(m^*)] \mod p$$

$$= 0$$

It can be seen that $a = 0 \mod p$ or $\sigma^* - s \cdot H(m^*) = 0 \mod p$ from the formula described above for p is a prime number. As a is chosen from R_q randomly, the probability of $a = 0 \mod p$ is close to $1/p^n$, which is negligible. Hence it can be concluded that $\sigma^* - s \cdot H(m^*) = 0 \mod p$, and the private key s can be obtained. So R-LWE problem is solved successfully.

3.3. Efficiency Analysis

Because of the special algebraic structure of R-LWE, the signature scheme from the R-LWE problem has the advantages of much simpler description, analysis and very high efficiency. The efficiency analysis of the scheme is shown in Table 1.
Table 1 Efficiency analysis of the scheme from R-LWE.

<table>
<thead>
<tr>
<th>Private key size</th>
<th>Public key size</th>
<th>Message length</th>
<th>Signature length</th>
<th>Verification computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \log q$</td>
<td>$2n \log q$</td>
<td>$n \log q$</td>
<td>$n \log q$</td>
<td>$\tilde{O}(n^2)$</td>
</tr>
</tbody>
</table>

In the following parts, the scheme from R-LWE is compared with the RSA scheme on the same parametric conditions and operation environment. We use the same usual personal computer to evaluate the implementation performance of the two schemes: Running them on a Microsoft Windows XP Professional 2002 System, featuring a Pentium (R) D CPU processor, running at 3.0GHz, with 1.0GB of RAM. The implementation uses Shoup's NTL library version 5.5.2 for high-level numeric algorithms [19], and the code is compiled using Microsoft Visual C++ 6.0 compiler.

Table 2 Implementation time of the scheme from R-LWE.

<table>
<thead>
<tr>
<th>Security parameter n</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>KeyGen (ms)</td>
<td>14.6</td>
<td>37.0</td>
<td>121.8</td>
<td>443.8</td>
<td>1687.2</td>
<td>6578.1</td>
</tr>
<tr>
<td>Signature(ms)</td>
<td>15.3</td>
<td>34.6</td>
<td>121.8</td>
<td>440.4</td>
<td>1699.8</td>
<td>6685.9</td>
</tr>
<tr>
<td>Verification (ms)</td>
<td>28.7</td>
<td>68.4</td>
<td>240.4</td>
<td>909.2</td>
<td>3531.2</td>
<td>13252.7</td>
</tr>
<tr>
<td>Total Time (ms)</td>
<td>58.6</td>
<td>140.0</td>
<td>484.0</td>
<td>1793.4</td>
<td>6918.2</td>
<td>26516.7</td>
</tr>
</tbody>
</table>

Table 3 Implementation time of the RSA scheme.

<table>
<thead>
<tr>
<th>Security parameter n</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>KeyGen (ms)</td>
<td>14.0</td>
<td>1028.4</td>
<td>2017.3</td>
<td>5973.7</td>
<td>31249.6</td>
<td>217288.3</td>
</tr>
<tr>
<td>Signature(ms)</td>
<td>10.1</td>
<td>120.8</td>
<td>279.1</td>
<td>2232.5</td>
<td>9539.7</td>
<td>121170.0</td>
</tr>
<tr>
<td>Verification (ms)</td>
<td>5.8</td>
<td>6.9</td>
<td>7.1</td>
<td>15.2</td>
<td>47.7</td>
<td>172.0</td>
</tr>
<tr>
<td>Total Time (ms)</td>
<td>29.9</td>
<td>1156.1</td>
<td>2303.5</td>
<td>8221.4</td>
<td>40837</td>
<td>338630.3</td>
</tr>
</tbody>
</table>

Table 2 and Table 3 show the simulation results of the two different schemes respectively. Each test is repeated ten times and the datum shown in the two tables are the means of these ten different repetitions. As can be seen from Table 2 and Table 3, the runtime of the scheme from R-LWE is more efficient than the RSA scheme under the same conditions, especially the key generation time and signature time. Regardless of the inefficiency of the verification compared to RSA scheme, the total runtime of our scheme is much more efficient than that of the RSA scheme with the increase of security parameter n.

