
PLayPUF: Programmable Logically Erasable PUFs for Forward

and Backward Secure Key Management

Chenglu Jin†, Xiaolin Xu‡, Wayne Burleson‡, Ulrich Rührmair§ and Marten van Dijk†

†University of Connecticut � chenglu.jin@uconn.edu,vandijk@engr,uconn.edu
‡University of Massachusetts Amherst � xiaolinx@umass.edu, burleson@ece.umass.edu
§Horst Görtz Institute for IT-Security, Ruhr Universität Bochum � ruehrmair@ilo.de

October 28, 2015

Abstract

A silicon Physical Unclonable Function (PUF) is a hardware security primitive which imple-
ments a unique and unclonable function on a chip which, given a challenge as input, computes a
response by measuring and leveraging (semiconductor process) manufacturing variations which
di�er from PUF to PUF. In this paper, we observe that by equipping a PUF with a small,
constant-sized, tamper-resistant state, whose content cannot be modi�ed, but can be read by
adversaries, new and powerful cryptographic applications of PUFs become feasible. In partic-
ular, we show a new hardware concept which we call a Programmable Logically erasable PUF
(PLayPUF). Its distinctive feature is that it allows the selective erasure of single challenge-
response pairs (CRPs) without altering any other PUF-CRPs. The selective erasure of a CRP
can be programmed a-priori by using a counter to indicate how many times the CRP can be
read out before erasure.

We show PLayPUFs can realize forward and backward secure key management schemes
for public key encryption. The new notion of backward security informally means that even
if an attacker uncovers a session key through the key management interface, the legitimate
user will detect this leakage before he will ever use the session key. Backward security and
its implementation via PLayPUFs allow the construction of novel, self-recovering certi�cate
authorities (CAs) without relying on a digital master key. Our new CAs immediately detect
key exposure through their interfaces, and recover from it without stopping their service, and
without ever issuing certi�cates based on such exposed keys. This is a crucial step forward in
implementing secure key management. We deliver a full proof-of-concept implementation of our
new scheme on FPGA together with detailed performance data, as well as formal de�nitions of
our new concepts, including the �rst de�nition of stateful PUFs.

1

Contents

1 Introduction 3
1.1 Contributions . 3

2 De�nitional Framework for PUFs 4
2.1 Stateless PUFs vs Stateful PUFs . 6
2.2 Strong PUFs vs Weak PUFs . 8

3 PLayPUFs: Programmable Logically Erasable PUFs 10
3.1 Erasable PUFs . 10
3.2 PLayPUFs: Programmable Logically Erasable PUFs 11
3.3 PLayPUF Design . 12
3.4 Evaluation . 13

4 Key Management 13
4.1 Forward and �Backward� Secure Key Management 13
4.2 Self-Recovering Certi�cate Authority . 16

5 Conclusion 17

6 Acknowledgment 17

A Sketch Proof of Backward Security 22

B The Interface of a PLayPUF 22

C Pseudocodes of PLayPUF Implementation 25

2

1 Introduction

A Physical Unclonable Function (PUF) is a hardware security primitive that utilizes process manu-
facturing variation to implement a unique unclonable function. It has been shown that just having
PUFs (with no additional properties and not assuming �anything else� like some other computational
hardness assumption) is not su�cient to construct a secure Key Exchange (KE) or Oblivious Trans-
fer (OT) protocol in the PUF re-use model (where used PUFs at some moment in the future may end
up at malicious parties) [1]. It has been observed that by using erasable PUFs instead secure KE and
OT protocols can be constructed [2]. Erasable PUFs have an additional interface property which
allows one to erase (deny access to) challenge response pairs without a�ecting others. Implement-
ing this e�ciently based on physics principles alone is an open problem. Therefore, in this paper
we introduce logically erasable PUFs where erasability is implemented by the PUF interface using
O(λ) tamper-resistant state, where λ is a security parameter. Since the Trusted Computing Base
(TCB) is now slightly extended to include this extra tamper-resistant state and tamper-resistant
control circuitry (for implementing the erasability functionality), the control circuitry can be used
to implement more intelligence in the PUF interface so that erasability of challenge response pairs
can be programmed allowing one to set a maximum number of times a challenge response pair can
be read out before it will be erased.

This new concept of a Programmable Logically Erasable PUF, coined PLayPUF1, can be used
to e�ciently implement a forward [3] and �backward" secure secret key management scheme for
public key encryption without having to use some secret master key: During initialization session
keys are stored in an obfuscated way with the property that only a certain speci�c programmable
logically erasable PUF must be used to extract session keys. Our concept of backward security
means here that after this initialization, if a session key is leaked through the PUF interface to a
party other than the legitimate owner, then the owner detects this leakage before he will ever use
this session key (in which case he will generate a new public key with new session keys).

A PLayPUF can also be used to construct a forward and backward secure digital signature
scheme; this allows us to design a Certi�cate Authority (CA) without a digital master key which
can automatically recover from key exposure through its �key storage interface�. In particular, our
approach allows the CA to detect such key exposure immediately before usage of exposed keys after
which it regenerates a new public key and secret key sequence to replace the compromised one. No
fake certi�cates based on exposed keys will pass veri�cation. Our PLayPUF applications are crucial
steps forward in implementing secure key management.

1.1 Contributions

1. We introduce a formal de�nitional framework for PUFs with stateful interfaces in Section 2
and discuss in detail the Trusted Computing Base (TCB) of such physical objects.

2. Our de�nitional framework allows us to introduce and rigorously de�ne Programmable Log-
ically Erasable PUFs (PLayPUFs) in Section 3, where we also describe a PLayPUF design
together with its FPGA implementation and evaluation.

3. We de�ne our concept of �backward� security and show how to construct a forward and
�backward" secure key management scheme and a self-recovering certi�cate authority based
on a PLayPUF in Section 4.

1Represents a malleable substance that can be shaped to one's own desires, similar to play dough for toddlers.

3

Related works are detailed throughout the paper.

2 De�nitional Framework for PUFs

Intuitively, a silicon Physical Unclonable Function (PUF) is a �ngerprint of a chip, that (1) lever-
ages process manufacturing variation to generate a unique function taking �challenges� as input and
generating �responses� as output, which (2) cannot be cloned in hardware (the PUF's internal be-
havior, e.g. its unique physical characteristics or behavior of its wires, cannot be read out accurately
enough; also it is not feasible to manufacture two PUFs with the same responses to a signi�cant
subset of challenges) and (3) cannot be e�ciently learned given a �polynomial number� of challenge
response pairs (making it impossible to impersonate/clone the function's behavior to a new random
challenge in software).

A formal (ideal) de�nition of a PUF (we give a detailed explanation afterwards) is as follows:

De�nition 1. [Stateless PUFs] A family of stateless PUFs is described by manufacturing processes
{Mλ} such that each physical object Pλ ← Mλ can be stimulated by challenges c from a challenge
space Cλ, by which it reacts with corresponding responses r from a response space Rλ. We reserve
a special symbol ⊥ ∈ Rλ for the case, where if stimulated by a challenge c ∈ Cλ for which Pλ does
not have a response, then it can output ⊥. We model Pλ by an associated function g[Pλ] : Cλ → Rλ
that maps challenges c to responses r = g[Pλ](c); functions g[Pλ] execute in poly(λ) time. The pairs
(c, g[Pλ](c)) are called challenge-response pairs (CRPs) of PUF Pλ. The manufacturing process Mλ

can be viewed as a distribution from which a function g[Pλ] is drawn.
Parameter λ represents a design parameter of Mλ and characterizes the �unclonability� property:

Given any poly(λ) sized list of CRPs (ci, g[Pλ](ci)) (intuitively, the CRPs collected by an attacker
by, e.g., eavesdropping, stealing, or black-box access to Pλ while in possession of the PUF) it is
impossible to determine a response g[Pλ](c) for a c 6∈ {ci} by using a probabilistic poly(λ) time
algorithm with probability > 2−λ:

∀λ ∀c←Cλ ∀ppt A Probg←Mλ
[g(c) = r | ⊥ 6= r ← AGg,c,Mλ(1λ, c)] ≤ 2−λ,

where A has oracle access to (1) Gg,c which outputs g(c′) for inputs c′ ∈ Cλ with c′ 6= c, and halts
on input c, and to (2) distribution Mλ.

Measurement Noise. De�nition 1 does not model measurement noise in the PUF itself. In
practice one may need error correction or a fuzzy extractor to correct noise [4]. Also, notice that
in practice responses for challenges that are close in some metric (e.g., Hamming distance) are
correlated and De�nition 1 must be slightly weakened by rede�ning oracle Gg,c to output g(c′) for
inputs c′ ∈ Cλ with d(c′, c) > tλ, and to output ⊥ on inputs c′ ∈ Cλ with d(c′, c) ≤ tλ, where d(., .)
is some metric (e.g., Hamming distance) and tλ some threshold. Note that such an oracle is not
needed if the physical object corresponding to g includes interface logic which expands each input
challenge into a larger sized challenge in a code C with minimum distance at least tλ, and uses the
larger sized challenge as input for the functionality within the physical object that computes on
manufacturing variations. We assume that this type of interface logic as well as interface circuitry
for fuzzy extraction or error correction is included in the physical objects, and therefore we model
combined PUFs + interfaces (which De�nition 1 calls PUFs) as ideal functionalities without noise
and with uncorrelated responses.

