Revisiting Secure Two-Party Computation with Rational Players

Arpita Maitra, Goutam Paul, and Asim K. Pal

Abstract—A seminal result of Cleve (STOC 1986) showed that fairness, in general, is impossible to achieve in case of two-party computation if one of them is malicious. Later, Gordon et al. (STOC 2008) observed that there exist two distinct classes of functions for which fairness can be achieved. One is any function without an embedded XOR, and the other one is a particular function containing an embedded XOR. In this paper, we revisit both classes of functions in two-party computation under rational players for the first time. We identified that the protocols proposed by Gordon et al. achieve fairness in non-rational setting only. In this direction, we design two protocols, one for the greater-than function (function without embedded XOR) and the other for the embedded XOR function, and show that with rational players, our protocols achieve fairness, correctness and strict Nash equilibrium under suitable choice of parameters in complete information game setting. This is in contrast with the work of Groce et al. (Eurocrypt 2012) which shows fairness and Bayesian Nash equilibrium in two party computation with rational players for arbitrary function in an incomplete information game setting.

Index Terms—Cryptography, embedded XOR, Fairness, millionaires’ problem, secure computation.

1 INTRODUCTION

In a secure two-party computation, two parties or players want to compute a particular function of their inputs while preserving specific security notions under certain adversarial model. In [7], Cleve showed an impossibility result that certain functions cannot be computed with complete fairness without an honest majority. From this, the community conjectured that no function can be computed without an honest majority. However, in [4, 6] the authors showed that absolute correctness can be achieved for certain other types of functions in case of multi-party computation with one-third faulty players. However, the positive results of [4, 6] do not conflict with the negative result of [7] as the impossibility result is shown for mutually exclusive functions. The solution proposed in [4, 6] consider broadcast channel model. After more than two decades, Gordon et al. [9] came out with two sets of functions for which complete fairness is possible for two-party computation in non-simultaneous channel model, even if one of the players is malicious.

One particular function of interest in [9] was the Yao’s millionaires’ problem [22], or more precisely, the ‘greater than’ function. The problem deals with two millionaires, Alice and Bob, who are interested in finding who amongst them is richer, without revealing their actual wealth to each other. Since the subsequent work [10] by Gordon et al. showed that any function over polynomial-size domains which does not contain an “embedded XOR” can be converted into the greater than function, the millionaires’ problem covers all functions without embedded XOR.

In this paper, for the first time we study the fairness and correctness in millionaires’ problem with rational players. Rational players are neither ‘good’ nor ‘malicious’, they are utility maximizing. Each rational party wishes to learn the output while allowing as few others as possible to learn the output. Thus, each rational party chooses abort to maximize its utility. We show that the solution of Gordon et al. for millionaires’ problem in non-rational setting no longer remains fair in rational setting. We also propose a modification in the protocol with the help of a third player (explained later) so that fairness, correctness and strict Nash equilibrium can be established.

The work by Gordon et al. [9, 10] also studied the function that belongs to the class of embedded XOR. The XOR function simply checks whether the inputs chosen by two players (from a specified domain) are equal or not. They showed that under certain parameter value of a hybrid model, fairness is achieved. In this paper, we also revisit this problem with rational players and show that fairness is no longer guaranteed. We propose a modified version of the protocol by Gordon et al. in non-rational setting and prove its fairness and strict Nash equilibrium under suitable choice of the parameters.

In [3], Asharov et al. gave the full characterization of the functions which never be computed with complete fairness in two party setting when one of the parties is malicious. They actually extended the negative result of Cleve [7]. Interestingly, neither the greater than function nor the embedded XOR function belongs to these groups.

1.1 Related Works

In [2], Asharov et al. proved the impossibility of two party secure computation in the rational setting. However, in [12], Groce and Katz showed that the results of Asharov et al. holds for a specific function, a specific input distribution and
a specific set of utilities. In incentive compatible setting they proposed a fair protocol with rational players for arbitrary function which is an incomplete information game and thus achieves Bayesian strict Nash equilibrium. Contrary to Groce and Katz, our protocols are complete information game and achieve strict Nash equilibrium. Note that in our model we maintain the same order of utilities like Groce and Katz. To achieve fairness, we introduce an intermediate party in millionaires’ problem. However, no such requirement is there for the embedded XOR problem. One may think that the use of a third player is no different than the use of a dealer. But the fact is that our third party is less restrictive in comparison with the dealer. In the literature, the dealer is always assumed to be honest and this is a strong assumption. On the other hand, the third party in our model is assumed to be rational in nature and this is a more pragmatic assumption. Moreover, the dealer is a special distinct entity from the players, whereas the role of our intermediate third party can be adopted by any rational player who is not interested in the outcome of the game, rather his only objective is to earn some revenue at the end of the game. For simplicity, we assume that this third player is fail-stop in nature.

We summarize all the positive and negative results in the context of multiparty computation in table 1.1

1.2 Contributions

We list our key contributions one by one.

1) We revisit fairness in two prominent Secure Two-Party Computation problems, namely, Yao’s millionaires’ problem [22] and the Embedded XOR problems [9, 10], for the first time with rational players.

2) We show that the protocol of Gordon et al. [9, 10] for solving the millionaires’ problem which was meant for the non-rational setting does not automatically extend to the rational setting, in the sense that the fairness breaks down when the players are rational (Theorem 1).

3) We propose a variant of this protocol and show that fairness can be regained when players are rational (Theorem 4). We also establish correctness (Theorem 3) and strict Nash equilibrium (Theorem 5) for the new protocol.

4) We get away with the online dealer by introducing a rational third party for solving the millionaires’ problem. This helps us to establish the fairness of our protocol.

5) We show that the problem in the embedded XOR category [9, 10] also no longer remains fair with rational players (Theorem 6).

6) We propose a variant of the protocol in [9, 10] for embedded XOR and show that fairness can be guaranteed under certain assumptions (Theorem 7). We also establish strict Nash equilibrium for our protocol (Theorem 5).

7) For both the problems, we discuss the issues with unequal vs. equal domain sizes.

2 Preliminaries

In this section we try to explain what is meant by functionality, two party computation, ideal and real world model, Byzantine and fail-stop adversary. We also define utilities and fairness in rational setting which is used in this work.

2.1 Functionality

In classical domain and in two party setting, a functionality $\mathcal{F} = \{f_\lambda\}_{\lambda \in \mathbb{N}}$ is a sequence of randomized processes, where λ is the security parameter and f_λ maps pairs of inputs to pairs of outputs (one for each party). Explicitly, we can write $f_\lambda = (f^{(1)}_\lambda, f^{(2)}_\lambda)$, where $f^{(1)}_\lambda$ (resp., $f^{(2)}_\lambda$) represents the output of the first party, say P_1 (resp., output of the second party, say P_2). The domain of f_λ is $X_\lambda \times Y_\lambda$, where X_λ (resp., Y_λ) denotes the possible inputs of the first (resp. second) party. If $|X_\lambda|$ and $|Y_\lambda|$ are polynomial in λ, then we say that \mathcal{F} is defined over polynomial size domains. If each f_λ is deterministic we say that each f_λ as well as the collection \mathcal{F} is a function [10].

2.2 Two Party Computation

In classical domain the two party computation of a functionality $\mathcal{F} = \{f_\lambda\}_{\lambda \in \mathbb{N}}$ is defined as follows: If party P_1 is holding 1^λ and an input $x \in X_\lambda$ and party P_2 is holding 1^λ and an input $y \in Y_\lambda$, then the joint distribution of the outputs of the parties is statistically close to $(f^{(1)}_\lambda(x, y), f^{(2)}_\lambda(x, y))$ [10].

2.3 Ideal vs. Real world model

In ideal world model we assume that there is an incorruptible trusted third party who computes the function on behalf of P_1 and P_2. P_1 and P_2 send their inputs to the TTP who computes the functionality and returns the value to each party. On the other hand, in real world model there is no trusted party to compute the functionality. In real model a protocol is executed to compute the functionality.

In the same line of [9, 10], we here assume a hybrid world model, where there is a trusted party who just computes the function and distributes the shares of the function’s output as in the ideal world. This is the counterpart of the case in secret sharing [15] in the non-rational setting. The players construct the output by exchanging their shares. In our model, we call this TTP as dealer.

2.4 Rational secret sharing

Secure Multiparty Computation (SMC) is the generalization of the classical rational secret sharing [12]. In this subsection, we briefly describe what is meant by classical rational secret sharing.

Rational secret sharing proceeds in two phases: 1) share generation and distribution and 2) secret reconstruction. Dealer generates the shares of the secret and distributes among the players in the 1st phase. One important difference to be noted here that in the rational setting there can be multiple shares including fake shares in contrast to just one share in the non-rational setting. The dealer in a classical rational secret sharing (RSS) protocol is honest and can be online or offline. An online dealer remains available throughout the secret reconstruction protocol i.e in
the 2nd phase, whereas an offline dealer is unavailable after distributing the shares of the secret (i.e., unavailable after 1st phase). Note that an online dealer is not very practical as he repeatedly interacts with the players and such a dealer can directly provide the secret to the players. In 2008, Kol and Naor [14] discussed rational secret sharing in the non-simultaneous channel model and in the presence of an offline dealer, in an information theoretic setting. Almost all the subsequent works [1, 21, 17, 8] on rational secret sharing assumed the dealer to be offline.