Modulus q takes the minimum integer satisfying corresponding conditions in the two schemes, and the length of messages encrypted in the two scheme is $n \log q$ bit.

More detailed simulation results of the two above-described schemes are shown in Fig. 1-4. Fig. 1, 2 and 3 indicate the efficiency of the key generation, signature and verification in the two schemes respectively, and the comparison of the total implementation time of the two schemes is shown in Fig. 4. At the same time, the
figures also show the change tendencies of the implementation time of the two encryption schemes along with the change of the security parameter n.

As can be seen from Fig 1-4, the efficiency of the scheme from R-LWE is more eximious than the RSA signature scheme, and the increasing tendency of the scheme from R-LWE in runtime is much slower than that of the RSA scheme with the increase of security parameter n. Furthermore, the scheme from R-LWE is believed to be secure against quantum computers.

Fig. 1 Efficiency comparison of key generation between our signature scheme and RSA scheme. Security parameter $n = 128, 256, 512, 1024, 2048, 4096$.

Fig. 2 Efficiency comparison of signature between our signature scheme and RSA scheme.
Security parameter \(n = 128, 256, 512, 1024, 2048, 4096 \).

Fig. 3 Efficiency comparison of verification between our signature scheme and RSA scheme.
Security parameter \(n = 128, 256, 512, 1024, 2048, 4096 \).

Fig. 4 Comparison of total implementation time between our signature scheme and RSA scheme. Security parameter \(n = 128, 256, 512, 1024, 2048, 4096 \).

4. Linearly Homomorphic Signature Scheme

4.1. Scheme

Definition 3. A homomorphic signature scheme is composed of four probabilistic polynomial-time (PPT) algorithms \((\text{Setup, Sign, Evaluate, Verify})\) such that:
• **Setup**(n, l'): Take as input a security parameter n and the maximum evaluation data set size l. Algorithm outputs the private key sk and the public key pk.

• **Sign**(τ, sk, m_i): Take as input a tag $\tau \in \{0,1\}^*$, the private key sk and a message $m_i (i \in \{1, \ldots, l\})$ in some message space \mathcal{M}. Algorithm outputs a signature $\sigma_i \in \Sigma$, where Σ is a signature space.

• **Evaluate**($\tau, pk, \{\sigma_i, \ldots, \sigma_i\}, g$): Take as input a tag τ, a public key pk, a tuple of signatures $\sigma_i \in \Sigma (i = 1, \ldots, l)$, and a multivariate function $g \in \mathcal{F}$. Outputs a signature $\sigma = g(\sigma_1, \ldots, \sigma_i)$.

• **Verify**(τ, pk, m_i, σ): Take as input a tag τ, a public key pk, a tuple of messages $m_i \in \mathcal{M} (i = 1, \ldots, l)$, a function g and a signature σ. Algorithm outputs either 0 or 1.

It is required that for any $(pk, sk) \leftarrow \text{Setup}(n, l')$, the following hold:

1. In fact, for any tag $\tau \in \{0,1\}^*$ and any message $m' \in \mathcal{M}$, if $\sigma' \leftarrow \text{Sign}(\tau, sk, m')$, then $\text{Verify}(\tau, pk, m', \sigma') = 1$.

2. For any tag $\tau \in \{0,1\}^*$, all sets $\{(m_i, \sigma_i)\}_{i=1}^l$ and all functions $g \in \mathcal{F}$, if $\text{Verify}(\tau, pk, m_i, \sigma_i) = 1$ for all i, then

$$\text{Verify}(\tau, pk, g(m_1, \ldots, m_l), \text{Evaluate}(\tau, pk, \{\sigma_i, \ldots, \sigma_i\}, g)) = 1$$

The homomorphic signature scheme described above is defined as \mathcal{F}-homomorphic. Especially, if \mathcal{F} is composed of all integer linear functions, we say that the scheme is a linearly homomorphic signature scheme.

