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Abstract. We describe a cryptanalysis of the GGH15 multilinear maps. Our attack breaks the multi-
partite key-agreement protocol in polynomial time by generating an equivalent user private key; it also
applies to GGH15 with safeguards. We also describe attacks against variants of the GGH13 multilinear
maps proposed by Halevi (ePrint 2015/866) aiming at supporting graph-induced constraints, as in
GGHI15.

1 Introduction

Multilinear maps. For the past couple of years, cryptographic multilinear maps have found
numerous applications in the design of cryptographic protocols, the most salient example of which is
probably the construction of indistinguishability obfuscation (i0) [GGH'13b]. The first multilinear
maps candidate (GGH13) was described by Garg, Gentry and Halevi [GGH13a| from ideal lattices. It
was then followed by another candidate (aka, CLT13) due to Coron, Lepoint and Tibouchi [CLT13]
using the same techniques but over the integers, and later by a third candidate (GGH15) by Gentry,
Gorbunov and Halevi [GGH15], related to the homomorphic encryption scheme from [GSW13].

Unfortunately, these candidates do not rely on well-established hardness assumptions, and recent
months have witnessed a number of attacks (including [CHL"15], [CGH™15], [HJ16], [BGH"15],
[PS15], [CFL*16]) showing that they fail to meet a number of desirable security requirements,
and that they cannot be used to securely instantiate such and such protocols. Some attempts to
protect against these attacks have also known a similar fate [CLT15, BGH™15]. The security of the
constructions based on these multilinear maps is currently unclear to the community [Hall5a]. While
two recent works [CGH™ 15, MSZ16] have shown polynomial-time attacks against some obfuscation
candidates, many iO candidates remain unaffected by the attacks proposed so far. The same cannot
be said for the more immediate application of multilinear maps that is one-round multipartite key
agreement.

One-round multipartite key-agreement protocol. Since its discovery in 1976, the Diffie—
Hellman protocol [DH76] is one of the most widely used cryptographic protocol to create a common
secret between two parties. A generalization of this one-round protocol to three parties was proposed
in 2000 by Joux [Jou00] using cryptographic bilinear maps; it was later extended to k > 4 parties
assuming the existence of a cryptographic (k — 1)-linear map by Boneh and Silverberg [BS02]. In
a nutshell, the protocol works as follows: assuming some public parameters are shared by all the
parties, each party broadcasts some data and keeps some data secret, and then by combining their
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secret data with the other parties’ published values using the multilinear map, they can derive a
shared common secret key.

The first candidates for a k-partite Diffie-Hellman key-agreement protocol for arbitrary k
were described in [GGH13a, CLT13] using respectively the GGH13 and CLT13 multilinear maps
candidates. Unfortunately, the protocols were later shown to be insecure in [HJ16, CHL*15]: using
the public parameters and the broadcast data, an eavesdropper can recover the shared common
secret key in polynomial time.

The GGH15 key-agreement protocol. Since the third proposed multilinear maps scheme,
GGH15, does not fit the same graded encoding framework as the earlier candidates, one needs new
constructions to use it to instantiate cryptographic protocols. And the first such application was
again a Diffie-Hellman key-agreement protocol [GGH15, Section 5.1]. To avoid similar attacks as
the one that targeted GGH13 and CLT13, based on encodings of zero, the protocol was designed in
such a way that the adversary is never given encodings of the same element that could be subtracted
without doing the full key-agreement computation. Namely, each party ¢ has a directed path of
matrices A;1,..., A; x4+1 all sharing the same end-point A; ;11 = Ag, and has a secret value s;. She
can then publish encodings of s; on the chains of the other parties in a “round robin” fashion, i.e. s;
is encoded on the j-th edge of the chain of the party i = j — i + 1, with index arithmetic modulo k.
The graph for 3 parties is illustrated in Figure 1.

Fig. 1. Graph for a 3-partite key-agreement protocol with GGH15 multilinear maps.

On the i-th chain, Party ¢ will then be able to multiply these encodings (the one he kept secret
and the ones published by the other parties) to get an encoding of Hj s; relative to the path
A;1 ~ Ajy. Now, since the encodings of s; cannot be mixed before the end-point Ay, it seems
difficult to obtain an encoding of 0 on an edge in the middle of the graph to mount “zeroizing
attacks” [GGH15].

Halevi’s candidate key-agreement protocols. As no attack was known on GGH15 multilinear
maps and in an attempt to reinstate a key-agreement protocol for GGH13, Halevi recently proposed,
on the Cryptology ePrint Archive, two variants of GGH13 supporting a similar key-agreement
protocol [Hall5a].! The first variant uses the “asymmetric” GGH13 scheme to handle the graph

L As mentioned in the last remark of the paper, although the key-agreement protocol can be described also based on
CLT13, the attacks from [CGH"15] can be used to break it.



structure [Hallba, Section 7]. Namely, in basic GGH13 each encoding is multiplicatively masked
by a power 2’ of a secret mask z; in asymmetric GGH13, the encodings can be masked by powers
of multiple z;’s. Therefore, in this new key-agreement protocol candidate, the public encodings
are now associated with independent masks z; ;’s such that their product yields the same value Z,
ie. [] ;% = Z foralli (so that the final encoding shall extract to the same shared key). The graph
for 3 parties is illustrated in Figure 2.

Fig. 2. Multipartite key agreement from asymmetric GGH13, with 3 parties, from [Hallb5a, Section 7].

Once again, the fact that the encodings of the same value s; are multiplied with different masks
gives hope that no encoding of 0 multiplied by a value other than Z can be obtained, and therefore
that zeroizing attacks are impossible [GGH13a, CGH'15].

A second variant of GGH13, which we refer to as Graph-GGH13, mimics the structure of GGH15
encodings more closely and is described in [Hallba, Section 6]. An encoding ¢ € a + gR relative to a
path u ~ v is now a matrix C = P, !.C-P,, where C € Zy™™ is the multiply-by-c matrix, and the
P,’s are secret random matrices. In the key-agreement protocol, each party 7 has a directed path
of matrices P;1,..., P; ;41 all sharing the same end-point P; ;11 = Py and the same start-point
P;; = Py, and has a secret value s;. She can then publish encodings of s; on the chains of the other
parties in a “round robin” fashion. The graph for 3 parties is illustrated in Figure 3.

Fig. 3. Multipartite key agreement from GGH13 with graph constraints, with 3 parties, from [Hall5a, Section 6].



And here again, the fact that the encodings corresponding to the same s; are multiplied on the
left and on the right by completely random matrices P; ; makes it difficult to cancel them out and
obtain an encoding of 0 without evaluating the full “chains” (that is, the operations of the key
agreement itself).

Finally, in order to capture the intuition of what it means for an attacker to break the scheme,
Halevi defined, for both schemes, the “core computational task” of an adversary as recovering any
basis of the (hidden) plaintext space [Hall5a, Section 2.2].

Our contributions. Our main contribution is to describe a cryptanalysis of the Diffie-Hellman
key-agreement protocol when instantiated with GGH15 multilinear maps. Our attack makes it
possible to generate an equivalent user private key in polynomial time, which in turn allows to
recover the shared session key. Our attack proceeds in two steps: in the first step, we express the
secret exponent of one user as a linear combination of some other secret exponents corresponding to
public encodings, using a variant of the Cheon et al. attack [CHL'15]. This does not immediately
break the protocol because the coefficients of the linear combination can be large. In the second
step, we use the previous linear combination to derive an encoding equivalent to the user private
encoding, by correcting the error resulting from the large coeflicients of the linear combination.
Our attack also applies to GGH15 with safeguards; we extend the basic attack by using another
linear relation to estimate the error incurred from the large coefficients, thus enabling to recover the
shared session key.

In Appendix B, we also describe attacks that break both variants of GGH13 proposed by Halevi
in [Hall5a]. Our attacks apply some variant of the Cheon et al. attack [CHL'15] to recover a basis of
the secret plaintext space R/gR in polynomial time. This was considered as the “core computational
task of an attacker” in [Hallbal.

Source code. A proof-of-concept implementation of our cryptanalysis of GGH15, using the
Sage [Dev16] mathematics software system, is available at:

http://pastebin.com/7kZHnTXY

2 The GGH15 Multilinear Map Scheme

We briefly recall the GGH15 multilinear map scheme; we refer to [GGH15] for a full description. In
the following we only consider the commutative variant from [GGH15, Section 3.2], as only that

commutative variant can be used in the multipartite key-agreement protocol from [GGH15, Section
5.1].