Share generation and distribution: If the dealer is online, then at the beginning of each round, he distributes to each player P_w the share of the actual secret with probability γ or that of a fake secret with probability $(1 - \gamma)$. The value of γ is kept secret from the parties and is dependent on the utility values of the parties [13, 11]. An offline dealer distributes to each party P_w a list of shares, one of which is that of the actual secret s and the remaining of fake secrets [14, 8, 17]. The position r of this actual share in the lists is not revealed to the players and is chosen according to a geometric distribution $G(\gamma)$, where the parameter γ in turn depends on the utility values of players. The dealer generates shares using Shamir’s secret sharing scheme [16].

Secret Reconstruction: In the ith round of communication, each player P_w (either simultaneously or non-simultaneously) broadcasts or sends individually to each of the other players (in presence of synchronous, point-to-point channels) the share s_w corresponding to that round. The shares are signed by the dealer. Hence, no player can give out false shares undetected and the only possible action of a player in a round is to either 1) send the message or 2) remain silent. The round in which the shares of the actual secret are revealed and hence the secret is reconstructed is called revelation or definitive round. When the dealer is offline, players are made aware that they have crossed the revelation round by the reconstruction or exchange of an indicator (a bit in [14], a signal in [8]). For simultaneous channel model, parties can identify a revelation round as soon as it occurs. However, for non-simultaneous channels, the indication is delayed till the subsequent round to avoid rushing strategy. In this case, the indicator cannot be reconstructed or interpreted by all the players. The player who communicates last during the reconstruction of the indicator is the first and only one to know that the last round was the revelation round. Once he comes to know this, he has no incentive to send his share of the indicator to the other players for reconstruction. Instead, he simply quits. The fact that this player quits signals to the other players that the secret has been reconstructed.

2.5 Computation of a functionality in Rational setting

We define a mechanism for computing a functionality with rational adversary to be a pair $(\Gamma, \vec{\sigma})$, where Γ is the game (i.e., specification of allowable actions) and $\vec{\sigma}=(\sigma_1, \ldots, \sigma_n)$ denotes the suggested strategies followed by n number of players. We use the notations $\vec{\sigma}_w$ and $(\sigma'_w, \vec{\sigma}_{-w})$ respectively for $(\sigma_1, \ldots, \sigma_{w-1}, \sigma_{w+1}, \ldots, \sigma_n)$ and $(\sigma_1, \ldots, \sigma'_{w-1}, \sigma'_w, \sigma_{w+1}, \ldots, \sigma_n)$. Here, σ'_w stands for deviated strategy. The outcome of the game is denoted by $\vec{f}(\Gamma, \vec{\sigma})=(o_1, \ldots, o_n)$. The set of possible outcomes with respect to a party P_w is as follows. 1) P_w correctly computes f, while others do not; 2) everybody correctly computes f; 3)
nobody computes \(f \); 4) others computes \(f \) correctly, while \(P_w \) does not and 5) others believe in a wrong functional value, while \(P_w \) does not.

The output that no function is computed is denoted by \(\perp \) (i.e., null as in [9]) and output of wrong computation is denoted by \(\rightarrow \).

In classical domain, the adversary that controls a player may be computationally bounded. Here, we assume the adversary has probabilistic polynomial time complexity.

2.6 Utilities and Preferences

The utility function \(u_w \) of each party \(P_w \) is defined over the set of possible outcomes of the game. The outcomes and corresponding utilities for two parties are described in Table 2. We here assume Bernoulli utility function.

<table>
<thead>
<tr>
<th>(P_1)'s outcome</th>
<th>(P_2)'s outcome</th>
<th>(P_1)'s Utility</th>
<th>(P_2)'s Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>(o_1 = f)</td>
<td>(o_2 = f)</td>
<td>(U^{TT})</td>
<td>(U^{TT})</td>
</tr>
<tr>
<td>(o_1 = \perp)</td>
<td>(o_2 = \perp)</td>
<td>(U^{NN})</td>
<td>(U^{NN})</td>
</tr>
<tr>
<td>(o_1 = f)</td>
<td>(o_2 = \perp)</td>
<td>(U^{TN})</td>
<td>(U^{TN})</td>
</tr>
<tr>
<td>(o_1 = \perp)</td>
<td>(o_2 = f)</td>
<td>(U^{NT})</td>
<td>(U^{NT})</td>
</tr>
<tr>
<td>(o_1 = \rightarrow)</td>
<td>(o_2 = \rightarrow)</td>
<td>(U^{NN})</td>
<td>(U^{NN})</td>
</tr>
</tbody>
</table>

Players have their preferences based on the different possible outcomes. In this work, a rational player \(w \) is assumed to have the following preference:

\[
R_1 : U^{NN}_w > U^{TT}_w > U^{NF}_w > U^{NT}_w.
\]

Some players may have the additional preference \(U^{NF}_w \geq U^{TT}_w \), whereas the rest have \(U^{NF}_w < U^{TT}_w \).

2.7 Fairness

In non-rational setting, the security of a protocol is analyzed [9], [10], [15] by comparing what an adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure by definition. This is formalized by considering an ideal computation involving an incorruptible trusted party to whom the parties send their inputs. The trusted party computes the functionality on the inputs and returns to each party its respective output. Loosely speaking, a protocol is secure if any adversary interacting in the real protocol (where no trusted party exists) can do no more harm than if it were involved in the above-described ideal computation.

A rational player, being selfish, desires an unfair outcome, i.e., computing the function alone. Therefore, the basic aim of rational computation has been to achieve fairness. According to Von Neumann and Morgenstern expected utility theorem [20], under natural assumptions, the individual would prefer one prospect \(O_1 \) over another prospect \(O_2 \) if and only if \(E[U(O_1)] \geq E[U(O_2)] \). The work [11] implicitly uses the expected utility theorem to derive its results. We also use the same approach and accordingly redefine fairness as follows.

Definition 1. (Fairness) A function reconstruction mechanism \((\Gamma, \mathcal{F})\) with rational players is said to be completely fair if a party \(P_w \) (\(w \in \{1, 2\} \)), who is corrupted by a probabilistic polynomial time adversary, the following holds:

\[
U^{TT}_w \geq E[U_w(O_1)],
\]

where \(O_1 = \{o_1^w, \ldots, o_n^w; p_1^w, \ldots, p_{n'}^w\} \) is a prospect when the player deviates from the suggested strategy \((\sigma_w)\). \(n' \) is the number of possible outcomes.

2.8 Correctness of the Output

Secure two party computation in hybrid model with rational players is the generalization of rational secret sharing [11], [13], [14]. In rational secret sharing, the dealer is not a part of the reconstruction mechanism and therefore the output is well-defined. Whereas, in secure two party computation, the parties may not be committed to their inputs, and therefore the output is not uniquely defined. We here assume that the players have negligible probability to send arbitrary inputs. This is quite justified in the sense that the players are rational in nature, i.e., each wants to compute the function itself and does not want anyone else to compute the function. If a player sends wrong inputs, then it itself cannot learn the correct output. Thus, the players have no motivation to send wrong inputs. Rather they try to maximize their utility [12].

2.9 Complete Information Game and Nash Equilibrium

In a complete information game each player knows the other player’s payoff function and the rule of the game. It is defined as \(\Gamma = (A_w, u_w) \), where \(A_w \) is the set of allowable actions of each player \(w \) and \(u_w \) is the utility function of the player \(w \).

A suggested strategy \(\sigma \) of a mechanism \((\Gamma, \mathcal{F})\) is said to be in Nash equilibrium when there is no incentive for a player \(P_w \) to deviate from the suggested strategy, given that everyone else is following this strategy. There are several variants of Nash equilibrium in the literature. In our context, we focus on strict Nash equilibrium.

Definition 2. (Strict Nash equilibrium) The suggested strategy \(\sigma \) in the mechanism \((\Gamma, \mathcal{F})\) is a strict Nash equilibrium if for every \(P_w \) and any strategy \(\sigma_{w'} \), we have \(u_w(\sigma_{w'}, \sigma_{-w}) < u_w(\sigma) \).

In computational Nash equilibrium [11], the players will not change their strategy if their gain is negligible [5]. Since we show strict Nash for our protocols and strict Nash implies computational Nash, henceforth we do not talk about computational Nash anymore.

2.10 Fail-stop and Byzantine Adversarial model

In the fail-stop setting, each party follows the protocol as directed except that it may choose to abort at any time [12] and a party is assumed not to change its input when running the protocol. On the other hand, in Byzantine setting, a deviating party may behave arbitrarily. It may change the inputs or may choose to abort. Since Byzantine adversary covers all the characteristics of a fail-stop adversary, it is very natural to consider only Byzantine setting. If a protocol is secure against a Byzantine adversary, it must be secure against a fail-stop adversary. Hence, throughout the paper we analyze the security issues against Byzantine adversary only.
2.11 Our Assumptions

Here we list the assumptions that we consider in this work.

