
Adaptive-ID Secure Revocable Identity-Based Encryption from
Lattices via Subset Difference Method

Shantian Cheng and Juanyang Zhang

Division of Mathematical Sciences,
School of Physical and Mathematical Sciences,

Nanyang Technological University
SPMS-MAS-04-20, 21 Nanyang Link, 637371, Singapore

{scheng002,zh0078ng}@ntu.edu.sg

Abstract. In view of the expiration or reveal of user’s private credential (or private key) in a real-
istic scenario, identity-based encryption (IBE) schemes with an efficient key revocation mechanism,
or for short, revocable identity-based encryption (RIBE) schemes, become prominently significant.
In this paper, we present an RIBE scheme from lattices by combining two Agrawal et al.’s IBE
schemes with the subset difference (SD) method. Our scheme is secure against adaptive identity-
time attacks in the standard model under the learning with errors (LWE) assumption. In particular,
our scheme serves as one solution to the challenge posed by Chen et al. (ACISP ’12).

1 Introduction

Since Shamir [25] proposed the concept of identity-based encryption (IBE), in which the sender may
use the recipient’s identity as a public key to encrypt a message, it was a longstanding open problem
to construct a practical IBE scheme. Later, Boneh and Franklin [9] proposed the first practical IBE
scheme using pairings. After then, IBE becomes extensively attractive from both theoretical and practical
perspectives. As a result, there have been many IBE schemes proposed based on various tools and
assumptions such as quadratic residue modulo a hard-to-factor integer [12, 10], and lattices [15, 1, 3] as
well as pairings [8, 27, 28].

In the practical use of IBE, a user’s private key may be expired or revealed for various reasons. In such
situations, an efficient key revocation mechanism is needed to keep the whole system stable and secure.
To handle this issue, there have been various solutions presented based on pairings. The first revocable
IBE (RIBE) scheme was proposed by Boneh and Franklin [9], but their suggestion is inefficient in terms
of the workload of the key authority. Later, Boldyreva et al. [7] presented the first selective-ID secure
scalable RIBE scheme by combining a fuzzy IBE scheme [22] and the complete subtree (CS) method [20].
The first adaptive-ID secure scalable RIBE scheme was proposed by Libert and Vergnaud [17].

Subsequently, Seo and Emura [24] presented an enhanced security model of RIBE by considering
one special realistic threat, which is called decryption key exposure attack, and provided a concrete
construction based on pairings. Recently, Lee et al. [16] succeeded in constructing an adaptively secure
RIBE scheme based on pairings using the subset difference (SD) method.

However, as a counterpart of pairings, lattices have not been extensively used to construct RIBE
schemes. Lattice-based cryptography is widely believed to be resistant against quantum computers. In
addition, lattice-based cryptography owns provable security under worst-case hardness assumptions [5, 21,
15]. Therefore, lattices have become a promising and powerful tool to construct a mass of cryptographic
primitives. However, to the best of our knowledge, in terms of RIBE schemes, Chen et al. [11] solely
offered a selective-ID secure RIBE scheme from lattices. Besides, they left the problem of constructing
adaptive-ID secure RIBE schemes from lattices as a challenge.

1.1 Our Results

We present the first adaptive-ID secure RIBE scheme from lattices via the SD method in the standard
model. To this end, we employ two adaptive-ID secure IBE schemes for an identity and a time, respec-
tively, proposed by Agrawal et al. [1]. Then, we combine them with the SD method for the revocation
and use a secret sharing scheme utilized in fuzzy IBE proposed by Agrawal et al. [4] to share one common
random vector in the SD method.

We demonstrate that our construction achieves adaptive-ID security in the standard model under
the LWE assumption. Our security proof follows the Libert and Vergnaud’s security model [17] with a
slight modification that uses a game that captures a strong privacy property, called indistinguishable
from random, as in [1]. As a result, we provide one solution to the challenge posed by Chen et al. [11].

1.2 Our Techniques

Our new construction of RIBE from lattices consists of the following building blocks:

(i) adaptive-ID secure IBE proposed by Agrawal et al. [1];
(ii) the SD method proposed by [20];
(iii) Shamir’s secret sharing scheme utilized in fuzzy IBE proposed by Agrawal et al. [4].

Agrawal et al.’s adaptive-ID secure IBE scheme is a lattice analog of Waters’ fully secure IBE scheme
[28]. Note that as the time space in RIBE is polynomial size in public parameters, we may just use
Agrawal et al.’s selective-ID secure IBE scheme for time part. However, for simplicity and less clutter, we
apply two instances of Agrawal et al.’s adaptive-ID secure IBE scheme regarding to users’ identities and
times, respectively. Our scheme does not just roughly combine the two adaptive-ID secure IBE instances
to achieve the adaptive-ID security of RIBE. In contrast to single adaptive-ID secure IBE scheme, the
adversary in our RIBE scheme may have already queried the private key for the challenge identity ID∗
and the update key for the challenge time T∗ before the challenge phase. So we can not easily adopt
the non-abort probability as in [1]. Instead, to achieve the adaptive-ID security, we further investigate
the abort-resistant hash functions used in [27, 1] and provide more general analysis of the abort-resistant
properties of Waters’ hash families [27] with respect to our requirements. Then we carefully design the
abort events in the series of security challenging games and prove that they are indistinguishable under
the properties of the abort-resistant hash functions and the learning with errors (LWE) assumption.
Note that the LWE problem is as hard as the worst-case approximation of the short vectors on arbitrary
lattices [21].

For revocation, we adopt the SD scheme, an alternative subset cover framework to the well-known
CS scheme. Both instantiations are binary tree based and introduced by Naor et al. [20]. However, the
main advantage of the SD method is that for r revoked leaf nodes out of total N leaf nodes in one binary
tree, the size of the covering set is at most 2r − 1 (in the worst case, or 1.25r in the average case) and
independent of N , whereas the covering set in the CS method has size r log(N/r), logarithmic complexity
in N . The tradeoff is that the size of private sets is slightly increased from O(logN) to O(log2 N). While
the private key is a long-term key transferred only once via a secure channel and the update key is a
short-term key that will be broadcast periodically via public channels, therefore, using the SD method
can efficiently reduce the overheads of the key authority.

We require a random n-vector u to be part of the public parameters. It acts as the secret for sharing
and the subsets in one binary tree formed by the same ancestor and same depth descendants act as
sharing parties. Different from the CS framework used in prior works [11, 24], the SD method requires a
pair of certain subsets, instead of one common node, to determine the non-revocation and generate the
decryption key. Thus we can not apply Chen et al.’s methods that directly and randomly split the vector
u inside one node, which indeed is a 2-out-of-2 secret sharing scheme. Based on the SD framework, we
have to share u inside families of subsets formed by the same ancestor and same depth descendants. The
size of one such family is a power of 2. Thus it is necessary to consider 2-out-of-n secret sharing scheme.
One natural candidate to solve this problem is Shamir’s secret sharing scheme. However, to ensure the
correctness of dual-Regev type encryption scheme in our scheme, we have to bound the size of vectors
in the decryption key. Then we apply the “clear the denominators” of Lagrangian coefficients methods
from [4] to revise the encryption and set proper parameters to ensure the correctness.

1.3 Comparison to Chen et al.’s Scheme

Chen et al.’s RIBE scheme [11] is a pioneering work on constructing RIBE schemes from lattices. In
Table 1, we elucidate the pros and cons of our scheme in comparison with Chen et al.’s scheme.

2

public key size private key size update key size ciphertext size Security

Chen et al.’s [11] Õ
(
n2+δ) O (logN) · Õ

(
n1+δ) r log N

r
· Õ
(
n1+δ) Õ

(
n1+δ) Selective-ID

Ours Õ
(
n2+δ+ε) O

(
log2 N

)
· Õ
(
n1+δ) (2r − 1) · Õ

(
n1+δ) Õ

(
n1+δ+ε) Adaptive-ID

Table 1. δ is a small constant such that nδ > O(logn), and ε is a small constant such that ε < 1/2. r is the
number of revoked users out of N users. When r is small compared with N , our scheme has shorter update key.
Both schemes are secure under LWE assumption in the standard model. However, our scheme is based on the
LWE assumption with sub-exponential parameters, in contrast to polynomial parameters in Chen et al.’s scheme.

2 Preliminaries

Notation Let λ ∈ N be the security parameter and 1λ its unary representation. We say a function
d : N→ R is negligible, if for sufficient large λ, |d(λ)| is smaller than reciprocal of any polynomial in λ.
For a positive integer a, [a] indicates the set of positive integers less than or equal to a.

