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Abstract. We present an identity-based encryption (IBE) scheme in composite-order bilinear groups with
essentially optimal parameters: the ciphertext overhead and the secret key are one group element each and
decryption requires only one pairing. Our scheme achieves adaptive security and anonymity under standard
decisional subgroup assumptions as used in Lewko and Waters (TCC ’10). Our construction relies on a novel
extension to the Deja Q framework of Chase and Meiklejohn (Eurocrypt ’14).

1 Introduction

In identity-based encryption (IBE) [24, 5], ciphertexts and secret keys are associated with identities, and
decryption is possible only when the identities match. IBE has been studied extensively over the last
decade, with a major focus on obtaining constructions that simultanously achieve short parameters
and full adaptive security under static assumptions in the standard model. This was first achieved in
the works of Lewko and Waters [25, 20], which also introduced the powerful dual system encryption
methodology. The design of the Lewko-Waters IBE and the underlying proof techniques have since had
a profound impact on both attribute-based encryption and pairing-based cryptography.

1.1 Our Contributions

In this work, we obtain the first efficiency improvement to the Lewko-Waters IBE in composite-order
bilinear groups. We present an adaptively secure and anonymous identity-based encryption (IBE)
scheme with essentially optimal parameters: the ciphertext overhead and the secret key are one group
element each, and decryption only requires one pairing; this improves upon the Lewko-Waters IBE [20] in
three ways: shorter parameters, faster decryption, and anonymity. Via Naor’s transformation, we obtain
a fully secure signature scheme where the signature is again only one group element. We stress that we
achieve all of these improvements while relying on the same computational subgroup assumptions as in
the Lewko-Waters IBE, notably in composite-order groups whose order is the product of three primes.
We refer to Fig 1 for a comparison with prior works.

The Lewko-Waters IBE has played a foundational role in recent developments of IBE and more
generally attribute-based encryption (ABE). Indeed, virtually all of the state-of-the-art prime-order IBE
schemes in [19, 2] —along with the subsequent extensions to ABE [21, 26, 1, 11]— follow the basic
design and proof strategy introduced in the Lewko-Waters IBE. For this reason, we are optimistic that
our improvement to the Lewko-Waters IBE will lead to further advances in IBE and ABE. In fact, our
improved composite-order IBE already hints at the potential of a more efficient prime-order IBE that
subsumes all known schemes; we defer further discussion to Section 1.3.

We also present a selectively secure broadcast encryption scheme for n users where the ciphertext
overhead is two group elements (independent of the number of recipients) and the user private
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Scheme |mpk| |sk| |ct| decryption anonymous number of primes

LW10 [20] 3|GN |+ |GT | 2|GN | 2|GN |+ |GT | 2 pairings no 3

DIP10 [9] 3|GN |+ |GT | 2|GN | 2|GN |+ |GT | 2 pairings ✓ 4

YCZY14 [27] 3|GN |+ |GT | 2|GN | 2|GN |+ |GT | 2 pairings ✓ 4

this work (Fig 2) 2|GN |+ |GT | |GN | |GN |+ |GT | 1 pairing ✓ 3

Fig. 1. Comparison amongst adaptively secure IBEs in composite-order bilinear groups e : GN ×GN →GT .

key is a single group element.1 To the best of our knowledge, this is the first broadcast encryption
scheme to achieve constant-size ciphertext overhead, constant-size user private keys and linear-size
public parameters under static assumptions; previously, such schemes were only known under q-type
assumptions [6].

1.2 Our Techniques

The starting point of our constructions is the Deja Q framework introduced by Chase and Meiklejohn
[10]; this is an extension of Waters’ dual system techniques to eliminate the use of q-type assumptions in
settings beyond the reach of previous techniques. These settings include deterministic primitives such as
pseudo-random functions (PRF) and —quite remarkably— schemes based on the inversion framework
[23, 4, 8]. However, the Deja Q framework is also limited in that it cannot be applied to advanced
encryption systems such as identity-based and broadcast encryption, where certain secret exponents
appear in both ciphertexts and secret keys on both sides of the pairing. We show how to overcome this
limitation using several simple ideas.

IBE Overview. We describe our IBE scheme and the security proof next. We present a simplified variant
of the constructions, suppressing many details pertaining to randomization and subgroups. Following
the Lewko-Waters IBE [20], we rely on composite-order bilinear groups whose order N is the product
of three primes p1, p2, p3. We will use the subgroup Gp1 of order p1 for functionality, and the subgroup
Gp2 of order p2 in the proof of security. The third subgroup corresponding to p3 is used for additional
randomization.

Recall that the Lewko-Waters IBE has the following form:

mpk := (g , gβ, gγ,e(g ,u)), ctid := (g s , g (β+γid)s ,e(g ,u)s ·m), skid := (u · g (β+γid)r , g r ))

Our IBE scheme has the following form:

mpk := (g , gα,e(g ,u)), ctid := (g (α+id)s ,e(g ,u)s ·m), skid := (u
1

α+id )

Note that our scheme uses the “exponent inversion” framework [8], which has traditionally eluded a
proof of security under static assumptions. In both schemes, g ,u are random group elements of order
p1, andα,β,γ are random exponents overZN . It is easy to see that decryption in our scheme only requires
a single pairing to compute e(g (α+id)s ,u

1
α+id ) = e(g ,u)s .

IBE security proof. We rely on the same assumption as the Lewko-Waters IBE in [20], namely the (p1 7→
p1p2)-subgroup assumption, which asserts that random elements of order p1 and those of order p1p2

1 Here, we ignore the additional overhead from specifying the set of recipients in the ciphertext, which requires n bits;
decrypting also requires knowing some public parameters, which are not considered part of the user private keys.
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are computationally indistinguishable. In the proof of security, we rely on the assumption to introduce
random Gp2 -components to the ciphertext and the secret keys.