2.1 GGH15 Multilinear Maps

The construction works over polynomial rings R = Z[z]/(f(x)) and R, = R/qR for some degree n
irreducible integer polynomial f(x) € Z[x| and an integer q. The construction is parametrized by a
directed acyclic graph G = (V, E). To each node u € V' a random row vector A, € R;" is assigned,
where m is a parameter. An encoding of a small plaintext element s € R relative to path u ~» v is a
matrix with small coefficients D € R™*™ such that:

A,-D=s-A,+E (modq)



where E is a small error vector of dimension m with components in R; we refer to [GGH15] for how
such encoding D can be generated, based on a trapdoor sampling procedure from [MP12]. Only
small plaintext elements s € R are encoded. As in [Hall5a] we use the row vector notation for A,
rather than the column vector notation used in [GGH15].2 It is easy to see that two encodings D
and D5 relative to the same path v ~» v can be added; namely from:

A, -Di=s5-A,+E; (mOd Q)
A, D3 =s2-A, + E> (mOd Q)

we obtain:
Ay (D1+ D3) = (s1+52)- Ay + E1 + Ey (mod q).

Moreover two encodings D1 and D» relative to path u ~» v and v ~» w can be multiplied to get
an encoding relative to path u ~» w. Namely given:

A, Dy =s1-A,+E (mOdq)
AU'DQ :52'Aw+E2 (mOd q)

we obtain by multiplying the matrix encodings D; and Ds:

Ay-Di-Dy=(s1-A,+E1)-Dy (mod q)
=51-82-Ay+s1-Es+ E;-Dy (mod q)
=s1-82 Ay +E (mod q)

for some new error vector E’. Since s1, E1, E9 and D5 have small coefficients, E’ still has small
coefficients (compared to ¢), and therefore the product D; - Dy is an encoding of s; - so for the path
U~ W.

Finally, given an encoding D relative to path u ~» w and the vector A,, extraction works by
computing the high-order bits of A, - D. Namely we have:

A, -D=s-A,+E (modq)
for some small E, and therefore the high-order bits of A, - D only depend on the secret exponent s.

Remark 1. As emphasized in [GGH15], only the plaintext space of the s;’s is commutative, not the
space of the encoding matrices D;. The ability to multiply the plaintext elements s; in arbitrary
order will be used in the multipartite key-agreement protocol below.

2.2 The GGH15 Multipartite Key-Agreement Protocol

We briefly recall the multipartite key-agreement protocol from [GGH15, Section 5.1]. We consider
the protocol with k users. As illustrated in Figure 4 for k = 3 users, each user i for 1 <4 < k has a
directed path of vectors A;1,..., A; k41, all sharing the same end-point Ag = A; ;11. The i-th user
will use the resulting chain to extract the session key. Each user ¢ has a secret exponent s;. Each
secret exponent s; will be encoded in each of the k chains; the encoding of s; on the j-th chain for
j # i will be published, while the encoding of s; on the i-th chain will be kept private by user .

2 With the column vector notation, the corresponding equation in [CGH15] is D - A, = s- A, + E (mod q).



Therefore on the i-th chain only user 7 will be able to compute the session key. The exponents s;
are encoded in a “round robin” fashion; namely the i-th secret s; is encoded on the chain of user j
at edge £ =i+ j — 1, with index arithmetic modulo k. Only the vectors A;; for 1 <14 < k are made
public to enable extraction of the session-key; the others are kept private. We recall the formal
description of the protocol in Appendix A.

Fig. 4. Graph of a key agreement between 3 parties for GGH15. The vertices contain random vectors A,;, and
encodings are represented on the edges. Each party is represented by a different color, keeps the encoding in parenthesis
secret and publishes the two other encodings.

We illustrate the protocol for k = 3 users. For the chain corresponding to User 1, we have the
following encodings:

Ai1-Dii=5-Ai2+F11 (modq)
Aio-Dig=35-A13+F12 (modq)
A13-Dy3=53-Ag+Fi3 (modq)

where D12 and D 3 are public while Dy ; is kept private by User 1. Therefore User 1 can compute
modulo ¢:

Ai1-Di1-Dip-Di3g=(s1-Ai2+F11)-Di2-Dy13 (mod q)
=(s1-s2-A13+s1-Fio+F11-Di12) D13 (modgq).

Letting 13’172 =351 F12+ F11 D132, we obtain:

A11-Dy1-Dis-Di3= (51 -89 - A3+ F1,2) -Di3 (mod q)
—51-852-853-Ag+51-52- F13+ F15-Di13 (mod q).
Since s1, s2 and s3 are small and F'y 3, FLQ and D 3 have small components, User 1 can extract

the most significant bits corresponding to s1 - s9 - s3 - Ag. Similarly User 2 will compute the session
key using the following chain, where D2 ; and D 9 are public while D5 3 is private to User 2:

A1 -Dyy =s3-Az2+ Fa1 (mod q)

A2,2 : D2,2 =81 A273 + F272 (mod q)
A3 Doz =s3-Ag+ Fa3 (mod q).



Namely User 2 can compute:

A1 Doy -Doo- Doz = (s3-51-Asz+s3-Fao+ Fo1-Dss)-Dys (mod q)
=583-81-89-Ag+ F (modq)

for some small vector F', and extract the same most significant bits corresponding to s - so - s3 - Ag;
the same holds for User 3.

The previous encodings are generated by random linear combination of public encodings,
corresponding to secret exponents t; ¢ for 1 < ¢ < N, for large enough N. More precisely, for each
1 <i < k one generates random small plaintext elements ¢; , for 1 < ¢ < N, which are then encoded
on all chains j at edge ' = ¢+ j — 1 (with index modulo k), by C; ¢. This means that for k = 3
users, we have the following encodings corresponding to User 1:

A1 Crip=tig-Aipg+E; 1, (modgq)
Azp-Choop=t1o- Az3+ Ez2y (mod q)
A33-Cszp=tio-Ag+E3z3, (modq)

and the tuple (D 1, D22, D3 3) is generated by linear combination of the tuple (C1 1, C22.¢,C33.),
so that the matrices D 1, D22 and D33 encode the same secret exponent sq; the same holds for
users 2 and 3. We refer to Appendix A for the formal description of the protocol.

3 Cryptanalysis of GGH15 Without Safeguards

In the following we describe a cryptanalysis of the multipartite key-agreement protocol based on
GGH15 multilinear maps recalled in the previous section. Heuristically our attack recovers the
session-key from public element in polynomial-time. Our attack proceeds in two steps.

1. In the first step, we are able to express one secret exponent s; as a linear combination of the
other secret exponents 1 ¢, using a variant of the Cheon et al. attack [CHL"15]. However this
does not immediately break the protocol, because the coefficients are not small.

2. In the second step, we compute an equivalent of the private encoding of User 1 from the
previous linear combination, by correcting the error due to the large coefficients. This breaks
the key-exchange protocol.

3.1 Description With 3 Users

For simplicity we first consider the protocol with only 3 users; the extension to k > 3 users is
relatively straightforward and described in Appendix D. Therefore we consider the following 3 rows
corresponding to the 3 users:



Ai1-Dyy=51-A12+ F1; (mod q) A1 Crig=tig-Aig+ Ei1 (mod q)

Ai2-Dig=s52-A13+ F15 (mod q) A12-Ciap=tas- A3+ Ei2, (mod q)
Ai3-Di3=s53-Ag+ Fi3 (mod q) A13-Ci30=130- Ao+ E1 3, (mod q)
Az1-Dgy =53-Ags+ Fy1 (mod q) Ag1-Coyrp=t30- Az + Egqy (mod q)
Az Doy =s51-Az3+ Fa5 (mod q) Az -Coop=1t1p A3+ Ez2y (mod q)
A3 Dy3=s3-Ag+ Fa3 (mod q) A3 Cazp=tys  Ag+ Eg3y (mod q)
A3z1-D3i=s3-A30+ F3; (mod q) A3z1-C31p=1tag- A3+ E31, (mod q)
Ao D32 =s3-A33+ F33 (mod q) Ao -C3za¢=1t37-A33+ E3, (mod q)
A3z3-D33=51-Ag+ F33 (mod q) Asz3-C33p=1t10 Ao+ E33, (mod q)

where all encodings C; j» and D; ; are public, except D11 which is private on Row 1, D3 3 is private
on Row 2, and D3 is private on Row 3. The corresponding graph is illustrated in Figure 4. Note
that on each row we have used the same index ¢ for ¢1 ¢, t2 ¢ and 34, but on a given row one can
obviously compute product of encodings for different indices.

First step: linear relations. In the first step of the attack, we show that we can express s; as a
linear combinations of the t; ,’s. For this we consider the rows 2 and 3, for which the encodings
D55 and D33 corresponding to s; are public. In the remaining of the attack, we always consider
a fixed index £ = 1 for the encodings corresponding to ?3 ¢, and for simplicity we write t3 := t31,
Ci3:=C131,C21:=Cs11 and C32 :=C321.

Since we always work with the same t3, on Row 2 we define the product encodings 6'272,@ =
Cs,1-Cs2y, and on Row 3 we define the product encodings (3’3’275 = C3,14- C3p2; recall that we
use a fixed index for ¢3. Therefore we can write:

Ag1-Coop=t1y-t3-Asz+ Eypy (mod q) (1)
Az3-Cozp=tor- Ao+ Ez3, (mod q)

Az1-Caop=toy-t3-Azz+ Ezsy (mod gq)

A33-C33p=1t10- Ao+ E33, (mod q)

for some small error vectors EZN and E37273.

