Malicious Keccak

Pawel Morawieckil2

! Institute of Computer Science, Polish Academy of Sciences, Poland
2 Section of Informatics, University of Commerce, Kielce, Poland

Abstract. In this paper, we investigate Keccak — the cryptographic hash function adopted as the
SHA-3 standard. We propose a malicious variant of the function, where new round constants are
introduced. We show that for such the variant, collision and preimage attacks are possible. We also
identify a class of weak keys for the malicious Keccak working in the MAC mode. Ideas presented
in the paper were verified by implementing the attacks on the function with the 128-bit hash.

Keywords: cryptanalysis, Keccak, SHA-3, malicious hashing

1 Introduction

A malicious variant of a cryptographic primitive is the one with a backdoor. An attacker who
knows the backdoor can easily manipulate or even totally compromise the algorithm’s security.
A holy grail for all intelligence agencies is to have backdoors, which are extremely hard to detect
and, at the same time, easy to use, widely applicable. Recent revelations by Edward Snowden
have shown that the NSA has deliberately inserted a backdoor in the standardized pseudorandom
number generator Dual EC_DRBG [3]. This backdoor gives the knowledge of the internal state
of the generator and consequently the attacker can predict future keystream bits. At the time of
Snowden’s revelations, NIST actually recommended Dual EC_DRBG, so there are speculations
that the NIST standards are manipulated by NSA, such as the NIST’s recommended elliptic
curve constants [8].

Malicious cryptography can be also an issue in the commercial cryptography software or
in some services relying on supposedly strong cryptographic algorithms. Imagine a multimedia
online service, where a user buys and downloads videos and music. Clearly such the service should
have a secure and reliable authentication mechanism. If the authentication is backdoored (e.g.,
a malicious hash function has been inserted), an anonymous worker can blackmail a company
by showing an evidence of the system weakness.

In the public domain, very few papers have been published regarding the malicious cryptog-
raphy. One of the first attempts was cryptovirology project [12]. Another interesting try was to
modify Sboxes of CAST and LOKI and hide linear relations inside [11]. Recently, a more formal
treatment on malicious hashing was given, along with the malicious variant of SHA-1 [1]. (The
constants of SHA-1 were modified in such a way that the collision attack is possible.) In [7],
the backdoored version of Streebog is presented. Streebog is a new Russian cryptographic hash
standard (GOST R 34.11-2012) and its malicious variant has modified constants, which allows
generating collisions, with an aid of differential cryptanalysis.

In this paper we focus on Keccak — the cryptographic hash function adopted as the SHA-3
standard [5]. We propose a new set of constants, which leads to collision and preimage attacks.
Additionally, for the malicious Keccak, we identify a class of weak keys. If a key belongs to the
class, the forgery attack is possible. An idea behind new, malicious constants is to exploit the
symmetric nature of the Keccak permutation. An inspiration comes from the previous attacks
on Keccak such as rotational cryptanalysis [9] and internal differential cryptanalysis [6]. Both
of these works take advantage of symmetry in the permutation and the low Hamming weights
of the constants.

The paper is organised as follows. In Section 2, we describe Keccak and give the malicious
constants. In Section 3, first we give the overview of internal differential cryptanalysis in context
of the backdoored Keccak. Then, we explain how to attack the malicious Keccak, particularly
how to find collisions, preimages and mount the forgery attack on Keccak working in the MAC
mode. Before the paper is concluded, we discuss a different set of constants and its impact on
the attack complexities.

2 Description of Keccak

Keccak is not a single algorithm but rather a family of algorithms called sponge functions [4].
A sponge function can be treated as a generalisation of the cryptographic hash function with
infinite output. It can provide many functionalities, namely a hash function, a stream cipher,
the keyed MAC or a pseudorandom bit generator. In this section we give a brief description of
Keccak, necessary for understanding the malicious variant we propose and the attacks on the
function. An interested reader finds all the details on Keccak in its original specification [5].

Keccak has the b-bit internal state, which is divided into two parts, that is the r-bit bitrate
and the ¢-bit capacity (r + ¢ = b). First, the state is filled with all 0’s and a message is divided
into r-bit blocks. Next, Keccak processes the message in two phases. The first phase is called the
absorbing phase, where the r-bit message blocks are absorbed (XORed) into the state, interleaved
with calls of the internal permutation Keccak-f. Once all message blocks are processed, the second
phase (called squeezing) starts. In this phase, the first r bits of the state are returned (as hash
bits for example). If a desired output is longer than 7 bits, then the internal permutation is
called and then another r bits can be squeezed.