Now we begin to describe the linearly homomorphic signature scheme proposed in this paper.

For any positive parameter $\delta > 0$, the Gaussian function with center 0 over the real domain is given by $D_\delta(x) = 1/\delta \cdot \exp(-\pi(x/\delta)^2)$. On an integer $q \geq 2$, define $\overline{D}_\delta(q)$ to be the distribution over Z_q obtained by choosing $y \leftarrow D_\delta$ and outputting $\lfloor q \cdot y + 1/2 \rfloor (\mod q)$. Let the error distribution $\chi \subset R_q$ denotes the set of polynomials
whose coefficients are chosen from $\overline{\nu}_\delta(q)$, $R_q = \mathbb{Z}_q[x]/<x^n + 1>$ be the integer polynomial ring modulo $f(x)$ and q, and $H : \{0,1\}^* \rightarrow \mathbb{Z}_q^n$ is a random oracle that maps $\{0,1\}^*$ to \mathbb{Z}_q^n.

Using a homomorphic hash function family [18], an efficient linearly homomorphic signature scheme $\mathcal{S} = (\text{Setup}, \text{Sign}, \text{Evaluate}, \text{Verify})$ without trapdoor from R-LWE assumption is constructed as follows:

- **Setup($1^n, 1^l$)**: Given the security parameter $n = 2^k (k \in \mathbb{Z})$, the maximum data set size l and a prime number $p < q = 1 \mod(2n)$ (q is a large prime modulus). Choose $s \in R_q$ randomly as the private key. The public key is $(a, b = a \cdot s + pe^*)$, where a is chosen uniformly at random from R_q and error term and e^* is chosen independently from a probability distribution $\chi \subset R_q$.

- **Sign(τ, s, m_i)**: Given a tag τ and a private key s, to sign a message $m_i \in R_p (i \in \{1, \cdots l\})$, the signer performs the following operations:

 1. For $j = 1, \cdots, n$, compute $\alpha_j = H(\tau \parallel j)$.
 2. $h_m = (h_1, \cdots, h_n) = (m \odot \alpha_1, \cdots, m \odot \alpha_n)$.
 3. $\sigma_i = s \cdot h_m + pe_i$.

 where e_i is chosen independently from a probability distribution χ. Output the signature (τ, m_i, σ_i).

- **Evaluate($\tau, (a, b), \{(k_i, \sigma_i)\}_{i=1}^l$)**: Given a tag τ, a public key (a, b) along with a tuple of $\{(k_i, \sigma_i)\}_{i=1}^l (k_i \in \mathbb{Z}_p)$. Outputs $\sigma = \sum_{i=1}^l k_i \sigma_i$.

- **Verify($\tau, (a, b), m, \sigma$)**: Given a tag τ, a public key (a, b), a message $m \in \mathcal{M}$ and a signature σ, do the following:

 1. $\alpha_j = H(\tau \parallel j)(j = 1, \cdots, n)$.
 2. $h_m = (h_1, \cdots, h_n) = (m \odot \alpha_1, \cdots, m \odot \alpha_n)$.
3. If $\sigma \in R_q$ and $a \cdot \sigma - b \cdot h_m \equiv 0(\text{mod } p)$, output 1. Else, output 0.

The scheme described above is correct, in fact:

$$[a \cdot \sigma - b \cdot h_m] \text{mod } p = [a \cdot (s \cdot h_m + pe) - (a \cdot s + pe^*) \cdot h_m] \text{mod } p$$

$$= [p(a \cdot e - e^* \cdot h_m)] \text{mod } p$$

$$= 0$$

Claim 1. The polynomial ring signature scheme over R_p described above is linearly homomorphic.