For simplicity of notations, we first consider a fixed index i for the encodings corresponding to
t1,, and we write t1 1= tq;, (3'272 = 6’272,2- and C33 := C33;. Similarly we consider a fixed index j
for the encodings corresponding to ta ; and we write tg := tg;, Ca3 := Ca3j and C3z := C3a ;.
We use similar notations for the corresponding error vectors.

All previous equations hold modulo ¢ only. To get a result over R instead of only modulo ¢, we
compute the difference between two rows, for the same product of secret exponents. More precisely,
we compute:

w=As1-Coy-Co3—As1-Css-Css (2)
=ty -t3-ta- Ao+t -ty Eog+ Eos-Cag
—tyt3ti- Ag—ta -ty Ezz— Esy-Csg
=ty -t3-BEoz+ Eo9-Caz—ty-t3 - Es3— E35-Cs3. (3)



Namely the latter equation holds over R (and not only modulo ¢) because all the terms in (3) have
small coefficients; namely the only term t; - t5 - t5 - Ag with large coefficients modulo ¢ is canceled
when doing the subtraction.

We have that w is a vector of dimension m. Now an important step is to restrict ourselves to the
first component of w. Namely in order to apply the same technique as in the Cheon et al. attack,
we would like to express w as the product of two vectors, where the left vector corresponds to
User 1 and the right vector corresponds to User 2. However due to the “round-robin” fashion of
exponent encodings, for this we would need to swap the product EA372 - C3 3 appearing in (3), since
E‘372 corresponds to User 2 while C3 3 corresponds to User 1; this cannot be done if we consider the
full vector w. By restricting ourselves to the first component of w, the product EA3,2 - C3 3 becomes
a simple scalar product that can be swapped; namely the scalar product of Eg’g by the first column
vector 3’3 of the matrix C33. We obtain the scalar:

w=ty-t3 - Ey3+ Eay- Chs—ty-t3-E33—Cy3- E;»

where C 5 and Cf 5 are the first column vectors of C3 3 and Cj 3 respectively, both of dimension
m; similarly Fo 3 and E3 3 are the first components of E9 3 and E3 3 respectively.

We can now write w as the scalar product of 2 vectors, the left one corresponding only to User 1,
and the right one corresponding only to User 2:

t3- Ea3
!

” / 2,3
w = tl E272 E373 0373] .

Note that the two vectors in the product have dimension 2m + 2.

As in the Cheon et al. attack [CHL'15], we can now extend w to a matrix by considering many
left row vectors and many right column vectors. However instead of a square matrix as in the Cheon
et al. attack, we consider a rectangular matrix with 2m + 3 rows and 2m + 2 columns. In Equation
(2), this is done by considering 2m + 3 public encodings Cy 2, and Cs3; corresponding to User 1,
and similarly 2m + 2 encodings Cs 3 ; and 63727]' corresponding to User 2, for 1 <+¢ < 2m + 3 and
1 < j <2m+ 2. More precisely we compute as previously over R the following matrix elements,
restricting ourselves to the first component:

(W)ij = Ag1-Cag;-Chy;— Az - Cs; - Chy; (4)
and as previously we can write:
t3 - Fa3j
!
— n 2737'
(W)ij = |t1; Eap; E33; C§73,i] |t -]tg
—E32,
We obtain a (2m + 3) x (2m + 2) matrix W with:
t3- Fa3j
!
_ 2 . 2,3,j
W = |t1; Eag; E33; Ci,| | b, ']ts
—E32,;
A B



where the matrix A has 2m + 3 rows vectors, each of dimension 2m + 2, and the matrix B has
2m + 2 column vectors, each of dimension 2m + 2; hence B is a square matrix.
By doing linear algebra, we can find a vector u over R of dimension 2m + 3 such that u- W =0,
which gives:
(u-A)-B=0.

Heuristically with good probability the matrix B is invertible, which implies:
u-A=0.

Since the first column of the matrix A is the column vector given by the 1 ;’s, such vector u gives a
linear relation among the secret exponents 1 ;.

Moreover, since the encodings D22 and D33 corresponding to s; are public, we can express
s1 as a linear combination of the ¢;;’s, over R. Namely we can define as previously the product
encoding DQ’Q = CQ,I : DQ’Q, with:

Ay Doy =s1-t3- Agz+ Fyy (mod q)

for some small error vector F'g9, and we can now compute the same (W);; as in (4) but with Dy o
and Dg73 instead of Cs2,; and Cg737i, where Dg73 is the first column of D3 3. More precisely, we
compute for all 1 < j < 2m + 2:

~ ! A /
wj=Ag1 Dso-Cy3;— Az1-Cz2; D33

which gives as previously:

_ 7 / 2,3,j
wj = |s1 Faa F33 D373]' J

—FE32,;

This implies that we can replace any row vector [t1; Eoo; F33 C4 3,] in the matrix A by the row
vector:
[s1 Fag Fi3 Djg (5)

where D§,73 is the first column of D3 3, and F3 3 is the first component of F'3 3. Using the previous
technique, we can therefore obtain a linear relation between s; and the ¢ ;’s over R. More precisely,
with overwhelming probability, such a relation can be put in the form:

W81 = Z it (6)

with u € Z and Aq,..., Aomao € R. Indeed, we obtain such a relation by computing the kernel of the
matrix analogous to W above in echelon form over the fraction field of R, which gives the kernel of
the corresponding matrix A (assuming that B is invertible). Unless a minor of that matrix vanishes,
which happens with only negligible probability, this gives a relation where the coefficient of sy is 1
and the other coefficients are in the fraction field R ®7 Q of R. By clearing denominators, we get an
expression of the form (6).
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Then, by considering exactly one additional ¢; ; (say t1,2m+3) and carrying out the same compu-
tations with indices i = 2,...,2m + 3 instead of ¢ = 1,...,2m + 2, we get a second relation:

2m+3

V-8 = )\/-~t1i.
1 )
=2

If the integers ;v and v are relatively prime, which happens with significant probability?, we can
apply Bézout’s identity to obtain a linear relation in R where the coefficient of s; is 1:

S1 = Z (673 t17i . (7)

Note that we have the same linear relations for the other components of the vector (5) corresponding
to s1, namely:

2m+3 2m+3 2m+3

kad a / !

Fyo = E ;- Eo9,, F33= § a; - FE3gi, Dgs= E a;-Cs3;. (8)
i=1 i—1 i—1

Second step: equivalent private-key. In this second step, we show how to publicly compute an
encoding equivalent to D1 1, which is private to User 1; this will break the key-agreement protocol.
In the first step, we had considered rows 2 and 3 to derive the linear relations (7) and (8); we now
consider Row 1. On Row 1, the encodings D1 and D1 3 are public, so we can define as previously
the product encoding f)l’g = D5 - D 3, which gives:

Aj2-Dig=sy-53-Ag+ F13 (mod q)
for some small error vector F‘Lg. Recall that the encoding D1 ; is private to User 1, with:
Ai1-Dyy=51-A12+F11 (modgq). 9)
Therefore only User 1 can privately compute:
Ai1 Dy -Dig=51-59-53-Ag+s1-Fi3+F11-Di3 (mod g) (10)

and extract the high order bits of s; - 53 - 83 - Ag mod ¢ to generate the session key.
We cannot compute the previous equation since D11 is private. However since we know a linear
relation (7) between s; and the 1 ;’s, and the encodings C' 1, corresponding to t1; are public, with:

A1 Crii=t;-Aipg+E1; (modq)

it is then natural to compute:
2m—+3

D, = E a; - Cri;,
=1

3 Heuristically, it is the probability that two random elements of R have coprime norms, since the rational integer
denominator of an element of the fraction field has the same prime factors as its norm. For R = Z[z]/(z* + 1),
that probability is close to 3/4: see Appendix C.
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which gives:
2m—+3

Aj1-Diy=s1-A1a+ Z a;-E11; (mod q). (11)
i=1
The difference with (9) is that the error term 2?2?3 a; - By 1, is not necessarily small since the

coefficients «; can be large. Therefore if we compute:

2m~+3
A1 Dyy-Dig=s1-s2-53- Ag+s1-Fi3+ ( > o El,l,z’) D13 (mod g) (12)
i=1

then as opposed to (10) this does not reveal the high-order bits of s1 - s9 - s3 - Ag mod ¢. In the

following, we show how to derive an approximation of Z?g‘f’s a; - E; 7, over R, in order to correct

the error in (11) and break the protocol. This is the second part of our attack.