1) The channel permits non-simultaneous mode of communication.
2) Players are computationally bounded to probabilistic polynomial time complexity.
3) We consider complete information game unlike [12].
4) The same utility relationship holds as considered by Groce et al. [12]. In addition, the preference of $U_N^T = U_F^T$ [11] is considered.
5) The adversary may be fail-stop as well as Byzantine.

3 SMC for Functions Excluding Embedded XOR with Rational Players in Equal Domain Size

In this section, we first describe the solution of millionaires’ problem or, more precisely, the computation of the greater than function, proposed by Gordon et al. [9, 10]. We then, will show how fairness condition is affected in the presence of the rational players having the preferences \mathcal{R}_1 (refer to subsection 2.5). Let us denote two players by P_1 and P_2. Suppose P_1 has the secret i and P_2 has the secret j, $1 \leq i \leq M$, $1 \leq j \leq M$, where $M = M(\lambda)$ is the size of the domain of each input [9]. The trusted third party in hybrid model gives an ordered list $X = \{x_1, x_2, \ldots, x_M\}$ to P_1 and another ordered list $Y = \{y_1, y_2, \ldots, y_M\}$ to P_2. We call this TTP as dealer. Then P_1 sends x_i to the dealer and P_2 sends y_j to the dealer. Let f be a deterministic function which maps $X \times Y \rightarrow \{0, 1\} \times \{0, 1\}$. The function $f(x_i, y_j)$ can be defined as a pair of outputs, i.e., $(f_1(x_i, y_j), f_2(x_i, y_j))$, where $f_1(x_i, y_j)$ is the output of the first party and $f_2(x_i, y_j)$ is the output of the second party. For millionaires’ problem, the function is defined as follows [9, 10]. For $w = 1, 2$,

$$f_w(x_i, y_j) = \begin{cases} 1 & \text{if } i > j; \\ 0 & \text{if } i \leq j. \end{cases}$$

The protocol proceeds in a series of M iterations. The dealer creates two sequences $\{a_i\}$ and $\{b_i\}$, $l = 1, 2, \ldots, M$, as follows.

$$a_i = b_i = f_1(x_i, y_j) = f_2(x_i, y_j).$$

For $l \neq i$, $a_i = \bot$ and for $l \neq j$, $b_i = \bot$.

Next, the dealer splits the secret a_l into the shares a_l^1 and a_l^2, and the secret b_l into the shares b_l^1 and b_l^2, so that $a_l = a_l^1 \oplus a_l^2$ and $b_l = b_l^1 \oplus b_l^2$, and gives the shares $\{a_l^1, b_l^1\}$ to P_1 and the shares $\{a_l^2, b_l^2\}$ to P_2. In each round l, P_2 sends a_l^2 to P_1, who, in turn sends b_l to P_2. P_1 learns the output value $f_1(x_i, y_j)$ in iteration i, and P_2 learns the output in iteration j. As we require three elements, 0, 1 and \bot, we define 0 by 00, 1 by 11 and \bot by 01. The algorithm for the functionality share generation in fail-stop setting is revisited in Algorithm 1. Here we assume that the dealer who will distribute the shares is honest and can compute the function described in Equation (1). The protocol for computing f is described in Algorithm 2.

The algorithms in the Byzantine setting are the same as those in the fail-stop setting except some additional steps. In Byzantine setting, the shares are signed by the dealer. Along with the shares of the function, the dealer also distributes some secret keys $k_a, k_b \leftarrow Gen(1^\lambda)$, where λ is the security parameter. For $1 \leq l \leq M$, let $t_i^l = Mac_{ka}(l \parallel a_l^2)$ and $t_i^l = Mac_{kb}(l \parallel b_l^2)$. P_1 receives a_1, a_2, \ldots, a_M and $(b_1^1, t_1^1), (b_2^1, t_2^1), \ldots, (b_M^1, t_M^1)$ and MAC key k_a. Similarly P_2 is given $(a_1^2, t_1^2), (a_2^2, t_2^2), \ldots, (a_M^2, t_M^2)$ and $(b_1^2, t_1^2), (b_2^2, t_2^2), \ldots, (b_M^2, t_M^2)$ and MAC key k_b. After receiving the share in the round l from P_2, P_1 verifies by the algorithm $Vrf_yk_a(l \parallel a_l^2, t_l^2)$. If $Vrf_yk_a(l \parallel a_l^2, t_l^2) = 0$, P_1 halts. Similarly, after receiving the share in the round l from P_1, P_2 verifies by the algorithm $Vrf_yk_b(l \parallel b_l^1, t_l^1)$. If $Vrf_yk_b(l \parallel b_l^1, t_l^1) = 0$, P_2 halts. Otherwise both continues the protocol Π^{CMP} which outputs $a_i(b_j)$ for P_i.

Exploiting the MAC signature, we can resist the players to send a false share.
3.1 Π_{CMP} is not fair when players are rational

In this section, we revisit the fairness issue in the millionaires’ problem [9] considering the rational players. We also assume that the players, P_1 and P_2 have the preferences \mathcal{R}_1 (refer to subsection 2.6). Either of the players also has $U_{w,F}^i \geq U_{w,T}^i$. We observe that Gordon et al.’s protocol Π_{CMP} [9, 10], that was designed for non-rational setting, is no longer fair in the rational setting.

Theorem 1. Provided \mathcal{R}_1 and $U_{w,F}^i \geq U_{w,T}^i$, for some player P_w, the protocol Π_{CMP} is not completely fair in rational setting.

Proof: Suppose P_1 aborts before giving its share in round l, where $1 \leq l \leq M$. Now, if $i \leq j$, we list all possible mutually exclusive and exhaustive outcomes as follows:

1. When $1 \leq l < i$, P_2 outputs 0 and correctly concludes that $i < j$, but P_1 outputs \perp.
2. When $i < l \leq M$, P_1 obtains the function and both correctly conclude that $i < j$.

In this case, the utility of P_1 is given by

$$U_{l}^{i} = \begin{cases} U_{1}^{NT} & \text{if } 1 \leq l < i; \\ U_{1}^{TT} & \text{if } i \leq l \leq M; \end{cases}$$

(2)

If $i > j$, all possible mutually exclusive and exhaustive outcomes are:

1. When $1 \leq l \leq j$, P_2 outputs 0 and wrongly concludes that $i < j$, but P_1 outputs \perp.
2. When $j < l < i$, P_1 outputs \perp, but P_2 correctly concludes that $i > j$.
3. When $i \leq l \leq M$, both computes the function and both correctly conclude that $i > j$.

Thus, the corresponding utility for this event is given by

$$U_{l}^{i} = \begin{cases} U_{1}^{NF} & \text{if } 1 \leq l < j; \\ U_{1}^{NT} & \text{if } j < l < i; \\ U_{1}^{TT} & \text{if } i \leq l \leq M; \end{cases}$$

(3)

Since i is known to P_1, the expected utility of P_1 is given by

$$E[U_{1}] = \Pr(i \leq j) \cdot E[U_{l}^{\leq i}] + \Pr(i > j) \cdot E[U_{l}^{>}],$$

(4)

where $\Pr(i \leq j) = \frac{M-i+1}{M}$ and $\Pr(i > j) = \frac{i-1}{M}$. Here, we assume that i and j are uniformly distributed over their domains. Plugging in the values from Equation (2) and (3) into Equation (4), we get for $1 \leq l < i$, $E[U_{1}] = \left(\frac{M-i+1}{M}\right) U_{1}^{NT} + \left(\frac{i-1}{M}\right) \left(U_{1}^{NF} + \left(\frac{i-1}{M}\right) U_{1}^{NF} \right)$, and for $i \leq l \leq M$, it is equal to $\left(\frac{M-i+1}{M}\right) U_{1}^{TT} + \left(\frac{i-1}{M}\right) U_{1}^{TT}$.

In other words,

$$E[U_{1}] = \begin{cases} \left(\frac{M-i+1}{M}\right) U_{1}^{NT} + \left(\frac{i-1}{M}\right) U_{1}^{NF} & \text{if } 1 \leq l < i; \\ U_{1}^{TT} & \text{if } i \leq l \leq M. \end{cases}$$

Note that in the first case, i.e., for $1 \leq l < i$, the second term corresponding to $i > j$ involves two sub cases, namely, $1 \leq j < l < i$ and $l \leq j < i$.

Observe that when $i \leq l \leq M$, P_1 has already obtained the secret, but by aborting it cannot increase its utility beyond U_{1}^{TT}.

However, when $l < i$, we may have $E[U_{1}] > U_{1}^{TT}$, depending on the value of U_{1}^{NF}. Thus, dependence on U_{1}^{NF} prevents the protocol to achieve fairness in this case. In other words, we can say that when a party aborts before it obtains the output, the only reason would be if he is significantly more interested in cheating the other party rather than him not getting it.