Figure 1 shows how the Keccak state is organised. Terms which denote a given part of the
state were introduced by the Keccak designers. For the pseudo-code, it is more convenient to
represent the state as the two-dimension array S[z,y|, where an element of the array is the
64-bit lane. The default variant of Keccak has the 64-bit lane, but smaller variants (such as the
400-bit state with the 16-bit lane) are also defined. A number of rounds is determined by a size
of the state. For the default 1600-bit state, a number of rounds is 24.

In the Keccak permutation all rounds are the same except for the ¢ step (round-dependent
constants XORed into the state). Below we provide a pseudo-code of a single round. Steps in
the permutation are denoted by Greek letters.

Round (A,RC) {

0 step

C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor Al[x,4], forall x in (0...4)
D[x] = C[x-1] xor rot(C[x+1],1), forall x in (0...4)
Alx,y] = Alx,y] xor D[x], forall (x,y) in (0...4,0...4)
p step forall (x,y) in (0...4,0...4)

Alx,y] = rot(Alx,y], rlx,yl),

T step forall (x,y) in (0...4,0...4)
Bly,2*x+3*y] = Alx,y],

X step forall (x,y) in (0...4,0...4)
Alx,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]),

L step

A[0,0] = A[0,0] xor RC
return A }

In the pseudo-code operations on indices are done modulo 5. The state of the permutation is
denoted by A. There are some intermediate variables such as B[x,y], C[x], D[x]. The rotation
offsets are r [x,y], whereas RC are the round constants. We denote bitwise rotation operation by
rot (W,m). It moves a bit at position i into position ¢ +m in the lane W (i + m are done modulo
the lane size).

0 is a linear operation, a main source of diffusion in the algorithm. p is a permutation that
mixes bits of a lane, while m permutes the whole lanes. x can be viewed as a layer of the 5-bit
Sboxes. The last step is ¢, which XORes the round constant into the first lane. The values of
the round constants are generated by a simple linear feedback shift register (LFSR) [5].

y z
14 state
[
T
z y
"4 plane) slice
> ¢
x x
y z
row) column 4 lane
*—> ¢ 4
x
bit

Fig. 1. Pieces of the Keccak state[5]

2.1 Malicious Keccak

For the malicious variant of Keccak, we change the round constants. All other steps and pa-
rameters in the algorithm remain the same. Our malicious constants are also generated with

a simple shift register. The register is seeded with "SHA3SHA3” (64-bit constant encoded in
ASCII). The subsequent round constants are obtained by rotation of the register by one bit.
The constants, given in hexadecimal notation, are as follows.

RC[0] := 5348413353484133 RC[1] := A9A42099A9A42099 RC[2] := D4D2104CD4D2104C
RC[3] := 6A6908266A690826 RC[4] := 3534841335348413 RC[5] := 9A9A42099A9A4209
RC[6] := CD4D2104CD4D2104 RC[7] := 66A6908266A69082 RC[8] := 3353484133534841
RC[9] := 99A9A42099A9A420 RC[10] := 4CD4D2104CD4D210 RC[11] := 266A6908266A6908
RC[12] := 1335348413353484 RC[13] := 099A9A42099A9A42 RC[14] := 04CD4D2104CD4D21
RC[15] := 8266A6908266A690 RC[16] := 4133534841335348 RC[17] := 2099A9A42099A9A4
RC[18] := 104CD4D2104CD4D2 RC[19] := 08266A6908266A69 RC[20] := 8413353484133534
RC[21] := 42099A9A42099A9A RC[22] := 2104CD4D2104CD4D RC[23] := 908266A6908266A6

All 24 constants are different, however, a careful reader notices that they are symmetric.
This symmetry plays a vital role in attacks on the malicious Keccak.

3 Attacks on Malicious Keccak

In the attacks on the malicious Keccak we use a variant of differential cryptanalysis namely
internal differential cryptanalysis. In typical differential attacks, we consider two different plain-
texts and follow an evolution of the differences between them. In case of internal differential
attacks only one plaintext is considered and we trace a statistical evolution of the differences
between its parts. Such analysis was first proposed by Peyrin [10] in the attack on the Grgstl
hash function. In [6], Dinur et al. showed that internal differentials could be also used to produce
collisions against the round-reduced Keccak.

There is a particular property of Keccak, already noticed by the designers [5], which makes
Keccak a promising candidate for internal differential cryptanalysis. That is four out of its five
internal mappings (all but ¢) are translation invariant in the direction of the z axis. Namely,
if one state S is the rotation of another state S° with respect to the z-axis (i.e., S [z][y][z] =
S[z|[y][z+7], for some value of i), then applying to them any of the 6, p, 7, x operations maintains
this property. This leads to the following observation. If we divide the state on two halves along
z-axis, where both halves are the same, 8, p, 7, x operations do not destroy the symmetry. What
does destroy the symmetry is the ¢ step, namely XORing the round constants to the state. Here
comes a natural question, that is, what happens if we craft the constants such as the above-
mentioned property works for every step in the algorithm. This is how we come up with an
idea of malicious constants in Keccak. If constants are also symmetrical, as the ones proposed
in Section 2.1, the symmetry of the state is kept through all the steps and we can exploit it to
devise attacks on the Keccak hash function.