As in the first step of the attack, to get equations over R and not only modulo ¢, we consider
the difference between two rows, this time the difference between rows 1 and 3 (instead of rows 2
and 3). We have the public encodings:

A11-Craer=tig-Aip+FE11¢ (modq)
Ay Crag=tyg-ts- Ao+ Er3 (mod q)
Azy-Caop=toy-t3-Azz+ Ez9y (mod q)
A33-Cssr=1t1, Ao+ Es3¢ (mod q)

where we let C'y 3¢ := C 2 C1 3, for some small error vector E1 3. As previously we can compute
over R, restricting ourselves to the first component, where C 4 j and C% 5, are the first columns of

C13,; and Cj33; respectively:
~ . /
wij=A11-Cr1i-Cl3;—A31-C32;-Chy;
. . X /
=t Er13;+E11:-Clg; —taj t3-E33i— E32; Chss;.
We can therefore compute over R, using the coefficients «; from the linear relation (7):

3
;- <A1,1 C11i-Cla;— As1-Caaj- Cg,?),i) (13)

2m

+

Q; =

2 3

. . A /
Qi - (fl,z' Bt B Cugy—tag by Essi — Espyje 03,3,1) :

INgERNNg

1

]

Using the linear relations (7) and (8), we obtain:

2m+3
) . , .
Qj=s1-Eigj—tyj-ts-F3g—Es;-Dys+ | > oi-Er1;|-Cla;
=1

which gives:

2m+3
Q; = uj + ( > i E1,1,i> “Clag )
i=1

12



for some small u; in R. In summary we obtain a large scalar 2; because the coefficients ¢; in (13) are
large, but eventually what makes {2; large is only the contrlbutlon from (Z2T Ba -Eq14) - 0/1,3, i

namely because of the linear relatlons (7) and (8) the other terms remain small.
We can now write (14) in vectorial form, where we let C”l’ 3 be the square matrix whose columns

are the column vectors C'1 3 for 1 < j < mj; recall that the 01 3 are the first column vectors of

the matrix encodings 0173’J. We obtain a row vector §2 of dimension m, where:

2m—+3
=u -+ (Z (073 ELl,i) : ,1/73 (15)

where 6”1’3 is a public square matrix of dimension m.
Now the crucial observation is that because the vector w has small components, we can get an
approximation of the vector 22m+3 a; - By 1,; by reducing the vector 2 modulo the matrix ’1’73,

assuming that 173 is an invertible matrix, which heuristically holds with good probability. This

can be done by solving over the fraction field of R the linear system 2 =y - C"l’g and then rounding
to R the coefficients of y. Heuristically the vector E = |y] should be a good approximation of
Z?ZT_S «; - E11,; namely letting:

2m—+3
= Z (6738 Elvlvi — E (16)
i=1
we get using y = £2 - C” 1.
— (.Q _ u) C// 1

=y—F— uC”1

and therefore since y — E and u are small, the difference vector E’ should be small if the norm of
the transpose of the matrix C’l"gl remains small. We know that such a bound holds with probability
close to 1 if we model C”1’3 as a random matrix (e.g. Rudelson [Rud08] provides a bound of the

form O(m?/?)), and so we expect E’ to be small (compared to ¢) for randomly generated encodings,
since in the GGH15 parameter selection one takes m = O(logq).
Combining (11) and (16), we get:

Ay Dy —E=5-A;2+E (mod q)

for a small vector E’. Note that the previous equation is very similar to the original equation for
the private encoding D1 1:

Ai1-Diy=51-A12+F1; (mod q)

the only difference being the publicly computed correction vector E. Therefore the pair (131,1, E)
gives us an equivalent of the private encoding D1 1, which breaks the protocol. More precisely we
can eventually compute from public parameters:

(Al,l Dy — E) D1o-Dig=(s1-Aip+E')-Di3 (modq)
281~82~53‘A0+51-FA’173+E/'D173 (mod q)
Since all the error terms are small, this enables to extract the high-order bits of s7 - s9 - s3- Ag mod gq,

and breaks the protocol.
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3.2 Extension to k > 3 Users

The extension of our attack to k > 3 users is relatively straightforward and described in Appendix D.

4 Cryptanalysis of GGH15 With Safeguards

In [GGH15, Section 5.1] two safeguards for multipartite key agreement based on GGH15 multilinear
maps are described:

1. Kilian-style randomization of the encodings, where C is replaced by C := R™! - C - R’ using
the randomizer matrices R, R’ belonging to two adjacent nodes.

2. Choosing the first encoding matrix in each chain to have large entries.

In the following, we show how to extend our previous attack when those two safeguards are used.

4.1 First Safeguard: Kilian-Style Randomization of the Encodings.

The following safeguard for GGH15 multilinear maps is described in [GGH15], using Kilian-type
randomization [Kil88]. For each internal node v in the graph one can choose a random invertible
m X m matrix R, modulo ¢, and for the sinks and sources we set R, = I. Then each encoding C

relative to path u ~» v is replaced by a masked encoding C := R, ! - C - R,. Concretely, in the
GGH15 key-agreement protocol, instead of publishing encodings C; ; with:

Aij Cije="1t1(j—imod k), Aij+1 + Eijr (mod q)
one would only publish the masked encodings modulo ¢:
Ciju=R;}-Ciji Rijn (17)
with R;; = R; ;41 = I for all i; the same masking is applied to the encodings D; ;. Since the

product of encoding on any source-to-sink path remains the same, the same value is eventually
extracted. Namely for all ¢ we have:

k k
[[Cii=1Cu
j=1 j=1
and therefore exactly the same session-key as before is computed by all users.

4.2 Second Safeguard: First Encodings With Large Entries
The second safeguard described in [GGH15, Section 5.1] consists in choosing the first encodings C; 1

in each chain to have large entries modulo ¢, instead of small entries. Namely the first encoding C; 1
does not contribute in the error term when computing the session-key, so it can have large entries.

14



4.3 Cryptanalysis of GGH15 With Both Safeguards

In this section we show how to extend our attack from Section 3 when both safeguards are used.
Note the first step of our attack still applies, since in the first step we are only using product of
encodings from source to sink. Namely in Equation (4) exactly the same value (W);; is obtained
when using masked encodings. Therefore we can still derive the same linear relation between secret
exponents as in (7) and (8).

However the second step of our attack does not apply directly, since our second step requires
the knowledge of the matrix 0/1,3 in (15), which is obtained from the first columns of the encodings

(3'1730- = Cqp,; - C1,3. Since these are partial products only, such partial products would be masked
by the unknown randomization matrix Rl_é modulo ¢, hence the matrix A’1’73 is unknown.

We can however adapt our second step ‘as follows. For simplicity we keep the same notations as
previously, that is we describe our extended attack in term of the original encodings C; ; ¢, instead of
the masked encodings (_72-,]-,4 from (17); in that case we are only allowed to use products of encodings
from source to sink. We first start with a slightly different equation from (15):

2m—+3
=u -+ <Z (073 E171,i> : ,1/73 (18)

where é’1’3 is a matrix whose columns are the first column vectors of Dy 2-C1 3 for 1 < j < 2m+2.
Note that in (12) the error term that we must estimate to recover the session key is:

2m+3 R
= (Z ai'El,l,i> -Dy3 (19)
i1

Using a similar approach as in the attack first step, our approach consists in finding a vector & with
coefficients in the fraction field R ®7 Q of R such that:

N AN
13— L13- T

where ﬁ’lg is the first column vector of D 3. Applying the vector & on (18) and rounding in R, we

obtain:
2m+3
12 2] = |u-z] (Z ;- El,l,i) D

Since the components of w (over R) are small, and moreover the coefficients of  (over R ®z Q) are
heuristically also small, the scalar |w - x| in R is small compared to ¢, and therefore we obtain a
good estimate of the first component of the error vector E from (19), which enables to recover the
first component of the session key and breaks the scheme.?

4.4 Detailed Description

First step: linear relations in R. The first step of our attack is exactly the same as previously.
Namely as mentioned previously the first step of our previous attack still applies, since in the first
step we are only using product of encodings from source to sink. More precisely in Equation (4)

4 Other components of the session key can be also obtained analogously.
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exactly the same value (W);; is obtained when using masked encodings, and therefore we can still
derive the same linear relations as in (7) and (8):

2m+-3 2m+3 2m+-3 2m+3
n n / /
s1= Y ity Fag= Y ai-Byg; Fyz= Y op-Fszi, Dig= > ;- Chy,(20)
i=1 i=1 i=1 i=1

Note that as opposed to Section 3 we don’t know the value of the encodings Dg:, and Cé,g,i: since
they are masked by the R;; matrices; we only recover the coefficients «; in R.

Second step: another linear relation. In the second step, our goal is to find a vector & with
coefficients in the fraction field R ®7 Q of R such that:

2m—+2

r_ ) /
1,3 = Li- L3,
i=1

where D’173 and C"L3’Z- are the first column vectors of Dj 3 and C 3; respectively. We show that
this can be done using the same approach as in the attack first step.