The analysis for P_2 is similar, except that we have the role of i and j interchanged.

3.2 How to make Π_{CMP} fair when players are rational

In this section, we propose a variant of the protocol by Gordon et al. [9, 10]. In the earlier section, we have observed that Π_{CMP} suffers from early abort. In [2] it is shown that it is impossible to compute a function in two party setting with complete fairness if the players are rational. However, in [12] the authors identified that the impossibility results of [2] are valid for some specific functions, specific input distribution and for specific set of utilities. They came out with an algorithm for arbitrary function which can be computed with complete fairness in two party setting considering rational players. However, their protocol is an incomplete information game and thus achieves Bayesian Nash equilibrium. Contrary to this our proposed protocol is a complete information game and achieves strict Nash equilibrium. Moreover, in [12] it is mentioned that

“Before continuing, it is helpful to introduce two modifications to the protocol that can only increase P_0’s utility. First, in each iteration i we tell P_0 whether $i^* < i$. One can easily see that P_0 cannot increase its utility by aborting when $i^* < i$, and so the interesting case to analyze is whether P_0 can improve its utility by aborting when $i^* \geq i$. Second, if P_0 ever decides to abort the protocol in some iteration i (with $i^* \geq i$), then we tell P_0 whether $i^* = i$ before P_0 generates its output. (P_0 is not, however, allowed to change its decision to abort.)”

It is not clear how “we” can let the player know whether $i^* < i$ or $i^* \geq i$. Note that in [12] the symbol i stands for any iteration in which P_0 (in our case it is P_1) aborts the protocol and symbol i^* stands for the revelation round (in our case it is r). One may interpret this as an online dealer who is continuously interacting with the players. This is not very practical, as in each iteration the dealer has to interact with the players and has to ask them whether they will choose to abort. Another restriction in their scheme is that the deviating player can not escape from its decision knowing that the round it has chosen to abort is less than or equal to the revelation round. Exploiting the idea of an intermediate player who is a different entity from the dealer we are able to make the dealer off-line.

This intermediate player is less restrictive in comparison with the dealer. The dealer is assumed to be honest (this is a strong assumption), whereas the intermediate party is assumed to be rational in behaviour. Moreover, the dealer is a special distinct entity from the players. However, the role of our intermediate third party can be adopted by any rational player who is not a party involved in the problem being solved. We denote the intermediate player by P_3 who is guided by his expected utility or revenue at the end of the game. He will participate in the game in the motivation towards maximizing his utility. P_3 is neither trusted nor
untrusted third party as in non-rational setting. In our model P_3 will favour a player who gives him sufficient revenue. The only restriction on this player is that it is fail-stop in nature.

Our protocol is U^{NF} (refer to subsection 2.6) independent and hence correct [11]. We also prove fairness and strict Nash equilibrium for our protocol. Our protocol is described in Algorithm 3 and Algorithm 4. Though our protocol initially addresses towards the millionaires’ problem, it is applicable for any function which does not have any embedded XOR [10].

Algorithm 3: ShareGen for U^{fair}

We assume that P_3 has a positive threshold value of revenue. We denote this threshold value by ϵ. If any player offers him a revenue $\delta \geq \epsilon$, P_3 will help the player to get the output alone. Otherwise he will play the game according to the suggested strategy. This threshold value may depend on the reputation value of P_3. We take the idea of reputation from [19]. Thus, P_3 has following two options:

- **Option 1**: He can follow the protocol, i.e., he can send the shares to both the parties.
- **Option 2**: If any one of the players gives him a revenue $\delta \geq \epsilon$, he will send the share only to that player and help him obtain the output alone.

As P_3 is rational and hence utility maximizer, he first checks whether any one of the players indeed gives him the revenue. Without loss of generality, we assume that P_1 gives him the revenue $\delta \geq \epsilon$. In this case, P_3 will send the share only to P_1 but not to P_2. The following result shows that P_1 should have no incentive to give the revenue to P_3 in the motivation to get the output by himself only provided certain conditions hold.

Theorem 2. Provided $\epsilon > 0$, $\epsilon \leq \delta \leq U_w^{TN} - U_w^{TT}$, $0 < \gamma < 1$ and $\gamma U_w^{TN} + (1 - \gamma) U_w^{NN} < U_w^{TT}$ for all $w \in \{1, 2\}$, P_3 always plays the game according to the suggested strategy.

Proof: According to the protocol, to obtain the secret alone with the help of P_3, P_1 has to guess correctly the revelation round. Otherwise, the protocol will be terminated from the very next round and none of the players get any information about the output. P_1 will not be interested to give the money to P_3 after the revelation round as he has already got the output at the revelation round. Conditioned on the event that $r \geq l$, suppose P_1 guesses the l-th round to be the revelation round and gives P_3 the money for that round so that P_3 will not send the corresponding share to P_2 for that round. If the guess is correct, i.e., $r = l$, the probability of which is γ, its utility is $(U_1^{TN} - \delta)$. Otherwise, its utility is $(U_1^{NN} - \delta)$, as in this case P_2 will abort from the

Inputs:
1. x_i from P_1 and y_j from P_2. If one of the received input is not in the correct domain, then both the parties are given \bot.

Computation:
2. The dealer does the following:
 - Chooses an intermediate player P_3.
 - Chooses r according to a geometric distribution $G(\gamma)$ with parameter γ and sets r as the revelation round, i.e., the round in which the value of f is either $(0, 0)$ or $(1, 1)$ (refer to subsection 2.4).
 - Chooses d according to the geometrical distribution $G(\gamma)$ and sets the total number of iterations as $m = r + d$.
 - The dealer does the following:
 - Sets $a_1 = a_r = f_1(x_i, y_j)$.
 - For $l \in \{1, \ldots, M\}$, $l \neq r$, sets $a_l = b_l = \bot$.
 - For $l \in \{1, \ldots, M\}$, chooses a_l and a_2 randomly from $\{0, 1\}^2$, and sets $a_l = a_l \oplus a_2 \oplus a_1$.
 - For $l \in \{1, \ldots, M\}$, chooses b_l and b_2 randomly from $\{0, 1\}^2$, and sets $b_l = b_l \oplus b_2 \oplus b_1$.
 - For $l \in \{1, \ldots, M\}$, chooses c_l randomly from $\{0, 1\}^2$, and sets $c_l = c_l \oplus a_l \oplus b_l$.

Output:
10. The dealer prepares a list list_w of shares for each party P_w, where $w \in \{1, 2, 3\}$ such that:
 - P_1 receives the values of $a_1^1, a_2^1, \ldots, a_m^1, b_1^1, b_2^1, \ldots, b_m^1, c_1^1, c_2^1, \ldots, c_m^1$.
 - P_2 receives the values of $a_1^2, a_2^2, \ldots, a_m^2, b_1^2, b_2^2, \ldots, b_m^2, c_1^2, c_2^2, \ldots, c_m^2$.
 - P_3 receives the values of $c_1^3, c_2^3, \ldots, c_m^3$.

Algorithm 4: U^{fair}

There are m number of iterations. In each iteration $l \in \{1, 2, \ldots, m\}$ do the following.

4. P_2 sends a_2^l to P_1 and P_1 sends b_1^l to P_2.
5. After receiving the share from P_2, P_1 sends c_1^l to P_3, else halts.
6. After receiving the share from P_1, P_2 sends c_2^l to P_3, else halts.
7. P_3 computes the values of a_1^3 and b_1^3 and sends a_1^3 to P_1 and then b_1^3 to P_2.

Output:
8. If P_2 aborts in round l, i.e., does not send its share at that round and $l \leq r$, P_1 outputs \bot. If $l > r$, P_1 has already determined the output in some earlier iteration. Thus it outputs that value.
9. If P_1 aborts in round l, i.e., does not send its share at that round and $l \leq r$, P_2 outputs \bot. If $l > r$, P_2 has already determined the output in some earlier iteration. Thus it outputs that value.
10. If P_1 or P_2 does not send its share to P_3, P_3 outputs \bot to the both of the players.
11. If P_3 does not send its computed share to any one of the party P_w, $w \in \{1, 2\}$, in a round l, P_w chooses to abort from the very next round and the protocol will be terminated.
next round. So the expected utility of P_1 is given by
\[
\gamma(U_1^{TN} - \delta) + (1 - \gamma)(U_1^{NN} - \delta) = \gamma U_1^{TN} + (1 - \gamma)U_1^{NN} - \delta < U_1^{TT} - \delta < U_1^{TT}.
\]

The last inequality follows from our assumptions that δ is positive and $\gamma U_1^{TN} + (1 - \gamma)U_1^{NN} < U_1^{TT}$. Thus P_1 has no incentive to offer money to the intermediate player P_2 in the motivation to get the output alone. Similar analysis can be done for P_3.

Thus, P_2 has no option but to play the game according to the suggested strategy.

