
Amortizing Garbled Circuits∗

Yan Huang† Jonathan Katz‡ Vladimir Kolesnikov§ Ranjit Kumaresan¶

Alex J. Malozemoff‡

Abstract

We consider secure two-party computation in a multiple-execution setting, where two parties
wish to securely evaluate the same circuit multiple times. We design efficient garbled-circuit-
based two-party protocols secure against malicious adversaries. Recent works by Lindell (Crypto
2013) and Huang-Katz-Evans (Crypto 2013) have obtained optimal complexity for cut-and-
choose performed over garbled circuits in the single execution setting. We show that it is
possible to obtain much lower amortized overhead for cut-and-choose in the multiple-execution
setting.

Our efficiency improvements result from a novel way to combine a recent technique of Lindell
(Crypto 2013) with LEGO-based cut-and-choose techniques (TCC 2009, Eurocrypt 2013). In
concrete terms, for 40-bit statistical security we obtain a 2× improvement (per execution) in
communication and computation for as few as 7 executions, and require only 8 garbled circuits
(i.e., a 5× improvement) per execution for as low as 3500 executions. Our results suggest the
exciting possibility that secure two-party computation in the malicious setting can be less than
an order of magnitude more expensive than in the semi-honest setting.

1 Introduction

Two-party secure computation (2PC) is a rapidly developing area of cryptography. While the
basic approach for semi-honest security, garbled circuits (GC) [Yao86], is extensively studied and
is largely settled, security against malicious players has seen recent significant improvements. The
classical technique for lifting the GC approach to work in the malicious setting is cut-and-choose
(C&C), formalized and proven secure by Lindell and Pinkas [LP07]. Until recently, this approach
required significant overhead: to guarantee probability of cheating < 2−s, approximately 3s garbled
circuits needed to be generated and sent. However, in Crypto 2013 two works reduced the number
of garbled circuits required in cut-and-choose to s+O(log s) [HKE13] and to s [Lin13].

Our contribution. We further significantly reduce the replication factor for C&C-based protocols
in the multiple execution setting, where the same function (possibly with different inputs) is eval-
uated multiple times either in parallel or sequentially. To achieve this, we combine in a novel way
the “fast C&C” technique of Lindell [Lin13] with the “LEGO C&C” technique [FJN+13, NO09].
∗ c©IACR 2014. CRYPTO 2014. This article is a major revision of the version published by Springer-Verlag.
†Indiana University. E-mail: yh33@indiana.edu. This work was done while at the University of Maryland.
‡University of Maryland. E-mail: {jkatz,amaloz}@cs.umd.edu
§Bell Labs. E-mail: kolesnikov@research.bell-labs.com
¶Technion. E-mail: ranjit@cs.technion.ac.il

1

Our setting and motivation. We consider the multiple execution setting, where two parties
compute the same function on possibly different inputs either in parallel or sequentially. Here we
argue that multiple evaluations of the same function is indeed a natural and frequently-occurring
important scenario.

Today, 2PC is only beginning to enter practical deployment. However, we can reasonably
speculate on likely future use cases. In the commercial setting, 2PC is natural in both business-
to-business and business-to-customer interactions. For example, a bank customer could perform
financial transactions (e.g., payments or transfers), a cell phone customer could perform private
location-based queries, two businesses or government agencies might query their joint databases of
customers, etc. In all of these scenarios, many of the securely evaluated functions are the same, only
differing on their inputs. In fact, we conjecture that single-execution functions may be less likely to
be used in commercial settings. This is because, as a rule-of-thumb of security, externally-accessible
interfaces need to be clean and standardized. Allowing a small number of predetermined customer
actions allows for more manageable overall security.

Additionally, many complex protocols from the research literature include multiple executions
of the same function evaluated on different inputs. For example, Gordon et al. [GKK+12] propose
sublinear 2PC based on oblivious RAM (ORAM). In their protocol, each ORAM step is executed
by evaluating the same function using 2PC. Another frequently used subroutine is oblivious PRF,
used, e.g., in the previously mentioned sublinear 2PC work [GKK+12] as well as in private database
searches [CJJ+13, JJK+13]. A recent such work [PVK+14] traverses the database search tree by
evaluating the same match function at each tree node. Finally, any two universal circuits (of the
same size) are implementing the same function.

1.1 Preliminaries

Let s denote the statistical security parameter; namely, an adversary can succeed in cheating with
probability up to 2−s. Let n denote the computational security parameter. We let t denote the
total number of times the parties wish to evaluate a given circuit, and let ρ = ρ(s, t) represent
the number of circuits, per evaluation, that need to be generated to achieve an error probability of
2−s. Before discussing our specific technical contribution, we recall the main ideas of our building
blocks.

Fast cut-and-choose using cheating punishment [Lin13]. Cut-and-choose (C&C) protocols
for GCs work by letting circuit constructor P1 generate and send a number of GCs to the evaluator
P2, who then chooses a subset of circuits to open and check for correctness. If the checks pass, the
remaining circuits are evaluated as in Yao’s protocol [Yao86], and the final output is obtained by
taking majority over the individual outputs. In concrete terms, prior works [LP07, sS11] required at
least 125 circuits to be sent by P1 to guarantee security 2−40. Lindell’s improved technique [Lin13]
achieves 2−s security while requiring P1 to send only s circuits (i.e., 40 circuits for 2−40 security).