We begin with the secret keys. We introduce a random Gp2 -component to the secret key skid following
the Deja Q framework [10] as follows:

skid = u
1

α+id
subgroup−→ u

1
α+id g

r1
α+id

2
CRT−→ u

1
α+id g

r1
α1+id

2 , (1)

where α1 ← ZN . In the first transition, we use the (p1 7→ p1p2)-subgroup assumption which says that
u ≈c ug r1

2 ,r1 ←R ZN , where g2 is a generator of order p2. In the second transition, we use the Chinese
Reminder Theorem (CRT), which tell us α mod p1 and α mod p2 are independently random values, so
we may replace α mod p2 with α1 mod p2 for a fresh α1 ←R ZN , as long as the challenge ciphertext and
mpk reveal no information about α mod p2. We may now repeat this transition q more times:

u
1

α+id
subgroup−→ u

1
α+id g

r1
α+id

2
CRT−→ u

1
α+id g

r1
α1+id

2
subgroup−→ u

1
α+id g

r2
α+id

2 g
r1

α1+id
2

CRT−→ u
1

α+id g
r2

α2+id+
r1

α1+id
2

−→ ·· · CRT−→ u
1

α+id g

rq+1
αq+1+id+···+

r2
α2+id+

r1
α1+id

2

where r1, . . . ,rq+1,α1, . . . ,αq+1 ←R ZN , and q is an upper bound on the number of key queries made by
the adversary.2

Next, we show that for distinct x1, . . . , xq , the following matrix
1

α1+x1

1
α1+x2

· · · 1
α1+xq

...
...

. . .
...

1
αq+x1

1
αq+x2

· · · 1
αq+xq

 (2)

is invertible with overwhelming probability over α1, . . . ,αq ←R Zp . We provide an explicit formula for the
determinant of this matrix in Section 3.1; this is the only place in the proof where we crucially exploit the
“exponent inversion” structure. We can then replace

id 7→ rq+1

αq+1 + id
+·· ·+ r2

α2 + id
+ r1

α1 + id

by a truly random function RF(·). Indeed, skid can now be written as u
1

α+id gRF(id)
2 , which have indepen-

dently random Gp2 -components.

So far, what we have done is the same as the use of Deja Q framework for showing that x 7→ u
1

x+α

yields a PRF [10] (the explicit formula for the matrix determinant is new), and this is where the similarity
ends. At this point, we still need to hide the message m in the ciphertext (g (α+id)s ,e(g ,u)s ·m). Towards
this goal, we want to introduce a Gp2 -component into the ciphertext, which will then interact with newly
random Gp2 -component in the keys to generate extra statistical entropy to hide m. At the same time,
we need to ensure that the ciphertext still hides α mod p2 so that we may carry out the transition of the
secret keys in (1). Indeed, naively applying the (p1 7→ p1p2)-subgroup assumption to g s in the ciphertext
would leak α mod p2.

To circumvent this difficulty, note that we can rewrite the ciphertext in terms of skid as

ctid = (g (α+id)s ,e(g (α+id)s ,skid) ·m)

2 We use q +1 values to account for the q key queries plus the challenge identity.
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Moreover, as long as α+ id ̸= 0, we can replace (α+ id)s with s without changing the distribution, which
allows us to rewrite the challenge ciphertext as

ctid = (g s ,e(g s ,skid) ·m).

This means that the challenge ciphertext leaks no information about α except through skid. In addition,
the challenge ciphertext also leaks no information about id, which allows us to prove anonymity. In
contrast, the Lewko-Waters IBE is not anonymous, and anonymous variants there-of in [9, 27] requires
the use of 4 primes and additional assumptions.

We can now apply the (p1 7→ p1p2)-subgroup assumption to the ciphertext to replace g s with g s g r ′
2 .

Now, the ciphertext distribution is completely independent of α except what is leaked through skid, so
we can apply the secret key transitions as before, at the end of which the challenge ciphertext is given by:

(g s g r ′
2 ,e(g s g r ′

2 ,u
1

α+id gRF(id)
2 ) ·m) = (g s g r ′

2 ,e(g s ,u
1

α+id ) · e(g r ′
2 , gRF(id)

2 ) ·m)

We can now use the log p2 bits of entropy from RF(id) over Gp2 to hide m; this requires modifying the
original scheme so that an encryption of m is given by (g (α+id)s ,H(e(g ,u)s)·m), where H denotes a strong
randomness extractor whose seed is specified in mpk.

Broadcast encryption. By rewriting the challenge ciphertext in terms of skid in order to hide α, our
technique for IBE seems inherently limited to IBE. We show how to extend our techniques to broadcast
encryption in Section 4; however, we only achieve selective and not adaptive security. We briefly note
that our broadcast encryption scheme is derived from Boneh-Gentry-Waters (BGW) scheme [6] based
on the q-DBDHE assumption. This is the first scheme to asymptotically match the parameters of the
BGW broadcast encryption scheme under static assumptions.

1.3 Discussion

Comparison with Deja Q framework [10]. The core of the Deja Q framework is a beautiful technique
which translates linear independence (and thus computational independence in the generic group
model) amongst a set of monomials “in the exponent” into statistical independence, upon which
security can be established using a purely information-theoretic argument. There are however three
caveats to the prior instantiation in [10]: first, these monomials must appear on the same side of the
pairing, which means the techniques cannot be applied to advanced encryption primitives where the
same term often appears in the ciphertext and the secret key on both sides of the pairing; second, the
statistical independence only holds within certain subgroups, and another subgroup assumption was
used to spread this localized entropy over the entire group; third, the prior instantiation is limited to
asymmetric composite-order groups. In this work, we showed how to overcome all of these three caveats.

In particular, we rely only on the (p1 7→ p1p2)-subgroup assumption and eliminated the additional
use of the (p2 7→ p1p2)-subgroup assumption. This technique can also be applied to the PRF in [10]. We
note that while simulating subgroup decisional assumptions in composite-order groups using the k-LIN
assumption in prime-order groups, we can simulate the (p1 7→ p1p2)-subgroup assumption using k +1
group elements whereas simulating both subgroup assumption requires 2k group elements.

Candidate prime-order IBE. As noted earlier, our composite-order IBE scheme constitutes the first
evidence for an adaptively IBE based on SXDH with two group elements in the ciphertext and in
the secret keys and constant-size public parameters, which would be a significant improvement over
the state of the art, subsuming a long series of incomparable constructions, and giving us adaptive
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security at essentially the same cost as selective security! Moreover, such a IBE would in turn also
yield a fully secure signature scheme based on SXDH with two group elements in the signature and
constant-size public key. To reach two elements, it is important that we rely only on the (p1 7→ p1p2)-
subgroup assumption and eliminated the additional use of the (p2 7→ p1p2)-subgroup assumption. The
optimism comes from combining our composite-order IBE scheme with the huge success we have
had in converting composite-order schemes to prime-order ones [14, 22, 19, 11]. In fact, we present
a concrete candidate for a prime-order IBE in Section 3.3; we stress that we do not have a security
proof for the scheme. We note that an improved SXDH-based signature scheme would likely yield
further improvements to other related primitives, such as group signatures and structure-preserving
signatures. These applications further motivate the open problem highlighted in [10] of finding prime-
order analogues for the Deja Q framework.