In our mechanism, there are three players, namely P_1, P_2 and P_3. For the condition of achieving correctness and fairness, we have to assume that when one of the players deviates, others are sticking to the protocol. From the above analysis we have seen that P_3 has no incentive to deviate from the protocol. Thus, we have to consider the following two cases.

1. P_1 deviates (P_2 follows the protocol).
2. P_2 deviates (P_1 follows the protocol).

In fail-stop setting, the deviation of P_1 and P_2 is considered as early abort whereas in Byzantine setting the players behave arbitrarily. That means they can abort early as well as can send the arbitrary inputs or can swap the inputs.

We analyze the security notions such as correctness and fairness considering all the above issues. The following theorems show that our proposed mechanism is correct and fair.

In Byzantine setting, the shares given to the players are signed by the dealer so that no player can send a false share to the other player. The signing procedure discussed in Section 3 remains similar in our protocol expect M is replaced by m and with some additional steps.

- For $1 \leq l \leq m$, P_1 is given (c_1^l, t_1^l), where $t_1^l = \text{Mac}_{k_1}(l \ || \ c_1^l)$.
- For $1 \leq l \leq m$, P_2 is given (c_2^l, t_2^l), where $t_2^l = \text{Mac}_{k_2}(l \ || \ c_2^l)$.
- P_3 is given MAC key k_{c_1} and MAC key k_{c_2} so that for $1 \leq l \leq m$, it can verify the shares by algorithm $\text{Vrfy}_{k_{c_1}}(l \ || \ c_1^l, t_1^l)$ for P_1 and $\text{Vrfy}_{k_{c_2}}(l \ || \ c_2^l, t_2^l)$ for P_2. If $\text{Vrfy}_{k_{c_1}}(l \ || \ c_1^l, t_1^l) = 0$, P_3 halts, else continues, where $w \in \{1, 2\}$.

There is no need to sign the shares given to P_3, as P_3 is fail-stop by nature. We assume P_3 as a fail-stop player for simplicity. One may consider P_3 as a Byzantine player. In that case P_1 and P_2 are given additional MAC keys to verify the shares coming from P_3.

The following result establishes the correctness of the protocol.

Theorem 3. The protocol $\Pi_{\text{Fair}}^{\text{CMP}}$ is U_w^{NF}-independent for $w \in \{1, 2\}$ and hence correct.

Proof: We should recall that the deviations of P_1 and P_2 are similar. Thus for simplicity, here, we only consider the deviations of P_1.

In fail-stop setting, if P_1 aborts early and the round in which he aborts is less than j, according to Gordon et al.’s protocol, P_2 will output 0 and conclude that $i \leq j$. When $i > j$, it is the situation when P_2 is deceived by P_1. However, our protocol is designed in such a way that if P_1 has chosen abort in any round before r, P_2 will output \perp and does not conclude anything. Thus, P_1 can not deceive P_2 by early abort. There is no incentive for P_1 to abort in a round $l > r$, as P_2 has already determined the output in some earlier iteration.

In case of Byzantine setting, P_1 can send arbitrary shares to both P_2 and P_3, so that P_2 will finally compute a wrong function. But since each share is signed by the dealer, no one can send an arbitrary share to the other. Another important deviation of P_1 in this setting is to swap the inputs. By swapping the inputs, P_1 can make P_2 compute a wrong function. As all the inputs come from the same dealer, there is no chance to catch this type of deviation by considering only the signature scheme. However, we consider signature with tagging. P_1 receives $a_1^1, a_2^1, \ldots, a_m^1$ and $(b_1^1, t_1^1), (b_2^1, t_2^1), \ldots, (b_m^1, t_m^1)$ and MAC key k_a. Similarly P_2 is given $(a_1^2, t_1^2), (a_2^2, t_2^2), \ldots, (a_m^2, t_m^2)$ and $b_1^2, b_2^2, \ldots, b_m^2$ and MAC key k_b. After receiving the share in the round l from P_1, if $\text{Vrfy}_{k_{b_1}}(l \ || \ b_1^1, t_1^1) = 0$, then P_2 halts. Similar checking is done by P_3 as well. Thus, by input swapping no one can make the other believe in a wrong output.

Thus, assuming P_1 has $U_1^{\text{NF}} > U_1^{TT}$, the mechanism is designed in such a way that it becomes U_1^{NF} independent and hence correct. Proceeding in the same way for P_2, we can prove the U_2^{NF} independence.

Now we are in a position to establish fairness of $\Pi_{\text{Fair}}^{\text{CMP}}$.

Theorem 4. Provided \mathcal{R}_1 and \mathcal{P}_3 always plays the game according to the suggested strategy, the protocol $\Pi_{\text{Fair}}^{\text{CMP}}$ achieves fairness.

Proof: Without loss of generality, let us assume that the player P_1 is deviating. The analysis when P_2 deviates is similar.

In this case, the reason for deviation is to get the function alone. In fail-stop as well as in Byzantine setting P_1 can abort in round l.

1. P_1 may choose three types of abort in round l.
 1. It may not send its share to only P_2.
 2. It may not send its share to only P_3.
 3. It may not send its share to both P_2 and P_3.

- If P_1 does not send its share to P_2, then P_2 will not send its share to P_3. As a result the protocol will be terminated without producing any result either for P_1 or P_2. Similarly, if P_3 does not send its share to P_3, according to the protocol P_3 will output \perp to both the players. In the third case, the protocol will be terminated from the beginning of the round l. Thus, there is no incentive for P_1 to abort early in the motivation to get the secret alone.

Theorem 5. Provided \mathcal{R}_1, $0 < \gamma < 1$, $\epsilon < \delta \leq U_w^{TN} - U_w^{TT}$ and $\gamma U_w^{TN} + (1 - \gamma)U_w^{NN} < U_w^{TT}$ for all $w \in \{1, 2\}$, $\Pi_{\text{Fair}}^{\text{CMP}}$ achieves strict Nash equilibrium.

Proof: In Theorem 2 we proved that provided \mathcal{R}_1, $0 < \gamma < 1$, $\epsilon < \delta \leq U_w^{TN} - U_w^{TT}$ and $\gamma U_w^{TN} + (1 - \gamma)U_w^{NN} < U_w^{TT}$ for all $w \in \{1, 2\}$, P_3 can not increase his utility value by deviating from the suggested strategy. We also proved that provided \mathcal{R}_1 and that P_3 follows the protocol, neither P_1 nor P_2 can increase his utility value beyond U_w^{TT}.
(utility when each player follows the suggested strategy) by
deviating from the suggested strategy (Theorem 4). In other
words,

\[u_w(\sigma'_w, \hat{d} - w) < u_w(\hat{d}) , \]

which concludes the proof.

3.3 Fairness analysis of II CMP when players have unequal
domain size

As discussed in [10 Section 3.2], when the domain sizes of the
players are unequal, the analysis in the non-rational
setting does not change. It is easy to see from our analysis
of Section 5.3 that even in the rational setting, we can carry
out an analogous calculation to conclude that the protocol is
UNE-dependent and hence not fair.

4 Secure Two-Party Computation for functions involving Embedded XOR with Rational
Players

In this section, we first describe the embedded XOR problem
proposed by Gordon et al. [9]. We, then, will show how
fairness condition is affected in the presence of the rational
players having the preferences \(R_1 \) (refer to subsection 2.6).
Let us denote two players by \(P_1 \) and \(P_2 \). Player \(P_1 \) is
given an ordered list \(\{x_1, x_2, x_3\} \) and \(P_2 \) is given an ordered list
\(\{y_1, y_2\} \). \(P_1 \) randomly chooses the input from the ordered
list and sends to the dealer (the trusted party in the hybrid
model). \(P_2 \) also randomly chooses the input from his list and
delivers to the dealer. Dealer calculates the function. For
convenience, we here recall the table for \(f \) given in [9].

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(0)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(0)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

The function can be described as, for \(w \in \{1, 2\} \)

\[f(x_i, y_j) = \begin{cases} 1 & \text{if } i \neq j; \\ 0 & \text{if } i = j. \end{cases} \] (5)

As described in [9], the protocol proceeds in a series of
\(M \) iterations, where \(M = \omega(\gamma^{-1} \log \lambda), \lambda \) being the
security parameter. Let \(x \) and \(y \) denote the inputs from
\(P_1 \) and \(P_2 \) respectively. The dealer chooses the revelation
round \(r \) according to geometric distribution with parameter \(\gamma \).
The dealer then creates two sequences \(\{a_l\} \) and \(\{b_l\} \),
\(l = 1, 2, \ldots , M \), as follows.

\[\text{For } l \geq r, \quad a_l = b_l = f(x,y), \]

\[\text{For } l < r, \quad a_l = f(x,y), \quad b_l = f(\hat{x}, \hat{y}), \]

where \(\hat{x} \) (or \(\hat{y} \)) is a random value of \(x \) (or \(y \)) chosen by the
dealer.