4

Manufacturing Variations and Hardware Unclonability. De�nition 1 does not mention
manufacturing variation as the source for unclonability at all and allows physical objects that
implement digital circuitry without any manufacturing variations, e.g., a digital PUF [5] which
has a fused secret key K and implements g(c) = EncK(c) for some semantically secure encryption
scheme. In general, however, the physical objects are a combination of two kinds of functionalities:
(1) a function that depends on the manufacturing variations during fabrication of the object, and
(2) a function that does not depend on manufacturing variations. In the sequel, if we mean the �rst
we say �PUF� and if we mean the latter we say �interface�; their distinction is fuzzy, however, as
manufacturing variations are exploited by analog computing, a translation needs to be made from
analog to digital and does the conversion functionality belong to the interface or not? Examples of
more clear interface functionalities are circuitry that corrects measurement noise, or circuitry that
expands an input challenge into a chain of challenges that are each fed to the PUF in order to
increase the size of the response.

The adversary with physical access to the PUF + interface may use side channel analysis, electron
microscopy, photonic emission analysis, etc. to �gure out what signals are being propagated inside
the PUF + interface; this would lead to microscopic measurements of the manufacturing variations
that de�ne the PUF and can be used to either create a SW clone or to duplicate the manufacturing
variations in a HW clone. HW unclonability not only means that we believe that manufacturing
variations cannot be duplicated in HW, not even by the manufacturer himself, but we also believe
the stronger assumption that collection of useful information through physical attacks (which is
needed to create a HW clone in the �rst place) is not possible (in order to validate this assumption,
some appropriate countermeasures need to be implemented against side channel analysis [6]): I.e.,
we believe that physical access does not give an adversary any advantage over an adversary with
black box access to the physical object. By only considering an adversary to only having black-box
access, we implicitly assume this strong form of HW unclonability. This is formalized in De�nition
1 where the adversarial algorithm A has adaptive access to an oracle which represents the physical
object as a black box.

Trusted Computing Base (TCB). The impossibility of collecting useful information through
physical attacks implies that all of the PUF and interface should remain tamper-resistant in the
sense that an adversary cannot purposefully modify functionality into something that allows him to
gain an advantage over an adversary with only black-box access, e.g. he cannot purposefully modify
the interface functionality and cannot separate the bonding between PUF and interface. In addition,
the internals of those parts of the interface circuit and PUF, which if leaked to an adversary would
gain him an advantage over the adversary with only black-box access, should remain private. The
TCB of a PUF is characterized by the parts of the PUF that are

• tamper-resistant and private,

• tamper-resistant and public, or

• public without tamper-resistance.

Outside the TCB is an interface part of the PUF which is public and which does not need to
be tamper-resistant. This means that we should re�ne De�nition 1: Oracle Gg,c only represents
black-box access to the TCB of the physical object. Oracle Gg,c interacts with the public part of the
physical object which is under control of adversary A (who can modify its functionality in whatever
malicious way as desired). So, oracle access is now a protocol between A simulating the public part

5

of the physical object and oracle Gg,c modeling the TCB part of the physical object as a �nite state
machine. The �nal challenge-response functionality g(.) is given by the very �rst input to the oracle
which represents the challenge and the very last output (after all interactions) of the oracle which
represents the response. In the remainder of this paper we assume such an extension to De�nition
1 although we never make this explicit.

Belief in the stronger HW unclonability (as described above) reduces to belief in the described
TCB: As the TCB of the physical object is larger, it physically embodies a larger attack surface
increasing the probability of some implementation/fabrication weakness which may allow the adver-
sary to gain useful information by means of a physical attack. Therefore, we want physical objects
to be small in size (which also reduces the cost of their fabrication).

With respect to the TCB, De�nition 1 excludes A in getting black-box access to other PUFs; we
know that adversaries have access to multiple PUFs but if such access does not help in attacking a
speci�c PUF, then we do not need to model this. Instead we may model the manufacturing process
Mλ as a distribution from which functionalities g[Pλ] are drawn, i.e., all drawn functionalities are
independent and identically distributed, hence, access to multiple PUFs does not help the adversary
other than learning the general statistics of distribution Mλ. The latter is modeled by giving A
oracle access to Mλ.

Finally, De�nition 1 implicitly assumes that manufacturing is trusted as adversary A cannot
maliciously change Mλ. In particular, he cannot create malicious or bad PUFs [1]. This is realistic
in those scenarios where e.g. the trusted manufacturer collects a list of CRPs to verify authenticity
later on as a trusted third party (however, this is not a scalable solution) or if PUFs are used in
protocols where the PUF owner is not the adversary and is therefore trusted to have bought the
PUF directly from the trusted manufacturer.

Software Unclonability. As explained above De�nition 1 implicitly assumes HW unclonability
in the sense of adversaries with only black-box access to the physical object; it explicitly states that
the object can also not be cloned in software, i.e., there does not exist a polynomial time algorithm
which can predict a response for a new challenge c (whose response has not yet been given by the
oracle) of its choice with probability > 2−λ. In other words, new responses have at least λ bits
entropy unknown to attackers (De�nition 1 does allow some of the response to be SW cloned as
long as at least λ bits entropy are guaranteed).

Notice that we consider polynomial time adversaries meaning that the PUF may use some
computational hardness assumption in order to achieve unclonability. This assumption may be
implicit in the PUF design because of how manufacturing variations are combined. But it can also
be explicitly used as in e.g. assuming a semantically secure encryption scheme in a digital PUF [5].

Other De�nitions. In this paper we do not consider protocols based on PUFs: a formal treatment
of how to reason about physical transfers of PUFs in protocols is given in [7] and is complementary
to our framework.

2.1 Stateless PUFs vs Stateful PUFs

In practice a stateless PUF can be used in many di�erent scenarios by exploiting its uniqueness and
unclonability. For instance, similar to a �ngerprint of a human, it can help us identify chips. Also,
key generation is a promising application of PUF technology because the secret key can be stored
in a physical form instead of a digital form, meaning that the device must be powered on while the
attacker is attempting to extract secret key information from it.

6

Meanwhile many cryptographic protocols based on stateless PUFs have been proposed, including
Key Exchange (KE), Oblivious Transfer (OT) and Bit Commitment (BC) protocols [7�9]. These
protocols target real-world applications in the so-called proper PUF model where PUFs are de-
stroyed after its protocol usage. However, in practice we want to re-use PUFs and this creates new
exploitable vulnerabilities at the protocol level, which does not require cloning or characterizing the
PUF itself [1]. This PUF re-use model has been shown to in�uence all the existing PUF-based KE
and OT protocols [1]. In particular, the impossibility of KE (and consequently OT) based on a
family of stateless PUFs and without �other� security assumptions was proven in [2], see also [10].
Therefore, in order to be able to design more advanced secure crypto protocols based on PUFs, we
either need to allow computational hardness assumptions or allow state.

Of course in practice we do allow computational hardness assumptions based on which e�cient
secure KE exists without the need for (physical transmission of) PUFs. Nevertheless the above
discussion shows the limitations of stateless PUFs: In order to understand how hardware security
in the form of PUFs can play a role in implementing novel security functionalities (besides KE etc.)
based on a small TCB, we investigate PUFs that allow tamper-resistant state, i.e., non-volatile
memory (which can be read but cannot be modi�ed by the attacker). In this paper we show
that a small stateful extension to a PUF's TCB e�ciently implements so-called erasability of PUF
responses. It allows two advances in key management: implementation of backward security and
self-recovering certi�cate authority, see Section 4.

Assuming non-volatile memory to be private is, given existing physical attacks, not realistic.
For this reason, we may only assume tamper-resistant non-volatile memory in PUFs with state.
Therefore, belief in the above stronger HW unclonability intuitively means a TCB in which state is
not required to be private. PUFs with tamper-resistant not-private state are de�ned as follows:

De�nition 2. [Stateful PUFs] A family of PUFs with tamper-resistant state is described by man-
ufacturing processes {Mλ} such that each physical object Pλ ← Mλ has an internal state s from a
state space Sλ of O(λ) size, and can be stimulated by challenges c from a challenge space Cλ, by
which it reacts with corresponding responses r from a response space Rλ (which includes the empty
response ⊥). We model Pλ by an associated poly(λ) time algorithm g[Pλ] : Cλ×Sλ → Rλ×Sλ that
maps challenges c to responses r with

(r, snew) = g[Pλ](c, scurrent), (1)

where initially scurrent = ε ∈ Sλ. The manufacturing process Mλ can be viewed as a distribution
from which an algorithm g[Pλ] is drawn.