2.1 Definition of RIBE Scheme

We recall the definitions for RIBE as defined in [7, 11, 24].
Definition 1 (Revocable IBE). An identity-based encryption with efficient revocation or simply re-
vocable IBE scheme has seven probabilistic polynomial-time (PPT) algorithms, Setup, PriKeyGen,
UpdateKey, DecKeyGen, Encrypt, Decrypt, and Revoke with associated message space M, ci-
phertext space C, identity space I, and time space T . The size of T is polynomial in the security parameter.
We treat time as discrete as opposed to continuous. There are three kinds of parties in this scheme–key
authority, sender and receiver. Each algorithm is run by either one of them. The key authority sustains a
revocation list RL and a state st. An algorithm is called stateful if it updates RL or st. The RIBE scheme
proceeds as follows:

Setup(1λ, 1N) takes as input a security parameter λ and a maximal number of users N . It outputs public
parameters pp, a master key msk, a revocation list RL (initially empty), and a state st. (This is stateful
and run by the key authority.)

PriKeyGen(pp,msk, id, st) takes as input the public parameters pp, the master key msk, an identity
id ∈ I, and the state st. It outputs a private key skid and an updated state st. (This is stateful and run
by the key authority.)

UpdateKey(pp,msk, t,RL, st) takes as input the public parameters pp, the master key msk, a key update
time t ∈ T , the revocation list RL at time t, and the state st. It outputs an update key ukt. (This is run
by the key authority.)

DecKeyGen(pp, skid, ukt) takes as input the public parameters pp, a private key skid, and an update key
ukt. It outputs a decryption key dkid,t, or ⊥ if id has been revoked before t. (This is deterministic and
run by the receiver.)

Encrypt(pp, id, t, b) takes as input the public parameters pp, an identity id ∈ I, a time t ∈ T , and a
message b ∈M. It outputs a ciphertext ctid,t. (This is run by the sender.)

Decrypt(pp, dkid,t, ctid,t) takes as input the public parameters pp, a decryption key dkid,t, and a ciphertext
ctid,t. It outputs a message b ∈M or ⊥. (This is deterministic and run by the receiver.)
Revoke(id, t,RL, st) takes as input an identity id ∈ I to be revoked, a revocation time t ∈ T , the current
revocation list RL and a state st. It outputs an updated revocation list RL. (This is stateful and run by
the key authority.)

The correctness condition requires that for any λ ∈ N and N , any (pp,msk) ← Setup(1λ, 1N), any
b ∈M, all possible state st, and a revocation list RL, if id ∈ I is not revoked on a time t ∈ T , then for

(skid, st)← PriKeyGen(pp,msk, id, st),
ukt ← UpdatKey(pp,msk, t,RL, st),

dkid,t ← DecKeyGen(pp, skid, ukt),

3

the following always holds except for a negligible probability:

Decrypt (pp, dkid,t,Encrypt (pp, id, t, b)) = b.

The security model of RIBE was introduced by Boldyreva et al. [7], where a selectively secure RIBE
was given. Later Libert and Vergnaud [17] proposed a RIBE scheme satisfying adaptive security model.
Recently, Seo and Emura [24] advanced the security model by considering the decryption key exposure
attack. In this paper, we follow Libert and Vergnaud’s security model.

The slight difference is that we formalize the RIBE adaptive security using a game that captures a
strong privacy property called indistinguishable from random. Agrawal et al. [1] defined this kind of game
for IBE. They also referred that indistinguishability from random implies both semantic security and
recipient anonymity, and also ciphertext hides the public parameters (pp) used to create it. For RIBE,
the game is designed as follows.

Setup: The challenger B runs Setup(1λ, 1N) to generate public parameters pp, a master key msk, a
revocation list RL (initially empty), and a state st. Then B gives pp to the adversary A.

Query: A is allowed to adaptively make a polynomial number of queries of the following oracles (the
oracles share the state) with some restrictions.

1. PriKeyGen(·): On input an identity id, return a private key skid by running PriKeyGen(pp,msk, id, st)
→ skid.

2. UpdateKey(·): On input a time t, return an update key ukt by running UpdateKey(pp,msk, t,RL, st)
→ ukt.

3. Revoke(·, ·): On input an identity id and a time t, update RL by running Revoke(id, t,RL, st).

Challenge: A outputs an identity id∗, a time t∗, and a plaintext b∗ ∈ M, on which it wishes to be
challenged. B picks a random bit r ∈ {0, 1} and a random ciphertext C ∈ C. If r = 1, it sets the challenge
ciphertext to C∗ := C. If r = 0, it sets the challenge ciphertext to C∗ := Encrypt(pp, id∗, t∗, b∗). It
sends C∗ as the challenge ciphertext to the adversary A.

Guess: A may further make a polynomial number of queries of the oracles as in the query phase, then
it outputs a bit r′. We say A succeeds if r′ = r.

In the above game, the following restrictions must hold:

1. UpdateKey(·) and Revoke(·, ·) can only be queried on time that is greater than or equal to the
time of all previous queries.

2. Revoke(·, ·) can not be queried on time t if UpdateKey(·) has already been queried on time t.
3. If PriKeyGen(·) was queried on id∗, then Rovoke(·, ·) must be queried on (id∗, t) for some t ≤ t∗.

We call such an adversary A as an INDr-RID-CPA PPT adversary. The advantage of A attacking a
RIBE scheme RIBE is defined as

AdvINDr-RID-CPA
RIBE,A (λ) =

∣∣∣∣Pr [r′ = r]− 1
2

∣∣∣∣ .
We say that a RIBE schemeRIBE is indistinguishable from random under adaptive identity-time attacks,
if for all INDr-RID-CPA PPT adversary A, we have that its advantage AdvINDr-RID-CPA

RIBE,A (λ) is a negligible
function in λ.

2.2 Subset Difference Method

Naor et al. [20] gave two subset-cover revocation schemes with different performances: complete subtree
method and subset difference method. The key characteristic of the SD method, which essentially leads
to the reduction in the size of covering set, is that in this method any leaf node belongs to substantially
more subsets than in the CS method (O(N) instead logN). Furthermore, SD is r-flexible, namely it
works with any number of revocations.

Let BT be a full binary tree with Nmax leaf nodes. Label the nodes in BT by 1 to 2Nmax−1 in the way
that root is labeled 1, if parent is labeled i, then the left child is labeled 2i and the right child is labeled

4

root

2

4

8

id1

9

id2

5

10

id3

11

id4

3

6

12

id5

13

id6

7

14

id7

15

id8

Fig. 1. R = {id4, id5, id6, id7}. Let vi denote the node labeled i for i ∈ [2Nmax − 1], while the root is la-
beled 1. First choose v6 as lca of v12 and v13. Get v6 as a leaf; then v3 is lca of v14 and v6. Get v3
as a leaf, CVR = {S7,14}; then the root is lca of v11 and v3, CVR = {S7,14, S2,11}. Get the root as a
leaf. Then, PVid2 = {S1,2, S1,4, S1,9, S2,4, S2,9, S4,9} and SD.Match(CVR, PVid2) outputs (S2,11, S2,9). Similarly,
SD.Match(CVR, PVid8) outputs (S7,14, S7,15). For ν ∈ R, SD.Match(CVR, PVν) outputs ⊥.

2i+ 1. One example of the labeling is in Figure 1. Let vi denote the node labeled i for i ∈ [2Nmax − 1].
The depth of a node vi is the length of the path from the root to vi. For any vi ∈ BT, Ti is defined as a
subtree that is rooted at vi. For any vi, vj ∈ BT, Ti,j is defined as a subtree Ti − Tj . Si, Si,j are the sets
of leaf nodes of Ti, Ti,j , respectively.

For a binary tree BT and a subset R of nodes, ST (R) is the Steiner tree induced by R and the root
node, that is, the minimal subtree of BT that connects all the leaf nodes in R and the root node.

The SD scheme is summarized as follows:

SD.Setup(Nmax): This algorithm takes as input the maximum number of users Nmax (for simplicity,
Nmax = 2d). It sets a full binary tree BT of depth d. Every user is assigned to a different leaf node in BT.
The collection S is the set of all subsets Si,j with vi, vj ∈ BT where vi is an ancestor of vj . It outputs
BT.

SD.Assign(BT, ν): This algorithm takes as input the full binary tree BT and a user ν. Let vν be the leaf
node assigned to ν and Path(vν) = (vk0 , vk1 , ..., vkn) be the path from the root node vk0 to the leaf node
vkn = vν . For all i, j ∈ {k0, k1, ..., kn} such that vj is a descendant of vi, it adds Si,j defined by two nodes
vi and vj in the path into a private set PVν . Finally, it outputs PVν = {Si,j}.