Lindell’s protocol (which we call the “fast C&C” protocol) has two phases. In the first phase,
P1 with input x and P2 with input y run a modified C&C which ensures that P2 obtains a proof
of cheating φ if it receives two inconsistent output values in any two evaluation circuits. Now, if
all evaluation circuits produce the same output z, P2 locally stores z as its output. Both parties
always continue to the second cheating-punishment phase. In it, P1 and P2 securely evaluate a
smaller circuit C ′, which takes as inputs P1’s input x and P2’s proof φ. (P2 inputs random values
if he does not have φ.) P1 proves in zero-knowledge the consistency of its input x between the two

2

phases. C ′ outputs x to P2 if φ is a valid proof of cheating; otherwise P2 receives nothing. The
efficiency improvement is due to the fact that cheating is punished if there is any inconsistency in
outputs.

LEGO cut-and-choose [FJN+13, NO09]. These works take a different approach by imple-
menting a two-stage C&C at the gate level. The evaluation circuit is then constructed from the
unopened garbled gates. In the first stage, P1 sends multiple garbled gates and P2 performs a
standard C&C with replication factor ρ(s) = O(s/ log |C|). P2 aborts if any opened gate is garbled
incorrectly. In the next stage, P2 partitions the ρ(s)|C| garbled gates into buckets such that each
bucket contains O(ρ(s)) garbled gates. This two-stage C&C ensures that, except with probability
2−s, each bucket contains a majority of correctly constructed garbled gates.

To connect gates with one another, Nielsen and Orlandi [NO09] use homomorphic Pedersen
commitments. The resulting computational efficiency is relatively poor as they perform several
expensive public-key operations per gate. This is addressed in the miniLEGO work [FJN+13], where
the authors (among other things) construct homomorphic commitments from oblivious transfer
(OT), whose cost can be amortized by OT extension [IKNP03]. However, the overall efficiency of
this construction is still lacking in concrete terms due to large constants inside the big-O notation. In
particular, the communication efficiency is adversely affected by the use of asymptotically constant-
rate codes that are concretely inefficient.

1.1.1 Näıve Approaches to Combining Fast Cut-and-Choose with LEGO.

We now discuss two natural approaches for combining Lindell’s fast C&C technique with LEGO-
based C&C to achieve protocols secure in the multiple execution setting, which yields baseline
benchmarks.

The obvious and uninteresting approach is to simply run a maliciously-secure protocol multiple
times. Note that to keep the total failure probability in t sequential executions at 2−s, we need to
increase the replication factor from s to s + log t. More interestingly, the following LEGO trick,
implicit in the work of Nordholt et al. [NNOB12], can help. Consider a circuit C̃ which consists
of t copies of the original circuit C. We perform gate-level LEGO C&C directly on C̃.1 Doing
this requires ρ = O(s/ log |C̃|) = O(s/(log |C| + log t)). However, while this is a good asymptotic
improvement, the concrete efficiency of LEGO protocols is weak due to both heavy public-key
machinery per gate [NO09] and expensive communication [FJN+13]. Further, LEGO requires a
majority of gates in each bucket to be good.

This leads to the second natural approach: use fast C&C in LEGO and require that as long as
each bucket contains at least one (as opposed to a majority) correctly constructed garbled gate, the
protocol succeeds. Unfortunately, the circuit C ′ used in the corresponding cheating-punishment
phase is no longer small. Indeed, C ′ has to deliver P1’s input x to P2 if P2 supplies a valid cheating
proof φ. However, the number of possible proofs are now proportional to |C|, since such a proof
could be generated from any of the |C| buckets. This implies that C ′ is of size at least |C|.2
Therefore, this approach cannot perform better than evaluating C from scratch using fast C&C.

1A similar approach (i.e., of directly securely evaluating C̃) can be used to run Lindell’s protocol [Lin13] t times
in parallel without having to increase the replication factor.

2The size of C′ is also proportional to computational security parameter n, as the proofs are of length at least 2n.

3

1.2 Overview of Our Approach

Our main idea for the multiple execution setting is to run two-stage LEGO C&C at the circuit level,
and then use fast C&C in the second stage (thereby requiring only a single correctly constructed
circuit from each bucket). In particular, now the size of C ′ used in each execution depends only
on the input and output lengths of C, and is no longer proportional to |C|. In this section, we
focus only on the cut-and-choose aspect of the protocol; namely, on preventing P1’s cheating by
submitting incorrect garbled circuits. More detailed protocol descriptions for both the parallel and
sequential settings can be found in Section 2 and Section 3.

In the first-stage cut-and-choose, P1 constructs and sends to P2 a total of ρt GCs. Next, P2
requests that P1 open a random ρt/2-sized subset of the garbled circuits. If P2 discovers that any
opened garbled circuit is incorrectly constructed, it aborts. Otherwise, P2 proceeds to the second
stage cut-and-choose, where it randomly assigns unopened circuits to t buckets such that each
bucket contains ρ/2 circuits. Now, as in the fast C&C protocol [Lin13], each of the t evaluations
are executed in two phases. In the first phase of the kth execution, party P2 evaluates the ρ/2
evaluation circuits contained in the kth bucket. The circuits are designed such that if P2 obtains
different outputs from evaluating circuits in the kth bucket, then it obtains a proof of cheating φk.
Next, both parties continue to the cheating-punishment phase, where P1 and P2 securely evaluate
a smaller circuit that outputs P1’s input xk if P2 provides a valid proof φk.