Parameter λ represents a design parameter of Mλ and characterizes the �unclonability� property:
For all λ, c ∈ Cλ, and ppt algorithms A,

Probg←Mλ
[∃scurrent,snew∈Sλ (r, snew) = g(c, scurrent) | ⊥ 6= r ← AGg,c,Mλ(1λ, c)] ≤ 2−λ,

where oracle Gg,c keeps state scurrent (initialized to scurrent = ε) and receives besides input c′ ∈ Cλ
a second input k ∈ {0, 1} indicating whether A wants to receive the output of the oracle:

If c′ 6= c or k = 0, then Gg,c simulates algorithm (r, snew) = g(c′, scurrent), outputs (r, snew) if
k = 1 and outputs the empty string if k = 0, and updates its state scurrent to snew; if c

′ = c and
k = 1, then oracle Gg,c halts.

In the above de�nition �ag k = 0 indicates that the adversary is not in possession of the PUF
while it is being challenged. In this case the adversary does not receive the response. Since challenges

7

are in general used as public strings in protocols or systems, we assume that the adversary does
learn the sequence of challenges issued to the PUF when it was not in his possession. For this reason
the oracle is �ne with processing challenge c (by updating state scurrent) if k = 0 as it will not reveal
the corresponding response. If k = 1 (indicating that the PUF is in possession of the adversary),
then A indeed learns from the oracle how state scurrent is updated (it is not private), however, he
can not modify its content (it is tamper-resistant). The adversary's task is to predict a non-empty
response r with (r, .) = g(c, s) for some s without asking the oracle for response r: this should be
hard and represents SW unclonability.

De�nition 2 is very strong in that in theory it allows secure processors: scurrent can be used
to implement a memory integrity checking interface [11] and an ORAM interface [12] (with their
data structures in external DRAM in the public part/domain), to implement certi�ed execution
etc., in fact the Aegis secure processor architecture was extended with PUFs for storing secret
keys in [13]. In practice, a processor should execute with small performance overhead and this
means that it needs an internal cache structure with the memory integrity checking interface and
ORAM interface between the lowest level cache and DRAM. Hence, scurrent should include this
cache structure which should remain private (besides being tamper-resistant). The TCB of a secure
processor becomes quite large in area size and must include private non-volatile memory. For this
reason literature in secure processor technology either implicitly assumes a remote attacker who can
monitor or gather information about the processor's I/O (to DRAM) by executing his own malicious
SW thread or assumes a physical attacker and explanations about how to counter physical attacks,
see e.g. [14, 15]. In this paper we focus on the physical attacker (the reason why PUF research
started in the �rst place) and we only wish to use De�nition 2 to describe physical objects with a
truly (in concrete terms) small TCB.

2.2 Strong PUFs vs Weak PUFs

By convention, if the challenge space Cλ is too large to be exhaustively enumerated by an adversary,
we call PUF Pλ strong. Otherwise, it is called a weak PUF. The borderline between weak and strong
is fuzzy in that the computational power of the adversary (which may change over time) decides
what is weak and what is strong. An asymptotic de�nition for families of PUFs can be precise:

De�nition 3. A family of PUFs described by manufacturing processes {Mλ} with challenge spaces
{Cλ} is called f -strong if at any moment of a PUF's execution there are Ω(f(λ)) challenges in Cλ
which do not lead to an empty response ⊥, and is called weak if the number of these challenges is
O(1).

Without giving a formal proof, we argue that since at least λ independent bits of information
(in the form of manufacturing variations) for at least one unclonable response must be present
within Pλ, the minimum possible size of Pλ is O(λ) mm3 (by the holographic bound by t'Hooft and
Susskind a bit of information has a minimum physical size [16]). This observation which has been
made in [17] as well, de�ned below, will help us in our analysis of PUFs:

De�nition 4. A family of stateless PUFs described by manufacturing processes {Mλ} has bounded
size if the physical size of the TCB (the assumed tamper-resistant part of) a physical object Pλ ←Mλ

is O(λ) mm3.

If a family of physical objects can be proven to be a f -strong family of PUFs without assuming
any computational hardness assumption, then Rλ must be represented by at least O(f(λ) · λ) bits,
hence f(λ) = O(1). This sketches the proof of the following lemma:

8

Lemma 1. A family of PUFs described by manufacturing processes {Mλ} with bounded size can
only exist if (1) it is weak, or (2) its design is based on some computational hardness assumption.

Note that a family of weak PUFs described by manufacturing processes {Mλ} can be extended
to simulate a family of 2λ-strong PUFs by extending the PUF interfaces with a semantically secure
variable length encryption algorithm Enc [5]. The new manufacturing processM ′λ usesMλ to create
a physical object with functionality g(.)←Mλ and extends the object with an additional interface
which interprets a challenge of ≥ λ bits as a plain text and computes the response r = Encg(IV)(c).
Here, K = g(IV), one of the weak PUF's responses, is used as secret key of the encryption.

In practice, however, additional public, i.e., not private, helper information needs to be written
into the interface in order to correct for measurement noise of gλ(IV); the helper information di�ers
from PUF to PUF, hence, the interface needs non-volatile storage. If this non-volatile storage is
outside the TCB, then the adversary can tamper with the helper info with the aim to slightly change
the secret key K = g(IV), this results in a slightly di�erent attacker's game with respect to the
encryption scheme which needs to be included in the security assumption:

Lemma 2. Given a semantically secure encryption scheme and a family of weak PUFs of bounded
size, a family of 2λ-strong stateful PUFs of bounded size can be constructed.

The construction dramatically extends the TCB with a large-sized control circuitry which should
not only (1) be tamper-resistant such that the logical functionality of the control circuitry cannot
be maliciously changed, but should also (2) be private in that internal wire values of the control
circuitry cannot be read by an adversary, since the wire values of the implemented encryption
circuitry will have information about the key K = g(IV).

For completeness, we mention that the existence of other kinds of families of 2λ-strong PUFs
with much smaller TCBs are into some extend in jeopardy as advanced attacking methods using
e.g. Machine Learning (ML), which treat the PUF as a black box, have been able to break, i.e.
software clone, existing strong PUF designs such as the arbiter PUF or the XOR of several arbiter
PUFs [18,19].

A recent breakthrough proposes the �rst stateless cryptographically secure PUF, whose security
can be reduced to the hardness of Learning Parity with Noise (LPN) [20]. In particular, stateless
implies that no wires need to be made disfunctional. As in this construction, a PUF interface (on top
of a weak stateless PUF of bounded size) which simulates a 2λ-strong PUF of bounded size is required
to be tamper-resistant and private; its size is much smaller as it only needs to compute a Gaussian
elimination and a hash function. [The main advantage of the new PUF is that it self-corrects all
measurement noise without public helper information (which is needed in fuzzy extraction or error
correction), and this means that no left-over hash lemma is needed to compress the response to a
private string of bits; therefore, the LPN based PUF can correct much more measurement noise
than what would otherwise be theoretically impossible (with helper information).]

Lemma 3. Based on the hardness of LPN, a family of 2λ-strong stateless PUFs of bounded size
can be constructed from a family of weak stateless PUFs of bounded size.

We notice that it still remains an open problem to design a strong PUF whose logical interface
does not need to be private, i.e., even though tamper-resistance is required, is it possible to reduce
the internal functionality that needs to remain private to only the PUF part which implements the
functionality that depends on manufacturing variations?

Now that we have discussed the de�nitional landscape of PUFs and have formally introduced
state in their interfaces, we will de�ne and discuss erasable PUFs in the next section.

9

3 PLayPUFs: Programmable Logically Erasable PUFs

3.1 Erasable PUFs

To �x KE in the re-use model (or posterior access model), Rührmair et. al pointed out that a
PUF should be strengthened with other complementary features, such as making the CPRs to be
�erasable� [21]. To make this possible a PUF must have a form of non-volatile state to enable
this erasure operation. In [22], erasability is de�ned by an extra interface function ER(.) which
represents a special erasure operation. If ER(.) takes as input a challenge c of PUF P , it turns P
into a physical system P ′ with the following properties:

1. P ′ has got the same set of possible challenges as P (and P ′ is again an erasable PUF). Let E
be the set of previous inputs to ER(.), including c.

2. For all challenges c 6= c, it holds that gP ′(c) = gP (c).

3. Given a list of all collected CRPs so far, c, and black-box access to P ′, it is impossible
to determine gP (c) with a probability that is substantially better than random guessing.
Intuitively, the response gP (c) of the erasable PUF for challenge c has been erased in P ′

and for this reason we call the challenges in E erased. Notice that this property strengthens
De�nition 1 in that responses of erased challenges (besides those of unused challenges) can
also not be cloned.

We adapt this de�nition to our framework: we interpret an input challenge as a pair consisting of
the original input challenge and a �ag indicating whether we want to erase the corresponding CRP
or not.

De�nition 5. [Erasable PUFs] A family of strong PUFs with tamper-resistant state described by
manufacturing processes {Mλ} is called erasable if each algorithm g ← Mλ has the property that
it takes as input a challenge (c, e) ∈ Cλ with e ∈ {0, 1} together with state scurrent ∈ Sλ such that
g((c, e), scurrent) = ḡE((c, e), scurrent) where algorithm ḡ is de�ned as follows:

• Initially we de�ne the set of erased states E = ∅.

• Whenever (r, snew) = g((c, e), scurrent) is executed, E is extended with c if and only if e = 1
(indicating that the corresponding response should be erased). If e = 1 or c ∈ E, then ḡ outputs
(⊥, snew), otherwise it outputs (r, snew).