SD.Cover(BT, R): This algorithm takes as input the binary tree BT and a revoked set R of users. Let T
be the Steiner tree ST (R), then it computes CVR iteratively by removing nodes from T until T only has
a single node as follows (an example is given in Figure 1):

1. Find two leaves vi and vj in T such that the least-common-ancestor (lca) v of vi and vj does not
contain any other leaf node of T in its subtree. Let vl and vk be the two children of v such that vi is
a descendant of vl, and vj a descendant of vk. (If there is only one leaf node, make vi = vj the leaf, v
the root of T and vl = vk = v.)

2. If vl 6= vi, CVR = CVR ∪ {Sl,i}; if vk 6= vj , CVR = CVR ∪ {Sk,j}.
3. Remove from T all the descendants of v and make it a leaf.

SD.Match(CVR, PVν): This algorithm takes as input a covering set CVR = {Si,j} and a private set
PVν = {S′i′,j′}. If it finds two subsets Si,j ∈ CVR and S′i′,j′ ∈ PVν with (i = i′) ∧ (dj = dj′) ∧ (j 6= j′)
where dj is the depth of vj , then it outputs (Si,j , S′i′,j′). Otherwise, it outputs ⊥.

The correctness of the SD scheme is defined as follows: For all N = 2d, BT← SD.Setup(N), PVν ←
SD.Assign(BT, ν), R a set of leaf nodes in BT, let CVR ← SD.Cover(BT, R), then

1. If u 6∈ R, then SD.Match(CVR, PVν) = (Si,j , S′i′,j′);
2. If u ∈ R, then SD.Match(CVR, PVν) = ⊥.

Naor et al. [20] characterized the size of a private set and a covering set in the SD method in the
following lemma:

Lemma 1. Let Nmax be the number of leaf nodes and r be the size of a revoked set. The size of a private
set is O(log2 Nmax) and the size of a covering set is at most 2r − 1 in the SD scheme.

5

2.3 Background on Lattices

In this subsection, we review the required knowledge of lattices.

Integer Lattices

Definition 2. Let B = {b1, ...,bk} ⊆ Rm consist of k linearly independent vectors, where k ≤ m. Define
k-dimensional lattice Λ generated by B as

Λ = L(B) = {Bc =
∑
i∈[k]

ci · bi : c ∈ Zk}.

For a set of vectors S = {s1, · · · , sk} ⊆ Rm, we call the norm of S as ‖S‖ = max1≤i≤k ‖si‖, where
‖s‖ denotes the `2-norm of the column vector s. Moreover, S̃ := {s̃1, · · · , s̃k} ⊆ Rm represents the
Gram-Schmidt orthogonalization of the vectors s1, · · · , sk taken in the same order. Let ‖S̃‖ denote the
Gram-Schmidt norm of S.

In our case, we only consider integer lattices, that is, Λ ⊆ Zm.

Definition 3. For a prime q, a matrix A ∈ Zn×m and a vector u ∈ Znq , define

Λ⊥q (A) = {e ∈ Zm : Ae = 0 mod q},
Λu
q (A) = {e ∈ Zm : Ae = u mod q}.

Trapdoor for Lattices Ajtai [5], Alwen and Peikert [6], Micciancio and Peikert [18] provided methods
to produce a matrix A statistically close to uniform in Zn×mq along with a short basis T of lattice Λ⊥q (A).
We summarize it in the following proposition.

Proposition 1. Let q ≥ 3 be a prime and m ≥ 2n log q. Then there exists a probabilistic polynomial-time
algorithm TrapGen(q, n) that outputs a pair A ∈ Zn×mq , TA ∈ Zm×m such that A is statistically close to
uniform and TA is a basis for Λ⊥q (A) with length L = ‖T̃A‖ ≤ O(

√
m) with all but n−ω(1) probability.

Discrete Gaussians

Definition 4. Let Λ be a lattice in Zm. For any vector c ∈ Rm and any parameter σ ∈ R>0, define

ρσ,c(x) = exp(−π ‖x− c‖2

σ2) and ρσ,c(Λ) =
∑
x∈Λ

ρσ,c(x).

The discrete Gaussian distribution over Λ with center c and parameter σ is

DΛ,σ,c(y) = ρσ,c(y)
ρσ,c(Λ) , for ∀y ∈ Λ.

If the center c = 0, we conveniently use ρσ and DΛ,σ.

Micciancio and Regev [19] proved the following lemma that the norm of vectors sampled from the
discrete Gaussian distribution is small with high probability. Gentry et al. [15] applied it to introduce
lattice trapdoors.

Lemma 2. For any m-dimensional integer lattice Λ, any vector c ∈ Zm, any real ε ∈ (0, 1) and σ ≥
ω(
√

logm),

Pr
[
x ∼ DΛ,σ,c : ‖x− c‖ >

√
m · σ

]
≤ 1 + ε

1− ε · 2
−m.

6

Sampling Algorithms In [1, 4], there have been two algorithms proposed to sample short vectors from
lattices. We will employ these two algorithms, SampleLeft and SampleRight, for our construction and
security analysis, respectively, in a black-box manner. We demonstrate basic information of these two
algorithms below.

SampleLeft(A,M,TA,u, σ) :
Input: a rank n matrix A ∈ Zn×mq ; a matrix M ∈ Zn×m1

q ; a short trapdoor basis TA of Λ⊥q (A); a vector
u ∈ Znq ; and a Gaussian parameter σ ≥ ‖T̃A‖ · ω(

√
log(m+m1)).

Output: a vector e ∈ Zm+m1 sampled from a distribution statistically close to DΛu
q (F1),σ, where F1 =

(A |M). In particular, e ∈ Λu
q (F1).

SampleRight(A,B,R,TB,u, σ) :
Input: a matrix A ∈ Zn×mq ; a rank n matrix B ∈ Zn×mq ; a uniform random matrix R ∈ Zm×m, let
sR := ‖R‖R = sup‖x‖=1 ‖Rx‖; a short trapdoor basis TB of Λ⊥q (B); a vector u ∈ Znq ; and a Gaussian
parameter σ ≥ ‖T̃B‖ · sR · ω(

√
logm).

Output: a vector e ∈ Z2m sampled from a distribution statistically close to DΛu
q (F2),σ, where F2 =

(A |AR + B). In particular, e ∈ Λu
q (F2).

It is known that the distributions of the outputs given by the two algorithms are statistically in-
distinguishable under the appropriate parameters when m1 = m. See [1, 4] for further details of these
algorithms.

Random Matrices in {−1, 1}m×k For security analysis of our construction, we will use the following
three lemmas about properties on random matrices in {−1, 1}m×k. The first lemma is a generalized
version of the leftover hash lemma due to Dodis et al. [13].

Lemma 3. ([2, Lemma 13]) Suppose that m > (n + 1) log q +ω(logn) and q > 2 is a prime. Let A,B
be matrices uniformly chosen from Zn×mq , and Zn×kq respectively. Let R be an m × k matrix uniformly
chosen from {−1, 1}m×k mod q, where k = k(n) is polynomial in n. Then for any vector y ∈ Zmq , the
distribution of

(
A,AR,R>y

)
is statistically close to the distribution of

(
A,B,R>y

)
.

The following lemmas bound the norm of a random matrix in {−1, 1}m×m, and the product of such
a matrix with a vector, respectively.

Lemma 4. ([2, Lemma 15]) Let R be a m×m matrix chosen at random from {−1, 1}m×m. Then there
is a universal constant C such that

Pr
[
sR = ‖R‖R > C

√
m
]
≤ e−2m.

Lemma 5. ([2, Lemma 16]) Let R be a m × m matrix chosen at random from {−1, 1}m×m. For any
vector y ∈ Rm we have

Pr
[
‖Ry‖ > ‖y‖

√
m · ω(logm)

]
< negl(m).

The LWE Hardness Assumption The learning with errors (LWE) problem, defined as follows, was
first defined by Regev [21]. The security of our RIBE scheme is based on the hardness of this problem.

Definition 5 (LWE). For a positive integer n, a prime q = q(n) and a distribution χ over Zq, an
(Zq, n, χ)-LWE problem instance consists of access to an unspecified challenge oracle O, being, either a
noisy pseudo-random sampler Os under some constant random secret key s ∈ Znq , or a truly random
sampler O$. The behaviors of the two samplers are as follows:

Os : outputs samples of the form (ui, vi) = (ui,u>i s + xi) ∈ Znq × Zq, where s ∈ Znq is a uniformly
distributed vector which keeps persistent across invocations, xi ∈ Zq is a fresh sample form χ, and ui is
uniformly sampled from Znq .

O$: outputs samples from Znq × Zq uniformly at random.

7

We state that an algorithm B decides the (Zq, n, χ)-LWE problem if

Adv(Zq,n,χ)-LWE
B =

∣∣Pr
[
BOs = 1

]
− Pr

[
BO$ = 1

]∣∣
is non-negligible for a random s ∈ Znq .