3.1 Collision Attack

Here we present the collision attack on the malicious Keccak with the [-bit hash. Applying
the standard birthday attack, we can find collisions with 2/2 calls. However, for the malicious
Keccak, a collision can be found with the 2//4 effort. In our attack, instead of calling the algorithm
with random messages, we use the messages which have symmetric structure. That is, once the
message is absorbed into the state, both halves in each lane are the same. This property, as
already explained, would be preserved at every step of the algorithm. In particular, hashes
would be also symmetric. It means that, in fact, we search for collisions for the (I/2)-bit hash.
Once found, we are sure that the second parts of lanes in the hash also collide. Hence, the cost
of the collision attack is 2//4.

There are some technicalities worth discussing. First, the attacker has to consider padding.
The last 62 bits of the message has to contain all 1’s and the length of the message is equal to
the bitrate r minus 2. This way the message is padded with two 1’s and the last lane in the
bitrate part of the state is filled with all 1’s (clearly a symmetric lane).

The attack scales naturally for longer or shorter hashes, for example, the attack on Keccak
with the 512-bit hash would cost 2°12/4 = 2128 If a hash length is not a multiple of the lane size
(64), then the attack does not fully exploit the symmetry property. So, for example, the cost of
the collision attack for the 256-bit and 224-bit hash is the same. It is because for the 224-bit
hash we don’t get an extra 32 bits ‘for free’ in the last lane of the hash string.

We implemented the attack for the Keccak variant with the 1024-bit bitrate and the 128-bit
hash. As expected, after about 2128/4 calls we found a collision. The colliding (padded) messages
and the hash are given below.

Table 1. An example of a collision for the malicious Keccak.

m 813e344a813e344a 78d30cf978d30cf9 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 1111111111111111

m’ 256a4{71256a4f71 €788dc79e788dc79 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 1111111111111111

hash a012dcb9a012dcb9 810¢79e0810¢79e0

3.2 Preimage Attack

In a similar way to the collision attack, we are able to find preimages for the symmetric hashes.
Typically, to convince a third party that we can mount the preimage attack, we show a preimage
for some non-random hashes, e.g., all 0’s or all bytes identical. Such hashes would be covered by
our preimage attack as they are clearly symmetric. In the attack against the malicious Keccak
with [-bit hash, we search, in fact, the preimage for [/2-bit hash, as the second half of the bits are
guaranteed to be the same, due to the symmetric property of the malicious Keccak. Therefore,
the preimage attack complexity is 2/2, whereas the exhaustive search costs 2. As in the collision
search, our preimage attack exploits its full potential when a given hash is a multiple of 64.
We found a preimage for the malicious Keccak with the 64-bit hash, where all hash bits are

Table 2. A preimage for a given 64-bit hash.

m 7187c4197187c419 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 1111111111111111

hash ~ 0000000000000000

3.3 Weak Keys in Keccak-MAC

Keccak can also work in the keyed mode, particularly providing a message authentication code
(MAC). The hash-based MAC involves a cryptographic hash function in combination with a
secret key and a typical solution is HMAC proposed by Bellare et al. [2]. However, in the case
of Keccak, a MAC functionality can be done in a more straightforward way then the nested
approach of HMAC. A secret key is simply prepended to a message, so for Keccak with the
128-bit key first two lanes of the state are occupied by key bits. Then, the state is processed and
a tag is obtained (squeezed).

A secure MAC algorithm should have two main properties. First, it should be infeasible to
mount the key-recovery attack, even if the attacker has many valid message-tag pairs. Second,
the attacker should not be able to create a forgery, namely, to show a valid message-tag pair
(M, T) for a message M that has not been previously authenticated.

For the malicious Keccak the forgery attack is possible when a key belongs to the weak keys
class. The class consists of symmetric keys, that is the first part of a lane is the same as the
second one. To attack the Keccak-MAC with the 128-bit key and 128-bit tag, we provide 264
different pairs of (M, T). Each pair has the same, chosen symmetric tag and different (but also
symmetric) message lanes. Because of the symmetric property, one of the 24 chosen pairs will
be actually the valid pair, whereas for the secure MAC algorithm we would need 2!?8 tries to
provide the valid, previously unseen, message-tag pair. Please note that checking whether a key
belongs to the weak keys class requires just a single call of the Keccak-MAC. If a key is in the
class, the tag will be symmetric. (There might be false positives but their probability is only
2764 and they can be easily verified with another call of the algorithm, with different message
bits.)