Perspective. We presented new constructions of “optimal” IBE and signatures and new IBE candidates
that improve upon a long line of work; moreover, we achieve these via an extended Deja Q framework
which avoid the limitations of widely used techniques. We are optimistic and excited about challenges
and possibilities that lie ahead.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a finite set S. By PPT,
we denote a probabilistic polynomial-time algorithm. Throughout, we use 1λ as the security parameter.

2.1 Composite-Order Bilinear Groups and Cryptographic Assumptions

We instantiate our system in composite-order bilinear groups, which were introduced in [7] and used
in [18, 20, 21]. A generator G takes as input a security parameter λ and outputs a description G :=
(N ,G ,GT ,e), where N is product of distinct primes of Θ(λ) bits, G and GT are cyclic groups of order
N , and e : G ×G → GT is a non-degenerate bilinear map. We require that the group operations in G
and GT as well the bilinear map e are computable in deterministic polynomial time.We consider bilinear
groups whose orders N are products of three distinct primes p1, p2, p3 (that is, N = p1p2p3). We can write
G =Gp1Gp2Gp3 where Gp1 ,Gp2 ,Gp3 are subgroups of G of order p1, p2 and p3 respectively. In addition, we
use G∗

pi
to denote Gpi \ {1}. We will often write g1, g2, g3 to denote random generators for the subgroups

Gp1 ,Gp2 ,Gp3 .

Cryptographic assumptions. Our construction relies on the following two decisional subgroup assump-
tions (also known as subgroup hiding assumptions). We define the following two advantage functions:

AdvSD1
G,A(λ) := |Pr[A(D,T0) = 1]−Pr[A(D,T1) = 1]|

where G←G,T0 ← Gp1 ,T1 ←R Gp1Gp2 (p1 7→ p1p2)

and D := (g1, g3, g{1,2}), g1 ←R G∗
p1

, g3 ←R G∗
p3

, g{1,2} ←R Gp1Gp2

AdvSD2
G,A(λ) := |Pr[A(D,T0) = 1]−Pr[A(D,T1) = 1]|

where G←G,T0 ← Gp1Gp3 ,T1 ←R Gp1Gp2Gp3 (p1p3 7→ N )

and D := (g1, g3, g{1,2}, g{2,3}), g1 ←R G∗
p1

, g3 ←R G∗
p3

, g{1,2} ←R Gp1Gp2 , g{2,3} ←R Gp2Gp3

The decisional subgroup assumptions assert that that for all PPT adversariesA, the advantagesAdvSD1
G,A(λ)

and AdvSD2
G,A(λ) are negligible functions in λ.



6

2.2 Anonymous Identity-Based Encryption

We define identity-based encryption (IBE) in the framework of key encapsulation. An identity-based
encryption scheme consists of four algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ) → (mpk,msk). The setup algorithm gets as input the security parameter λ and outputs the
public parameter mpk, and the master key msk. All the other algorithms get mpk as part of its input.

Enc(mpk, id) → (ct,κ). The encryption algorithm gets as input mpk and an identity id ∈ {0,1}λ. It outputs
a ciphertext ct and a symmetric key κ ∈ {0,1}λ.

KeyGen(msk, id) → skid. The key generation algorithm gets as input msk and an identity id ∈ {0,1}λ. It
outputs a secret key skid.

Dec(skid,ct) → κ. The decryption algorithm gets as input skid and ct. It outputs a symmetric key κ.

Correctness. We require that for all id ∈ {0,1}λ,

Pr[(ct,κ) ←Enc(mpk, id); Dec(skid,ct) = κ)] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ) and the coins of Enc.

Security definition. We require pseudorandom ciphertexts against adaptively chosen plaintext and
identity attacks, which implies both anonymity and adaptive security. For a stateful adversary A, we
define the advantage function

AdvA-IBE
A (λ) := Pr

b = b′ :

(mpk,msk) ← Setup(1λ);

id∗ ←AKeyGen(msk,·)(mpk);

b ←R {0,1};ct1 ←R C;κ1 ←R {0,1}λ;

(ct0,κ0) ←Enc(mpk, id∗);

b′ ←AKeyGen(msk,·)(ctb ,κb)

− 1

2

with the restriction that all queries id that A makes to KeyGen(msk, ·) satisfies id ̸= id∗, and where ct1 ←R

C denotes a random element from the ciphertext space.3 An identity-based encryption (IBE) scheme is
adaptively secure and anonymous if for all PPT adversaries A, the advantage AdvA-IBE

A (λ) is a negligible
function in λ.

2.3 Broadcast Encryption

A broadcast encryption scheme consists of three algorithms (Setup,Enc,Dec):

Setup(1λ,1n) → (mpk, (sk1, . . . ,skn)). The setup algorithm gets as input the security parameter λ and 1n

specifying the number of users and outputs the public parameter mpk, and secret keys sk1, . . . ,skn .

Enc(mpk,Γ) → (ctΓ,κ). The encryption algorithm gets as input mpk and a subset Γ ⊆ [n]. It outputs a
ciphertext ctΓ and a symmetric key κ ∈ {0,1}λ. Here, Γ is public given ctΓ.

Dec(mpk,sky ,ctΓ) → κ. The decryption algorithm gets as input mpk,sky and ctΓ. It outputs a symmetric
key κ.

3 This means that the distribution of ct1 is independent of id∗, which implies anonymity.
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Correctness. We require that for all Γ⊆ [n] and all y ∈ [n] for which y ∈ Γ,

Pr[(ctΓ,κ) ←Enc(mpk,Γ); Dec(mpk,sky ,ctΓ) = κ)] = 1,

where the probability is taken over (mpk, (sk1, . . . ,skn)) ← Setup(1λ,1n) and the coins of Enc.