Note that Regev [21] showed that for certain Gaussian error distribution χ, denoted by Ψα, the LWE
problem is as hard as several standard worst-case lattice problems using a quantum reduction.

Definition 6. For an α ∈ (0, 1) and a prime q, let Ψα denote the distribution over Zq of the random
variable bqXe mod q, where X is a normal distributed random variable with mean 0 and standard
deviation α/

√
2π, and bxe denotes the closest integer to x.

Throughout the paper, x Ψα←−− Zq (resp., x Ψ
m

α←−− Zmq) denotes that x (resp., x) is selected from Zq (resp.,
Zmq) according to the distribution Ψα (resp., Ψmα).

Proposition 2 ([21]). If there exists an efficient, possibly quantum, algorithm for deciding the (Zq, n, Ψα)-
LWE problem for α · q > 2

√
n, then there exists a quantum with q · poly(n)-time algorithm for approxi-

mating the SIVP and GapSVP problems in the `2 norm, in the worst case, to within Õ(n/α) factors.

As the best known algorithms for 2k-approximations of gapSVP and SIVP run in time 2Õ(n/k) [14,
23], it derived from above that the LWE problem with noise ratio α = 2−nε is likely hard for some
constant ε < 1.

The following lemma, proposed in [2], on the distribution Ψα will be used in parameter analysis in
Section 3.3. The proof is implicitly deduced from Lemma 8.2 in [15].

Lemma 6. Let e ∈ Zm and y Ψ
m

α←−− Zmq . Then the quantity |e>y| regarded as an integer in {0} ∪ [q − 1]
satisfies

|e>y| ≤ ‖e‖qαω(
√

logm) + ‖e‖
√
m/2

with all but negligible probability in m.

3 RIBE from Lattices via Subset
Difference Method

In this section, we provide our RIBE scheme from lattices via SD. Then, we look into the proper parameter
sizes for our construction. The security analysis of our scheme will be given in Appendix A.

3.1 Our Construction

We begin by demonstrating some requirement about an identity and a time in our scheme: We treat an
identity id and a time t as a sequence of length ` in {−1, 1}`, with possible redundancy, for some ` ∈ Z.
The requirement is that for any tuple (id, t) ∈ I×T , as two {−1, 1}-vectors, are Zq-linearly independent.
One possible technique to realize it is that if one sequence ends with 1, we put it in T , otherwise in I.
Then for each sequence in I ∪ T , we add extra 1 to the end. Thus, any id ∈ I ends with 01, while any
t ∈ T ends with 11. As a result, the two vectors id, t are Zq-linearly independent.

Now, we describe our construction.
Setup(1λ, 1N): On input a security parameter λ and the maximal number of users N , set the parameters
q, n,m, σ, α, ` as specified in Section 3.3 below. Then, it performs as follows:

1. Use the algorithm TrapGen(q, n) to generate a uniformly random matrix A ∈ Zn×mq together with a
short basis TA for Λ⊥q (A).

2. Select 2`+2 uniformly random matrices B1, · · · ,B`,C; D1, · · · ,D`,G ∈ Zn×mq and select a uniformly
random vector u ∈ Znq .

3. Let UL,RL,FL be three initially empty sets, which will be used to record the user list {(id, ν)}, revoked
list {(id, t)}, function list {(GLidj ,F

i
dj)} respectively, where the domain of the parameters ν,GLidj ,F

i
dj

will be specified in later steps.

8

4. Obtain a binary tree BT by running SD.Setup(N). Let S be the collection of all subsets Si,j of BT
and GLidj be the subset of S consisting of Si,j such that the depth of node νj is dj . Save (GLidj ,⊥) to
FL. Set the state to st = (BT,UL).

5. Output the public parameters PP and master key MK given by

PP = (A, {B1, · · · ,B`,C} , {D1, · · · ,D`,G} ,u) ,
MK = (TA,FL) .

PriKeyGen(PP,MK, id, st): On input the public parameters PP, the master key MK, an identity id =
(b1, · · · , b`) ∈ {−1, 1}`, and the state st, it works as follows:

1. Randomly choose an unassigned leaf node ν in BT and assign it to the identity id. Save (id, ν) to UL.
Run SD.Assign(BT, ν) to obtain PVν = {Si,j}.

2. Let Aid = C +
∑`
i=1 biBi ∈ Zn×mq .

3. For each Si,j ∈ PVν , perform the following:
– Retrieve the record (GLidj , ∗) from FL. If the second coordinate ∗ is not ⊥, go to next step. Else,

randomly select Fidj (x) ∈ (Zq[x])n such that each coordinate of Fidj is a polynomial of degree 1
and Fidj (0) = u. Update (GLidj ,F

i
dj) to FL.

– Sample eid
i,j as

eid
i,j ← SampleLeft

(
A,Aid,TA,Fidj (j), σ

)
.

Note that for two sets Si,j , Si,j′ ∈ GLidj with j 6= j′, we have dj = dj′ . For given i and dj , let F = Fidj .
We can compute fractional Lagrangian coefficients

Lj = j′ · (j′ − j)−1 and Lj′ = j · (j − j′)−1

such that u = F(0) = LjF(j) + Lj′F(j′) mod q. That is, as a fraction of integers, Lj can also be
evaluated in Zq, then Lj can be regarded as an integer in {0} ∪ [q − 1].

4. Output the updated state st and the private key skid for id as(
PVν , {eid

i,j}Si,j∈PVν
)
.

UpdateKey(PP,MK, t,RL, st): On input the public parameters PP, the master key MK, a time t =
(t1, · · · , t`) ∈ {−1, 1}`, the revoked list RL, and the state st, it works as follows:

1. Take R as a set consisting of such id’s that for some t′ ≤ t, (id, t′) ∈ RL. By using UL, define RI as
the set of index of leaf nodes corresponding the id’s in R. That is, for any id ∈ R, if (id, ν) ∈ UL, then
put ν in RI.

2. Run SD.Cover(BT, RI) to obtain CVRI = {Si,j}.
3. Let At = G +

∑`
i=1 tiDi ∈ Zn×mq .

4. For each Si,j ∈ CVRI, perform the following:
– Retrieve the record (GLidj , ∗) from FL. If the second coordinate ∗ is not ⊥, go to next step. Else,

randomly select Fidj (x) ∈ (Zq[x])n such that each coordinate of Fidj is a polynomial of degree 1
and Fidj (0) = u. Update (GLidj ,F

i
dj) to FL.

– Sample et
i,j as

et
i,j ← SampleLeft

(
A,At,TA,Fidj (j), σ

)
.

5. Output the update key ukt at time t as(
CVRI, {et

i,j}Si,j∈CVRI

)
.

Encrypt(PP, id, t, b): On input the public parameters PP, an identity id, a current time t, a message
b ∈ {0, 1}, it performs as follows:

1. Let D = (N − 1)!.
2. Choose a uniformly random vector s ∈ Znq .

9

3. Choose 2` uniformly random matrixes Ri ∈ {−1, 1}m×m for i = 1, · · · , 2` and define Rid =
∑`
i=1 biRi,

Rt =
∑`
i=1 tiR`+i ∈ {−`, · · · , `}m×m.

4. Choose a noise value x Ψα←−− Zq and a noise vector y Ψ
m

α←−− Zmq . Set

xid =
(

y
R>id y

)
and xt =

(
y

R>t y

)
.

5. Compute

c0 ← u>s +Dx+ b
⌊q

2

⌋
∈ Zq,

c1 ← (A |Aid)> s +Dxid ∈ Z2m
q ,

c2 ← (A |At)> s +Dxt ∈ Z2m
q .

and output the ciphertext ctid,t = (c0, c1, c2).

DecKeyGen(PP, skid, ukt): On input the public parameters PP, a private key skid and an update key ukt
given by

skid =
(
PVν , {eid

i,j}Si,j∈PVν
)

and
ukt =

(
CVRI, {et

i,j}Si,j∈CVRI

)
,

it performs as follows:

1. If id 6∈ R, run SD.Match(CVRI, PVν) to obtain a set pair (Si,j , Si′,j′) such that Si,j ∈ CVRI, Si′,j′ ∈
PVν , and (i = i′) ∧ (dj = dj′) ∧ (j 6= j′). Else, output ⊥.

2. Retrieve eid
i′,j′ from skid and et

i,j from ukt.
3. Compute the fractional Lagrangian coefficients Lj and Lj′ and evaluate them in Zq, that is, they can

be interpreted as elements in Zq, i.e. integers in {0} ∪ [q − 1].
4. Output the decryption key dkid,t =

(
Lj′eid

i′,j′ , Ljet
i,j

)
.