3.4 Other Symmetries

The malicious constants we propose are symmetric, that is both 32-bit parts of a lane are the
same. We can exploit the symmetry even further and divide a given 64-bit lane on shorter,
identical blocks. A size of a block could be 32 (as in our malicious set), 16, 8, 4, 2 — divisors of
64. If a block is smaller, the cost of the attacks is also smaller. This is because we get more bits
‘for free’. So, for example, the malicious constants with a block size 16 (four identical blocks in
a lane) decreases the cost of our preimage attack to 2//4. A drawback of shorter blocks is that
we may not guarantee distinct constants for all 24 rounds and they would look less and less
random.

3.5 More ‘nothing up my sleeve’ Constants

To convince a user that the chosen constants are indeed ‘nothing up my sleeve’, we can change
the last round constant and set it as, for example, 64 bits taken from 7 or other well known,
mathematical constant. Certainly, such a constant is not a symmetric string of bits. But please
note that the constant is XORed into to the state as the last step of the permutation, so it only
acts as a ‘mask’. If there were some subsequent steps in the algorithm, then such the constant
would be a beginning of breaking the symmetry in the state. For the collision and forgery attack,
this new constant does not affect the attack, we can always ‘unmask’ obtained hashes (tags)
and observe symmetric hashes (tags). In case of the preimage attack, where we want to show a
preimage for a chosen (e.g. all 0’s) hash, the new, non-symmetric constant spoils the attack or
at least it makes the attack less convincing. We could still find preimages, but a chosen hash
would have been ‘affected’ by the 7 constant. For example, we could find a preimage for a hash
with its first 64-bits equal to 7 concatenated with the all-zero vector.

4 Conclusion

In this paper, we investigated a malicious version of the Keccak hash function. We propose a
new set of constants which exploits a symmetric nature of the Keccak permutation and allows
the collision, preimage and forgery attacks, substantially faster than generic ones. Our malicious
set of constants has some space for bringing more ‘nothing up my sleeve’ numbers. One can take
a well known mathematical constant and set it in the 24th round (or even 23rd round). However,
it limits an efficiency of the attack since the symmetry of the state would be disturbed. Our
results do not threaten the original SHA-3 standard, however, they clearly show a user should
be very careful with the ‘enhanced’ or ‘personalised’ variants of the algorithm, advertised in a
commercial cryptography package.

Acknowledgement

Project was financed by Polish National Science Centre, project DEC-2013/09/D/ST6/03918.

References

1. Albertini, A., Aumasson, J., Eichlseder, M., Mendel, F., Schléffer, M.: Malicious hashing: Eve’s variant of
SHA-1. In: Selected Areas in Cryptography - SAC 2014 - 21st International Conference, Montreal, QC,
Canada, August 14-15, 2014, Revised Selected Papers. pp. 1-19 (2014)

2. Bellare, M., Canetti, R., Krawczyk, H.: Message Authentication Using Hash Functions: the HMAC Construc-
tion. CryptoBytes 2(1), 12-15 (1996)

3. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: A Standardized Back Door. Cryptology ePrint Archive,
Report 2015/767 (2015), http://eprint.iacr.org/

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic Sponges, http://sponge.noekeon.org/
CSF-0.1.pdf

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak Sponge Function Family Main Document,
http://keccak.noekeon.org/Keccak-main-2.1.pdf

6. Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of SHA-3 Using Generalized
Internal Differentials. In: Fast Software Encryption - 20th International Workshop, FSE 2013, Singapore,
March 11-13, 2013. Revised Selected Papers. pp. 219-240 (2013)

7. Federal Agency on Technical Regulation and Metrology (GOST): Gost r 34.11-2012: Streebog hash function.
www.streebog.net (2012)

8. Koblitz, N., Menezes, A.: A riddle wrapped in an enigma. Cryptology ePrint Archive, Report 2015/1018
(2015), http://eprint.iacr.org/

9. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-reduced Keccak. In: Fast Software
Encryption. LNCS, Springer (2013)

10. Peyrin, T.: Improved Differential Attacks for ECHO and Grgstl. In: Advances in Cryptology - CRYPTO
2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings. pp.
370-392 (2010)

11. Rijmen, V., Preneel, B.: A Family of Trapdoor Ciphers. In: Fast Software Encryption, 4th International
Workshop, FSE 97, Haifa, Israel, January 20-22, 1997, Proceedings. pp. 139-148 (1997)

12. Young, A.L., Yung, M.: Malicious cryptography - exposing cryptovirology. Wiley (2004)