Security definition. For a stateful adversary A, we define the advantage function

AdvS-BCE
A (λ) := Pr

b = b′ :

Γ∗ ←A(1λ);

(mpk, (sk1, . . . ,skn)) ← Setup(1λ);

b ←R {0,1};κ1 ←R {0,1}λ;

(ctΓ∗ ,κ0) ←Enc(mpk,Γ∗);

b′ ←A(ctΓ∗ ,κb , {sky : y ∉ Γ∗})

− 1

2

A broadcast encryption scheme is selectively secure if for all PPT adversariesA, the advantageAdvS-BCE
A (λ)

is a negligible function in λ.

3 Identity-Based Encryption

We present an adaptively secure and anonymous IBE scheme in Fig 2, and a fully secure signature
scheme in Fig 3. The schemes here refer to symmetric composite-order bilinear groups; we present the
variant for asymmetric composite-bilinear groups in Section A. The schemes and the proofs are the same
as in the overview in the introduction (Section 1.2), except the secret keys in both the scheme and the
proof have an extra random Gp3 -component and we will use the (p1p3 7→ N )-subgroup assumption to
switch the secret keys.

Comparison with prior schemes. We recall several IBE and signature schemes in the inversion
framework which share a similar structure to our IBE and signature scheme. All of these schemes require
an additional scalar in the key/signature, and both of the IBE schemes require an additional group
element in the ciphertext.

BB2 IBE [4]. The BB2 IBE is selectively secure under the q-DBDHI assumption:

ctid := (g (α+id)s , gβs ,e(g ,u)s ·m), skid := (u
1

α+id+βr ,r )

Gentry’s IBE [16]. Gentry’s IBE is adaptively secure and anonymous under the q-ADBDHE assumption:

ctid := (g (α+id)s ,e(g , g )s ,e(g ,u)s ·m), skid := ((u · g−r )
1

α+id ,r )

Boneh-Boyen signatures [3, 10]. The Deja Q analogue [10] of the Boneh-Boyen signatures is given by:

pk := (g , gα, gβ,e(g ,u)), σ := (u
1

α+M+βr ,r ) ∈GN ×ZN .

Our signature scheme in Fig 3 is simpler and shorter, and the scheme can be also be instantiated
in symmetric composite-order groups. In fact, our signature scheme may be viewed as applying the
Deja Q framework to the Boneh-Boyen weak signatures, which both “upgrades” the security from
weak to full, and removes the use of q-type assumptions.

3.1 Core lemma

The following lemma is implicit in the analysis of the PRF in [10, Theorem 4.2, Equation 8].
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Lemma 1. Fix a prime p and define Fq
r1,...,rq ,α1,...,αq

: Zp →Zp to be

F
q
r1,...,rq ,α1,...,αq

(x) :=
q∑

i=1

ri

αi +x

Then, for any (possibly unbounded) adversary A that makes at most q queries, we have∣∣∣ Pr
r1,...,rq ,α1,...,αq←RZp

[
AF

q
r1,...,rq ,α1,...,αq (·)(1q ) = 1

]−Pr
[
ARF(·)(1q ) = 1

]∣∣∣≤ q2

p

where RF : Zp →Zp is a truly random function.

The proof in [10] directly rewrites the function F
q
r1,...,rq ,α1,...,αq

with a common denominator and then
relates the numerator to the Lagrange interpolating polynomial for an appropriate choice of q points.
We sketch an alternative proof which better explains the choice of the function (α, id) 7→ 1

α+id . We first
consider the case where the queries x1, . . . , xq made by A are chosen non-adaptively. WLOG, we may
assume that these queries are distinct. Then, it suffices to show that the following matrix

1
α1+x1

1
α1+x2

· · · 1
α1+xq

...
...

. . .
...

1
αq+x1

1
αq+x2

· · · 1
αq+xq


is invertible with overwhelming probability over α1, . . . ,αq ←R Zp . (Such a statement follows from the
proof in [10] but was not pointed out explicitly.) As it turns out, we can write the determinant of this
matrix explicitly as:

Π1≤i< j≤q (xi −x j )(αi −α j )

Π1≤i , j≤q (αi +x j )

which is non-zero as long asα1, . . . ,αq are distinct, x1, . . . , xq are distinct, and theαi+x j ’s are all non-zero.

That is, we want to show that

Π1≤i , j≤q (αi + x j ) ·det


1

α1+x1

1
α1+x2

· · · 1
α1+xq

...
...

. . .
...

1
αq+x1

1
αq+x2

· · · 1
αq+xq

=Π1≤i< j≤q (xi −x j )(αi −α j )

Using the standard formula for the determinant of the matrix, we can write the determinant above as
a sum of inverses of homogenous polynomials of degree q in x1, . . . , xq ,α1, . . . ,αq . Upon multiplying
by Π1≤i , j≤q (αi + x j ), we would “clear the denominators” to obtain a homogeneous polynomial P in
x1, . . . , xq ,α1, . . . ,αq of degree q2 −q . Moreover, the matrix has two equal rows (resp. columns) whenever
we have αi = α j (resp. xi = x j ); when this happens, the matrix has determinant 0 and thus P vanishes.
Therefore, the polynomial P must be a multiple ofΠ1≤i< j≤q (xi−x j )(αi−α j ), which also has degree q2−q .
This means that P must be a constant multiple of Π1≤i< j≤q (xi − x j )(αi −α j ), and it is easy to check that
the constant is 1.

To handle adaptive queries, observe that this corresponds to building the matrix one column at a
time. As long as the partial selection of columns have full rank, the output of F is uniformly random,
which then completely hides α1, . . . ,αq . Therefore, the probability that α1, . . . ,αq are distinct, and that
αi +x j ’s are all non-zero is at least 1−q2/p, even for adaptive choices of distinct x1, . . . , xq .
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Setup(G):
msk := (α,u, g3) ←R ZN ×Gp1 ×G∗

p3
;

mpk := (g1, gα
1 , e(g1,u), H);

return (mpk,msk)

KeyGen(msk, id ∈ZN ):
pick R3 ←R Gp3 ;

return skid := u
1

α+id R3

Enc(mpk, id ∈ZN ):
pick s ←R ZN ;

return (ct,κ) := (g (α+id)s
1 ,H(e(g1,u)s ))

Dec(skid,ct):

return H(e(ct,skid))

Fig. 2. Adaptively secure anonymous IBE w.r.t. a composite-order bilinear group G. Here, H : GT → {0,1}λ is drawn from a
family of pairwise-independent hash functions. In asymmetric groups, randomization with R3 in KeyGen is not necessary (i.e.,
KeyGen is deterministic).