Decrypt(PP, ct, dkid,t): On input the public parameters PP, a ciphertext ctid,t, and a decryption key dkid,t,
it performs as follows:

1. Evaluate dkid,t in Z2m
q as (d1,d2), where d1,d2 ∈ Zmq .

2. Compute w ← c0 − d>1 c1 − d>2 c2 mod q.
3. Compare w and

⌊
q
2
⌋

regarding them as integers in Z. If
∣∣w − ⌊ q2⌋∣∣ < ⌊ q4⌋ output 1. Else, output 0.

Revoke(id, t,RL, st): On input an identity id, a revocation time t, the revocation list RL, and the state
st = (BT,UL): If (id, ∗) 6∈ UL, then output ⊥ as the private key for id was not generated. Else, add (id, t)
to RL. Then output the updated revocation list RL.

3.2 Correctness

Now, we demonstrate the correctness of our construction. Let F = Fidj . If the ciphertext is generated
by operating as described above, we can compute the error term in the decryption algorithm from the
following relation:

w = c0 − Lj′
(
eid
i′,j′
)> c1 − Lj

(
et
i,j

)> c2

= u>s− [Lj′F(j′) + LjF(j)]> s +Dx+ b
⌊q

2

⌋
−DLj′

(
eid
i′,j′
)> xid −DLj

(
et
i,j

)> xt

= b
⌊q

2

⌋
+Dx−DLj′

(
eid
i′,j′
)> xid −DLj

(
et
i,j

)> xt︸ ︷︷ ︸
error term

,

where all the equalities are in Zq.

10

Hence, for the correctness of our construction, it suffices to set the parameters such that

|Dx−DLj′
(
eid
i′,j′
)> xid −DLj

(
et
i,j

)> xt|

≤ (N !)
(
|x|+ 2

∣∣∣(eid
i′,j′
)> xid

∣∣∣+ 2
∣∣∣(et

i,j

)> xt

∣∣∣) ≤ q/5, (1)

except with negligible probability. For the first inequality, as j and j′ have the same depth, we know
|j − j′| ≤ N − 1, and hence j − j′ divides D. Moreover, j, j′ lie in the interval [2N − 1], so DLj , DLj′
are integers not exceeding (N − 1)! × (2N − 1) < 2 (N !). Therefore, if we set the parameters such that
q is sufficiently larger than N !, then our construction satisfies the correctness.

We will give details of parameter sizes in Section 3.3.

3.3 Parameters

To bound the error term in the decryption algorithm of our construction, we first introduce the following
lemma. The proof of this lemma is straightforward from Lemma 4 and Lemma 6, and a similar case has
been analyzed in Lemma 24 in [2]. We omit the details of the proof.
Lemma 7. The norm of the error term in Section 3.2 is bounded by

4qσ`mα · ω(
√

logm) · (N !) + 4O(σm1.5) · (N !)

except for a negligible probability.
Now we set the parameters to guarantee that the decryption is correct and the security reduction is

meaningful. The parameters are set under the following requirements:
1. For the lattice trapdoor generation algorithm in Proposition 1, the parameters should satisfy m ≥

2n log q. Under this selection of m, the output basis of TrapGen has Gram-Schmidt norm at most
O(
√
m). The private key skid and the update key ukt are generated from the algorithm SampleLeft in

real scheme and SampleRight in simulated games, respectively. The two algorithms are presented in
Section 2.3. By Lemma 2, if we set Gaussian parameter σ ≥ `m logm, then the vectors inside the two
keys have length at most σ

√
2m ≤ 2`m1.5 logm with high probability.

2. The noise distribution is set as χ = Ψ
m

α , where α ≥ 2
√
m/q in order to apply Regev’s reduction (see

Proposition 2). Any vector y sampled from this distribution has length satisfying O(αq
√
m) ≤ 2m

with high probability.
3. The norm of the error term is bounded by

(N !)
(
|x|+ 2

∣∣∣(eid
i′,j′
)> xid

∣∣∣+ 2
∣∣∣(et

i,j

)> xt

∣∣∣)
≤ 4qσ`mα · ω(

√
logm) · (N !) + 4O(σm1.5) · (N !)

≤ 16`2(N !) ·m2.5 · logm · ω(
√

logm)
+4(N !) ·O(`m2.5 logm)

≤ 16`2(N !) ·m2.5(logm)1.5

≤ 2N logN`2 ·m2.5 · (logm)1.5

where we used the fact that N ! ≤ 2N logN . The modulus q satisfying q ≥ 2N logN `2 ·m2.5 · (logm)1.5

ensures the correctness of our construction.
4. The modulus q should satisfy q ≥ 2(Qid + |T |), where Qid is the number of identity queries from the

adversary, |T | is the size of time space. This requirement ensures that our reduction applies. The
details are given in Appendix A.

5. The identity space I is sufficient for N users, so 2` ≥ N .

To satisfy these requirements, given a constant ε ∈ (0, 1), we set the parameters as follows, taking n to
be the security parameter:

n = (N logN)1/ε
, ` = logN, (2)

m = 2n1+δ, q ≥ max
{

2
(
Qid + |T |

)
, 2N logN`2 · n5} , (3)

σ = `n2 logn, α =
[
2N logN `2 · n4]−1

, (4)

11

where q is the nearest larger prime, and δ is selected such that 1 > δ > ε.
Note that from Regev’s reduction (see Proposition 2), the security of our scheme is finally based on

the hardness of 2O(nε)-approximating gapSVP or SIVP on n-dimension lattices using algorithms that
run in time q · poly(n) = 2O(nε). The same assumption has been used to construct fuzzy IBE by Agrawal
et al. in [4]. The security holds for ε < 1/2.

4 Conclusion and Open problems

We have provided the first adaptive-ID secure revocable identity-based encryption scheme from lattices
in the standard model under the LWE assumption. To realize identity revocation, our scheme employs
the subset difference method.

However, unfortunately, our construction can not achieve to thwart the decryption key exposure
attack, proposed by Seo and Emura [24], which considers not only exposure of a long-term private key
and a short-term update key, but also exposure of a short-term decryption key. To directly apply Seo and
Emura’s approach which randomizes a short-term decryption key, we need a proper one-way function to
randomize the short-term decryption key in our scheme, but we could not find such a proper one-way
function and we leave it as an open problem. In our scheme, we just put skid and ukt together to generate
the decryption key. If we have a proper one-way function mapping the pair of vectors to another pair
which also satisfy the dual-Regev encryption scheme, and from the new pair it is hard to regain skid and
ukt, then our scheme can be modified to achieve the security against the decryption key exposure attack.

It would be also interesting to construct revocable identity-based signatures and attribute-based
encryption schemes from lattices.

Acknowledgments. The authors are particularly grateful to Khoa Nguyen and Hyung Tae Lee for the
helpful discussions. Meanwhile, the authors would like to thank San Ling, Huaxiong Wang, Chaoping
Xing for their support all along, and the anonymous referees for the valuable comments. The first author
is supported by NTU Research Scholarship at Nanyang Technological University, while the second author
is supported in part by the Singapore Ministry of Education under Research Grant MOE2013-T2-1-041.

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient Lattice (H)IBE in the Standard Model. In H. Gilbert, editor,
Advances in Cryptology - EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages
553–572. Springer, 2010.

2. S. Agrawal, D. Boneh, and X. Boyen. Efficient Lattice (H)IBE in the Standard Model. Full version of [1].
Avaiable at http://crypto.stanford.edu/˜dabo/pubs/papers/latticebb.pdf, 2010.

3. S. Agrawal, D. Boneh, and X. Boyen. Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext
Hierarchical IBE. In T. Rabin, editor, Advances in Cryptology - CRYPTO 2010, volume 6223 of Lecture
Notes in Computer Science, pages 98–115. Springer, 2010.

4. S. Agrawal, X. Boyen, V. Vaikuntanathan, P. Voulgaris, and H. Wee. Functional Encryption for Threshold
Functions (or Fuzzy IBE) from Lattices. In M. Fischlin, J. Buchmann, and M. Manulis, editors, Public Key
Cryptography - PKC 2012, volume 7293 of Lecture Notes in Computer Science, pages 280–297. Springer,
2012.

5. M. Ajtai. Generating Hard Instances of the Short Basis Problem. In J. Wiedermann, P. van Emde Boas,
and M. Nielsen, editors, Automata, Languages and Programming, 26th International Colloquium, ICALP’99,
volume 1644 of Lecture Notes in Computer Science, pages 1–9. Springer, 1999.