Next, the dealer splits the secret \(a_l \) into the shares \(a_{1l} \)
and \(a_{2l} \), and the secret \(b_l \) into the shares \(b_{1l} \) and \(b_{2l} \), so
that \(a_l = a_{1l} \oplus a_{2l} \) and \(b_l = b_{1l} \oplus b_{2l} \), and gives the shares
\(\{a_{1l}, b_{1l}\} \) to \(P_1 \) and the shares \(\{a_{2l}, b_{2l}\} \) to \(P_2 \). In each
round \(l \), \(P_2 \) sends \(a_{2l} \) to \(P_1 \), who, in turn sends \(b_{1l} \) to \(P_2 \).
\(P_1 \) and \(P_2 \) both learn the output value \(f(x,y) \) in iteration \(r \), unlike the millionaires’ problem. The algorithm for the
fairness function generation in fail-stop setting is revisited in
Algorithm 6. Here we assume that the dealer who will

\[\text{distribute the shares is honest and can compute the function} \]

described in Equation (5). The protocol for computing \(f \) is
described in Algorithm 6.

\begin{algorithm}
\caption{ShareGen2}
\begin{algorithmic}
\State \textbf{Inputs:}
\State 1. \(P_1 \) obtains \(a_{11}, a_{12}, \ldots, a_{1M} \) and \(b_{11}, b_{12}, \ldots, b_{1M} \).
\State 2. \(P_2 \) obtains \(a_{21}, a_{22}, \ldots, a_{2M} \) and \(b_{21}, b_{22}, \ldots, b_{2M} \).
\State \textbf{Computation:}
\State There are \(M \) number of iterations. In each iteration \(l \in \{1, 2, \ldots , M\} \) do:
\State 3. \(P_2 \) sends \(a_{2l} \) to \(P_1 \) and \(P_1 \) computes \(a_l = a_{1l} \oplus a_{2l} \).
\State 4. \(P_1 \) sends \(b_{1l} \) to \(P_2 \) and \(P_2 \) computes \(b_l = b_{1l} \oplus b_{2l} \).
\State \textbf{Output:}
\State If \(P_2 \) aborts in round \(l \), i.e., does not send its share at
that round and \(l \leq r \), \(P_1 \) outputs \(a_{l-1} = f(x, y) \). If \(l > r \), \(P_1 \) has already
determined the output in some earlier iteration. Thus it outputs that
value.
\State 6. If \(P_1 \) aborts in round \(l \), i.e., \(P_1 \) computes its output
and does not send its share at that round and \(l \leq r \),
\(P_2 \) outputs \(b_l = f(\hat{x}, \hat{y}) \). If \(l > r \), \(P_2 \) has already
determined the output in some earlier iteration. Thus it outputs that
value.
\end{algorithmic}
\end{algorithm}

\begin{algorithm}
\caption{ShareGen2}
\begin{algorithmic}
\State \textbf{Inputs:}
\State 1 \(x \) from \(P_1 \) and \(y \) from \(P_2 \), If one of the received
input is not in the correct domain, then both the
parties are given \(\bot \).
\State \textbf{Computation:}
\State The dealer does the following:
\State 2. Chooses \(r \) according to a geometric distribution
\(G(\gamma) \) with parameter \(\gamma \). Here \(r \) is the revelation
round, i.e., the round in which the value of \(f \) is
either \((0,0)\) or \((1,1)\).
\State 3. For \(l < r \), sets \(a_1 = f(x,\hat{y}) \) and \(b_1 = f(\hat{x}, y) \).
\State 4. For \(l \geq r \), sets \(a_1 = a_r \) and \(b_1 = b_r \).
\State 5. For \(l \in \{1, 2, \ldots, M\} \), chooses \(a_1^l \) randomly from
\(\{(0,1)\}^2 \), and sets \(a_1^l = a_1^l \oplus a_l \).
\State 6. For \(l \in \{1, 2, \ldots, M\} \), chooses \(b_1^l \) randomly from
\(\{(0,1)\}^2 \), and sets \(b_1^l = b_1^l \oplus b_l \).
\State \textbf{Output:}
\State 7. The dealer prepares a list \(\text{List}_w \) of shares for each
party \(P_w \), where \(w \in \{1, 2\} \) such that
\(P_1 \) receives the values of \(a_{11}, a_{12}, \ldots, a_{1M} \) and
\(b_{11}, b_{12}, \ldots, b_{1M} \).
\(P_2 \) receives the values of \(a_{21}^l, a_{22}^l, \ldots, a_{2M}^l \) and
\(b_{21}^l, b_{22}^l, \ldots, b_{2M}^l \).
\end{algorithmic}
\end{algorithm}

4.1 ITCEP2 is not fair when players are rational

In this subsection, we analyze the fairness condition of the
function in rational setting. We assume that the players, \(P_1 \)
and \(P_2 \) have the preferences \(R_1 \).
4.1.1 Early abort by P_2

Let us first assume that P_2 be corrupted by a probabilistic polynomial time adversary A and chooses to abort in the round $l \leq r$. Let U_2 be the utility of P_2 when he aborts. We have two cases depending on P_2’s choice of y.

Case 1: $y = y_1$. Thus, $Pr(b_{l-1} = 0 | y = y_1) = Pr(\hat{x} = x_1) = \frac{1}{2}$ and $Pr(b_{l-1} = 1 | y = y_1) = Pr(\hat{x} \in \{x_2, x_3\}) = \frac{2}{3}$. Under this case, three different subcases are possible depending on P_1’s choice of x.

Subcase 1.(a): $x = x_1$. Now, $Pr(a_{l-1} = 0 | x = x_1) = Pr(\hat{y} = y_1) = \frac{1}{2}$ and $Pr(a_{l-1} = 1 | x = x_1) = Pr(\hat{y} = y_2) = \frac{1}{2}$. The following table enumerates the different possibilities for U_2 when $x = x_1$ and $y = y_1$.

<table>
<thead>
<tr>
<th>(a_{l-1}, b_{l-1})</th>
<th>U_2</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>U_2^{TT}</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>(0,1)</td>
<td>U_2^{TN}</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>(1,0)</td>
<td>U_2^{TN}</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>(1,1)</td>
<td>U_2^{NN}</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

Thus, $E[U_2(x_1, y_1)] = \left[\frac{1}{6}(U_2^{TN} + U_2^{TT}) + \frac{1}{3}(U_2^{NT} + U_2^{NN}) \right]$.

Subcase 1.(b): $x = x_2$. Now, $Pr(a_{l-1} = 0 | x = x_2) = Pr(\hat{y} = y_2) = \frac{1}{2}$ and $Pr(a_{l-1} = 1 | x = x_2) = Pr(\hat{y} = y_1) = \frac{1}{2}$. The following table enumerates the different possibilities for U_2 when $x = x_2$ and $y = y_1$.

<table>
<thead>
<tr>
<th>(a_{l-1}, b_{l-1})</th>
<th>U_2</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>U_2^{NN}</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>(0,1)</td>
<td>U_2^{NN}</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>(1,0)</td>
<td>U_2^{NN}</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>(1,1)</td>
<td>U_2^{TT}</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

Thus, $E[U_2(x_2, y_1)] = \left[\frac{1}{3}(U_2^{NN} + U_2^{NT}) + \frac{1}{6}(U_2^{TT} + U_2^{NB}) \right]$.

Subcase 1.(c): $x = x_3$. In this case, P_1 knows the output with certainty. That means, $Pr(a_{l-1} = 0 | x = x_3) = 0$ and $Pr(a_{l-1} = 1 | x = x_3) = 1$.

The following table enumerates the different possibilities for U_2 when $x = x_3$ and $y = y_1$.

<table>
<thead>
<tr>
<th>(a_{l-1}, b_{l-1})</th>
<th>U_2</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>U_2^{NN}</td>
<td>0</td>
</tr>
<tr>
<td>(0,1)</td>
<td>U_2^{NN}</td>
<td>0</td>
</tr>
<tr>
<td>(1,0)</td>
<td>U_2^{NN}</td>
<td>0</td>
</tr>
<tr>
<td>(1,1)</td>
<td>U_2^{TT}</td>
<td>0</td>
</tr>
</tbody>
</table>

Thus, $E[U_2(x_3, y_1)] = \frac{1}{6}U_2^{NT} + \frac{2}{3}U_2^{TT}$. Now, combining all three subcases, we get

$E[U_2(y_1)] = E[U_2(x_1, y_1)] \cdot Pr(x = x_1) + E[U_2(x_2, y_1)] \cdot Pr(x = x_2) + E[U_2(x_3, y_1)] \cdot Pr(x = x_3)

= \left[\frac{1}{6}(U_2^{TN} + U_2^{TT}) + \frac{1}{3}(U_2^{NT} + U_2^{NN}) \right] \cdot \frac{1}{2} + \left[\frac{1}{3}(U_2^{NN} + U_2^{NT}) + \frac{1}{6}(U_2^{TT} + U_2^{TB}) \right] \cdot \frac{1}{2} + \left[\frac{1}{3}U_2^{NT} + \frac{2}{3}U_2^{TT} \right] \cdot \frac{1}{2}

= \frac{1}{18}(3U_2^{TN} + 7U_2^{TT} + 3U_2^{NN} + 5U_2^{NT})$.