Clearly, P1 succeeds in cheating only if (1) it constructed m ≥ ρ/2 bad circuits, (2) none of these
m bad circuits were caught in the first cut-and-choose stage (i.e., m ≤ ρt/2), and (3) in the second
stage, there exists a bucket that contains all bad circuits. It is easy to see that the probability
with which m bad circuits escape detection in the first stage cut-and-choose is

(ρt−m
ρt/2

)
/
(ρt
ρt/2

)
. Con-

ditioned on this event happening, the probability that a particular bucket contains all bad circuits
is
(m
ρ/2
)
/
(ρt/2
ρ/2
)
. Applying the union bound, we conclude that the probability that P1 succeeds in

cheating is bounded by

t

(
ρt−m
ρt/2

)(
m

ρ/2

)/(
ρt

ρt/2

)(
ρt/2
ρ/2

)
.

For any given t and s, the smallest ρ, hinging on the maximal probability of P1’s successful attack,
can be determined by enumerating over all possible values of m (i.e., {ρ/2, ρ/2 + 1, . . . , ρt/2}).

As an example, for t = 20 in a parallel execution setting with s = 40, using our protocol the
circuit generator needs to construct 16 · t = 320 garbled circuits, whereas using a näıve application
of Lindell’s protocol [Lin13] requires 40 · t = 800 garbled circuits.

Parallel vs. sequential executions. As will be evident, it is important to distinguish between
the settings where multiple evaluations are carried out in parallel (e.g., when all inputs are available
at the start of the protocol) and where these evaluations are carried out sequentially (e.g., when not
all inputs are available as they, for example, depend on the outputs of previous executions). Below,
we provide an overview of the main challenges of each setting, and an outline of our solutions.
Parallel executions. Under the DDH assumption, we apply our C&C technique in the parallel ex-
ecution setting by modifying Lindell’s protocol [Lin13] as follows. We construct a generalized cut-
and-choose oblivious transfer (C&C OT) functionality that supports multi-stage cut-and-choose.
We call this functionality Fmcot. Asymptotically, we can realize Fmcot using general secure com-
putation, since the circuit for Fmcot depends only on the length of P2’s input and is otherwise
independent of the circuit. However, such a realization is extremely inefficient in practice (the size

4

of Executions Replication Replication for Fast C&C
parallel/sequential parallel sequential

2 32 40 41
4 24 40 42
7 20 40 42
20 16 40 44
100 12 40 46
3500 8 40 51

Table 1: The number of garbled circuits required per execution in order to guarantee a security loss of
< 2−40. For comparison, the last two columns show the number of circuits required by the fast C&C
protocol [Lin13] in the parallel and sequential settings. Note that when using the fast C&C protocol for
sequential executions we need to increase the replication factor from s to s+ log t.

of the circuit for realizing Fmcot needs to accept inputs of length at least nρt`, where n is the com-
putational security parameter and ` is the input length). Instead, we show an efficient realization
that is only a factor ρt2/s less efficient (per execution) than the modified C&C OT realization of
Lindell [Lin13]. We elaborate more on this, and other important details, in Section 2.
Sequential executions. To prevent a malicious evaluator from choosing its inputs based on the
garbled circuit, GC-based 2PC protocols perform OT before the constructor sends its GCs to
the evaluator (i.e., before the cut-and-choose phase). This forces the parties, and in particular
the evaluator, to “commit” to their inputs before performing the cut-and-choose. This, however,
does not work in the sequential setting, where the parties may not know all their inputs at the
beginning of the protocol. Standard solutions used in previous works [AIKW13, GGP10, MR13]
include assuming the garbled-circuit construction is adaptively secure or using adaptively-secure
garbling [BHR12] explicitly, assuming the programmable random-oracle model. Another issue is
that since now we perform OTs for each execution separately, we can no longer use C&C OT or
its variants; instead we rely on the “XOR-tree” approach of Lindell and Pinkas [LP07] to avoid
selective failure attacks. We elaborate more on this, and other details, in Section 3.

Our solution for the sequential setting readily carries over to the parallel setting. In particular,
adapting our protocol from the sequential to the parallel setting may address situations where the
cost incurred by the use of Fmcot outweighs the cost of using both the XOR-tree approach and
adaptively secure garbled circuits.

1.3 Related Work

Lindell and Pinkas [LP07] gave the first3 rigorous 2PC protocol based on cut-and-choose. For
s = 40, their protocol required at least 17s = 680 garbled circuits. Subsequent work by the
same authors [LP11] reduced the number of circuits to 128. This was later improved by shelat
and Shen [sS11] to 125 using a more precise analysis of the C&C approach. In Crypto 2013, two
works [HKE13, Lin13] proposed (among other things) dramatic improvements to the number of
garbled circuits that need to be sent. In more detail, for achieving statistical security 2−s, Huang

3C&C mechanisms were previously employed in works by Pinkas [Pin03] and Malkhi et al. [MNPS04] but these
approaches were later shown to be flawed [KS06, MF06].

5

et al.’s protocol [HKE13] requires 2s + O(log s) circuits, where each party generates half of them,
and Lindell’s protocol [Lin13] requires exactly s circuits.

While all of the above works perform cut-and-choose over circuits, applying cut-and-choose at
the gate-level has also been considered [DO10, FJN+13, NNOB12, NO09]. As discussed above, this
approach naturally extends to the multiple execution setting, and furthermore is not inherently
limited to considering settings where the same function is evaluated multiple times. Nielsen et
al. [NNOB12] indeed show concrete efficiency improvements using gate-level cut-and-choose tech-
niques. However, the number of rounds grows linearly with the depth of the evaluated circuit.

Finally, in independent and concurrent work, Lindell and Riva [LR14] also investigate the
multiple execution setting, and obtain performance improvements similar to ours. An interesting
difference between our works is that while we always let the evaluator pick half the circuits to
check, they show that varying the number of check circuits can lead to an additional performance
improvement.