Setup(G):
sk := (α,u, g3) ←R ZN ×Gp1 ×G∗

p3
;

pk := (g1, gα
1 , e(g1,u));

return (pk,sk)

sign(sk, M ∈ZN ):
pick R3 ←R Gp3 ;

return σ := u
1

α+M R3

verify(pk, M ,σ):

check e(g M
1 · gα

1 ,σ) = e(g1,u)

Fig. 3. Fully secure signature scheme, obtained by applying Naor’s transformation to the IBE scheme in Fig 2. In asymmetric
groups, randomization with R3 in sign is not necessary (i.e., sign is deterministic).

3.2 Our IBE Scheme

Theorem 1. The scheme in Figure 2 is an adaptively secure anonymous IBE under the decisional subgroup
assumption in G.

Proof. Correctness follows readily from the equation

e(g (α+id)s
1 ,u

1
α+id R3) = e(g1,u)s .

We show that for any adversary A that makes at most q queries against the IBE, there exist adversaries
A1,A2 whose running times are essentially the same as that of A, such that

AdvA-IBE
A (λ) ≤AdvSD1

G,A1
(λ)+ (q +1) ·AdvSD2

G,A2
(λ)+2−Ω(λ)

We proceed via a series of games and we use Advi to denote the advantage of A in Game i .

Game 0. This is the real experiment from Definition 2.2. We will also make the following simplifying
assumptions:

– We never encounter an identity id such that id = α mod p1; such an identity constitutes the
discrete log of gα

1 and trivially breaks the subgroup assumption.

– The adversary’s queries id1, . . . , idq ∈ZN are distinct, since we can perfectly randomize the secret

key skid = u
1

α+id R3 given g3 (we can add g3 to mpk without affecting the security proof).

– id1, . . . , idq are distinct mod p2; given idi ̸= id j ∈ ZN such that idi = id j mod p2, computing
gcd(idi − id j , N ) would allow us to factor N .
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We can incorporate these simplifying assumptions by introducing an extra hybrid before Game 1
that aborts if the first or third condition is violated, and uses randomization to handle repeated key
queries.

Game 1. We change (ct0,κ0) ←R Enc(mpk, id∗) as follows: pick C ←R Gp1 , output

(ct0,κ0) := (C , H(e(C ,skid∗))).

We claim that Adv0 =Adv1. This follows readily from the following two observations:

i. for all id, e(g1,u)s = e(g (α+id)s
1 ,u

1
α+id ) = e(g (α+id)s

1 ,skid);

ii. if α+ id ̸= 0, g (α+id)s
1 and C are identically distributed.

Game 2. We change the distribution of C in (ct0,κ0) from C ←R Gp1 to C ←R Gp1Gp2 . We now construct
A1 for which

Adv0 −Adv1 ≤AdvSD1
G,A1

(λ).

A1 on input (g1, g3,C ) where either C ←R Gp1 or C ←R Gp1Gp2 , simulates the experiment in Game 1
with the adversary A as follows: runs Setup(G) honestly to obtain (α,u), then uses (α,u) to answer all
key queries honestly and to compute (ct,κ0) as (C , H(e(C ,skid∗))).

Game 3. We change the distribution of skid from u
1

α+id R3 to u
1

α+id g
∑q+1

i=1
ri

αi +id
2 R3, where r1, . . . ,rq+1,α1, . . . ,αq+1 ←R

ZN , as outlined in Section 1.1. We proceed via a series of sub-games 3. j .0 and 3. j .1 for j = 1,2, . . . , q+
1, where

– In Sub-Game 3. j .0, skid is given by u
1

α+id g

r j
α+id+

∑ j−1
i=1

ri
αi +id

2 R3;

– In Sub-Game 3. j .1, skid is given by u
1

α+id g
∑ j

i=1
ri

αi +id
2 R3. Game 2 corresponds to Sub-Game 3.0.1, and

Game 3 corresponds to Sub-Game 3.q +1.1.

First, observe that Adv3. j .0 = Adv3. j .1. This follows readily from the fact that α mod p2 is completely
hidden givenmpk and the challenge ciphertext, and therefore we may replaceα mod p2 withα j mod
p2. Next, for j = 1, . . . , q +1, we construct A2 for which

Adv3.( j−1).1 −Adv3. j .0 ≤AdvSD2
G,A2

(λ).

A2 on input (G, g1, g{2,3}, g3,C ,T ) where C ←R Gp1Gp2 and either T = uR3 ←R Gp1Gp3 or T =
ug

r j

2 R3 ←R Gp1Gp2Gp3 , simulates the experiment in Game 3 with the adversary A as follows:

– picks α←R ZN and publishes mpk := (g1, gα
1 ,e(g1,T ), H), where e(g1,T ) = e(g1,u);

– picks α1, . . . ,α j−1,r1, . . . ,r j−1 ←R ZN ;

– simulates KeyGen on input id by choosing R ′
3 ←R Gp3 and outputting T

1
α+id g

∑ j−1
i=1

ri
αi +id

2,3 R ′
3

– uses C to compute (ct0,κ0);

Observe that if T = uR3, then this is exactly Game 3. j − 1.1, and if T = ug
r j

2 R3, then this is exactly
Game 3. j .0. It follows readily that

Adv2 −Adv3 ≤ (q +1) ·AdvSD2
G,A2

(λ).