6. J. Alwen and C. Peikert. Generating Shorter Bases for Hard Random Lattices. In S. Albers and J. Marion,
editors, 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, volume 3
of LIPIcs, pages 75–86. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

7. A. Boldyreva, V. Goyal, and V. Kumar. Identity-based Encryption with Efficient Revocation. In P. Ning, P. F.
Syverson, and S. Jha, editors, Proceedings of the 2008 ACM Conference on Computer and Communications
Security, CCS 2008, pages 417–426. ACM, 2008.

8. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles.
In C. Cachin and J. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 223–238. Springer, 2004.

12

9. D. Boneh and M. K. Franklin. Identity-Based Encryption from the Weil Pairing. In J. Kilian, editor, Advances
in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer,
2001.

10. D. Boneh, C. Gentry, and M. Hamburg. Space-Efficient Identity Based Encryption Without Pairings. In
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pages 647–657. IEEE
Computer Society, 2007.

11. J. Chen, H. W. Lim, S. Ling, H. Wang, and K. Nguyen. Revocable Identity-Based Encryption from Lattices. In
W. Susilo, Y. Mu, and J. Seberry, editors, Information Security and Privacy - 17th Australasian Conference,
ACISP 2012, volume 7372 of Lecture Notes in Computer Science, pages 390–403. Springer, 2012.

12. C. Cocks. An Identity Based Encryption Scheme Based on Quadratic Residues. In B. Honary, editor,
Cryptography and Coding, 8th IMA International Conference, volume 2260 of Lecture Notes in Computer
Science, pages 360–363. Springer, 2001.

13. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy Extractors: How to Generate Strong Keys from
Biometrics and Other Noisy Data. SIAM J. Comput., 38(1):97–139, 2008.

14. N. Gama and P. Q. Nguyen. Finding Short Lattice Vectors within Mordell’s Inequality. In C. Dwork, editor,
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008, pages 207–216. ACM, 2008.

15. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for Hard Lattices and New Cryptographic Con-
structions. In C. Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
2008, pages 197–206. ACM, 2008.

16. K. Lee, D. H. Lee, and J. H. Park. Efficient Revocable Identity-Based Encryption via Subset Difference
Methods. IACR Cryptology ePrint Archive 2014:132. Avaiable at http://eprint.iacr.org/2014/132, 2014.

17. B. Libert and D. Vergnaud. Adaptive-ID Secure Revocable Identity-Based Encryption. In M. Fischlin,
editor, Topics in Cryptology - CT-RSA 2009, volume 5473 of Lecture Notes in Computer Science, pages
1–15. Springer, 2009.

18. D. Micciancio and C. Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In D. Pointcheval
and T. Johansson, editors, Advances in Cryptology - EUROCRYPT 2012, volume 7237 of Lecture Notes in
Computer Science, pages 700–718. Springer, 2012.

19. D. Micciancio and O. Regev. Worst-Case to Average-Case Reductions Based on Gaussian Measures. SIAM
J. Comput., 37(1):267–302, 2007.

20. D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes for Stateless Receivers. In J. Kilian,
editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
41–62. Springer, 2001.

21. O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In H. N. Gabow
and R. Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, 2005, pages
84–93. ACM, 2005.

22. A. Sahai and B. Waters. Fuzzy Identity-Based Encryption. In R. Cramer, editor, Advances in Cryptology -
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 457–473. Springer, 2005.

23. C. Schnorr. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms. Theor. Comput. Sci.,
53:201–224, 1987.

24. J. H. Seo and K. Emura. Revocable Identity-Based Cryptosystem Revisited: Security Models and Construc-
tions. Information Forensics and Security, IEEE Transactions on, 9(7):1193–1205, July 2014.

25. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In G. R. Blakley and D. Chaum, editors,
Advances in Cryptology, Proceedings of CRYPTO ’84, volume 196 of Lecture Notes in Computer Science,
pages 47–53. Springer, 1985.

26. V. Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University Press, 2008.
27. B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In R. Cramer, editor, Advances

in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 114–127.
Springer, 2005.

28. B. Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions.
In S. Halevi, editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes in Computer
Science, pages 619–636. Springer, 2009.

A Security Analysis

Our RIBE scheme defined in Section 3.1 with parameters (q, n,m, σ, α, `) as in (2)-(4), is indistinguishable
from random under adaptive identity-time attacks provided that the (Zq, n, Ψα)-LWE assumption holds.
In particular, we have the following theorem.
Theorem 1. Under the condition that Qid the number of private key queries and |T | the size of time
space satisfy 2(Qid + |T |) ≤ q, and both of them are polynomial size of n, if there exists a PPT adversary
A that wins INDr-RID-CPA game with advantage ε, then there exists a PPT algorithm B that solves the
(Zq, n, Ψα)-LWE problem in about the same time as A and with advantage ε′ ≥ ε/(8q2Qid · |T |).

13

A.1 Abort-resistant hash functions

Similar as [1], the proof of Theorem 1 requires abort-resistant hash functions to implement abort events
in indistinguishable games. We adaptively modify the definition and propositions of abort-resistant hash
functions from [2].

Definition 7. Let H := {H : X → Y } be a family of hash functions from X to Y where 0 ∈ Y . For a
set of Q inputs x = (x1, · · · , xQ) ∈ XQ, define the non-abort probability in terms of I-place of x as

αI(x) := Pr [H ∈ H : EI(H)] ,

where EI(H) is the event that given I ⊆ {1, · · · , Q},

(H(xi) = 0,∀i ∈ I) ∧ (H(xk) 6= 0,∀k ∈ [Q] \ I) , (5)

and the probability is over the random choice of H in H. We call that H is (Q,αI,min, αI,max) abort-
resistant in terms of I-place if for all x ∈ XQ with the condition {xi : i ∈ I}∩ {xk : k ∈ [Q] \ I} = ∅, we
have αI(x) ∈ [αI,min, αI,max].

We will employ the following abort-resistant hash family utilized in [28, 1]. For a prime q let (Z`q)∗ :=
Z`q \ {0`} and define the family HWat := {Hh : (Z`q)∗ → Zq}h∈Z`q as

Hh(e) := 1 +
∑̀
i=1

hiei ∈ Zq (6)

where e = (e1, · · · , e`) ∈ (Z`q)∗ and h = (h1, · · · , h`) ∈ Z`q.
In our proof, the inputs of these hash functions will be only in {−1, 1}`, a smaller domain than

the general domain where abort-resistance holds. Furthermore, in our reduction, we need the non-abort
probability in terms of I-place with |I| = 1 or 2.

Lemma 8. Let q be a prime, 0 < Q < q and I are fixed subset of [Q]. Then the hash family HWat
defined in (6) satisfies

1. if I = {i}, HWat is
(
Q, 1

q

(
1− Q

q

)
, 1
q

)
abort-resistant in terms of {i}-place.

2. if I = {i, j}, and ei, ej are Zq-linearly independent, HWat is
(
Q, 1

q2

(
1− Q

q

)
, 1
q2

)
abort-resistant in

terms of {i, j}-place.

Proof. The first part for |I| = 1 has been proved in [1]. For I = {i, j}, we consider a set of inputs
e1, · · · , eQ ∈ (Z`q)∗. For any k ∈ [Q], let Sk be the set of functions in HWat such that H(ek) = 0. As
ei, ej are Zq-linearly independent, |Si ∩ Sj | = q`−2. Moreover, for k 6∈ {i, j}, as ek 6= ei or ej and all
coordinates of ek are −1 or 1, if ek = sei + tej for s, t ∈ Zq, then one of s, t must be zero. This implies
ek = −ei or −ej , or ei, ej , ek are Zq-linearly independent. So |Si ∩ Sj ∩ Sk| ≤ q`−3. The set of functions
in HWat, such that EI(H) defined in (5) holds, is exactly S := (Si∩Sj)\∪k 6=i,jSk. By inclusion-exclusion
principle, we have |S| ≥ q`−2−Qq`−3. Therefore the non-abort probability in terms of (i, j)-place, which
equals |S|/q`, is at least

(
1− Q

q

)
/q2, at most |Si ∩ Sj |/q` ≤ q`−2/q` = 1/q2.

A.2 Proof of Theorem 1

In this subsection we prove the security of our scheme against adaptive adversary. In Game i, let Wi

denote the event that the adversary correctly guesses the challenge bit, i.e. r′ = r at the end of the guess
phase. The adversary’s advantage in Game i is denoted by

∣∣Pr[Wi]− 1
2
∣∣.

Game 0. This is the original INDr-RID-CPA game from Definition 1 between an attacker against our
scheme and an INDr-RID-CPA challenger.
Game 1. In Game 1 we change the way that the challenger generates the matrices Bi,Di, i ∈ [`]. The
Game 1 challenger selects R∗i , i ∈ [2`] at the setup phase and also chooses 2` random scalars hi ∈ Zq for
i ∈ [2`]. Next it generates A, C, G as in Game 0 and constructs the matrices Bi,Di for i ∈ [`] as

Bi ← A ·R∗i + hiC and Di ← A ·R∗`+i + hl+iG. (7)

14

The remainder of the game is unchanged. Note that the knowledge of the challenge identity id∗ and time
t∗ is not needed for such setup.