1.4 Security Definition

We use the standard definition of security for two-party computation in the presence of malicious
adversaries [Gol04, Chapter 7]. In this work, we consider the setting where a function is executed
t times over different inputs, and explicitly describe the security definitions for such a setting in
Appendix A.

2 The Parallel Execution Setting

Consider a setting where two parties wish to securely evaluate the same function multiple times in
parallel (see Appendix A.1 for the formal security definition). Let f denote the function of interest,
and let t denote the number of times the parties wish to evaluate f . Let P1’s (resp., P2’s) input
in the kth execution be xk (resp., yk), and let x = (x1, . . . , xt) and y = (y1, . . . , yt). We define
f (t)(x, y) = (f(x1, y1), . . . , f(xt, yt)).

We adapt Lindell’s protocol [Lin13] to support our cut-and-choose technique in the parallel
execution setting. The main difficulty is the design and construction of a generalization of cut-
and-choose oblivious transfer [LP11] which we use to avoid the “selective failure attack” where a
malicious P1 constructs invalid keys for P2’s input wires to try and deduce P2’s inputs based on if P2
aborts execution or not. We discuss this more in Section 2.1. We note that the näıve idea of using
the XOR-tree approach [LP07] in our setting does not appear to work without using adaptively
secure garbled circuits. Specifically, it is no longer clear how P1, without any knowledge of which
circuits will end up as evaluation circuits, can batch P2’s input keys together in a way that lets P2
learn different sets of input keys corresponding to different evaluation circuits and yet within each
evaluation bucket guaranteeing that P2 can learn only input keys corresponding to the same set of
inputs.

We give details of our protocol construction for the parallel executions setting in Section 2.2.

2.1 Generalizing Cut-and-Choose Oblivious Transfer

Cut-and-choose oblivious transfer (C&C OT) [LP11] is an extension of standard one-out-of-two
oblivious transfer (OT). The sender inputs L pairs of strings, and the receiver inputs L selection
bits to select one string out of each pair of sender strings. The receiver also inputs a set J of

6

Inputs:
• P1 inputs ` vectors ~xi, each containing s pairs of values xi,j0 , xi,j1 ∈ {0, 1}

n×n, i ∈ [`], j ∈ [s]. In addition,
P1 inputs s “check values” χ1, . . . , χs ∈ ({0, 1}n)s.

• P2 inputs σ1, . . . , σ` ∈ {0, 1} and a set of indices J ⊆ [s].
Outputs: P1 receives no output. P2 receives the following:
• For every i ∈ [`] and j ∈ J , P2 receives (xi,j0 , xi,j1).
• For every i ∈ [`], P2 receives 〈xi,1σi , . . . , x

i,s
σi 〉.

• For every k 6∈ J , P2 receives χk.
In other words, P2 receives {χj}j∈[s]\J and {{xi,jσi }j∈[s]\J , {(xi,j0 , xi,j1)}j∈J}i∈[`].

Figure 1: Modified batch single-choice cut-and-choose OT functionality Fccot [Lin13].

size L/2 that consists of indices where it wants both the sender’s inputs to be revealed. Note that
for indices not contained in J , only those sender inputs that correspond to the receiver’s selection
bits are revealed. In applications to secure computation, and in particular when transferring input
keys corresponding to a particular input wire across all evaluation circuits, one needs single-choice
cut-and-choose oblivious transfer, where the receiver is restricted to inputting the same selection
bit in all the L/2 instances where it receives exactly one out of two sender strings. Furthermore,
when transferring input keys for multiple input wires, it is crucial that the subset J input by
the receiver is the same across each instance of single-choice C&C OT executed for all input wires.
This variant, called batch single-choice C&C OT, can be realized from the decisional Diffie-Hellman
problem [LP11].

Lindell [Lin13] presented a variant of batch single-choice C&C OT [LP11] in order to address
settings where the check set J input by the receiver may be of arbitrary size. We denote this
variant by Fccot; see Figure 1 for the formal description. In this variant, in addition to obtaining
one of the two sender inputs for pairs whose indices are not in J , the receiver also obtains a “check
value” for each index not in J . These check values are used to confirm whether or not a circuit is
an evaluation circuit.

For our purposes, we introduce a new variant of Fccot, which we call batch single-choice multi-
stage C&C OT. We denote this primitive by Fmcot and present its formal description in Figure 2.
At a high level, our variant differs from Fccot in that receiver P2 can now input multiple sets
J1, . . . , Jt (where J is now implicitly defined as [ρt] \ ∪k∈[t]Jk) and make independent selections for
each of J1, . . . , Jt. Unlike in Lindell’s scheme [Lin13], we only need to consider sets J1, . . . , Jt whose
sizes are pre-specified in order to provide the desired security guarantees. However, as in the Fccot
functionality, Fmcot (1) does not require sets J1, . . . , Jt to be of a particular size, and (2) delivers
“check values” for indices contained in each of J1, . . . , Jt. These check values are used to confirm
whether a circuit is an evaluation circuit in the kth bucket for some k ∈ [t].

Designing the Fmcot functionality. As in Fccot, the sender P1 inputs ` vectors ~x1, . . . , ~x` each
of length ρt, where each element in the vector is a pair of values (corresponding to the 0-key and
the 1-key of a given garbled wire). In addition, P1 inputs ρt2 “check values”. Receiver P2 inputs
t vectors ~σ1, . . . , ~σt each of length ` and pairwise non-intersecting sets J1, . . . , Jt. Upon receiving
these inputs from P1 and P2, the functionality computes J = [ρt] \ ∪k∈[t]Ik, and delivers, for each
j ∈ J , the jth element (i.e., both values in the jth pair) in each of the ` vectors. Next, for every

7

Inputs:
• P1 inputs ` vectors ~xi, each containing ρt2 pairs xi,j0 , xi,j1 ∈ {0, 1}n. In addition, P1 inputs ρt2 “check

values” χ1
1, . . . , χ

1
ρt; . . . ;χt1, . . . , χtρt ∈ {0, 1}n.