Game 4. We replace
∑q+1

i=1
ri

αi+id in skid with RF(id) where RF : ZN →Zp2 is a truly random function; that

is, skid is now given by u
1

α+id gRF(id)
2 R3. It follows readily from Lemma 1 that

Adv3 −Adv4 ≤O(q2/p2).
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Setup(G):

msk := (W,u) ←R Z
(k+1)×(k+1)
p ×Zk

p ;

mpk := ([A]1, [A⊤W]1, [A⊤Bu]T );
return (mpk,msk)

KeyGen(msk, id ∈Zp ):

return skid := [(W+ idIk+1)−1Bu]2

Enc(mpk, id ∈Zp ):

pick s ←R Zk
p ;

return (ct,κ) := ([s⊤A⊤(W+ idIk+1)]1, [s⊤A⊤Bu]T );

Dec(skid,ct):

return e(ct,skid)

Fig. 4. Candidate IBE in prime-order bilinear groups under the k-LIN assumption, following the Diffie-Hellman framework and

notation in [12]. Here, A,B ∈Z
k×(k+1)
p denote the matrices for the k-LIN assumptions in G1 and G2 respectively. Both the keys

and the ciphertext contain k +1 group elements, i.e. 2 elements under SXDH = 1-LIN.

Game 5. We replace κ0 = H(e(C ,skid∗)) with κ0 ←R {0,1}λ. Observe that the quantity (from which κ0 is
derived)

e(C ,skid∗) = e(C ,u
1

α+id∗ gRF(id∗)
2 ) = e(C ,u

1
α+id∗ ) · e(C , gRF(id∗)

2 )

has log p2 =Θ(λ) bits of min-entropy coming from RF(id∗), since id∗ ∉ {id1, . . . , idq }; this holds as long
as the Gp2 -component of C is not 1, which happens with probability 1−1/p2. Then, by the left-over
hash lemma, κ0 = H(e(C ,skid∗)) is 2−Ω(λ)-close to the uniform distribution over {0,1}λ, even given
ct0 =C .

In Game 5, the joint distribution of (κ0,ct0) is uniformly random over {0,1}λ ×C, where C := Gp1Gp2 .
Therefore, the view of the adversary A is statistically independent of the challenge bit b. Hence, Adv5 = 0.
This completes the proof. ⊓⊔

3.3 A Candidate Prime-order Scheme

In Fig 4, we present a candidate prime-order scheme obtained by applying the transformation in [11]
to our composite-order IBE scheme; concretely, the transformation was used to obtain prime-order
dual-system ABE schemes starting from composite-order ones based on the same decisional subgroup
assumptions as used in this work. The ciphertext and secret keys in the candidate scheme contain
k + 1 group elements, which is a substantial improvement over the state-of-the-art. Applying Naor’s
transformation then yields a signature scheme with signature size k + 1 group elements. In contrast, a
scheme that uses both the (p1 7→ p1p2)-subgroup and (p2 7→ p1p2)-subgroup assumptions as in [10]
would likely require at least 2k +1 group elements, which is another reason to eliminate the use of the
(p2 7→ p1p2)-subgroup assumption.

We stress that we do not have a proof of security for this scheme. The main technical difficulties arise
from having to understand the matrix inverse (W+ idIk+1)−1 for general matrices W. For this specific
scheme, it appears that we can completely recover W ∈Zk×k

p given (W+idIk+1)−1B ∈Zk
p for many choices

of id, which ruins parameter-hiding in the secret key space. On the other hand, in the composite-
order scheme, given 1

α+id mod p1 for an unbounded number of id still completely hides α mod p2.
Nonetheless, we conjecture that a more judicious choice of a matrix distribution for W would yield a
variant of this scheme which is adaptively secure under the k-linear assumption. We quickly point out
here that diagonal matrices don’t work.
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4 Broadcast Encryption

In broadcast encryption [13], a sender broadcasts encrypted content in such a way that only a specified
set of authorized receivers may decrypt the message. In this section, we present a selectively secure
broadcast encryption scheme for n users, where the ciphertext overhead and the secret keys are a
constant number of group elements, and security is based on the decisional subgroup assumption
in composite-order groups. Previous dual-system broadcast encryption schemes [17, 25, 15] achieve
adaptive security under static assumptions, but never better than a (t ,n/t )-type trade-off between
ciphertext overhead and key size.

4.1 Overview

We begin with an informal description of the scheme, ignoring randomization in the Gp3 -subgroup. The
scheme is derived from the Boneh-Gentry-Waters (BGW) broadcast encryption scheme [6], which is also
selectively secure under the q-DBDHE assumption. The public parameters in our scheme are given by

mpk := (gγ
1 , gα

1 , gα2

1 , . . . , gαn

1 ,uα,uα2
, . . . ,uαn

,uαn+2
, . . . ,uα2n

)

The ciphertext for a subset Γ⊆ [n] and the key for a user y ∈ [n] are given by

ctΓ := (g s
1, g (γ+∑

k∈Γαk )s
1 ,e(g1,uαn+1

)s ·m), sky := uαn−y+1γ

Decryption proceeds analogously to the BGW scheme, and requires a judicious choice of pairing-product
equation to recover e(g1,uαn+1

)s . We note that uαn+1
is omitted from mpk. Indeed, given g s

1 and mpk, it is

easy to compute e(g1,uαk
)s for any k ̸= n +1. We also note that the BGW scheme uses u = g1.

To establish security, we will introduce random Gp2 -components to the 2n terms uα,uα2
, . . . ,uα2n

(including uαn+1
), and the extra entropy from uαn+1

will be used to hide the message m. That is, we apply
the Deja Q framework to the set of 2n linearly independent monomials {α,α2, . . . ,α2n}, as encoded “in
the exponent of u” in the secret keys. To achieve this, we proceed as follows:

uαk subgroup−→ uαk
g r1α

k

2
CRT−→ uαk

g
r1α

k
1

2
subgroup−→ uαk

g r2α
k

2 g
r1α

k
1

2
CRT−→ uαk

g
r2α

k
2+r1α

k
1

2

−→ ·· · CRT−→ uαk
g

r2nα
k
2n+···+r2α

k
2+r1α

k
1

2

where r1, . . . ,r2n ,α1, . . . ,α2n ←R ZN . We can then replace

k 7→ r2nα
k
2n +·· ·+ r2α

k
2 + r1α

k
1

by a truly random function RF(·). As with the IBE scheme, we need to avoid leaking α mod p2 in the
ciphertext in order to carry out the transformation to the secret keys above. That is, we need to eliminate
all occurrences of α in the polynomial γ+∑

k∈Γαk which shows up in the ciphertext. Unfortunately, we
do not know a transformation to the ciphertext distribution analogous to that for the IBE. Instead, we will
need to settle for selective security where the adversary announces the subset Γ at the very beginning, so
that we can use γ as a one-time pad. We will then select γ̃ at random (which is treated as a known scalar)
and program γ so that γ̃= γ+∑

k∈Γαk . We can then rewrite the ciphertext and key as

ctΓ := (g s , g γ̃s ,e(g ,uαn+1
)s ·m), sky := (uαn−y+1γ̃−∑

k∈Γαn+1−y+k
)