If the above expression is greater than U_2^{TT}, P_2 aborts early, otherwise he plays the game.

Case 2: $y = y_2$. The analysis is similar and we obtain the same expression for $E[U_2(y_2)]$. More specifically, we have the following observation.

Subcase 2.(a): $x = x_1$. The analysis is exactly identical to Subcase 1.(b).

Subcase 2.(b): $x = x_2$. The analysis is exactly identical to Subcase 1.(a).

Subcase 2.(c): $x = x_3$. The analysis is exactly identical to Subcase 1.(c).

4.1.2 Early abort by P_1

Now, we consider the aborting of P_1. We assume that there is a probabilistic polynomial time adversary A who corrupts P_1 and makes P_1 to choose abort in round l. Let U_1 be the utility of P_1 when he aborts. We have three cases depending on P_1’s choice of x.

Case 1: $x = x_1$. We have $Pr(a_l = 0 | x = x_1) = Pr(\hat{y} = y_1) = \frac{1}{2}$ and $Pr(a_l = 1 | x = x_1) = Pr(\hat{y} = y_2) = \frac{1}{2}$, for $l < r$. Note that for $l = r$, P_1 would abort after receiving the exact value of y. Hence, in case of $y = y_1$,

$Pr(a_r = 0 | (x_1, y_1)) = 1, \quad Pr(a_r = 1 | (x_1, y_1)) = 0$.

In case of $y = y_2$,

$Pr(a_r = 0 | (x_1, y_2)) = 0, \quad Pr(a_r = 1 | (x_1, y_2)) = 1$.

Subcase 1.(a): $y = y_1$. Now, we have $Pr(b_l = 0 | y = y_1) = Pr(\hat{x} = x_1) = \frac{1}{3}$ and $Pr(b_l = 1 | y = y_1) = Pr(\hat{x} \in \{x_2, x_3\}) = \frac{2}{3}$. The following table enumerates the different possibilities for U_1 when $x = x_1$ and $y = y_1$.

<table>
<thead>
<tr>
<th>(a_l, b_l)</th>
<th>U_1</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>U_1^{TT}</td>
<td>$(1 - \gamma) \cdot \frac{2}{3} = (1 - \gamma) \cdot \frac{2}{3}$</td>
</tr>
<tr>
<td>(0,1)</td>
<td>U_1^{TT}</td>
<td>$(1 - \gamma) \cdot \frac{2}{3} = (1 - \gamma) \cdot \frac{2}{3}$</td>
</tr>
<tr>
<td>(1,0)</td>
<td>U_1^{TN}</td>
<td>$(1 - \gamma) \cdot \frac{2}{3} = (1 - \gamma) \cdot \frac{2}{3}$</td>
</tr>
<tr>
<td>(1,1)</td>
<td>U_1^{TN}</td>
<td>$(1 - \gamma) \cdot \frac{2}{3} = (1 - \gamma) \cdot \frac{2}{3}$</td>
</tr>
</tbody>
</table>

Thus,

$E[U_1(x_1, y_1)] = (1 - \gamma) \left[\frac{1}{3}U_1^{TN} + \frac{1}{6}U_1^{TT} + \frac{1}{3}U_1^{NN} + \frac{1}{6}U_1^{NT} \right] + (\frac{2}{3}U_1^{TN} + \frac{1}{3}U_1^{TT})$

$= \frac{1}{6}(2U_1^{TN} + U_1^{TT}) + (1 - \gamma) \left[\frac{1}{2}U_1^{NN} + \frac{1}{2}U_1^{TT} \right]$.

Subcase 1.(b): $y = y_2$. Now, we have $Pr(b_l = 0 | y = y_2) = Pr(\hat{x} = x_2) = \frac{1}{3}$ and $Pr(b_l = 1 | y = y_2) = Pr(\hat{x} \in \{x_1, x_3\}) = \frac{2}{3}$. The following table enumerates the different possibilities for U_1 when $x = x_1$ and $y = y_2$.

<table>
<thead>
<tr>
<th>(a_l, b_l)</th>
<th>U_1</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>U_1^{NN}</td>
<td>$(1 - \gamma) \cdot \frac{2}{3} = (1 - \gamma) \cdot \frac{2}{3}$</td>
</tr>
<tr>
<td>(0,1)</td>
<td>U_1^{NN}</td>
<td>$(1 - \gamma) \cdot \frac{2}{3} = (1 - \gamma) \cdot \frac{2}{3}$</td>
</tr>
<tr>
<td>(1,0)</td>
<td>U_1^{NN}</td>
<td>$(1 - \gamma) \cdot \frac{2}{3} = (1 - \gamma) \cdot \frac{2}{3}$</td>
</tr>
<tr>
<td>(1,1)</td>
<td>U_1^{NN}</td>
<td>$(1 - \gamma) \cdot \frac{2}{3} = (1 - \gamma) \cdot \frac{2}{3}$</td>
</tr>
</tbody>
</table>
The analysis in this case is exactly identical to Section 4.1.1.

4.2 How to make \(\Pi \) fair when players are rational

In this subsection we suggest a variant of Gordon et al.’s protocol \(\Pi^{CEP2} \) with fairness in the presence of a rational adversary. Here, we only modify the step 6 of Algorithm \(\Pi^{CEP2} \), and call the resulting protocol \(\Pi^{CEP2}_{Fair} \). When \(P_1 \) aborts in any round \(l \), instead of obtaining \(f(\hat{x},\hat{y}) \), \(P_2 \) outputs 1. Every other steps are remain same. We now prove the fairness of the protocol.

4.2.1 Early abort by \(P_2 \)

The analysis in this case is exactly identical to Section 4.1.1. Thus, for fairness, we need to ensure that

\[
E[U_1|(x_1, y_2)] = (1 - \gamma) \left(\frac{1}{6} U_1^{TN} + \frac{1}{3} U_1^{TT} + \frac{1}{6} U_1^{NN} + \frac{1}{3} U_1^{NT} + \gamma \left(\frac{1}{3} U_1^{TN} + \frac{1}{3} U_1^{NT} + \frac{2}{3} U_1^{TT} \right) \right) \leq U_1^{TT},
\]

i.e.,

\[
U_2^{TT} \geq \frac{1}{11} \left[3 U_2^{TN} + 3 U_2^{NN} + 5 U_2^{NT} \right].
\]

4.2.2 Early abort by \(P_1 \)

Now, we discuss each case one by one.

Case 1: \(x = x_1 \) We have \(\Pr(a_l = 0 \mid x = x_1) = \Pr(\hat{y} = y_1) = \frac{1}{2} \) and \(\Pr(a_l = 1 \mid x = x_1) = \Pr(\hat{y} = y_2) = \frac{1}{2} \), for \(l < r \). Note that for \(l = r, P_1 \) will abort after receiving the exact value of \(y \). Hence, in case of \(y = y_1 \),

\[
\Pr(a_r = 0 \mid (x_1, y_1)) = 1, \quad \Pr(a_r = 1 \mid (x_1, y_1)) = 0;
\]

in case of \(y = y_2 \),

\[
\Pr(a_r = 0 \mid (x_1, y_2)) = 0, \quad \Pr(a_r = 1 \mid (x_1, y_2)) = 1.
\]

Subcase 1.1(a): \(y = y_1 \). Now, we have \(\Pr(b_l = 0 \mid y = y_1) = 0 \) and \(\Pr(b_l = 1 \mid y = y_1) = 1 \).

The following table enumerates the different possibilities for \(U_1 \) when \(x = x_1 \) and \(y = y_1 \).

<table>
<thead>
<tr>
<th>((a_l, b_l))</th>
<th>(U_1)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0))</td>
<td>(U_1^{TT})</td>
<td>((1 - \gamma) \left(\frac{1}{2} U_1^{TN} + \frac{1}{2} U_1^{TN} \right))</td>
</tr>
<tr>
<td>((0,1))</td>
<td>(U_1^{TT})</td>
<td>((1 - \gamma) \left(\frac{1}{2} U_1^{TN} + \frac{1}{2} U_1^{TN} \right))</td>
</tr>
<tr>
<td>((1,0))</td>
<td>(U_1^{TT})</td>
<td>((1 - \gamma) \left(\frac{1}{2} U_1^{TN} + \frac{1}{2} U_1^{TN} \right))</td>
</tr>
<tr>
<td>((1,1))</td>
<td>(U_1^{TT})</td>
<td>((1 - \gamma) \left(\frac{1}{2} U_1^{TN} + \frac{1}{2} U_1^{TN} \right))</td>
</tr>
</tbody>
</table>

Thus,

\[
E[U_1|(x_1, y_1)] = \frac{(1 + \gamma)}{2} \left(U_1^{TN} \right) + \frac{(1 - \gamma)}{2} \left(U_1^{TN} \right).
\]

Subcase 1.1(b): \(y = y_2 \). Now, we have \(\Pr(b_l = 0 \mid y = y_2) = 0 \) and \(\Pr(b_l = 1 \mid y = y_2) = 1 \).