Namely letting C'y 2 ¢ := C1 1 - C12 where we let C12 := C1 2,1 corresponding to t3 := 131, we
obtain:

A1 -Ciop=tig-ta-Arz+ Eioy (mod g)
Ai3-Ci3e=t3,-Ag+ E13, (mod q)
Similarly letting 027335 = Cq9y¢-Cy3 where Cy3:= Ca31, we get:
Az1-Caip=1t30- Ao+ Ey1¢ (mod q)
Agy-Cozg=1t1-tay- Ao+ Eg3s (mod q)

We can therefore compute the following matrix elements in R, restricting ourselves as previously to
the first component of the vectors:

(W)ij = A11-Cr2, - Clg;— A1 - Cay - Chy;
=t ty- Eigj+ B2 Clg;—ts; Eagi— B Chyy
forall 1 <i<2m+2and1<j<2m+2, where C} 3. and C:”’Q 3 ; are the first column vectors of
Ci3; and 62,371- respectively. This gives:
E},&j
A R . C )
(W)ij = |t1ita E12,; Ea23, ’273’1. : 7173,'3
3,J
—E2.

Moreover, since the encodings D1 3 and D> corresponding to s3 on rows 1 and 2 are public, we
can additionally compute the corresponding vector:

A / ~/
(V)i=A11-Ci2: - Dy3— A1 -Day1-Chy,
Fi3
. R . D
_ / 1,3
= |tiite Ei2; Ea3; Cos,l -

_s3
—Fs,
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where D’L3 is the first column vector of D1 3. Therefore assuming that the matrix W is invertible,
we can find « in R ®z Q such that:

W.x=V

which gives as required:
2m+2

13= Z zi-C' 3, (21)
i1

Note that the only difference with the linear relations from Step 1 is that we don’t require the z;’s
to be in R, only in the fraction field R ®7 Q of R; this implies that heuristically such coefficients
should remain small in absolute value.

Third step: estimating the error term. In the third step our goal is to estimate the error term
when computing the session-key, as in the second step of the basic attack. We first start with a
slightly different equation from (15):

2m+3
2=u+ < Z o7 E1717i> : /1173 (22)
=1

where (3”1’3 is a matrix whose columns are the first column vectors of D1 -C1 3 for 1 < j < 2m+2.
Therefore the only difference with (15) is that we use the matrix G’l’?) instead of 0/1/3
To obtain (22) we proceed as follows. Instead of letting 01’375 = C12,-C13 as in the basic

attack, we let 6’17375 = D13 - Cj 3. Similarly we let 6’37274 = D31 -C32y. This is possible because
on rows 1 and 3 the encodings D12 and D3 corresponding to sy are public. We obtain:
Ai11-Cirip=tip-Aig+E; 1, (modq)
Ao Ciap=s2-t30- Ao+ E13, (mod q)
As1-Csop=s3t30-Asz+ Es2, (mod q)
A3z3-Cs3p=1t10- Ao+ E33, (mod q)

As previously we can compute over R, restricting ourselves to the first component, where é/1 3.
and Cf 4, are the first columns of CA’1,3J« and C3 3 ; respectively:

1 A /
(JJ” = Al’l . CLLZ' . 0173’]' — A371 . 03’27]' . 03’371'
. . . )
=t1i B3+ FE11i Ciz;—s2-t3; Ez3i— E32; -Css;.

We can therefore compute over R, using the coefficients «; from the linear relations (20):

2m+43
.Qj = E (673N wij
=1
2m+3
n A1 n /
=) - (tl,z‘ B3+ E11i-Clzj—sa-ty;-Ezzi— Ezgj- Cs,s,i)

=1
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Using the linear relations in (20), we obtain:

2m~+3
. A , N
Q=s1-Bigj—s2ta; Faz—Bang Dyt | Y i By | Cly;

where D’373 is the first column vector of D3 3. This gives:

2m+3
} : A/
- u] (673N E1 1Z . CLSJ‘

for some small u; in R. Since we have let 61’37]‘ =D;5-Ci3; for 1 <j<2m+2,in vectorial form
we obtain (22) as required, where G”l’g is the matrix whose columns are the first column vectors of
DLQ . 0173,]' for 1 < 7 <2m+ 2.

Recall that in (12) the error term that we must estimate to recover the session key is:

2m—+3
= <Z ai.El,M) Dy 3 (23)
i=1

Where D1 3 = D12 - Dj3. In the following we will only estimate the first component, so we let
173 =D,y D) 3 where D1 3 and D/ g are the first column vectors of D1 3 and D1 3 respectively.
We now use the vector computed in the second step. In matrix notation, Equation (21) gives:

!
13— L1333

where ’1’73 is the matrix whose columns are the first column vectors of C'3; for 1 <¢ < 2m + 2.
Using é’l’3 = D1 - CY 3, this gives:

/ / " "
1,3 = Dy - D1,3 =D Cl,3 =03

where ﬁ’13 is the first column vector of 15173. Applying the vector x on (22), we therefore get:

2m—+3

S/

- rx=u-x+ g ;- Ei1:) - -Dig
i=1

We claim that this provides a good estimate of the first component of the error vector E from (23).
Recall that the components of & are in R ®z Q, so by rounding to the nearest integer we can get
the following value in R:

2m—+3
E =2 z]=|u x|+ <Z Q- El,l,i) '171,3 (24)
i=1

Since the components of u (over R) are small, and moreover the coefficients of & (over R ®yz Q) are
also small (heuristically), the scalar | - ] in R is small.

Finally, letting as previously:
2m—+3

D, = E a;-Ci,
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we obtain:

2m+3
A1 Dy =51-A1p+ Z a;- Ei1; (mod q).
i=1

which gives as previously:

2m+3

VIRE 1~71,1 ‘ ﬁll,g =s1-82-83- Ao+ 81 'F1,3 + Z - By 'ﬁ/173 (mod q)
i=1

Therefore

combining with (24) we can compute from public parameters:

A171 . Dl,l . ‘ﬁ,173 —F = s1-89-83-Ag+ 571" Fll73 — Lu . :13—‘ (mod q)

Since the terms s - Fl’?) and |u - x| are small, this reveals the first component of the secret vector

S1 8283

- Ag, which breaks the scheme.
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A Multipartite Key Agreement Based on GGH15 Multilinear Maps

We recall the description of the GGH15-based multipartite key-agreement protocol from [GGH15,
Section 5.1]:

e Setup(1*, k): the setup algorithm takes as input the security parameter 1* and the total number
of users k.

1. Run the parameter-generation and instance-generation of the graph-based encoding scheme
for the graph with k chains with a common end-point, each of length k edges. Let denote
e;,j the j-th edge on the i-th chain, for 1 <1i,j5 <k.
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2. Using the secret parameters, run the sampling procedure of the encoding scheme to choose
random plaintext elements ¢;, for 1 <i < k and 1 </ < N, and for each t;  compute an
encoding of it relative to all the edges e; j for j = (i + i’ — 2 mod k) + 1, denoted by Ci/7j74.5

The public parameters pp include the public parameters of the encoding scheme, i.e. the matrices
for all the source nodes A, 1, and also the encoding matrices C; ;, for all 1 < 4,5 < k and
1<¢<N.

e Publish(pp,i): the i-th party chooses random small plaintext elements r; , < x forall 1 < ¢ < N
and sets Dy < > ,Cy j, forall 1 < i < k, with j = (i + ¢ — 2mod k) + 1. It keeps
D; (2i—2 mod k)+1 Private and broadcast all the other Dy ;.

o Keygen(PP,i,sk;, {pub;};;): Party i collects all the matrices D;; (encoding the secrets sy
relative to its chain ). The session-key is then computed from the high-order bits of:

k
A - H D; ; mod ¢
j=1

B Breaking Some Variants of GGH13

Before this paper, the multipartite Diffie-Hellman key agreement—first application of the candidates
multilinear maps—has been shown to be insecure for two out of three candidates (namely GGH13
and CLT13). In an attempt to reinstate the protocol for GGH13, Halevi attempted to reinstate
the key-agreement protocol for GGH13 by borrowing ideas from the key-agreement protocol of
GGHI15 [Hall5a]. In this section, we describe attacks against the variants proposed for GGH13. The
attacks differ from the main attack described in Section 3.

B.1 The GGH13 Scheme

We briefly recall the (symmetric) GGH13 graded encoding scheme; we refer to [GGH13a] for a full
description. The operations of that scheme work over the polynomial rings R = Z[z]/(f(x)) and
R, = R/qR for some degree n irreducible integer polynomial f(x) € Z[z] and an integer ¢q. The
plaintext space is Ry = R/Z where T = (g9) = gR for g € R a small (secret) element. The zero-test
parameter is p,; = h - 2*/g € R,, where h is somewhat small (of size ~ ¢'/?), z is a random (secret)
multiplicative mask and k is the multi-linearity parameter.

Encoding. A level-i encoding u of m € R, and size bound v is u = ¢/z" € R, where ¢ € m + gR is
of size ||c|| < v. For v > nlogn, such a ¢ can be found using the GPV sampler (Theorem 1 below)
and using a basis of Z.