We prove Pr[W0] =Pr[W1]. The R∗i , i ∈ [2`] are only used in the construction of the matrices
Bi,Di and in the construction of the challenge ciphertext where zid ← (R∗id)>y, zt ← (R∗t)>y, and
R∗id∗ =

∑`
i=1 b

∗
iR∗i , R∗t∗ =

∑`
i=1 t

∗
iR∗`+i. Let R∗ = (R∗1 | · · · |R∗`) ∈ Zm×`mq , then by Lemma 3, the

distributions (
A,A ·R∗, (R∗)> y

)
and(

A, (B′1| · · · |B′`|D′1| · · · |D′`) , (R∗)>y
)

are statistically close, where B′i,D′i i ∈ [`] are uniformly independent matrices in Zn×mq . Then it follows
that with z = (zid‖zt), the distributions(

A,AR∗1 , · · · ,AR∗` ,AR∗`+1, · · · ,AR∗2`, z
)

and
(A,B′1, · · · ,B′`,D′1, · · · ,D′`, z)

are statistically close. Therefore in the adversary’s view, the matrices AR∗i are statistically close to
uniform and independent of z. Hence the Bi,Di defined in (7) are close to uniform, thus

Pr[W0] = Pr[W1]. (8)

Game 2. Game 2 is the same as Game 1 except we add an abort event that is hidden from the adversary’s
view. Let Qid be the maximal number of queries regarding private key queries, and |T | the size of time
space which are polynomial size in n. Let q ≥ 2

(
|T |+Qid). Without loss of generality, since the time

space T has size polynomial in λ, we assume adversary A queries the update keys for all time t ∈ T . And
the challenger can return the same response to repeated queries from local records, so we may assume
(t1, · · · , t|T |) is the time queries tuple, which is listed in an increasing order since the update key can not
be queried in a decreasing order.

The challenger of Game 2 behaves as follows:

1. The setup phase is identical to Game 1 except that the challenger also selects a random hash function
H̃ ∈ HWat and keeps it to itself.

2. The challenger responds to the update key queries and issues the challenge ciphertext exactly as in
Game 1.

3. The Game 2 challenger randomly guesses i∗ ∈ [|T |] such that A’s i∗-th update key query is for time
t∗. The challenger guesses it correctly with probability 1/|T |.

4. The Game 2 challenger guesses an adversary type from the two following types:
i. Type-1 adversary: A does not query skid∗ .

ii. Type-2 adversary: A makes private key query for the challenge identity id∗, so id∗ should be
revoked before time t∗.

The challenger guesses it correctly with probability 1/2.
If the guess is Type-2, the Game 2 challenger randomly guesses j′ ∈ [Qid] such that A’s j′-th private
key query is for id∗. The challenger guesses it correctly with probability 1/Qid. Let j∗ = |T |+ j′.

5. Set Q = Qid + |T |. In the final guess phase, the adversary outputs a guess r′ ∈ {0, 1}. The challenger
does the following:
a. Set e = (e1, · · · , eQ) = (t1, · · · , t|T |, id1, · · · , idQid), where (t1, · · · , t|T |) and (id1, · · · , idQid) are the

queried time tuple and the identity tuple respectively. Set

I =
{
{i∗}, if A is guessed Type-1;
{i∗, j∗}, if A is guessed Type-2.

b. Abort check: on input e, the challenger checks if H̃ satisfies EI(H̃) defined in (5). If not, it
overwrites r′ with a fresh random bit in {0, 1} and we say the challenger aborted the game. Note
that the adversary never sees H̃ and has no idea if the game ends with an abort.

15

c. Artificial abort: the challenger samples a bit Γ ∈ {0, 1} such that Pr[Γ = 1] = γ(e) where the
analysis of such artificial abort and the definition of the function γ(·) are given in [28]. If Γ = 1,
the challenger overwrites r′ with a fresh random bit in {0, 1} and we say the challenger aborted
the game due to an artificial abort. The reason for this step will be briefly explained later, while
for the details one may refer to [28, 1].

For queries tuple e, let ε(e) be the probability that an abort (either real or artificial) does not happen.
Let ε(b)max and ε

(b)
min be scalars such that ε(e) ∈ [ε(b)min, ε

(b)
max] for the case A is guessed Type-b, b = 1, 2.

Lemma 9. ([2, Lemma 28]) For Type-b adversary, we have that∣∣∣∣Pr[W2]− 1
2

∣∣∣∣ ≥ ε(b)min

∣∣∣∣Pr[W1]− 1
2

∣∣∣∣− 1
2(ε(b)max − ε

(b)
min).

In our case, ε(e) is the probability that the Game 2 does not abort. Set

∆b =
{

1
2|T | , if b = 1;

1
2|T |·Qid , if b = 2,

i.e. the probability that the challenger guesses the type of adversary, I-place correctly.
If there is no artificial abort, i.e. γ(·) is identically zero, then ε(b)min = ∆b ·αIb,min, ε(b)max = ∆b ·αIb,max,

where size |Ib| = b. By Lemma 8

ε(b)max − ε
(b)
min =

{
∆1 ·Q/q2, if A is guessed Type-1,
∆2 ·Q/q3, if A is guessed Type-2,

which is non-negligible and fails to lead to a good lower bound on
∣∣Pr[W2]− 1

2
∣∣. Thus we apply Waters’

approach [28] to add an artificial abort. With the strategy, (ε(b)max − ε(b)min) is less than ε
(b)
min ·

∣∣Pr[W1]− 1
2
∣∣

and therefore
∣∣Pr[W2]− 1

2
∣∣ is not less than

1
2 · ε

(b)
min

∣∣∣∣Pr[W1]− 1
2

∣∣∣∣ ≥

|Pr[W1]− 1

2 |
8q|T | , if b = 1;

|Pr[W1]− 1
2 |

8q2Qid·|T | , if b = 2.

In summary, the advantages of A in Game 1 and Game 2 (no matter which type A is) satisfy∣∣∣∣Pr[W2]− 1
2

∣∣∣∣ ≥
∣∣Pr[W1]− 1

2
∣∣

8q2Qid · |T |
. (9)

Game 3. We now change how A and C,G in Game 2 are chosen. The game 3 challenger generates A
as a random matrix in Zm×nq , but generates C,G using algorithm TrapGen so that C,G are random
matrices in Zm×nq and the Game 3 challenger owns trapdoors TC,TG for Λ⊥q (C), Λ⊥q (G), respectively.
The construction of Bi,Di for i ∈ [`] keeps same as in Game 2, i.e. by (7). The challenger responds the
queries as follows:
PriKeyGen(·): The Game 3 challenger does the followings to respond a private key query for id =
(b1, · · · , b`) ∈ {−1, 1}` using the trapdoor TC:

1. Randomly choose an unassigned leaf node ν in BT and assign it to the identity id. Save (id, ν) to UL.
Run SD.Assign(BT, ν) to obtain PVν = {Si,j}.

2. Construct R∗id ←
∑`
i=1 biR∗i ∈ Zm×mq and hid ← 1 +

∑`
i=1 bihi from (7), then Aid = C+

∑`
i=1 biBi =

AR∗id + hidC ∈ Zn×mq . Note that hid = HID(id) where HID is the hash function in HWat defined by
(h1, · · · , h`).

3. If hid = 0, abort the game and pretend that the adversary outputs a random bit r′ in {0, 1}, as in
Game 2. Else, go to next step.

4. For each Si,j ∈ PVν , perform as follows:

16

– Retrieve the record (GLidj , ∗) from FL. If the second coordinate ∗ is not ⊥, go to next step. Else,
randomly select Fidj (x) ∈ (Zq[x])n such that each coordinate of Fidj is a polynomial of degree 1
and Fidj (0) = u. Update (GLidj ,F

i
dj) to FL.

– Sample eid
i,j as

eid
i,j ← SampleRight

(
A, hidC,R∗id,TC,Fidj (j), σ

)
.

5. Output the updated state st and the private key skid for id as(
PVν , {eid

i,j}Si,j∈PVν
)
.

UpdateKey(·): The Game 3 challenger does the followings to respond an update key query for t =
(t1, · · · , t`) ∈ {−1, 1}` using the trapdoor TG:

1. Take R as a set consisting of such id’s that for some t′ ≤ t, (id, t′) ∈ RL. By using UL, define RI as
the set of index of leaf nodes corresponding the id’s in R.