• P2 inputs ~σ1 = (σ1,1, . . . , σ1,`), . . . , ~σt = (σt,1, . . . , σt,`) ∈ {0, 1}` and sets J1, . . . , Jt that are pairwise
non-intersecting subsets of [ρt].

Outputs: Party P1 receives no output. Party P2 receives the following:
• For every k ∈ [t] and for every j ∈ Jk, party P2 receives χkj .
• Let J = [ρt] \ ∪k∈[t]Jk. For every i ∈ [`] and j ∈ [ρt]:

– If j ∈ J , then P2 receives (xi,j0 , xi,j1).
– Otherwise, if there exists a (unique) k ∈ [t] such that j ∈ Jk, then P2 receives xi,jσk,i .

In other words, P2 receives sets {χ1
j}j∈J1 , . . . , {χtj}j∈Jt and {{xi,jσ1,i}j∈J1 , . . . , {xi,jσt,i}j∈Jt , {(x

i,j
0 , xi,j1)}j∈J}i∈[`].

Figure 2: Batch single-choice multi-stage cut-and-choose OT functionality Fmcot.

k ∈ [t] and for each j ∈ Jk, the functionality delivers to P2 the σk,i value in the jth pair of vector
~xi for every i ∈ [`] along with the check value χkj .

Realizing Fmcot in the Fccot-hybrid model. We now proceed to construct a protocol for Fmcot. Our
goal is to provide an information-theoretic reduction from Fmcot to Fccot. We first consider a näıve
approach which serves as a warm-up to our final construction and provides intuition behind our
definition of Fmcot.

The näıve approach. We propose the following natural approach to realizing Fmcot from Fccot: P1
first performs a t-out-of-t additive secret sharing of all input keys corresponding to P2’s inputs.
In addition, P1 chooses ρt2 check values. Next, P1 and P2 interact with the Fccot functionality t
times in parallel. In the kth interaction, P1 provides the kth additive share of its input plus ρt
check values χk1, . . . , χkρt (i.e., a check value for each circuit that could potentially be an evaluation
circuit in the kth execution), while P2 provides its inputs for the kth execution along with a set
[ρt] \ Jk, where Jk indicates the indices of the evaluation circuits to be used in the kth execution.
Let J = [ρt] \ ∪k∈[t]Jk. At the end of the interaction, P2 obtains (1) all t additive shares of input
keys, and therefore all input keys, for circuits GCj with j ∈ J , and (2) all t additive shares of input
keys that correspond to its actual input in the kth execution, and therefore its input keys, along
with check values for circuits GCj with j 6∈ J .

Note, in particular, that for the check circuits, P2 does not obtain the check values, and for
the evaluation circuits, P2 does not obtain both input keys. Thus, the above protocol seems to
successfully fulfill our requirements from the Fmcot functionality. However, note that there is no
mechanism in place to enforce that P2 supplies non-intersecting sets J1, . . . , Jk. In the following we
show that this prevents the above protocol from realizing Fmcot.

Suppose t = 2. A malicious P2 may input overlapping sets J1, J2 to Fccot. The consequence
of this is that P2 now possesses check values χ1

j and χ2
j for j ∈ J1 ∩ J2. Clearly, the functionality

Fmcot does not allow this. On the other hand, recall that the input keys are all additively shared,
and as a result P2 does not possess input keys corresponding to its input in circuit GCj unless its
input in both executions are identical. At the surface, there does not seem to be any attack due to
this malicious strategy. Sure, P2 can now equivocate on assigning GCj to either the first evaluation

8

bucket or the second evaluation. However, as observed earlier, it either has no corresponding
keys, or it is going to evaluate both circuits on the same input, say y (in which case it seems
immaterial whether j is revealed as part of J1 or J2). Unfortunately, we show that the above
strategy for malicious P2 is not simulatable. In particular, at the end of the interaction with Fccot,
the simulator successfully extracts P2’s input in the first and second execution, but is now unable
to decide on how to fake the garbled circuit GCj . On the one hand, if j ∈ J1, then the fake garbled
circuit has to output z1 = f(x1, y). On the other hand, if j ∈ J2, then the fake garbled circuit has
to output z2 = f(x2, y). Therefore, the simulator has to choose on how to fake GCj in the dark.
Note that a simulation strategy for this specific case that decides to fake GCj to output z1 with
probability 1/2, and to output z2 with probability 1/2, does indeed succeed with probability 1/2.
However, this strategy does not extend well to the case when t is large.

The discussion above motivates our definition of Fmcot; in particular, it reinforces why Fmcot
must deliver at most one check value per circuit. In the following, we explain how to modify the
näıve construction to enforce this.

Our approach. The high level idea behind our protocol is to let P1 perform independent additive
sharings of both the input values as well as the check values. Then P1 and P2 query the Fccot
functionality t times to transfer the values as required by Fmcot. We detail this below, explaining
it in the context of our secure computation protocol.