The following table enumerates the different possibilities for \(U_1 \) when \(x = x_1 \) and \(y = y_2 \).

<table>
<thead>
<tr>
<th>((a_l, b_l))</th>
<th>(U_1)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0))</td>
<td>(U_1^{TT})</td>
<td>((1 - \gamma) \left(\frac{1}{2} U_1^{TN} + \frac{1}{2} U_1^{TN} \right))</td>
</tr>
<tr>
<td>((0,1))</td>
<td>(U_1^{TT})</td>
<td>((1 - \gamma) \left(\frac{1}{2} U_1^{TN} + \frac{1}{2} U_1^{TN} \right))</td>
</tr>
<tr>
<td>((1,0))</td>
<td>(U_1^{TT})</td>
<td>((1 - \gamma) \left(\frac{1}{2} U_1^{TN} + \frac{1}{2} U_1^{TN} \right))</td>
</tr>
<tr>
<td>((1,1))</td>
<td>(U_1^{TT})</td>
<td>((1 - \gamma) \left(\frac{1}{2} U_1^{TN} + \frac{1}{2} U_1^{TN} \right))</td>
</tr>
</tbody>
</table>

Thus,

\[
E[U_1|(x_1, y_2)] = \frac{(1 + \gamma)}{2} \left(U_1^{TN} \right) + \frac{(1 - \gamma)}{2} \left(U_1^{TN} \right).
\]

Now, combining all two subcases, we get

\[
E[U_1|x_1] = E[U_1|(x_1, y_1)] \cdot \Pr(y = y_1) + E[U_1|(x_1, y_2)] \cdot \Pr(y = y_2) \]

\[
= \frac{(1 + \gamma)}{2} \left(U_1^{TN} \right) + \frac{(1 - \gamma)}{2} \left(U_1^{TN} \right) \cdot \frac{1}{2} \]

\[
+ \frac{(1 + \gamma)}{2} \left(U_1^{TT} \right) + \frac{(1 - \gamma)}{2} \left(U_1^{TT} \right) \cdot \frac{1}{2} \]

\[
= \frac{(1 + \gamma)}{4} \left(U_1^{TN} + U_1^{TT} \right) + \frac{(1 - \gamma)}{4} \left(U_1^{TN} + U_1^{TT} \right).
\]
If the above expression is greater than U_{TT}^{1}, P_1 chooses abort. Thus, for fairness, we need to ensure that $U_{TT}^{1} \geq \frac{(1+\gamma)}{4}(U_{TT}^{1N} + U_{TT}^{1T}) + \frac{(1-\gamma)}{4}(U_{1NN} + U_{1NT})$, i.e.,

$$\gamma \leq \frac{3U_{TT}^{1} - U_{TT}^{TN} - U_{1NN} - U_{1NT}}{U_{TT}^{1N} + U_{TT}^{1T} - U_{1NN} - U_{1NT}}.$$ \hspace{1cm} (7)

Case 2: $x = x_2$. The analysis is similar and we obtain the same expression for $E[U_1|x_2]$. More specifically, we have the following observation.

Subcase 2(a): $y = y_1$. The analysis is exactly identical to Subcase 1(b).

Subcase 2(b): $y = y_2$. The analysis is exactly identical to Subcase 1(a).

Case 3: $x = x_3$. When $x = x_3$, P_1 will abort as he knows the output with certainty. In this case, he needs no help from P_2 to compute the function. However, when P_1 chooses to abort, P_2 outputs 1. Thus, for $x = x_3$, both get the correct output of the function. The utility for both the player is U_{TT}^{w}, $w \in \{1, 2\}$. Hence, the fairness condition in rational setting is always maintained.

4.2.3 Fairness condition

From the above analysis, we can state the following result.

Theorem 7. Provided R_1, $U_{TT}^{2} \geq \frac{1}{\Pi}[3U_{2N}^{1} + 3U_{2N}^{2} + 5U_{2N}^{2}]$, and

$$0 < \gamma \leq \frac{3U_{TT}^{1} - U_{TT}^{TN} - U_{1NN} - U_{1NT}}{U_{TT}^{1N} + U_{TT}^{1T} - U_{1NN} - U_{1NT}},$$

the protocol Π_{Fair}^{CEP2} achieves fairness.

Proof: The proof follows from Equations (6) and (7). From the condition $\gamma \leq \frac{3U_{TT}^{1} - U_{TT}^{TN} - U_{1NN} - U_{1NT}}{U_{TT}^{1N} + U_{TT}^{1T} - U_{1NN} - U_{1NT}}$, it is easy to see that the natural restriction $\gamma \leq 1$ always holds. \hfill \square

Note that $\gamma > 0$ naturally implies that the numerator $3U_{TT}^{1} - U_{TT}^{TN} - U_{1NN} - U_{1NT}$ is also > 0, i.e.,

$$(U_{TT}^{1N}) + (U_{TT}^{1T}) > (U_{1N}^{T} - U_{1T}^{T}).$$ \hspace{1cm} (8)

In Equation (8), all the three terms within the parentheses are non-negative according to R_1.

Again, the condition $U_{TT}^{2} \geq \frac{1}{\Pi}[3U_{2N}^{1} + 3U_{2N}^{2} + 5U_{2N}^{2}]$ can be re-written as

$$3(U_{TT}^{2N}) + 5(U_{TT}^{2N}) \geq 3(U_{2N}^{T} - U_{2N}^{T}).$$ \hspace{1cm} (9)

If the utilities are symmetric, i.e., if $U_{TT}^{1} = U_{TT}^{2}$, then Equation (8) implies Equation (9), and hence we need one less condition. The following corollary is immediate.

Corollary 1. Provided R_1, and

$$0 < \gamma \leq \frac{3U_{TT}^{1} - U_{TT}^{TN} - U_{1NN} - U_{1NT}}{U_{TT}^{1N} + U_{TT}^{1T} - U_{1NN} - U_{1NT}},$$

the protocol Π_{Fair}^{CEP2} with symmetric utilities achieves fairness.

4.3 Fairness analysis of Π_{Fair}^{CEP2} when players have equal domain sizes

In rational setting, the analysis of the original Π_{Fair}^{CEP2} protocol [9], [10], is exactly the same as in Section 4.1 except that the cases corresponding to x_3 would not be there. In this situation, the protocol need not be modified. In order to maintain fairness, we keep the original steps of [9], [10], as in Algorithm 5 and Theorem 7, guarantees fairness. Note that the fairness condition is the same for unequal as well as equal domain sizes.

Theorem 8. Provided R_1, $U_{TT}^{2} \geq \frac{1}{\Pi}[3U_{2N}^{1} + 3U_{2N}^{2} + 5U_{2N}^{2}]$, and

$$0 < \gamma \leq \frac{3U_{TT}^{1} - U_{TT}^{TN} - U_{1NN} - U_{1NT}}{U_{TT}^{1N} + U_{TT}^{1T} - U_{1NN} - U_{1NT}},$$

the protocol Π_{Fair}^{CEP2} achieves strict Nash equilibrium.

Proof: Provided R_1 and $U_{TT}^{2} \geq \frac{1}{\Pi}[3U_{2N}^{1} + 3U_{2N}^{2} + 5U_{2N}^{2}]$, P_2 cannot increase his utility beyond U_{TT}^{1} by choosing deviating strategy (here early abort, Section 4.2.1). Similarly, provided R_1, and

$$0 < \gamma \leq \frac{3U_{TT}^{1} - U_{TT}^{TN} - U_{1NN} - U_{1NT}}{U_{TT}^{1N} + U_{TT}^{1T} - U_{1NN} - U_{1NT}},$$

P_1 cannot increase his utility beyond U_{TT}^{1} by choosing deviating strategy (here, early abort, Section 4.2.2). In other words, for every player P_w

$$u_w(\sigma_{w'}, \sigma_{-w}) < u_w(\sigma).$$

This concludes the proof. \hfill \square

5 Conclusion

In this paper, we revisit the ‘greater than’ function proposed by Gordon et al. [9], [10] as well as the problem of [10] that is an instance of the embedded XOR class. We show that in rational domain, none of the above two remains fair and then we propose variants that achieve fairness when the players are rational.

In 2011 Asharov et al. [2] showed the impossibility of the secure computation in two party setting in the rational domain. However, in 2012 Groce and Katz [12] proved that the results of Asharov et al. is correct for a specific function, specific input distribution and specific set of utilities. They proposed a scheme for secure two party computation in rational setting for arbitrary function in incentive compatible settings. Their proposed protocol is an incomplete information game and thus achieves Bayesian strict Nash equilibrium. Contrary to this, our proposed protocols for ‘greater than’ as well as the embedded XOR functions are complete information games and achieve strict Nash equilibrium.

References