Proof. Given messages m_i such that $\text{Verify}(\tau, (a, b), m_i, \sigma_i) = 1$ for all i. As all operations are performed in R_q, the signature $\sigma = \sum_{i=1}^l k_i \sigma_i$ output by $\text{Evaluate}(\tau, (a, b), \{(k_i, \sigma_i)\}_{i=1}^l)$ passes verification test $\sigma \in R_q$. On the other hand, as

$$[a \cdot (\sum_{i=1}^l k_i \sigma_i) - b \cdot (\sum_{i=1}^l k_i h_m)]$$

$$= [a \cdot \sum_{i=1}^l k_i (s \cdot h_m + pe) - (a \cdot s + pe^*) \cdot [\sum_{i=1}^l k_i (m_i \circ \alpha_i), \cdots, \sum_{i=1}^l k_i (m_i \circ \alpha_n)]]$$

$$= [a \cdot \sum_{i=1}^l k_i [s \cdot (m_i \circ \alpha_i, \cdots, m_i \circ \alpha_n) + pe] - (a \cdot s + pe^*) \cdot [\sum_{i=1}^l k_i (m_i \circ \alpha_i), \cdots, \sum_{i=1}^l k_i (m_i \circ \alpha_n)]]$$

$$= p(a \cdot \sum_{i=1}^l k_i e_i - e^* \cdot [\sum_{i=1}^l k_i (m_i \circ \alpha_i), \cdots, \sum_{i=1}^l k_i (m_i \circ \alpha_n)]]$$

$$= 0(\text{mod } p)$$

Hence the conclusion is correct.

4.2. Security Analysis

A homomorphic signature scheme $\mathcal{S} = (\text{Setup}, \text{Sign}, \text{Evaluate}, \text{Verify})$ is unforgeable under chosen-message attack, if for all probabilistic polynomial-time adversary (PPT) \mathcal{A}, the success probability of \mathcal{A} in the following game is negligible in the security parameter n.

- **Setup**: Challenger runs $\text{Setup}(1^n, 1^l)$ to get $\{s, (a, b = a \cdot s + pe^*)\}$, and sends public key (a, b) to \mathcal{A}.

- **Queries**: \mathcal{A} makes queries on a sequence of messages $m_i \in R_p (i = 1, \cdots, Q)$, the challenger gives the hash h_m and the signatures σ_i to \mathcal{A}.

- **Output**: \mathcal{A} outputs a tuple of the tag, message and signature $\{\tau^*, m^*, \sigma^*\}$.

The adversary succeeds if $\text{Verify}(\tau^*, (a, b), m^*, \sigma^*) = 1$ but $m^* \neq m_i (i = 1, \cdots, Q)$.

Claim 2. For any parameters n, q and polynomial $f(x)$ satisfying the condition of the R-LWE problem, the signature scheme \mathcal{S} is unforgeable in the chosen message attack model (CMA), assuming that the R-LWE problem is hard.

Proof. Suppose that \mathcal{A} is a PPT adversary that makes at most Q queries. \mathcal{A} works as follows:

- **Setup**: Challenger runs $\text{Setup}(1^n, 1^t)$ to get $\{s, (a, b = a \cdot s + pe^*)\}$, and sends public key (a, b) to \mathcal{A}.

- **Queries**: \mathcal{A} makes queries on a sequence of messages $m_i \in R_p (i = 1, \cdots, Q)$, the challenger proceeds as follows:
 1. For each m_i, compute $\alpha_i = H(\tau_i \parallel k) (i = 1, \cdots, Q)$.
 2. $h_m = (h_1, \cdots, h_n) = (m_i \odot \alpha_i, \cdots, m_i \odot \alpha_n)$.
 3. $\sigma_i = s \cdot h_m + pe_i, e_i \leftarrow \mathcal{X} (i = 1, \cdots, Q)$.
 4. Return h_m and σ_i to \mathcal{A}.