Let (xi,j0 , xi,j1) be the input keys corresponding to P2’s ith input wire in GCj . First, P1 performs
a t-out-of-t additive secret sharing of all input values corresponding to P2’s inputs; i.e., for each
i ∈ [`], j ∈ [ρt], P1 secret shares xi,j0 (resp., xi,j1) into {xi,j,k0 }k∈[t] (resp., {xi,j,k1 }k∈[t]). P1 then
chooses ρt2 check values {χk1, . . . , χkρt}k∈[t]. It then performs a (2`(t− 1) + 1)-out-of-(2`(t− 1) + 1)
additive sharing of each value χkj to obtain shares denoted χ̃kj , {χ

i,j,k′

0,k , χi,j,k
′

1,k }k′∈[t]\{k},i∈[`]. Then,
instead of creating inputs to Fccot using xi,j,kc shares alone, P1 instead creates a “share block”
Xi,j,k
c = (xi,j,kc , χi,j,kc,1 , . . . , χi,j,kc,t). That is, a share block Xi,j,k

c contains, in addition to a share of the
input key, a share of all check values corresponding to circuit GCj .

Next, P1 and P2 run t instances of Fccot in parallel. In the kth interaction, in addition to the
ρt check value shares χ̃k1, . . . , χ̃kρt, P1 provides its kth share block while P2 provides its inputs for
the kth execution along with a set [ρt]\Jk, where Jk indicates the indices of the evaluation circuits
to be used in the kth execution. Let J = [ρt] \ ∪k∈[t]Jk. At the end of the interaction, P2 obtains
(1) all t share blocks of input keys, and therefore all input keys, for circuits GCj with j ∈ J , and
(2) all t share blocks of input keys that correspond to its actual input in the kth execution, and
therefore its input keys, along with a check value χ̃kj for circuits GCj with j ∈ Jk.

Note, in particular, that for each check circuit GCj , P2 does not obtain the check value χkj for
any k, because it always misses the check value share χ̃kj . For each evaluation circuit GCj with
j ∈ Jk, P2 does not obtain both input keys, and more importantly can obtain at most one check
value (which is χkj). This is because share blocks contain shares of input keys as well as shares of
check values. For an evaluation circuit, party P2 always misses a share block, and consequently
shares of all values χk′j with k′ 6= k. Furthermore, if P2 wants to ensure it receives χkj , then it should
never input Jk′′ such that k′′ 6= k and yet j ∈ Jk′′ . This is because for j ∈ Jk′′ , P2 is guaranteed to
miss a share block that contains an additive share of χkj . Note that the above observations suffice
to deal with a malicious P2 that inputs overlapping sets since in this case P2 fails to obtain any
check values corresponding to indices in the intersection.

The formal description of the protocol in the Fccot-hybrid model can be found in Figure 3. We

9

Inputs:
• P1 inputs ` vectors of pairs ~xi = 〈(xi,10 , xi,11), . . . , (xi,ρt0 , xi,ρt1)〉 for i ∈ [`]. In addition, P1 inputs ρt2 “check

values” (χ1
1, . . . , χ

1
ρt), . . . , (χt1, . . . , χtρt). All values are in {0, 1}n.

• P2 inputs ~σ1 = (σ1,1, . . . , σ1,`), . . . , ~σt = (σt,1, . . . , σt,`) ∈ {0, 1}` and sets J1, . . . , Jt.
Protocol:
• For all i ∈ [`], P1 performs a t-out-of-t additive secret sharing of ~xi to obtain shares ~xi,1, . . . , ~xi,t. For
k ∈ [t], let ~xi,k = 〈(xi,1,k0 , xi,1,k1), . . . , (xi,ρt,k0 , xi,ρt,k1)〉. Let Xi,j,k

0 = (xi,j,k0 , χi,j,k0,1 , . . . , χi,j,k0,t) and Xi,j,k
1 =

(xi,j,k1 , χi,j,k1,1 , . . . , χi,j,k1,t), where χi,j,k0,1 , . . . , χi,j,k0,t and χi,j,k1,1 , . . . , χi,j,k1,t are random independent values in
{0, 1}n. Let ~Xi,k = 〈(Xi,1,k

0 , Xi,1,k
1), . . . , (Xi,ρt,k

0 , Xi,ρt,k
1)〉.

• For all k ∈ [t] and j ∈ [ρt], set χ̃kj = χkj ⊕
⊕

k′∈[t]\{k},i∈[`](χ
i,j,k′

0,k ⊕ χi,j,k
′

1,k).

• P1 and P2 run t instances of Fccot in parallel as follows. In the kth instance:

– P1 inputs ` vectors of pairs ~Xi,k of length ρt for i ∈ [`] and ρt “check values” χ̃k1 , . . . , χ̃kρt. P2 inputs
σk,1, . . . , σk,` ∈ {0, 1} and the set [ρt] \ Jk.

– P2 receives {χ̃kj }j∈Jk and {{Xi,j,k
σk,i }j∈Jk ∪ {(X

i,j,k
0 , Xi,j,k

1)}j∈[ρt]\Jk}i∈[`].

• For all k ∈ [t] and j ∈ Jk, P2 reconstructs χkj = χ̃kj ⊕
⊕

k′∈[t]\{k},i∈[`](χ
i,j,k′

0,k ⊕ χi,j,k
′

1,k).

• Let J = [ρt] \ ∪k∈[t]Jk. For all i ∈ [`] and j ∈ [ρt], P2 does the following:

– If j ∈ J : set xi,j0 =
⊕

k∈[t] x
i,j,k
0 , and xi,j1 =

⊕
k∈[t] x

i,j,k
1 .

– If there exists (unique) k ∈ [t] such that j ∈ Jk: set xi,jσk,i =
⊕

k∈[t] x
i,j,k
σk,i .

• P2 outputs sets {χ1
j}j∈J1 , . . . , {χtj}j∈Jt and {{(xi,j0 , xi,j1)}j∈J , {xi,jσ1,i}j∈J1 , . . . , {xi,jσt,i}j∈Jt}i∈[`].