Theorem 1 ( [GPVO08|, Theorem 4.1). There is a probabilistic polynomial time algorithm that,
given a basis B of an n-dimensional lattice L, a parameter s > |B|-w(y/Iogn) and a center ¢ € R™,
outputs a sample from a distribution that is statistically close to the discrete Gaussian distribution
over L of center ¢ and parameter s.

Encodings at the same level can be added (and the underlying plaintext values get added modulo
7), and a level-i encoding can be multiplied with a level-j encoding when i + j < k and the result is
a level-(i + 7) encoding of the multiplication of the plaintext values modulo Z.

5 We use a slightly different notation from that used in [GGH15], where C,; ¢, is used instead.
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Extraction/zero-testing. Given a level-k encoding v = (m + ¢ - g)/2F € R, for some ¢ € R, we
can compute
w=pyu-vmodg=~h-(m/g+¢&) modq.

Since £ is small and h is somewhat small, the high-order bits of w only depends on m; we say that
the extraction of v are the high-order bits of the coefficients of w. Also, one can test whether v
encodes m = 0: the high order bits of w would all be equal to 0, i.e. w would be small.

Public encodings. In order to perform a multipartite key-agreement protocol using GGH13
multilinear maps, it was suggested in [GGH13a,LSS14] to add to the public parameters the following
encodings:

— y=-e/z € R, where e € 1 4+ gR is small;
— 29 =by-g/z € Ry and 1 = by - g/z € Ry where by, by are small in R.

Therefore a randomized level-1 encoding corresponding to a level-0 encoding u (sampled directly
from a small Gaussian distribution) can be generated as

U=u-y+po-xo+p1-11 € R

for small pg, p1 € R.

Classical and quantum security. The parameters of GGH13 were chosen heuristically so that
computing (classically and quantumly) the discrete-log of an encoding should be hard. In particular
it is easy to see that g has to remain secret. Now, finding a short generator of a principal ideal (here
recovering g from Z = (g)) is called the Short Generator of a Principal Ideal Problem (SG-PIP).
Recent research [BF14,Bial4, CGS14,BS16, CDPR16] suggests that there exists a quantum attack
that solves this problem in polynomial time. Therefore, finding any basis of the plaintext space
R, = R/T (or of Z) seems intuitively at the heart of the security of GGH13 and is therefore
considered as the core computational task of the adversary [Hallba, Section 2.2].

B.2 Breaking the Key Agreement of GGH13

In [GGH13a], Garg et al. described a N-partite Diffie-Hellman key agreement using GGH13
with multi-linearity level &k = N — 1. Each party ¢ € [1, N] samples a random level-0 encoding
¢; = a; + g-a; € R, and publishes a randomized level-1 encoding

Ci =¢i- Y+ po-xo+p1-x1,

with small pg, p1. Each party can then compute the product of all the public encodings except its
own, and multiply it by its secret level-0 encoding; i.e. party ¢ computes:

S; — H éj G .
J#

All the s;’s are then level-k encodings of the plaintext vazl a;, and therefore extract to the same
shared key s using the extraction procedure of GGH13. Security of the protocol means that the
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derived key s should be pseudo-random given the public parameters and all the broadcast information.
We call the N-partite Diffie-Hellman assumption the assumption that it is hard to distinguish the
high-order bits of the (s; - p,+ mod q), i.e. s, from random bits.

Unfortunately, this protocol was shown to be insecure (and thus the N-partite Diffie-Hellman
assumption to be easy for GGH13). The first attack is a weak discrete-log attack and further enables,
from the public parameters, to recover the ideal Z = (g) [GGH13a, CGH"15]. As discussed in
the previous section, it likely follows that there exists a polynomial time quantum attack (and a
subexponential classical attack) that recovers the secret element g from Z. The second attack [HJ16]
builds upon the first attack and classically breaks the key agreement. We recall the two attacks
below.

Attack 1: classical weak discrete-log and quantum discrete-log. We start with a level-1
encoding u = (e + & - g)/z € R, corresponding to a short secret e € R. We compute

wo=(u-x0-y* 2 - py)modg=e-by-h+& g.
The right hand side has no reduction modulo ¢. Similarly, we also compute
wp = (1‘0-yk71 ‘py)modqg=by-h+&-g.

We can now compute
E = w, /wy mod (g) = e mod (g),

which gives
E=e+p-g.

This is a weak discrete-log attack: we recover a (large) element of the coset e +Z rather than e itself
(which is small).

Recovering T = (g). This attacks enables to recover Z from the public parameters. Indeed, when
u is a level-0 encoding of 0, the previous attack yields w, = g - &, € Z. Therefore, by running the
attack on xg,z; and rerandomizations thereof, one obtains a lot of w,’s, all in Z. By computing
GCDs, with high probability one can recover a basis of Z.

Quantum discrete-log attack. If there indeed exists a quantum polynomial time attack that recovers
g from Z = (g), it then suffices to compute (E mod g) to recover e directly, the discrete-log of w.
This obviously would break the full key agreement, as one could recover the plaintext values of all
the public encodings.

Attack 2: breaking GGH13 key agreement classically. Now, on a classical computer, recov-
ering g from 7 takes at least subexponential time. We describe below a classical polynomial-time
attack of Hu and Jia against the key-agreement protocol [HJ16]. First assume that we recovered 7
as in the previous attack. Recall that we wish to compute the high-order bits of (say)

w=c- (Héﬂ> - P mod q,

i#1
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as this would break the N-Diffie-Hellman assumption. Note that this is similar to recovering the

high-order bits of
W =aj - (Héﬂ> - Pz mod q.

j#1

To do so, we first compute

Y =x9- ( H é]) “pzt mod ¢,

j#1,2

which gives

Y =h-by- ( I1 aj+§y'9) =h-bo- ( II aj) (mod (bo - g)) -

J#1,2 J#1,2

The previous attack allows to recover C1 = a1 +&; - g for a large &; from ¢;. We compute W =Y - C}

over R, which gives
k

W=ay-h-bgy- H a;=a;-Y (mod (by-g))
J#1,2
We also compute

X=a2y" 2% pymodqg==&x-by-g.

We can now compute
W' =W mod (X).

Since X is a multiple of bg - g, this also gives
W'=a;-Y (mod (by-g)).
The crucial point is that now W' is small; therefore we have
Wi =a1-Y+€&-by-g
for a somewhat small £. Eventually we can compute
W" = W' é/x9 mod q,
which gives using ¢ = (c2 + &2 - g)/# for some small & € R:

W"=ay-Y -éa/z0+ € by g-¢a/r0 mod q

=a - <HCJ> Pt + & (c2 + &g) mod g
j#1
=w' + & (co+&g) mod g.

Finally, since &, & and ¢y are small, the high-order bits of W” are the same as those of &’ (and
therefore as those of w); this breaks the key-exchange protocol.
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B.3 Another Key-Agreement Protocol With GGH13 and Its Cryptanalysis

In [Hall5a, Section 7], Halevi proposed a key-agreement protocol for GGH13 inspired from the
GGH15-based protocol, and put forward a simple hardness assumption as target for cryptanalysis.
Below, we describe this protocol and describe a polynomial-time attack against the hardness
assumption.

Asymmetric GGH13. We begin by describing how the asymmetric variant of GGH13 works.
Instead of one single secret multiplicative mask z, we have (say) k different masks z1,. .., zx. The
zero-test parameter then becomes p,; = h - (H§:1 Zj)/g € Ry, i.e. only encodings relative to all
these masks can be extracted/zero-tested. In particular, when someone has k encodings, respectively
relative to a single z; for all j, the only-way to create an encoding that can be zero-tested is to
multiply them altogether with multiplicity one. This asymmetric GGH13 is at the heart of the

indistinguishability obfuscation (iO) candidates [GGH*13b].

A new key-agreement protocol. We recall the N-party key-agreement protocol from [Hallba,
Section 7]. We choose k = N? secret random masks z; ; under the constraint that for all i, the
H;V: 1 %ij’s are equal to some random Z € R,. The zero-test parameter that will be used for the
extraction is then p,; = h-Z/g € Ry.

Public encodings. For every j € [N], sample co-prime aj,b; € R with coefficients drawn from a
discrete Gaussian distribution over Z". Then for all j, sample IV level-0 encodings ay j,...ap,; of
aj, and N level-0 encodings by j,...by ; of b;. Finally, for all (4, j), mask both a; ; and b; ; with z; ;:

Aij = (aij/z;) € Ry, Bij = (bij/z;) € Ry
The public encodings are the A; ;’s and B; ;’s.

Protocol. In the protocol, the party j chooses two random scalars «;, 3; € R from a Gaussian
distribution, and set

Ciyj:aj~Ai7j+ﬁj-Bi7j GRq, 1€ [N]
Party j publishes all the C; ; but keeps Cj ; secret. Then using the broadcast values of the other
parties and its own secret C; ;, party j can compute

N
si= ] Ciy € Ry.
j=1

All the s;’s are encodings of Hj.\,le(aj/ ~aj + By - by) relative to the mask [[; z; 5 = Z. Party j
can then use the extraction procedure with p,;.