Notice that e = 1 indicates to the PUF that the response corresponding to c should be erased.
Algorithm ḡ has oracle access to what has been erased in the past and outputs the empty response
if the corresponding challenge has been erased before. By requiring g = ḡ we know that the actual
physical object implements this type of erasability as well. The unclonability property for erasable
PUFs implies that if a response to a challenge has been erased (e = 1 in De�nition 5), then an
adversary without access to this response (k = 0 in De�nition 2 for the interaction which generates
the response) cannot replay back this previous state in which the PUF will issue the response again
and is not able to gather information which can predict a su�cient number of response bits.

In our de�nition, we have tamper-resistant state scurrent which can be monitored by an adversary
who is in possession of the PUF. If somehow state scurrent is physically integrated with the PUF
functionality based on manufacturing variations, then one may believe in scurrent being private

10

as well. Up to now, it is still very di�cult to implement this type of erasable PUF practically,
because the PUF should be able to erase each CRP individually. This does not combine well in
the popular PUF designs of [23, 24]. Nevertheless, Rührmair et. al suggested to use a new SHIC
(Super-High Information Content) PUFs as a candidate solution for erasable PUFs [22]. Because
each pair of CRPs of a SHIC PUF is information theoretically independent, one is able to erase a
CRP individually [25]. One limitation of SHIC PUFs is that they can only be read out at a slow
rate (102 to 103 bits per second), while many of the other PUFs can be read out at 106 bits per
second [22]. Hence, this solution does not �t a high throughput application; it also does not o�er a
general design principle applicable to all PUFs.

3.2 PLayPUFs: Programmable Logically Erasable PUFs

In this paper we propose to implement an erasable PUF by adding extra features not in the PUF
design itself but in its logical interface as de�ned in De�nition 5; this interface extension will
implement the erasability functionality and can be used (as a general design principle) to turn any
PUF into an erasable PUF. So, not the underlying PUF itself evolves as a dynamical physical system
as proposed in [1,22], but the extended interface will evolve dynamically. Since the extended interface
implements erasability logically, it needs non-volatile state in order to remember its dynamically
changing state. We note that, in general, one of the advantages of using PUF technology is that
it does not necessarily require any non-volatile memory to store digital state. In this paper, we
sacri�ce this advantage as it will allow us to gain other important bene�ts.

We can make the logically erasable PUF even stronger by programming a counter value ctr
representing the number of times a response for a given challenge can be generated, i.e. once this
number ctr is exceeded, challenge c ought to be automatically erased. This extra intelligence in the
PUF interface allows forward as well as �backward� secure secret key management and an e�cient
key renewal without a master digital key, as explained in Section 4.

De�nition 6. [PLayPUFs] A family of strong PUFs with tamper-resistant state described by
manufacturing processes {Mλ} is called programmable logically erasable if each algorithm g ← Mλ

has the property that it takes as input a challenge (c, ctr) ∈ Cλ with ctr ∈ {0, 1, . . .} together with
state scurrent ∈ Sλ such that g((c, ctr), scurrent) = ḡE((c, ctr), scurrent) where algorithm ḡ is de�ned
as follows:

• Initially we de�ne E as the function which maps each challenge in Cλ to ∞.

• Whenever (r, snew) = g((c, ctr), scurrent) is executed, if E(c) 6= 0, then ḡ outputs (r, snew) and
E(c) is updated to min{(E(c)−1), ctr} (indicating that the response corresponding to c moves
at least one step closer to being erased), and if E(c) = 0 (the response corresponding to c has
been erased), then ḡ outputs (⊥, snew).

For completeness we notice that the logically recon�gurable PUF in [26] was the �rst to use
tamper-resistant state for the purpose of recon�guring all the CPRs together. Here, we provide a
general framework of how to use tamper-resistant state in combination with PUFs which allows us
to de�ne PLayPUFs for erasure of individual CRPs, which in turn form the basic building block for
constructing self-recovering CAs with backward security (see Section 4).

11

RB-Tree Interface

Memory with RBT inside it

Verifier

PUF

Root
Hash

Hash
Function

Extended TCB

7

11

2 14

151

5 8

Challenge
Response/
Exception

Figure 1: The entire system of Programmable Logically Erasable PUF

3.3 PLayPUF Design

We propose to merge a Red-Black Tree [27,28] and an Authenticated Search Tree [29] to construct
a data structure which can be stored in public storage and which integrity and freshness can be
veri�ed using a small O(λ) sized tamper-resistant state inside the TCB of the PUF. The tree
structure records all challenges with their counter values.

For a new challenge c, the potentially untrusted tree structure must provide to the TCB (by
using its authenticated search tree structure) a �proof of non-existence� for c so that the TCB allows
a response for c to be computed. The tree needs to be updated with c and its counter value. Here,
the rotation operation of the Red-Black Tree [27] structure of the tree is used to keep the tree
balanced. This means that the depth of the tree will be proportional to the log of the number of
nodes in the tree, for any access pattern.

For an already used challenge c as input, the tree structure must provide to the TCB (by using
its authenticated search tree structure) a �proof of integrity and freshness� for c and its most recent
counter value E(c), see De�nition 6. The TCB will check whether E(c) 6= 0 in which case it allows
a response for c to be computed.

Fig. 1 shows our PLayPUF design. It consists of a public software interface with public mem-
ory/state and a hardware TCB which contains the PUF functionality based on manufacturing
variations and a small O(λ) sized tamper-resistant state in the form of the root-hash of the tree.
Each node in the tree structure contains the value of a used challenge, the counter value associated
with that challenge to indicate the number of times this challenge can still be used before being
erased, three pointers pointing to its parent and its two children (if existing), and the color and
hash value of this node; the hash is computed over the challenge, counter and the hash values stored
in its children. The hashes are used to prove non-existence or integrity and freshness.

Intuitively, the PLayPUF works as follows: the software interface receives a challenge request
and sends su�cient information from the untrusted memory to the TCB for veri�cation. If the
untrusted memory has been veri�ed successfully and the requested challenge has not been erased,
the TCB will decrement the counter, evaluate the PUF with that challenge, compute new hash
values in the tree and update the trusted root hash value. With the new hash values computed by
the TCB, the interface will update the untrusted memory accordingly. A detailed description and
pseudocodes of our PLayPUF design are in Appendix B and Appendix C, respectively.

12

4 6 8 10 12 14 16 18
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Depth of the RB Tree

La
te

nc
y

(n
s)

Average
Worst−case

(a) Initialization

4 6 8 10 12 14 16 18
500

1000

1500

2000

2500

3000

3500

4000

4500

Depth of the RB Tree

La
te

nc
y

(n
s)

Average
Worst−case

(b) Extraction

Figure 2: The average and worst-case latency for serving one challenge request with respect to the
depth of the RB Tree.

3.4 Evaluation

We have implemented our proposed architecture on Xilinx Kintex FPGA. Due to the �xed length
of the inputs to the hash function, we decided to build a one-way function from AES-128 by
the Davies-Meyer construction [30, 31]. We measured the performance of our implementation for
challenge initialization (each challenge adds a new node in the tree) and response extraction (all
challenges are existing in the tree) separately. Fig. 2 illustrates the average and worst-case latency
of serving one request with respect to the depth of the RB-tree. We can see that the latency
grows linearly with respect to the depth of the RB tree, which shows that the complexity of search,
veri�cation and update operations is only O(lg(n)), where n is the number of nodes in the tree.
This performance is orders of magnitude higher than that of a SHIC PUF and comparable with the
throughput of other strong PUFs [22].

4 Key Management

4.1 Forward and �Backward� Secure Key Management

Forward security is a widely-used technique to mitigate damage of exposure of secret keys [32]. If
in a forward secure key update scheme a current secret key is stolen/leaked, then leakage of any
previously used secret keys is prevented, implying that all previous encrypted data or communication
will not be compromised.

Forward secure public key encryption was proposed in [3]. It allows secret keys to be updated
at regular periods with forward security in that, if a cipher text y is the result of a public key
encryption of x with public key PK and index i, then y can be decrypted using a secret key SKi,
and the leakage of SKi does not expose SK1, SK2, . . . , SKi−1.

A complementary notion of �backward� security should guarantee that, if SKi leaks, then also
no information about SKi+1, SKi+2, . . . is exposed. Since the key update algorithm needs SKi to
compute next keys, leakage of SKi would necessarily compromise all future keys. We notice that if
we restrict ourselves to the keys represented by the leaves from the Binary Tree Encryption (BTE)

13

used in [3], then a key update solely based on such a key can only generate new children in the
BTE and this can therefore never reach other leaves including those representing next keys. Also
the properties of the used BTE are such that no useful information about a parent of such a leaf
can be learned with which information about the keys of other leaves can be computed so that
encryption based on those keys can be broken. Therefore, in the remainder of this paper we denote
by SK1, SK2, . . . , SKn the keys in the BTE which correspond to leaves.