Figure 3: Realizing Fmcot in the Fccot-hybrid model.

prove the following.

Theorem 1. There exists a protocol perfectly realizing Fmcot in the Fccot-hybrid model.

Proof (Sketch). Consider the protocol described in Figure 3. We prove that this protocol realizes
Fmcot in the Fccot-hybrid model. We split the analysis into two cases depending on whether P1 or
P2 is corrupted.
P1 is corrupted. The simulation is straightforward since P1 does not receive any output. We
describe it below.

• For each k ∈ [t], acting as Fccot simulator S obtains the following from P1: (1) ` vectors of
pairs ~Xi,k = 〈(Xi,1,k

0 , Xi,1,k
1), . . . , (Xi,ρt,k

0 , Xi,ρt,k
1)〉 of length ρt for i ∈ [`] and (2) ρt “check

values” χ̃k1, . . . , χ̃kρt.

• For c ∈ {0, 1}, i ∈ [`], j ∈ [ρt], k ∈ [t], simulator S parses Xi,j,k
c as (xi,j,kc , χi,j,kc,1 , . . . , χi,j,kc,t).

• For each i ∈ [`], simulator S constructs ~xi = 〈(xi,10 , xi,11), . . . , (xi,ρt0 , xi,ρt1)〉, where for c ∈ {0, 1}
and j ∈ [ρt], xi,jc =

⊕
k∈[t] x

i,j,k
c .

• For each j ∈ [ρt] and each k ∈ [t], simulator S computes χkj = χ̃kj ⊕
⊕
k′∈[t]\{k},i∈[`](χ

i,j,k′

0,k ⊕
χi,j,k

′

1,k).

10

• S sends ` vectors of pairs ~xi of length ρt, for i ∈ [`], and ρt2 “check values” (χ1
1, . . . , χ

1
ρt), . . .,

(χt1, . . . , χtρt) to Fmcot and terminates outputting whatever P1 outputs.

P2 is corrupted. The simulation is slightly tricky since a malicious P2 may input sets J1, . . . , Jt
that are intersecting to Fccot. For clarity, we denote the (effective) sets input by P2 as I1, . . . , It. The
key observation is that none of the input values or check values are determined until P2 completes
its final query to Fccot. Due to symmetry and hence without loss of generality, in the following, we
assume P2 last query to Fccot is its tth query. We describe the simulation below.

• For each 1 ≤ k < t acting as Fccot simulator S interacts with P2 for the kth query in the
following way:

– S obtains the following from P2: (1) σk,1, . . . , σk,` and (2) the set [ρt] \ Ik. Let ~σk =
(σk,1, . . . , σk,`).

– S chooses uniformly random and independent values Xi,j,k
0 = (xi,j,k0 , χi,j,k0,1 , . . . , χi,j,k0,t) and

Xi,j,k
1 = (xi,j,k1 , χi,j,k1,1 , . . . , χi,j,k1,t) for each i ∈ [`], j ∈ [ρt]. In addition, S chooses uniformly

random and independent values χ̃k1, . . . , χ̃kρt.

– S sends {χ̃kj }j∈Ik , {{Xi,j,k
σk,i
}j∈Ik ∪ {(X

i,j,k
0 , Xi,j,k

1)}j∈[ρt]\Ik}i∈[`] to P2.

• Acting as Fccot simulator S first obtains the tth query from P2 as (1) σt,1, . . . , σt,`, and (2)
the set [ρt] \ It.

• For each k ∈ [t], S sets ~σk = (σk,1, . . . , σk,`). For each k ∈ [t], let Jk = Ik \ ∪k′ 6=kIk′ .
Define J = [ρt] \ ∪k∈[t]Jk. S sends ~σ1, . . . , ~σt and sets J1, . . . , Jt to Fmcot, and receives back
{χ1

j}j∈J1 , . . . , {χtj}j∈Jt , {{(x
i,j
0 , xi,j1)}j∈J , {xi,jσ1,i}j∈J1 , . . . , {xi,jσt,i}j∈Jt}i∈[`].

• S chooses values {χ̃tj}j∈[ρt] as follows:

– If j ∈ Jt, then set χ̃tj = χtj ⊕
⊕
k∈[t−1],i∈[`](χ

i,j,k
0,t ⊕ χ

i,j,k
1,t).

– Else, choose χ̃tj uniformly at random.

• S chooses values {xi,j,t0 , xi,j,t1 }i∈[`],j∈[ρt] as follows:

– If j ∈ J , then for all i ∈ [`] set xi,j,t0 = xi,j0 ⊕
⊕

k∈[t−1] x
i,j,k
0 and xi,j,t1 = xi,j1 ⊕

⊕
k∈[t−1] x

i,j,k
1 .

– Else if j ∈ Jk for some (unique) k ∈ [t], then for all i ∈ [`] set xi,j,tσk,i
= xi,jσk,i ⊕⊕

k′∈[t−1] x
i,j,k′
σk,i

, and xi,j,t1−σk,i to a random value.

• S chooses values {χi,j,t0,k , χ
i,j,t
1,k }i∈[`],j∈[ρt],k∈[t] as follows:

– If j ∈ Jk for some (unique) k ∈ [t], then for all i ∈ [`] pick χi,j,t0,k , χ
i,j,t
1,k uniformly at

random subject to
⊕
i∈[`](χ

i,j,t
0,k ⊕ χ

i,j,t
1,k) = χ̃kj ⊕ χkj ⊕

⊕
k′∈[t−1],i∈[`](χ

i,j,k′

0,k ⊕ χ
i,j,k′

1,k).