Now, the monomials in α only show up on the same side of the pairing in both the ciphertext and the
secret keys in the exponents of u. As in the security proof for the BGW scheme, we will later use the
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Setup(G,1n ):

(α,γ,u) ←R Z2
N ×Gp1 ;

pick R ′
3,k ←R Gp3 ;

u′
k := uαk

R3,k , for k = 1, . . . ,2n;
pick R3,y ←R Gp3 ;

sky := uαn−y+1γR3,y , for y = 1, . . . ,n;

mpk := (g1, g
γ
1 , e(g1,u′

n+1), H,

gα
1 , . . . , gαn

1 ,
u′

1,u′
2, . . . ,u′

n ,u′
n+2, . . . ,u′

2n );
return (mpk, (sk1, . . . ,skn ))

Enc(mpk,Γ⊆ [n]):
pick s ←R ZN ;

ctΓ := (g s
1, g

(γ+∑
k∈Γαk )s

1 );

κ :=H(e(g1,uαn+1
)s );

return (ctΓ,κ)

Dec(mpk,sky ,ctΓ = (c0,c1)):

κ′ := e(c1,u′
n−y+1) ·e(c0,sky

∏
k∈Γ,k ̸=y u′

n+1+(k−y));

return H(κ′)

Fig. 5. Broadcast encryption w.r.t. a composite-order bilinear group G. Here, H : GT → {0,1}λ is drawn from a family of pairwise-
independent hash functions.

fact that the monomial αn+1 does not show up in any sky for which y ∉ Γ. We note that in the proof of
security, the distribution of mpk changes, which is quite unusual for a proof based on the dual system
methodology.

4.2 Our broadcast encryption scheme

Theorem 2. The scheme in Figure 5 is a selectively secure broadcast encryption scheme under the
decisional subgroup assumption in G.

Proof. Correctness follows readily from the fact that for all y ∈ Γ,

e
(
g (γ+∑

k∈Γαk )s
1 ,uαn−y+1) ·e

(
g s

1,uαn−y+1γ
∏

k∈Γ,k ̸=y
uαn+1+(k−y))= e(g1,uαn+1

)s .

Note that for all k ̸= y , n + 1+ (k − y) ∈ {2, . . . ,n,n + 2, . . . ,2n}, which means we can compute uαn+1+(k−y)

given mpk. Next, we show that for any adversary A against the broadcast encryption scheme, there exist
adversaries A1,A2 whose running times are essentially the same as that of A, such that

AdvS-BCE
A (λ) ≤AdvSD1

G,A1
(λ)+2n ·AdvSD2

G,A2
(λ)+2−Ω(λ)

We proceed via a series of games and we use Advi to denote the advantage of A in Game i .

Game 0. This is the real experiment from Definition 2.3.

Game 1. Pick (α, γ̃,u) ←R Z2
N ×Gp1 and set γ := γ̃−∑

k∈Γ∗ αk , where Γ∗ is the selective challenge output
by A. Then,

– compute u′
1, . . . ,u′

2n as in the honest Setup;

– compute mpk as in the honest Setup.

– compute ctΓ∗ = (g s
1, (g s

1)γ̃) and κ0 =H(e(g s
1,u′

n+1));

– simulate {sky : y ∉ Γ∗} using γ̃ and (u′
1, . . . ,u′

n ,u′
n+2, . . . ,u′

2n), by computing

sky = (u′
n−y+1)γ̃ · ( ∏

k∈Γ∗,k ̸=y
u′

n+1+(k−y)

)−1 ·R3,y

Clearly, Game 0 and 1 are identically distributed, so Adv0 =Adv1.



14

Game 2. We change the distribution of (ctΓ∗ ,κ0) by replacing g s
1 with C ←R Gp1Gp2 , that is

(ctΓ∗ ,κ0) := ((C ,C γ̃), H(e(C ,u′
n+1))

It is straight-forward to construct A1 (following the proof for Theorem 1) for which

Adv1 −Adv2 ≤AdvSD1
G,A1

(λ).

Game 3. We change the distribution of u′
1, . . . ,u′

2n from uαk
R ′

3,k to uαk
g

∑2n
i=1 riα

k
i

2 R ′
3,k , where r1, . . . ,r2n ,α1, . . . ,α2n ←R

ZN , as outlined in Section 4.1; this in turn affects the distribution of mpk,κ0 and {sky : y ∉ Γ∗}. We
proceed via a series of sub-games 3. j .0 and 3. j .1 for j = 1,2, . . . ,2n, where

– In Sub-Game 3. j .0, u′
k is given by uαk

g
r jα

k+∑ j−1
i=1 riα

k
i

2 R ′
3,k for k = 1, . . . ,2n;

– In Sub-Game 3. j .1, u′
k is given by uαk

g
∑ j

i=1 riα
k
i

2 R ′
3,k for k = 1, . . . ,2n. Game 2 corresponds to Sub-

Game 3.0.1, and Game 3 corresponds to Sub-Game 3.2n.1.

First, observe that Adv3. j .0 =Adv3. j .1 as before. Next, for j = 1, . . . ,2n, we construct A2 for which

Adv3.( j−1).1 −Adv3. j .0 ≤AdvSD2
G,A2

(λ).

A2 on input (g1, g{2,3}, g3,C ,T ) where C ←R Gp1Gp2 and either T = uR ′
3,k ←R Gp1Gp3 or T =

ug
r j

2 R ′
3,k ←R Gp1Gp2Gp3 , simulates the experiment in Game 2 with the adversary A as follows:

– picks α,α1, . . . ,α j−1,r1, . . . ,r j−1 ←R ZN ;

– for k = 1, . . . ,2n, computes u′
k by choosing R ′

3,k ←R Gp3 and outputting T αk
g

∑ j−1
i=1 riα

k
i

2,3 R ′
3,k

– proceed as in Game 2 using α,u′
1, . . . ,u′

2n as computed above to compute mpk and {sky : y ∉ Γ∗},
and using C as provided and u′

n1
as computed above to compute (ctΓ∗ ,κ0).