Since the key update algorithm does not work anymore (which is necessary for backward security
as explained above), all keys will need to be stored in secure memory. The secure memory may
implement a trusted timer used for releasing keys from memory. To reduce the TCB of such a secure
memory, a master key can be used to encrypt each of the SKi. Now the whole key storage relies on
keeping the master key private. Clearly, relying on a master key does not truly give a solution for
backward security as its leakage will compromise the whole system. Is it possible to get away with
a digital master key, can we somehow use a PUF as a sort of master key? We will show that with
a PLayPUF we can do exactly this and even allow a stronger notion of backward security, see also
Fig. 3:

De�nition 7. [Backward Security] (Sketch) A triple (Str, Int, Ext), representing an address to
storage mapping Str, a stateful interface Int, and an extraction algorithm Ext, encodes a sequence
of keys {SKi} if SKi+1 = ExtInt,Str(SKi) for i ≥ 0 with SK0 = ε, where oracle access to Int
means that Int properly updates its own internal state.

The triple (Str, Int, Ext) is called backward secure (for parameter λ) if the following property
holds: If

1. an adversary eavesdrops SKj from the owner

2. after which the adversary with access to storage Str and black-box access to interface Int
tampers with Str such that

3. if the owner reconstructs SKi+1 = ExtInt,Str(SKi) for j ≤ i ≤ h − 1 and SK ′h+1 =
ExtInt,Str(SKh)

4. where h ≥ j is the minimal index for which (a) SK ′h+1 6= SKh+1 or (b) SK ′h+1 = SKh+1 is
leaked to the adversary,

then the owner can detect tampering or leakage of SKh+1 before he will ever use SKh+1 for the �rst
time (with probability ≥ 1− negl(λ)).

De�nition 7 implies that if the owner has started using SKi, an adversary cannot get any
information about SKi from storage Str through its interface at all. To realize backward security, we
propose to use a PLayPUF to securely encode and store the forward secure secret keys constructed
as the leaves of the binary tree encryption in [3]. In an initialization phase, (a) all the forward
secure secret keys SKi are generated, (b) a random initial challenge c1 is selected, (c) subsequent
challenges are computed using

ci+1 = f(SKi), (2)

where f(.) is a one-way function, (d) the PLayPUF is used to generate responses ri with

(ri, si+1) = gE((ci, 1), si), s1 = ε (3)

14

SK1 SKj SKh+1 SKN
... ...

SKj is obtained by an
adversary not
through Int.

When the owner tries to
uncover SKh+1, he can detect the

leakage or tampering of SKh+1.

SKN-1

Stop using these secret keys
before they are ever used.

...

SKh+1 is leaked
through Int or

tampered with in Str .

Figure 3: Backward security for secret key management according to De�nition 7.

according to De�nition 6, and (e) only the initial challenge c1 and the masked keys

Mi = SKi ⊕ e(ri) togther with MACSKi(Mi), for i ≥ 1, (4)

where e(.) uses privacy ampli�cation [33] for extracting λ bits from ri, are stored in the public
storage Str.

Since each challenge ci has its counter set to 1 during the initialization phase, each secret key
SKi can be retrieved exactly once after the initialization phase. In order to retrieve SKi+1 the
legitimate owner, who knows the current key SKi, simply asks the PLayPUF (which represents
Int) for the response ri+1 corresponding to ci+1 = f(SKi) and computes SKi+1 = Mi+1 ⊕ ri+1. If
the PLayPUF responds with ⊥ rather than ri+1 or if the MAC given the computed SKi+1 does not
verify, then the legitimate owner concludes that SKi+1 has been compromised and will not start
using SKi+1. The legitimate owner only keeps the newly retrieved key SKi+1 and discards the old
key SKi.

Intuitively, if the legitimate owner properly retrieves SKi+1, then he knows that the PLayPUF
did not yet erase the corresponding CRP (ci+1, ri+1), hence, it has not been leaked through the
PLayPUF to an adversary. In addition, once SKi+1 is retrieved the PLayPUF erases (ci+1, ri+1),
hence. an adversary cannot retrieve information about SKi+1 in the future. The proof of the
following theorem is sketched in Appendix A.

Theorem 1. The above PLayPUF based key management scheme is backward secure.

Our scheme realizes backward security by minimally extending a PUF's TCB with an O(λ)
tamper-resistant state. Backward security renders recent attacks and threats from insiders [34, 35]
as well as remote software attacks impossible. This is a crucial step forward in secure secret key
management; with backward security a trusted/secure Public Key Infrastructure (PKI) is possible2,
without backward security (the current state of the art) PKI is believed to be under risk [36].

Our evaluation of our PLayPUF design shows that the proposed key management is very e�cient:
E.g., if secret keys are updated every 10 minutes for one year, we need 52560 challenge requests
during initialization. This only takes ≈ 0.19s for our implementation on the Xilinx Kintex 7 FPGA.

2To be able to recover from failures or denial-of-service one may use a second properly isolated storage to backup
all the keys with another PLayPUF.

15

SK1,1 SK1,2 SK1,i SK1,N-1 SK1,N... ...SK1,i-1

SK2,1 SK2,2 SK2,i SK2,N-1 SK2,N... ...SK2,i-1

SK3,i SK3,N-1 SK3,N...

Immediately detect leakage of SK1,i, revoke
Cert1 = [(PK1,CA), sig (PK1,CA)] for usage during time slot ≥ i

Generate SK3,i to SK3,n, initialize them into storage,
and broadcast Cert3 = [(PK3,CA), sig (PK3,CA)]SK2,i

SK2,i

SK1,i is leaked to an
adversary.

No info is leaked due to
forward security.

Figure 4: Self-Recovery Certi�cate Authority

4.2 Self-Recovering Certi�cate Authority

The above key management scheme can also be applied to forward secure signature schemes [37�
43]. We propose to use the forward secure signature scheme in [38] which is constructed from a
hierarchical identity based signature scheme and use a tree structure with the same property as
explained above for the tree based encryption in [3], i.e., we can again use the keys at the leaves of
the tree structure with each leaf not revealing any useful information about the other leaves. This
allows us to construct a secure Certi�cate Authority (CA), which is very much needed given the
recent key exposures and attacks originating from fake certi�cates [44].

The main concept is depicted in Fig. 4. The CA generates two public keys with corresponding
forward and backward secure secret key sequences

(PK1;SK1,1, . . . , SK1,N) and (PK2;SK2,1, . . . , SK2,N)

for signing certi�cates. If an attacker obtains one of the secret keys SK1,i through the interface of
the key storage, then the CA will immediately detect this leakage as soon as the CA attempts to
reconstruct SK1,i. After detection, the CA will start a self-recovery process: the CA (1) discards
sequence SK1,i to SK1,N , revokes the use of PK1 for veri�cation of certi�cates corresponding to
time slots i, i + 1, etc., but does not need to revoke PK1 for veri�cation of previously issued
certi�cates as these are not fake, (2) generates a new public key with corresponding forward and
backward secure secret key sequences (PK3;SK3,1, . . . , SK3,N), and (3) uses SK2,i (which is not
leaked or tampered with) to certify PK3. After this self-recovery process, the CA still maintains

16

two public keys with corresponding forward and backward secure secret key sequences (this concept
can be generalized to more sequences if an adversary can get information about multiple keys within
the same time slot).

Key Updates vs. One-Time Initialization. While existing forward secure encryption/signature
schemes require e�cient key updates, we only need an e�cient one-time initialization of all keys in
order to realize backward security but in such a way that, given a leaked key, learning information
about other keys with which encryption/signatures can be broken/impersonated is hard. Our
requirements seem weaker and we expect the possibility of more e�cient forward and backward
secure public key encryption/signature schemes.

5 Conclusion

We introduced the �rst formal de�nitional framework for PUFs with state. Within this framework
we de�ned a new hardware security primitive, called a Programmable Logically Erasable PUF or
PLayPUF for short. A PLayPUF can be constructed from any PUF by adding a stateful interface
into the PUF's TCB. The extended TCB only assumes a small (O(λ) where λ is a security parameter)
tamper-resistant state (i.e., the state can be read by an adversary but cannot be modi�ed without
damaging the PLayPUF's functionality). Experiments show that our PLayPUF construction is
e�cient.

As a novel security guarantee we de�ned backward security for key management and we showed
how this can be realized by using a PLayPUF. Backward security allows detection of leaked or
tampered secret keys before they are being used. We showed how backward security (in combination
with forward security) allows us to design a Certi�cate Authority (CA) who is able to recover
from a leaked signing key in that a new public key and backward secure secret key sequence can
be bootstrapped and (securely) certi�ed by the CA itself. The old public key only needs to be
invalidated for verifying new certi�cates but can still be used for verifying old certi�cates.

6 Acknowledgment

This project was supported in part by AFOSR MURI under award number FA9550-14-1-0351.

17

References

[1] U. Ruhrmair and M. van Dijk, �Pufs in security protocols: Attack models and security evalu-
ations,� in Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 286�300.

[2] M. van Dijk and U. Rührmair, �Physical unclonable functions in cryptographic protocols: Se-
curity proofs and impossibility results.� IACR Cryptology ePrint Archive, vol. 2012, p. 228,
2012.

[3] R. Canetti, S. Halevi, and J. Katz, �A forward-secure public-key encryption scheme,� in Ad-
vances in Cryptology Eurocrypt 2003. Springer, 2003, pp. 255�271.