- **Output**: \mathcal{A} outputs a tuple of the tag, message and signature $\{\tau^*, m^*, \sigma^*\}$.

If the challenger never responds signature queries on messages m^*, \mathcal{A} outputs the legal signature σ^* of m^* satisfying $\text{Verify}(\tau^*, (a, b), m^*, \sigma^*) = 1$, namely,

$$[a \cdot \sigma^* - b \cdot h_m] \mod p = [a \cdot \sigma^* - (a \cdot s + pe^*) \cdot h_m] \mod p$$

$$= a \cdot (\sigma^* - s \cdot h_m) \mod p$$

$$= 0$$

It can be seen that $a = 0$ or $(\sigma^* - s \cdot h_m) = 0 \mod p$ from the formula described above for p is a prime number. As a is chosen from R_q randomly, the probability of $a = 0 \mod p$ is close to $1/p^n$, which is negligible. Hence it can be concluded that $\sigma^* - s \cdot h_m = 0 \mod p$. As R_q is an integer polynomial field, $(h_m)^{-1}$ can be figured out, and further the private key s also can be obtained. So R-LWE problem is solved successfully.

4.3. Efficiency Analysis
Because of the special algebraic structure of R-LWE, the linearly homomorphic signature scheme from R-LWE problem has the advantages of much simpler description, analysis and very high efficiency. Compared with the signature scheme of Boneh [5], the efficiency improvement of our scheme is shown in Table 4.

<table>
<thead>
<tr>
<th>properties of cryptosystem</th>
<th>Scheme of Boneh</th>
<th>Our scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private key size</td>
<td>$m(m+n)(1+\log q)$</td>
<td>$n \log q$</td>
</tr>
<tr>
<td>Public key size</td>
<td>$mn(1+\log q)$</td>
<td>$2n \log q$</td>
</tr>
<tr>
<td>Message size</td>
<td>n</td>
<td>$n \log p$</td>
</tr>
<tr>
<td>Signature length</td>
<td>$2m(1+\log q)$</td>
<td>$n \log q$</td>
</tr>
<tr>
<td>Operations for signature</td>
<td>$1 \text{psf} + 1 \text{bt}$</td>
<td>$\tilde{O}(n^2)$</td>
</tr>
<tr>
<td>Operations for verification</td>
<td>$\tilde{O}(mn)$</td>
<td>$\tilde{O}(n^2)$</td>
</tr>
</tbody>
</table>

In the scheme of Boneh, $m = \lceil 6n \log 2q + 1 \rceil$. psf and bt denote the computational cost of running preimage sampling functions (PSF) [4] and ExtBasis algorithm [20] respectively. The scheme of Boneh needs to use the ExtBasis algorithm and PSF to sign messages, and the PSF is a sub-algorithm of the ExtBasis algorithm. As the PSF algorithm is rather inefficient, whose time complexity is $\Omega(n^3)$, the operations for signature of the scheme of Boneh is more than $2 \text{psf} \geq 2\Omega(n^3)$. The data in Table 4 indicates that the scheme from R-LWE is more efficient than the scheme of Boneh, especially its public key, private key and operations for signature are incomparable to the scheme based on the PSF algorithm.

5. Conclusion

Digital signature can solve many security issues from internal and external malicious attacks in network coding, sensor networks and cloud storage etc. In order to guarantee the security of the network data, owing to the flexible structure and implementation simplicity of lattice cryptography, two efficient digital signature schemes from R-LWE assumption are proposed, and the analyses show that they are unforgeable in the chosen message attack model. The schemes mainly use modular addition and modular multiplication operations of the ring of integer polynomials, especially based on the special algebraic structure of R-LWE assumption, hence they are more efficient than previous interrelated signature schemes using ExtBasis or PSF algorithm. In the future, we will explore the fully homomorphic signature from lattice.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61171072) and the Science & Technology Innovation Projects of Shenzhen.
References