Observe that if T = uR ′
3,k , then this is exactly Game 3. j −1.1, and if T = ug

r j

2 R ′
3,k , then this is exactly

Game 3. j .0. It follows readily that

Adv2 −Adv3 ≤ 2n ·AdvSD2
G,A2

(λ).

Game 4. We replace
∑2n

i=1 riα
k
i in u′

k with RF(k) where RF : [2n] → Zp2 is a truly random function; that

is, u′
k is now given by uαk

gRF(k)
2 R ′

3,k , for k = 1, . . . ,2n. Now, we exploit the fact that the Vandermonde
matrix 

α1 α2 · · · α2n
...

...
. . .

...

α2n
1 α2n

2 · · · α2n
2n


is invertible as long as α1, . . . ,α2n mod p2 are distinct, which happens with overwhelming probability
over α1, . . . ,α2n ←R ZN . It follows readily that

Adv3 −Adv4 ≤O(n2/p2).

Game 5. We replace κ0 = H(e(C ,u′
n+1)) with κ0 ←R {0,1}λ. First, recall from Game 1 that {sky : y ∉ Γ∗}

only depend on u′
1, . . . ,u′

n ,u′
n+2, . . . ,u′

2n ; therefore, they only depend on RF(1), . . . ,RF(n),RF(n +
2), . . . ,RF(2n) and do not reveal any information about RF(n + 1). Then, the quantity (from which
κ0 is derived)

e(C ,u′
n+1) = e(C ,uαn+1

gRF(n+1)
2 ) = e(C ,uαn+1

) · e(C , gRF(n+1)
2 )
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has log p2 =Θ(λ) bits of min-entropy coming fromRF(n+1); this holds as long as the Gp2 -component
of C is not 1, which happens with probability 1 − 1/p2. Then, by the left-over hash lemma, κ0 =
H(e(C ,u′

n+1)) is 2−Ω(λ)-close to the uniform distribution over {0,1}λ.

In Game 5, both κ0,κ1 are uniformly random over {0,1}λ. Therefore, the view of the adversary A is
statistically independent of the challenge bit b. Hence, Adv5 = 0. This completes the proof. ⊓⊔

Acknowledgments. I would like to thank Allison Bishop, Dan Boneh, Melissa Chase, Jie Chen, Sarah
Meiklejohn and Alain Passelègue for helpful discussions.
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A Asymmetric Composite-Order Bilinear Groups

In this section, we outline the extension of our result to asymmetric composite-order bilinear groups.
Here, we can work with groups whose group order is the product of two primes, and we obtain IBE
and signature schemes (shown in Fig 6 and 7) where the key generation and signing algorithms are
deterministic. We state the underlying decisional subgroup assumptions, and the proofs are exactly
analogously to the ones from before.

Asymmetric composite-Order bilinear groups. The generator G takes as input a security parameter λ
and outputs a description G := (N ,G , H ,GT ,e), where N is product of distinct primes of Θ(λ) bits, G , H
and GT are cyclic groups of order N , and e : G ×H →GT is a non-degenerate bilinear map. We consider
bilinear groups where N is the product of two distinct primes p1, p2 (that is, N = p1p2). We can write
G =Gp1Gp2 where Gp1 ,Gp2 are subgroups of G of order p1 and p2 respectively. In addition, we use G∗

pi
to

denote Gpi \ {1}. We will often write g1, g2 to denote random generators for the subgroups Gp1 ,Gp2 . We
can also write H = Hp1 Hp2 , where Hp1 , Hp2 ,h1,h2 are defined analogously.

Cryptographic assumptions. Our construction relies on the following two subgroup decisional assump-
tions. We define the following two advantage functions:

AdvSD1
G,A(λ) := |Pr[A(D,T0) = 1]−Pr[A(D,T1) = 1]|

where G←G,T0 ← Gp1 ,T1 ←R Gp1Gp2

and D := (g1, g{1,2},h1,h{1,2}), g1 ←R G∗
p1

, g{1,2} ←R Gp1Gp2 ,

h1 ←R H∗
p1

,h{1,2} ←R Hp1 Hp2

AdvSD2
G,A(λ) := |Pr[A(D,T0) = 1]−Pr[A(D,T1) = 1]|

where G←G,T0 ← Hp1 ,T1 ←R Hp1 Hp2

and D := (h1,h2,h{1,2}, g1, g{1,2}),h1 ←R H∗
p1

,h2 ←R H∗
p2

,

h{1,2} ←R Hp1 Hp2 , g1 ←R G∗
p1

, g{1,2} ←R Gp1Gp2

The decisional subgroup assumptions assert that that for all PPT adversariesA, the advantagesAdvSD1
G,A(λ)

and AdvSD2
G,A(λ) are negligible functions in λ.

Remark 1. Note that Assumption 2 is false if the pairing is symmetric (i.e., there exists an efficiently
computable isomorphism between G and H) since we can pair with h2 to distinguish between T0 and
T1. The term h2 will play the role of g2,3 in the transitions from Game 3.( j −1).1 to 3. j .0 in the proofs of
Theorems 1 and 2.
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Setup(G):
msk := (α,u) ←R ZN ×Hp1 ;
mpk := (g1, gα

1 , e(g1,u), H);
return (mpk,msk)

KeyGen(msk, id ∈ZN ):

return skid := u
1

α+id

Enc(mpk, id ∈ZN ):
pick s ←R ZN ;

return (ct,κ) := (g (α+id)s
1 ,H(e(g1,u)s ))

Dec(skid,ct):

return H(e(ct,skid))

Fig. 6. Adaptively secure anonymous IBE w.r.t. an asymmetric composite-order bilinear group G. Here, H : GT → {0,1}λ is drawn
from a family of pairwise-independent hash functions.

Setup(G):
sk := (α,u) ←R ZN ×Hp1 ;
pk := (g1, gα

1 , e(g1,u));
return (pk,sk)

sign(sk, M ∈ZN ):

return σ := u
1

α+M

verify(pk, M ,σ):

check e(g M
1 · gα

1 ,σ) = e(g1,u)

Fig. 7. Fully secure signature scheme w.r.t. an asymmetric composite-order bilinear group G.