[4] Y. Dodis, L. Reyzin, and A. Smith, �Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data,� in Advances in cryptology Eurocrypt 2004. Springer, 2004,
pp. 523�540.

[5] B. Gassend, M. V. Dijk, D. Clarke, E. Torlak, S. Devadas, and P. Tuyls, �Controlled physical
random functions and applications,� ACM Transactions on Information and System Security
(TISSEC), vol. 10, no. 4, p. 3, 2008.

[6] S. Tajik, E. Dietz, S. Frohmann, J.-P. Seifert, D. Nedospasov, C. Helfmeier, C. Boit, and
H. Dittrich, �Physical characterization of arbiter pufs,� in Cryptographic Hardware and Embed-
ded Systems�CHES 2014. Springer, 2014, pp. 493�509.

[7] C. Brzuska, M. Fischlin, H. Schröder, and S. Katzenbeisser, �Physically uncloneable functions
in the universal composition framework,� in Advances in Cryptology CRYPTO 2011. Springer,
2011, pp. 51�70.

[8] U. Rührmair, �Oblivious transfer based on physical unclonable functions,� in Trust and Trust-
worthy Computing. Springer, 2010, pp. 430�440.

[9] R. Ostrovsky, A. Scafuro, I. Visconti, and A. Wadia, �Universally composable secure com-
putation with (malicious) physically uncloneable functions,� in Advances in Cryptology�
EUROCRYPT 2013. Springer, 2013, pp. 702�718.

[10] D. Dachman-Soled, N. Fleischhacker, J. Katz, A. Lysyanskaya, and D. Schröder, �Feasibil-
ity and infeasibility of secure computation with malicious pufs,� in Advances in Cryptology
CRYPTO 2014. Springer, 2014, pp. 405�420.

[11] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and S. Devadas, �E�cient memory integrity
veri�cation and encryption for secure processors,� in Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 2003, p. 339.

[12] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas, �Path oram: An
extremely simple oblivious ram protocol,� in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security. ACM, 2013, pp. 299�310.

[13] G. E. Suh, C. W. O'Donnell, and S. Devadas, �Aegis: A single-chip secure processor,� Infor-
mation Security Technical Report, vol. 10, no. 2, pp. 63�73, 2005.

18

[14] K. Tiri and I. Verbauwhede, �A logic level design methodology for a secure dpa resistant asic
or fpga implementation,� in Proceedings of the conference on Design, automation and test in
Europe-Volume 1. IEEE Computer Society, 2004, p. 10246.

[15] S. Nikova, C. Rechberger, and V. Rijmen, �Threshold implementations against side-channel
attacks and glitches,� in Information and Communications Security. Springer, 2006, pp. 529�
545.

[16] L. Susskind, �The world as a hologram,� Journal of Mathematical Physics, vol. 36, no. 11, pp.
6377�6396, 1995.

[17] U. Rührmair, J. Sölter, and F. Sehnke, �On the foundations of physical unclonable functions.�
IACR Cryptology ePrint Archive, vol. 2009, p. 277, 2009.

[18] U. Ruhrmair, J. Solter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror, J. Schmid-
huber, W. Burleson, and S. Devadas, �Puf modeling attacks on simulated and silicon data,�
Information Forensics and Security, IEEE Transactions on, vol. 8, no. 11, pp. 1876�1891, 2013.

[19] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi, F. Koushanfar, and W. Burleson,
�E�cient power and timing side channels for physical unclonable functions,� in Cryptographic
Hardware and Embedded Systems�CHES 2014. Springer, 2014, pp. 476�492.

[20] C. Herder, L. Ren, M. van Dijk, M.-D. M. Yu, and S. Devadas, �A stateless cryptographically-
secure physical unclonable function.�

[21] M. van Dijk and U. Rührmair, �Protocol attacks on advanced puf protocols and countermea-
sures,� in Proceedings of the conference on Design, Automation & Test in Europe. European
Design and Automation Association, 2014, p. 351.

[22] U. Rührmair, C. Jaeger, and M. Algasinger, �An attack on puf-based session key exchange
and a hardware-based countermeasure: Erasable pufs,� in Financial Cryptography and Data
Security. Springer, 2012, pp. 190�204.

[23] B. Gassend, D. Lim, D. Clarke, M. Van Dijk, and S. Devadas, �Identi�cation and authentication
of integrated circuits,� Concurrency and Computation: Practice and Experience, vol. 16, no. 11,
pp. 1077�1098, 2004.

[24] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas, �A technique to build
a secret key in integrated circuits for identi�cation and authentication applications,� in VLSI
Circuits, 2004. Digest of Technical Papers. 2004 Symposium on. IEEE, 2004, pp. 176�179.

[25] U. Rührmair, C. Jaeger, C. Hilgers, M. Algasinger, G. Csaba, and M. Stutzmann, �Security
applications of diodes with unique current-voltage characteristics,� in Financial Cryptography
and Data Security. Springer, 2010, pp. 328�335.

[26] S. Katzenbeisser, Ü. Kocaba³, V. Van Der Leest, A.-R. Sadeghi, G.-J. Schrijen, and C. Wachs-
mann, �Recyclable pufs: Logically recon�gurable pufs,� Journal of Cryptographic Engineering,
vol. 1, no. 3, pp. 177�186, 2011.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction to algorithms. MIT
press Cambridge, 2001, vol. 2.

19

[28] R. Bayer, �Symmetric binary b-trees: Data structure and maintenance algorithms,� Acta in-
formatica, vol. 1, no. 4, pp. 290�306, 1972.

[29] A. Buldas, P. Laud, and H. Lipmaa, �Accountable certi�cate management using undeniable
attestations,� in Proceedings of the 7th ACM conference on Computer and communications
security. ACM, 2000, pp. 9�17.

[30] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography.
CRC press, 1996.

[31] AES, NIST, �Advanced encryption standard,� Federal Information Processing Standard, FIPS-
197, vol. 12, 2001.

[32] M. Bellare and B. Yee, �Forward-security in private-key cryptography,� in Topics in Cryptology
CT RSA 2003. Springer, 2003, pp. 1�18.

[33] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, �Generalized privacy ampli�ca-
tion,� Information Theory, IEEE Transactions on, vol. 41, no. 6, pp. 1915�1923, 1995.

[34] M. Keeney, Insider threat study: Computer system sabotage in critical infrastructure sectors.
US Secret Service and CERT Coordination Center, 2005.

[35] C. Colwill, �Human factors in information security: The insider threat�who can you trust these
days?� Information security technical report, vol. 14, no. 4, pp. 186�196, 2009.

[36] C. Ellison and B. Schneier, �Ten risks of pki: What you're not being told about public key
infrastructure,� Comput Secur J, vol. 16, no. 1, pp. 1�7, 2000.

[37] M. Bellare and S. K. Miner, �A forward-secure digital signature scheme,� in Advances in Cryp-
tology CRYPTO 99. Springer, 1999, pp. 431�448.

[38] S. S. Chow, L. C. Hui, S. M. Yiu, and K. Chow, �Secure hierarchical identity based signature
and its application,� in Information and Communications Security. Springer, 2004, pp. 480�
494.

[39] A. Kozlov and L. Reyzin, �Forward-secure signatures with fast key update,� in Security in
communication Networks. Springer, 2003, pp. 241�256.

[40] M. Abdalla and L. Reyzin, �A new forward-secure digital signature scheme,� in Advances in
Cryptology ASIACRYPT 2000. Springer, 2000, pp. 116�129.

[41] H. Krawczyk, �Simple forward-secure signatures from any signature scheme,� in Proceedings of
the 7th ACM conference on Computer and communications security. ACM, 2000, pp. 108�115.

[42] G. Itkis and L. Reyzin, �Forward-secure signatures with optimal signing and verifying,� in
Advances in Cryptology Crypto 2001. Springer, 2001, pp. 332�354.

[43] T. Malkin, D. Micciancio, and S. Miner, �E�cient generic forward-secure signatures with an
unbounded number of time periods,� in Advances in Cryptology Eurocrypt 2002. Springer,
2002, pp. 400�417.

20

[44] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. Weaver, J. Amann,
J. Beekman, M. Payer et al., �The matter of heartbleed,� in Proceedings of the 2014 Conference
on Internet Measurement Conference. ACM, 2014, pp. 475�488.

21

A Sketch Proof of Backward Security

Sketch Security Proof. Suppose the adversary acts as in De�nition 7. We �rst consider case (b),
i.e., SKh+1 is leaked or, equivalently, e(rh+1) is leaked since e(rh+1) = Mh+1 ⊕ SKh+1 and Mh+1

is stored in Str to which the adversary has access. Since e(.) implements privacy ampli�cation,
if rh+1 contains λ bits of information unknown to the adversary then the complete string e(rh+1)
must be unknown to the adversary. For this reason an adversarial algorithm A must exist which,
given knowledge of SKj , Str, and black-box access to the PLayPUF (i.e., interface Int), teaches
information about rh+1 in a way that < λ bits entropy remain.