Simple hardness assumption. The hardness assumption proposed by Halevi in [Hallb5a, Section 7.1]
is, given the A;;’s, B;;’s and p,; generated as above, it should be difficult to find any basis of
Z={g).

The key idea behind this key-agreement protocol was to avoid giving any encoding of 0, or the
creation thereof, below the top-level. Therefore each party can, from two public encodings, generate
a random-looking encoding for each z; ; and while keeping its index-(j, j) encoding secret, reveal
the index-(7, j)’s encodings of the same plaintext value for all i # j. The protocol’s graph is given in
Figure 5.
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Fig. 5. Graph of a key agreement between 3 parties for GGH13 from [Hall5a, Section 7]. The vertices contain the
secret masks, and encodings are represented on the edges (their mask is on the destination node). Each party is
represented by a different color, keeps the encoding in parenthesis secret and publishes the two other encodings.

Attacking the simple hardness assumption. For ease of presentation, we describe the attack
for three parties; the attack extends easily to more parties. For simplicity, we do not write the masks
nor the reduction modulo ¢; of course the attack only do operations permitted by the masks, which
basically means manipulating product of elements as long as they are masked by Z.

From the public encodings, one can compute

Ei=A11-Aio=a1-a2+¢€1-9¢ Fi=Ai3=a3+¢1-9g
Ey=A31-Asp=0a1-a2+¢€2-9g Fo=As3=a3+¢2-g
E3=A31-A3s=a1-a2+¢e3-g F3=A33=a3+¢3-g

Now, the above encodings can be multiplied on a row by row basis, and the resulting encoding
encodes aq - as - ag respective to the mask Z. One can therefore compute

W=pu- (E1-F1+ By Fy—2- B3 F3)
and since we zero-test an element that encodes 0, we get w over R and not modulo ¢q. Now, note that

F
w = [El EQ —2E3] . FQ * Pzt - (25)
Fj

Assume for now that, for all (¢, j) we have not two encodings A; ;, B; ;, but also a third encoding
C;,; corresponding to plaintexts c;. We can therefore compute the same w as in (25) but with 3
different row vectors corresponding to a;, b; and c¢; respectively, and 3 different column vectors
corresponding to a;, b; and ¢;. As in the zeroizing attacks [CHL'15, CGH"15], we can therefore
extend w into a matrix W by using these three different row vectors and three different column
vectors, and the matrix W is full rank with high probability. Also, modulo Z = (g), we get

w=(e1+e2—2¢e3) - (h-a3)+ (h-a1-a2)- (1 + P2 — 2¢3) mod (g),

which can be written as

h-ag

$1+ P2 — 2¢3} mod {g)

w= [51+52—253 h-al-az]-[
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The crucial observation is that since we now have vectors of dimension 2 instead of 3, the matrix W
cannot be invertible modulo Z = (g).® Therefore we can compute the determinant of W over R and
get a non-zero multiple of g. By collecting many such multiples and taking GCDs, we can recover a
basis for Z = (g).

Note that we assumed that three encodings are available for all (i, 7). We can simulate this by
working with 6 parties and multiplying the encodings quadratically to get 2 - 2 = 4 encodings. Also,
it was pointed out to us that the attack works even when the number of parties is three. Indeed, if
only two encodings are available for each (i, j), the set of values that each party broadcast gives the
attacker a set of N — 1 linear equations over R, in two variables (therefore the protocol is definitively
insecure if one has less than N encodings to choose from) [Hall5b].

B.4 Graph-GGH13: a GGH13 Variant With Graph Constraints, a New Candidate
Key Agreement and Its Cryptanalysis.

Still in [Hall5a, Section 6], Halevi proposed a variant of GGH13 with the same graph constraints as
in GGH15. This Graph-GGH13 scheme can then be used to instantiate the GGH15 key-agreement
protocol. In the rest of this section, we describe Graph-GGH13 and the corresponding third candidate
key-agreement protocol, and finally an attack thereon.

Graph-GGH13. In the following, we assume that all the graphs we consider are DAG, with a
single source and a single sink [Hallba).

Parameters generation. The parameters generation takes as inputs the security parameter A and a
graph G = (V, E) with source s and sink ¢. As for GGH13, the operations of Graph-GGH13 work
over some polynomial rings R = Z[z]/(f(x)) and R, = R/qR for some degree n irreducible integer
polynomial f(z) € Z[z] and an integer ¢ (note that n,q also depends on the diameter of the graph).
As in GGH13, the plaintext space is R; = R/Z where Z = (g) for g € R a small (secret) element.
Each vertex v € V' is associated a (secret) random invertible matrix P, € Zy*". Finally, the (public)
zero-test parameter is a tuple (9, @) such that © = v” - P, mod ¢ and @ = Pt_1 -G~ wmod ¢
where v, w are small random vectors and G~ € Zy*™ is the divide-by-g matrix.

Encoding. In Graph-GGH13, encodings are relative to the paths of G. An encoding of m € R,
relative to the path u ~» v of G is a matrix

C’:qul-C-PUmodq,

where C' € Zy*" is a multiply-by-c matrix for a small ¢ =m + a - g (namely, a level-0 encoding of
GGH13).

Operations. Addition and multiplication are just matrix addition and multiplication over Z,. Note
that we can only add encodings relative to the same path u ~» v. Two encodings relative to paths
u1 ~ v1 and ug ~» vo can only be multiplied when v; = us.

6 This key observation is also a key element in the cryptanalysis of CLT15 [CLT15] by Cheon et al. [CFLT16].
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Eztracting/zero-testing. To extract/zero-test an encoding, it has to be relative to the source-to-sink
path s ~» ¢. Such an encoding is of the form

C=P;!'-C-P;modgq

where the multiply-by-c matrix C' is such that ¢ = m + g - £ for a small £. Similarly to GGH13, one
can compute
w=v-C-w=v"-C-G ' wmodq.

Now, C - G~ - w is the vector representation of the ring element c¢- g1 - w = (m/g+€)-w € R, (a
classical GGH13 extraction) and as for GGH13, its high-order bits only depends on m. This remains
true for w when the coefficients of v are small.

GGH15-like key agreement for Graph-GGH13. Graph-GGH13 can be used to implement
the graph-based key agreement protocol of [GGH15], which we briefly describe in the following. We
only describe the setup procedure of the protocol, as it is the only step relevant to our attack. For
simplicity, we describe the protocol for 3 users; the protocol and the attack can easily be extended
to 4 users and more.

Fig. 6. Graph of a key agreement between 3 parties for Graph-GGH13 from [Hall5a, Section 6]. The vertices contain
the secret random matrices, and encodings are represented on the edges. Each party is represented by a different color,
keeps the encoding in parenthesis secret and publishes the two other encodings.

Let us consider the DAG of Figure 6. As explained before, we associate to each vertex a (secret)
random invertible matrices: Pq for the sink, P for the source, and matrices P; ;’s over Z;‘X" for
the inner vertices. At each edge, a large enough number N of small secret elements s;, € R are
encoded in matrices in ZZX” in a “round robin” fashion. More precisely, for 1 <1i,7 < 3,1 </ < N,
define

Ci,j,t = S(j—i) mod 3+1,6 T Qi G,
where o; j ¢ is a small random element in R. Then

Ciju=P;} Ciji-Pijrimodg, 1<i,j<3 1<(<N,

with P; 4 := Py and P j := Py, where C; ;,’s are multiply-by-c; ; , matrices. These matrices éi,j,g
as well as © = vT - P; mod ¢ and @ = Pal -G~ w mod ¢ are part of the public parameters. Users
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can then generate public and private encodings by linear combinations of these public encodings,
and eventually obtain a shared key as in Section 2.2.

In the following section, we describe how the secret basis Z = (g) can be obtained in polynomial
time from these public encodings.

Breaking the key agreement of GGH15 when instantiated with Graph-GGH13. Simi-
larly to the attack of Section 3, we consider:

— a fixed index 7 = 1 for the encodings corresponding to sy ;, and for simplicity we write C'1 1 :=
Ci1,1and Cop:i=Caay;

— a fixed index j = 1 for the encodings corresponding to sp;, and for simplicity we write
Ci2:=C121 and Cy3:=C231;
— a fixed index k = 1 for the encodings corresponding to s3j, and for simplicity we write

Ci3:=C131 and Cy; :=Ca11;

We start with taking the difference between keys from two source-to-sink paths, to obtain a
single small integer over Z:

9-C11-C12-Crz-w—9-Ca1-Caz-Caz-w (mod q)
’UT . Cl,l . CLQ . 01’3 . G_l - w
—vl .Cy1-Ch9-Co3-G™'-w (mod q)

C Ci3-G 1 -w
T . T, . 1,2 . 1,3
o [U Cl’l v CQ’Q] [ Cz,s] [Cz,l .G1 'w}

w

Since all the entries are small, the last equation holds over Z. Note that we changed the order of
the matrices C; ; since they commute.
Now as in the Cheon et al. attack, we can extend w to a matrix by considering many left row

vectors (varying i) and many right column vectors (varying k). We can hence obtain a matrix
W e Z2%2" with
W=A-C; B.