2. Run SD.Cover(BT, RI) to obtain CVRI = {Si,j}.
3. Construct R∗t ←

∑`
i=1 tiR∗`+i ∈ Zm×mq and ht ← 1+

∑`
i=1 tih`+i from (7), then At = G+

∑`
i=1 tiDi =

AR∗t + htG ∈ Zn×mq . Note that ht = HT(t) where HT is the hash function in HWat defined by
(h`+1, · · · , h2`).

4. If ht = 0, abort the game and pretend that the adversary outputs a random bit r′ in {0, 1}, as in
Game 2. Else, go to next step.

5. For each Si,j ∈ CVRI, perform the following:
– Retrieve the record (GLidj , ∗) from FL. If the second coordinate ∗ is not ⊥, go to next step. Else,

randomly select Fidj (x) ∈ (Zq[x])n such that each coordinate of Fidj is a polynomial of degree 1
and Fidj (0) = u. Update (GLidj ,F

i
dj) to FL.

– Sample et
i,j as

et
i,j ← SampleRight

(
A, htG,R∗t ,TG,Fidj (j), σ

)
.

6. Output the update key ukt at time t as(
CVRI, {et

i,j}Si,j∈CVRI

)
.

For other phases, Game 3 is identical to Game 2. Specially, in the challenge phase the challenger
checks which type the adversary A is.

a. If A is Type-1, the challenger checks if the challenge time t∗ = (t∗1, · · · , t∗`) ∈ {−1, 1}` satisfies
ht∗ := 1 +

∑`
i=1 t

∗
i h`+i = 0. If not, the challenger aborts the game as in Game 2. Similarly, an

artificial abort is implemented in Game 3.
b. If A is Type-2, the challenger checks if the challenger time t∗ = (t∗1, · · · , t∗`) ∈ {−1, 1}` satisfies

ht∗ := 1 +
∑`
i=1 t

∗
i h`+i = 0 and together the challenge identity id∗ = (b∗1, · · · , b∗`) ∈ {−1, 1}` satisfies

hid∗ := 1 +
∑`
i=1 b

∗
i hi = 0. If not, the challenger aborts the game as in Game 2. Similarly, an artificial

abort is implemented in Game 3.

Now we prove the outputs from SampleRight we used in Game 3 here are indistinguishable from the
corresponding outputs from SampleLeft in Game 2. We consider the responses to private key queries first.
Since hid in Step 4 of PriKeyGen is non-zero, the matrix TC is also a trapdoor for hidC. Moreover, hidC
is a matrix with rank n with high probability as C is. By the introduction in Section 2.3, when σ ≥
‖T̃C‖ · sR∗id · ω(

√
logm), where sR∗id = ‖R∗id‖R ≤

∑`
i=1 ‖R∗i ‖R = O(`

√
m) from Lemma 4, the generated

eid
i,j ∈ Z2m is distributed statistically close to DΛf

q(Fid),σ, where f = Fidj (j) and Fid = (A|AR∗id + hidC) =
(A|C+

∑`
i=1 biBi), as Game 2. Recall that ‖T̃C‖ ≤ O(

√
m) from Proposition 1. Therefore σ we select in

(4) is sufficiently large to meet our sampling requirement. The situation for update key queries is similar.
Since from the adversary’s view, the public parameters, responses to private key and update key

queries, the challenge ciphertext and abort conditions are all indistinguishable between Game 2 and
Game 3, the advantages of the adversary in both games are identical, i.e.

Pr[W2] = Pr[W3]. (10)

17

Remark: In Game 2, we have a uniform random hash function H̃ ∈ HWat in common. In Game 3, we
have two separate uniform random hash functions HID, HT. But in terms of the non-abort probability,
it is easy to show that there is no difference. We adopt one hash instead of two in Game 2 to make the
description concise and precise.
Game 4. Game 4 is the same as Game 3 except that the challenge ciphertext (c∗0, c∗1, c∗2) is always chosen
as a random independent element in Zq × Z2m

q × Z2m
q . As the challenge ciphertext is randomly chosen

from the ciphertext space, the advantage of the adversary is zero.
Next we show Game 3 and Game 4 are computationally indistinguishable by giving a reduction from

the LWE problem.
Reduction from LWE. Suppose the adversary A can distinguish Game 3 and Game 4. We use A to
construct an LWE algorithm B. Form Definition 5, we know an LWE instance is provided as a sampling
oracle O which can be either truly random O$ or noisy pseudo-random Os for some secret key s ∈ Znq .
The simulator B utilizes the adversary A to distinguish between the two as follows:
Instance. B requests from O and receives a fresh pair (ui, vi) ∈ Znq × Zq for each i = 0, · · · ,m.
Setup. B prepares a simulated attack environment for A as follows:

1. Assemble the random matrix A0 ∈ Zn×mq from m of the given LWE instances, that is, let A0 =
[u1| · · · |um].

2. Construct the remainder of the public parameters, namely, Bi,Di for i ∈ [`] and C,G as in Game 3
using random hi and R∗i for i ∈ [2`].

3. Send PP = (A0, {B1, · · · ,B`,C} , {D1, · · · ,D`,G} ,u0) to A, where u0 is the zeroth LWE sample.

Queries. B responds to private key queries and update key queries as in Game 3, including aborting
the game if required.
Challenge. A sends a target identity id∗ = (b∗1, · · · , b∗`) ∈ {−1, 1}`, a target time t∗ = (t∗1, · · · , t∗`) ∈
{−1, 1}` and a message bit b∗ ∈ {0, 1}. B prepares the challenge ciphertext as follows:

1. Retrieve v0, · · · , vm from the LWE instance and set v∗ =

 v1
...
vm

 ∈ Zmq .

2. Blind the message bit by setting c∗0 = Dv0 + b∗
⌊q

2

⌋
∈ Zq.

3. Set R∗id∗ ←
∑`
i=1 b

∗
iR∗i ∈ Zm×mq and R∗t∗ ←

∑`
i=1 t

∗
iR∗`+i ∈ Zm×mq where for i ∈ [2`], R∗i were selected

at the setup phase.

4. Set c∗1 = D ·
[

v∗
(R∗id∗)>v∗

]
, c∗2 = D ·

[
v∗

(R∗t∗)>v∗
]
∈ Z2m

q .

5. Send ct∗ = (c∗0, c∗1, c∗2) ∈ Zq × Z2m
q × Z2m

q to the adversary.

We claim that when O is a pseudo-random LWE oracle Os then ct∗ is distributed exactly as in Game
3. First observe that Aid∗ = A0R∗id∗ . Second, by the definition of Os, v∗ = A>0 s + y for some random
noise vector y ∈ Zmq distributed as Ψmα . Therefore,

c∗1 = D ·
[

A>0 s + y
(R∗id∗)>A>0 s + (R∗id∗)>y

]
= (A0|Aid∗)> · (Ds) +D ·

[
y

(R∗id∗)>y

]
and similarly

c∗2 = (A0|At∗)> · (Ds) +D ·
[

y
(R∗t∗)>y

]
,

which implies c∗1 and c∗2 are precisely c1, c2 parts of a valid challenge ciphertext in Game 3. Also we have
v0 = u>0 s + x for some x distributed as Ψα, and therefore c∗0 = u>0 · (Ds) +Dx+ b∗

⌊q
2

⌋
∈ Zq, which is

precisely c0 part of a valid challenge ciphertext in Game 3.

18

When O is a random oracle O$, then v0 is uniform in Zq and v∗ is uniform in Zmq . Therefore (c∗0, c∗1, c∗2)
is uniform in Zq × Z2m

q × Z2m
q by the standard leftover hash lemma (e.g Theorem 8.38 of [26]). Hence

the challenge ciphertext is always uniform in Zq × Z2m
q × Z2m

q , as in Game 4.
Guess. A is allowed to make more queries, then guesses if it is interacting with a Game 3 or Game 4
challenger. Next the simulator implements the artificial abort from Game 3 and 4, then outputs the final
guess to the LWE challenger.

As discussed above, if O = Os, the adversary’s view is the same as in Game 3; if O = O$, the
adversary’s view is the same as in Game 4. Thus the advantage of B in solving LWE is the same as the
advantage of A in distinguishing Game 3 and Game 4, as needed. Since Pr[W4] = 1/2, we obtain∣∣∣∣Pr[W3]− 1

2

∣∣∣∣ = |Pr[W3]− Pr[W4]| ≤ Adv(Zq,n,Ψα)-LWE
B . (11)

By combining (8)-(11), we obtain∣∣∣∣Pr[W0]− 1
2

∣∣∣∣ ≤ 8q2Qid · |T | · Adv(Zq,n,Ψα)-LWE
B ,

as stated in Theorem 1.

19