Notice that the recurrence relations (2), (3), and (4) create a functional sequence of dependencies
(rh+1, .) = g(ch+1, .), ch+1 = f(SKh), SKh = Mh ⊕ e(rh), (rh, .) = g(ch−1, .), ch−1 = f(SKh−1),
. . ., cj+1 = f(SKj). In this sequence the PLayPUF de�ned by g(., .) will produce the same (ci, ri)
as computed during the initialization of storage Str (since the owner extracts the correct sequence
SKh+1, . . ., SKj according to De�nition 7). This means that algorithm A may as well be replaced
by an algorithm A′ which is like A but uses, instead of SKj and Str, the value ch+1 which is closest
related to rh+1 (we remind the reader that the SKi are the leaves of the binary tree encryption in [3]
and therefore do not have a su�cient algebraic relation that can be exploited). Since algorithm A′
with only knowledge of ch+1 and black-box access to the PLayPUF leaks rh+1 in a way that < λ
bits entropy remain, De�nition 2 implies that, for some time t, the adversarial algorithm A′ (and
therefore also algorithm A) must have accessed the PLayPUF with challenge ch+1 and received back
the response rh+1. As a consequence, see De�nition 6 and Equation (3), (1) rh+1 will be erased
by the PLayPUF after time t and (2) before time t the legitimate owner did not yet challenge the
PLayPUF with ch+1 (otherwise, A did not receive rh+1 but received ⊥ instead and no information
about rh+1 could have been leaked). This means that the owner tries to reconstruct SKh+1 after
time t and will receive ⊥ from the PLayPUF. This means that the owner detects the leakage of
SKh+1 before ever using SKh+1.

We now consider case (a), i.e., SKh+1 is tampered with and modi�ed into SK ′h+1 6= SKh+1.
If SKh+1 is leaked or if the adversary gained information about rh+1 such that < λ bits entropy
remain, then he will be detected as explained above in case (b). So, if the adversary will not be
detected, then SKh+1 is not leaked and the adversary does not get information about rh+1 such that
< λ bits entropy remain. This implies that the adversary cannot distinguish e(rh+1) from a random
λ-bit string, which in turn implies that the adversary cannot distinguish Mh+1 = SKh+1 ⊕ e(rh+1)
from a random λ-bit string.

The owner reconstructs from tampered memory M ′h+1 the modi�ed secret key as SK ′h+1 =
M ′h+1 ⊕ e(rh+1) (by De�nition 7, the owner properly extracts SKh; given SKh the owner properly
extracts rh+1, see Equations (2,3). Since SK ′h+1 6= SKh+1, Mh+1 = SKh+1 ⊕ e(rh+1) 6= SK ′h+1 ⊕
e(rh+1) = M ′h+1. So, in order to pass undetected the adversary will need to, without knowledge
of SKh+1 but with knowledge of MACSKh+1

(Mh+1) for (in his view) a random Mh+1, construct
MACSKh+1

(M ′h+1) for some M ′h+1 6= Mh+1. This would break the security of the MAC.
We conclude that the PLayPUF based key management scheme is backward secure.

B The Interface of a PLayPUF

Part of a PLayPUF is an interface which consists of a public part and a TCB part as depicted in
Fig. 5. We remind the reader that the TCB part consist of a tamper-resistant and private PUF

22

(c,ctr’), ctr,
RotInfo, VerPath

(r, NewHash)
or Exp

Interface Trusted Computing Base

1. Receive a challenge c and a
 counter value ctr.
2. Lookup (c,ctr’) in RB-tree or
 insert a new node (c, ctr) if it
 does not exist in the tree.
3. Send VerPath proving either
 non-existence or memory
 integrity and freshness, and
 send rotation information
 RotInfo if RB-tree needs to be
 rebalanced.

4. Verify the proof VerPath by using
 root hash in TCB.
5. If fail, raise an exception flag Exp.
6. Otherwise, r = PUF(c), set the
 counter of challenge c to the
 minimum of ctr’-1 and ctr
 and compute the new hash values
 along the path for the modified
 RB-tree according to RotInfo.
7. Send exception Exp, or response r
 and new hash values NewHash
 back to the interface.

8. Update the hash values in RB-
 tree.
9. Output response or exception.

Figure 5: The protocol between software information and hardware TCB of a Programmable Logi-
cally Erasable PUF.

together with tamper-resistant additional circuitry which includes non-volatile state, see Fig. 1.
When a PLayPUF receives from a user (1) a challenge c with counter ctr as input, the PLayPUF

will �rst use the public part of the interface circuitry to (2) lookup challenge c in the RB tree. The
authenticated tree structure of the RB tree allows the public part of the interface to either compute
a proof of non-existence of c (if c does not exists in the tree) or a proof of integrity and freshness of
the retrieved c with its current counter value ctr′ (if c already exists in the tree). A proof V erPath
consists of the hashes of the siblings of the path from c (if it exists) or from the leaf at which the
new node is inserted (if c does not exist) to the root of the RB tree together with the values of
the nodes on the path. When such a proof is (3) transmitted and (4) received by the TCB part
of the interface, then the TCB part of the interface is able to hash all this information together
in order to reconstruct the root of the tree, which it can then verify against its own copy in its
tamper-resistant non-volatile state. If (5) veri�cation fails or ctr′ = 0 (in case c already exists in
the tree), then either the public memory of the public interface was corrupted or by our de�nition
of programmable logical erasability c must be considered erased; in either case an exception �ag ⊥
is returned.

If c did not exist, then besides a proof of non-existence also (3) rotation information is trans-
mitted for inserting a new node (c, ctr). This rotation information is needed for maintaining the
red-black invariant of the RB tree such that its balance remains guaranteed. It contains how many

23

11
2 14

151 7
5 8

4

11
2 14

151 7
5 8

4

11
7 14

152 8
51

4

7
2 11

141 5 8
4 15

Case 1

Case 2

Case 3

Z

Z

Z
Z

Y

Y

Y

(a) (b)

(c) (d)

Figure 6: Insertion of a new node 4.

tree rotations happened (it cannot be more than two for one insertion operation), the direction of
each rotation and the position of the tree rotation, below we explain a detailed example in Fig. 6.
The rotation information can be computed by the public part of the interface as the complete RB
tree is stored in its public memory; the public interface is in charge of maintaining the balance. Of
course an adversary may try to corrupt this, but this will not have any consequences for the secu-
rity/unclonability of the PLayPUF; the red-black structure is only added for improved performance
in case of worst-case access patterns. The TCB part does not have access to the whole RB tree
and is therefore informed by the public part of the interface how to recompute the root hash such
that it corresponds to the newly balanced/rotated tree. Besides the rotation information itself, the
public part if the interface also needs to transmit a proof of integrity and freshness of the couple of
nodes on which the rotation depends (which turns out to already be present in V eriPath). All of
this is contained in RotInfo which is (3) sent to the TCB.

If all veri�es correctly in (4-5), then the TCB will (6) set c's counter value to the minimum
of ctr and ctr′ − 1 (where ctr′ = ∞ if c did not already exist), update the root hash in TCB by
using the rotation information and/or new value of the node representing c, evaluate the PUF with
this c, and (7) reply to the public interface the response r from the PUF. In our design we also let
the TCB (7) transmit the updated hash information NewHash to the public part of the interface
(which could also have computed this itself). Next, the public interface will (8) update the RB tree
in its public memory accordingly. and (9) output the response r of the PUF to the user or simply
raise an exception �ag.

Example Rotation. Fig. 6 depicts an example of consecutive operations in Red-Black Tree Insert-
Fixup, see [27]. (a) A new node 4 is inserted. The dashed path in (a) is V erPath. All of the
information in nodes 5, 7, 2 and 11 are included in V erPath, together with the hash values of
nodes 8, 1 and 14, called the sibling's hash values. In order to verify non-existence, we need to
reconstruct the root hash using V erPath and compare with the trusted root hash stored in the
TCB. In addition, we need to check whether new node 4 is added at the correct location, which

24

means 2 < 4 < 5, and node 5 has no left child. Here, case 1 in [27] applies, so node 5 and 7
are recolored but the structure remain the same. There are six possible cases in a RB tree �xup,
in which only case 2, 3, 5 and 6 in [27] will rotate the structure of the tree; this example shows
three cases (the other three cases are similar in that they are mirrored versions of the three in the
example). In (b),(c) and (d), the nodes in dashed blocks are the nodes which hash values need to be
updated; the transition from (b) to (c) is a rotation and the transition from (c) to (d) is a rotation.
Note that, V erPath already provides all the information needed for updating these hash values. In
this example, in order to compute the hash of node 2, 7 and 11 in (d), we need the hash value of
node 5, which was updated in case 1 during the transition from (a) to (b), and the hash values of
nodes 1, 8 and 14, which are exactly the sibling's hash values that are contained in V erPath.

C Pseudocodes of PLayPUF Implementation

25

Algorithm 1 RB-Tree-Interface. (Note that this code is modi�ed based on RB-Insert in [27].
The lines added by us are indicated by *.)