Similarly, using a j' # j, we can obtain another matrix W’ with
/ Cl 2 j/
W' =A.Cj - B where Cj = i .
2,35
By computing over the rationals we obtain:

wW-wl=a.Cc;-C;' - A'=A. [01’24/01’2’1’ ] CATL
J Ca3,/Ca3j
Now by the Cayley-Hamilton theorem, the rational matrices C12;/C1 2 as well as Ca3;/C2 3 jr
are roots of the characteristic polynomial y of W - W’~L. The crucial observation here is that both
c12,/c1,2,5 and ca3j/ca 3 i are actually roots of x over Q[z]/(f(x)). Hence, we can recover these
elements ny/dy = c12,j/c12,5 and na/da = c235/ca 3 ;v With ny,n2,di,ds € R. Now, we have that

- — — )
di c2j sy Ce3y de

and thus ny - do — ny - di € (g). Finally, by varying j and j' as well as using different paths, we
obtain other elements in (g), which eventually enables us to find a basis of (g) using GCDs.
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C Probability That Two Elements of R Have Coprime Norms

The analysis of our attack on GGH15 multilinear maps relies on the fact that, with significant
probability, two random elements of the base ring R have coprime norms. This is easy to check
for any given R, but we provide an asymptotic estimate of that probability in the main case of
interest, namely the family of rings R = R™ = Z[xz]/(x*" + 1), the rings of integers of power-of-two
cyclotomic fields.

As usual, what we mean by “probability that two random elements of R have coprime norms” is
the Euler product L(R) = [[, Ly(R) where for any rational prime p, L,(R) is the probability that
two elements of R which are assumed to be uniformly and independently distributed modulo p do
not both have algebraic norms divisible by p (i.e. at least one of them is invertible modulo p). Since
the ring R/pR is finite, this probability is well-defined and equal to:

#(R/pR) — #(R/pR)* )2
#(R/pR) '

For example, L(Z) = [[,(1 -1/ p?) = 1/¢(2) = 6/72 is the well-known “probability that two rational
integers are coprime”.

In the case of the cyclotomic ring R = R™, write L,(R) = L,, and L(R) = L,. We have
R/pR = F,[z]/(2¥" + 1). Now for any odd prime p, it is standard that the cyclotomic polynomial
(22" + 1) decomposes as a product of d irreducible factors of degree 2"/d modulo p, where d is the
order of p in the multiplicative group (Z/2""1Z)*. As a result, R/pR is isomorphic to (Ide)Qn/ d

and we have:
2
n _ d _ 1\2"/d on g\ 2
N O (A (4 (4 N
Lyn=1 ( oz > =1 <1 (1 pd) .

Moreover, we have R/2R = Fo[z]/(z?" + 1) = Fa[z]/(z + 1)?", and exactly half of the elements of
that ring are invertible, namely those congruent to 1 modulo (z + 1). Therefore:

Ly(R) =1~ (

Lo, =1—(1/2)? = 3/4.
So we would like to estimate the infinite product:
; 5 1 Qn/d 2
P72 d|2" p of order d in (Z/2"17Z)*

which is absolutely convergent since for fixed n, L,, = 1 + O(1/p?). We claim that in fact, L,
approaches 3/4 as n goes to infinity.
Indeed, for any odd prime p, the order d of p in (Z/2"T1Z)* clearly satisfies p® > 2"*1 since

p? =1 (mod 2"*1). In particular, d > n/log, p. Thus, we have the following inequalities:
SN R
(1o )
Lpm >1— lof;p,
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and hence lim,,_,o Ly, = 1. Applying dominated convergence to the series ) . log Ly, ,,, we can then

deduce that
3
lim L, = -
n—00 4
as required. Practical values are already close to 3/4. For example, a numerical estimate gives

L10 ~ 0.741...

D Extension to k > 3 Users

In this section we describe the extension of our attack against GGH15 multilinear maps for £ > 3
users. We have the following public encodings:

A Cije="1t1(j—imod k), Aij+1+ Eijr (modq) (26)

where A; ;11 = Ag. We also have the corresponding encodings D ; of the exponents si (j—i mod k)
where on each row i, only the encoding of s; is private and the other encodings are public.

Our attack uses only 3 rows, namely rows ¢ = 1, ¢ = 2 and the last row ¢ = k. As in Section 3.1,
we work with constants t3,..., %, so we can drop the corresponding index ¢ for such exponents and
the corresponding encodings.

First step: linear relations. In the first step, we work with rows 2 and k. On row i = 2, we
see from (26) that the exponents ¢; are encoded in the following sequence: tg, t1,ta,...,tx_1. AS
previously we can define the product encodings 6’272’5 =Cy1-Caayand ég}kjg =Ch3y- H§:4 Cs;,
and we have:

Agy - Cong =ty -ty Aso+ Ezny (mod q) (27)
k-1

Azo - Copp=tag- H tj- Ao+ Esyy (mod q) (28)
=3

for some small EA2’27€ and Eg’k,g.

Similarly on row i = k, we see from (26) that the exponents ¢; are encoded in the following
sequence: t,. .., 1, t1. We can define the product encoding C r—10 = Ci 1, - Hf;% C}; and we
get:

k
A1 -Cri1o=tos- H tj- Agg—1+ Epp_1, (mod q) (29)
=3
App-1-Crre=tig- Ao+ Eppe (mod q) (30)

for some small Ek,k—l,ﬁ-
We obtain that equations (27), (28), (29) and (30) are sufficient to derive linear relations on the
secret exponents t1 . Namely as previously we can compute over R the matrix elements, restricting
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ourselves to the first component:

. . . )
(W)ij =A21-Ca2; Coy i — Ap1-Cri—15 Clp;
. N -

=tii-th- Eagj+ Eogi-Coy

k
r- /
—toj- H ta Bk — Erg-1 Chpi

a=3
tk - ok
ol
) Cokj
!
= [tl,i Ess; Eppi Ck;“} k
—taj- [l ta
R a=3
| —Ekr-1; |

and therefore as in Section 3.1 by computing the left kernel of W we can obtain linear relations
between the t7 ;’s. Moreover, since on rows 2 and k the encodings D2 and Dy, . of s; are public, as
previously we can express s; as a linear combination of the ¢q ;’s:

2m+3

S1 — Z (673N tl,i (31)
=1

and we also have the linear relations:

2m+3 2m+3 2m+3

I r- / /

Fyo= > ai-Byas, Fep= Y i Brpi, Dip= Y ai-Chpi (32)
i=1 i=1 i=1

Second step: equivalent private-key. In the second step, we use rows 1 and k. On row ¢ = 1,
we see from (26) that the exponents ¢; are encoded from t; to tx. As previously we can define the
product encoding C1 ¢ := Ci 2y - H§:3 C1,j, and we get:

A1 Crip=tip-Aip+E1 (modq) (33)
k
Aiy Crpe=toe [[ti- Ao+ Erx (mod q). (34)
=3

As in Section 3.1 we can compute:

2m—+3
D, = g a; - Cr;
i—1

which gives:
_ 2m~+3
Aj-Diy=s1-Aip+ Y ai-Eiy; (mod q). (35)
i=1
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Using (29), (30), (33) and (34), we can compute over R:

2m+3
~/ A !
2; = E Q- (A1,1 C11,i - Cyj— Ak Crp—1j - Ckk;z)
i—1
2m—+3 k
- 1
= § o (tri- Eripy + Fi Clpj—ta;- H to Bk
=1 a=3

n /
- Ekvk_luj ’ CkJC,’L)

k 2m—+3
. R , .
=s1B135 —toj- [[ta Fir = Bxprj- D+ | D ai-Bupa| - Clyy
=1

a=3
2m+3
~/
=uj+ | > ai-Eii | Cuyy
i=1

for some small u; € R. We can now extend the previous equation to a vector §2 with m components,
by working with column vectors C j for 1 < j < m, and obtain:

2m+3
11
.Q:u—i— Z ai'El,l,i . 1,k
=1

where C' . is a public square matrix of dimension m.
b

As in Section 3.1, this enables to derive an approximation of Z?Zf“?’ a; - E11,; namely we obtain

a vector F such that:
2m+3

E'=) a-E,,—E (36)
i=1
has small components. Combining (35) and (36), we get:
Aj1 Dy —E=5-A2+E (modg)

for a small vector E’, which breaks the protocol. Namely we can eventually compute from public
parameters:

k k
<A1,1 Dy — E) : H Di;=(s1-Aip+ E')- H D;; (mod q)
i=2

=2
k
= (H si) Ao+ F (mod q)
i=1

for a small vector F', which enables to extract the high-order bits of Hle s; - Ap mod g and breaks
the protocol.
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