1: procedure RB-Tree-Interface(Challenge C, Counter ctr, Red-Black Tree T)
2: x = T.root
3: y = T.nil
4: z = T.nil . *
5: z.key.ch = C . *
6: i = 0 . *
7: while x 6= T.nil do
8: y = x
9: if z.key.ch < x.key.ch then

10: x = x.left
11: else if z.key.ch > x.key.ch then
12: x = x.right
13: else
14: Query.ch, Query.ctr, Query.lhash, Query.rhash = (x.key.ch, x.key.ctr, x.left.key.hash,

x.right.key.hash) . *
15: Return Query, ctr, NULL, i, VerPath . *
16: end if
17: VerPath[i].ch, VerPath[i].ctr, VerPath[i].shash = (x.p.key.ch, x.p.key.ctr, x.sibling.hash)

. *
18: i = i + 1 . *
19: end while
20: VerPath[i].ch, VerPath[i].ctr, VerPath[i].shash = (x.p.key.ch, x.p.key.ctr, x.sibling.hash) . *
21: z.p = y
22: if y == T.nil then
23: T.root = z
24: else if z.key.ch < y.key.ch then
25: y.left = z
26: else
27: y.right = z
28: end if
29: z.left = T.nil
30: z.right = T.nil
31: z.color = RED
32: RotInfo ← RB-Insert-Fixup(T, z)
33: z.key.ctr = ∞ . *
34: Query.ch, Query.ctr, Query.lhash, Query.rhash = (z.key.ch, z.key.ctr, z.left.key.hash,

z.right.key.hash) . *
35: Return Query, ctr, RotInfo, i, VerPath . *
36: end procedure

26

Algorithm 2 RB-Insert-Fixup. (Note that the code is modi�ed based onRB-Insert-Fixup in [27].
The lines added by us are indicated by *. Also, the pseudocodes of Left-Rotate andRight-Rotate
can be found in [27]).

1: procedure RB-Insert-Fixup(Red-Black Tree T, Newly Inserted Node z)
2: Initialize RotInfo.case1, RotInfo.case2, RotInfo.case3, RotInfor.case4, RotInfo.case5, Rot-

Info.case6 to 0 .
*

3: while z.p.color == RED do
4: if z.p == z.p.p.left then
5: y = z.p.p.right
6: if y.color == RED then . Case 1
7: z.p.color = BLACK
8: y.color = BLACK
9: z.p.p.color = RED

10: z = z.p.p
11: RotInfo.case1 = RotInfo.case1 + 2 . *
12: else
13: if z == z.p.right then . Case 2
14: z = z.p
15: LEFT-Rotate(T, z)
16: RotInfo.case2 = 1 . *
17: end if
18: z.p.color = BLACK . Case 3
19: z.p.p.color = RED
20: Right-Rotate(T, z.p.p)
21: RotInfo.case3 = 1 . *
22: end if
23: else
24: (same as then clause with �right� and �left� exchanged, and �Case 1, 2, 3� replaced

with �Case 4, 5, 6�)
25: end if
26: end while
27: T.root.color = BLACK
28: Return RotInfo . *
29: end procedure

27

Algorithm 3 TCB
1: procedure TCB(Query Query, Counter Value ctr, Rotation Information RotInfo, Length of

Proof N, Proof VerPath, Trusted Root Hash root)
2: if Query.ctr == 0 then
3: Exp = 1
4: Return Exp, NULL, NULL
5: else
6: Exp ← Verify-Proof(N, VerPath, Query, root)
7: if Exp == 1 then . Veri�cation failed
8: Return Exp, NULL, NULL
9: else . Passed veri�cation

10: R ← PUF(Query.ch)
11: NewHash, root ← Update-Hash(N, VerPath, Query, ctr, RotInfo)
12: Return Exp, R, NewHash
13: end if
14: end if
15: end procedure

Algorithm 4 Verify-Proof
1: procedure Verify-Proof(Length of Proof N, Proof VerPath, Query Query, Trusted Root

Hash root)
2: if Query.ctr ==∞ then . Newly added node
3: h = 0
4: else . Existing node
5: h = Hash(Query.ch || Query.ctr || Query.lhash || Query.rhash)
6: end if
7: ch = Query.ch
8: for i← N − 1, 0 do
9: if ch < V erPath[i].ch then

10: h = Hash(V erPath[i].ch || V erPath[i].ctr || h || V erPath[i].shash)
11: else
12: h = Hash(V erPath[i].ch || V erPath[i].ctr || V erPath[i].shash || h)
13: end if
14: ch = V erPath[i].ch
15: end for
16: if h == root then
17: Exp = 0
18: else
19: Exp = 1
20: end if
21: Return Exp
22: end procedure

28

Algorithm 5 Update-Hash
1: procedure Update-Hash(Length of Proof N, Proof VerPath, Query Query, Counter Value

ctr, Rotation-Information RotInfo)
2: if Query.ctr =∞ then . Newly added node
3: j = N − 1
4: else . Existing node
5: j = N − 2
6: end if
7: Query.ctr = min(Query.ctr − 1, ctr)
8: i = 0
9: NewHash[i+ +] = Hash(Query.ch || Query.ctr || Query.lhash || Query.rhash)

10: ch = Query.ch
11: if RotInfo 6= NULL then
12: while i < (RotInfo.case1 +RotInfo.case4) do . Case 1 and 4
13: (ch,NewHash, i, j)← Hash-No-Rotation(ch, V erPath,NewHash, i, j)
14: end while
15: if RotInfo.case2 == 1 then . Case 2
16: NewHash[i] = Hash(V erPath[j − 1].ch || V erPath[j − 1].ctr || V erPath[j −

1].shash || NewHash[i− 1])
17: NewHash[i + 1] = Hash(V erPath[j − 2].ch || V erPath[j − 2].ctr ||

V erPath[j].shash || V erPath[j − 2].shash)
18: ch,NewHash[i + 2] = V erPath[j].ch,Hash(V erPath[j].ch || V erPath[j].ctr ||

NewHash[i] || NewHash[i+ 1])
19: else if RotInfo.case3 == 1 then . Case 3
20: NewHash[i] = Hash(V erPath[j].ch || V erPath[j].ctr || V erPath[j].shash ||

NewHash[i− 1]
21: NewHash[i + 1] = Hash(V erPath[j − 2].ch || V erPath[j − 2].ctr || V erPath[j −

1].shash || V erPath[j − 2].shash)
22: ch,NewHash[i + 2] = V erPath[j − 1].ch,Hash(V erPath[j − 1].ch || V erPath[j −

1].ctr || NewHash[i− 2] || NewHash[i− 1])
23: else
24: (same as then clauses for case 2 and 3 with the order of two children's hash values

exchanged)
25: i = i+ 3
26: j = j − 3
27: end if
28: end if
29: while j ≥ 0 do . No Fixup
30: (ch,NewHash, i, j)← Hash-No-Rotation(ch, V erPath,NewHash, i, j)
31: end while
32: root = NewHash[i− 1]
33: Return NewHash, root
34: end procedure

29

Algorithm 6 Hash-No-Rotation
1: procedure Hash-No-Rotation(Challenge ch, Proof VerPath, NewHash NewHash , Index for

NewHash i, Index for Proof j)
2: if ch < V erPath[j] then
3: ch,NewHash[i + +] = V erPath[j].ch,Hash(V erPath[j].ch || V erPath[j].ctr ||
NewHash[i− 1] || V erPath[j].shash)

4: else
5: ch,NewHash[i + +] = V erPath[j].ch,Hash(V erPath[j].ch || V erPath[j].ctr ||
V erPath[j].shash || NewHash[i− 1])

6: end if
7: j −−
8: Return ch,NewHash, i, j
9: end procedure

Algorithm 7 Update-Tree
1: procedure Update-Tree(Rotation Information RotInfo, New Hash NewHash, Newly Inserted

Node z, Counter Value ctr, Red-Black Tree T)
2: z.key.hash = NewHash[0]
3: z.key.ctr = min(ctr, z.key.ctr − 1)
4: x = z.p
5: i = 1
6: if RotInfo 6= NULL then
7: for i← 1, (RotInfo.case1 +RotInfo.case4) do . Case 1 and 4
8: x.key.hash = NewHash[i]
9: x = x.p

10: end for
11: if RotInfo.case3 == 1orRotInfo.case6 == 1 then . Case 2,3,5,6
12: x.key.hash = NewHash[i]
13: x.sibling.key.hash = NewHash[i+ 1]
14: x.p.key.hash = NewHash[i+ 2]
15: x = x.p.p
16: i = i+ 3
17: end if
18: end if
19: while x 6= T.root do
20: x.key.hash = NewHash[i+ +]
21: x = x.p
22: end while
23: end procedure

30

	Introduction
	Contributions

	Definitional Framework for PUFs
	Stateless PUFs vs Stateful PUFs
	Strong PUFs vs Weak PUFs

	PLayPUFs: Programmable Logically Erasable PUFs
	Erasable PUFs
	PLayPUFs: Programmable Logically Erasable PUFs
	PLayPUF Design
	Evaluation

	Key Management
	Forward and ``Backward'' Secure Key Management
	Self-Recovering Certificate Authority

	Conclusion
	Acknowledgment
	Sketch Proof of Backward Security
	The Interface of a PLayPUF
	Pseudocodes of PLayPUF Implementation