– Else, for all i ∈ [`], k ∈ [t], pick χi,j,t0,k , χ
i,j,t
1,k uniformly at random.

• For all i ∈ [`], j ∈ [ρt], let Xi,j,t
0 = (xi,j,t0 , χi,j,t0,1 , . . . , χ

i,j,t
0,t), and Xi,j,t

1 = (xi,j,t1 , χi,j,t1,1 , . . . , χ
i,j,t
1,t).

Then, acting as Fccot simulator S sends {χ̃tj}j∈It , {{Xi,j,t
σt,i }j∈It ∪ {(X

i,j,t
0 , Xi,j,t

1)}j∈[ρt]\It}i∈[`]
to P2, and terminates outputting whatever malicious P2 outputs.

11

First we show that if malicious P2 inputs I1, . . . , It such that these sets are pairwise non-intersecting,
then its view in the above simulation is identically distributed to its view in the real execution. In
this case, it is easy to see that for all k ∈ [t] the extracted sets Jk in the simulation are identical
to Ik input by P2. Further, J = [ρt] \ ∪k∈[t]Ik also holds. Observe that for j 6= j′ the randomness
used by honest P1 in the real execution to create values {Xi,j,k

0 , Xi,j,k
1 }i,k and the randomness used

to create {Xi,j′,k
0 , Xi,j′,k

1 }i,k are independent of each other. Clearly, this is also the case in the
simulated execution. This allows us to split the analysis depending on the value of j.

• For j ∈ Jk, the values {xi,j,k′σk,i
}k′∈[t] are identically distributed in both executions (i.e., uni-

formly random and independent subject to ⊕k′∈[t]x
i,j,k′
σk,i

= xi,jσk,i). Furthermore, the view of
P2 is independent of the values xi,j1−σk,i since these are information-theoretically hidden from
the real execution (as is the case in the ideal execution). This is because in the kth query to
Fccot party P2 did not receive one of the additive shares of xi,j1−σk,i , i.e., xi,j,k1−σk,i . Next, it is
easy to verify that the check values χkj and its additive shares χ̃kj , {χ

i,j,k′

0,k , χi,j,k
′

1,k }k′∈[t]\{k},i∈[`]
are also identically distributed in both executions. Also, we claim that the view of P2 in the
real execution is independent of the values {χk′j }k′ 6=k. This is because in the kth query to
Fccot party P2 did not receive, for every k′ 6= k, at least one of the additive shares of χk′j , e.g.,
χ1,j,k

0,k′ .

• For j ∈ J , the values {xi,j,k
′

0 , xi,j,k
′

1 }i∈[`],k′∈[t] are identically distributed in both executions (i.e.,
uniformly random and independent subject to ⊕k′∈[t]x

i,j,k′

0 = xi,j0 and ⊕k′∈[t]x
i,j,k′

1 = xi,j1).
Furthermore, we claim that the view of P2 in the real execution is independent of the values
{χkj }k∈[t]. This is because in the kth query to Fccot party P2 did not receive, for every k ∈ [t],
exactly one of the additive shares of χkj , i.e., χ̃kj .

Given the above, it follows that the view of malicious P2 in the simulated execution is identically
distributed to its view in the real execution.
Now we need to consider the case when malicious P2 inputs sets I1, . . . , It but these are no longer
pairwise non-intersecting. We define sets Jk = Ik \ ∪k′ 6=kIk′ for each k ∈ [t]. Also, define J0 =
[ρt]\∪k∈[t]Ik, and J = [ρt]\∪k∈[t]Jk. As in the case when I1, . . . , Ik were pairwise non-intersecting,
we will split the analysis depending on the value of j. It is easy to verify that the analysis in
the cases when j ∈ Jk is identical to its counterpart in the case when I1, . . . , Ik were pairwise non-
intersecting. Likewise the analysis in the cases when j ∈ J0 is identical to the analysis in j ∈ J cases
when I1, . . . , Ik were pairwise non-intersecting. We only need to analyse the case when j ∈ J0 \ J .
Such a j would exist only when there exists distinct k, k′ ∈ [t] such that j ∈ Ik and j ∈ Ik′ . In
this case, note that by construction, the simulated values for {xi,j,k

′′

0 , xi,j,k
′′

1 }i∈[`],k′′∈[t] are consistent
with actual input values {xi,j0 , xi,j1 }i∈[`], and thus the shares obtained by P2 corresponding to the
xi,j0 , xi,j1 values are identically distributed. It remains to show that as in the simulated execution,
the view of P2 in the real execution is independent of the values {χk′′j }k′′∈[t]. Indeed, we claim
that when j ∈ Ik the value χkj is independent of its view if there exists k′ 6= k such that j ∈ Ik′ .
This is because for j ∈ Ik, the value χkj can be reconstructed only if all its additive shares χ̃kj ,
{χi,j,k

′′

0,k , χi,j,k
′′

1,k }k′′∈[t]\{k},i∈[`] are obtained. However, if j ∈ Ik′ , then in the k′th query to Fccot

party P2 loses its chance to receive at least one of the additive shares of χkj , e.g., χ1,j,k′
0,k . Thus,

12

we conclude that the claim holds. This completes the proof that the view of malicious P2 in the
simulated execution is identically distributed as in the real execution.

2.1.1 Cost of Realizing Fmcot from DDH

As described, the cost of realizing Fmcot is t times the cost of realizing Fccot for ` vectors of
pairs of length ρt with each element of size (t + 1)n. Thus if we use Lindell’s existing Fccot
construction [Lin13] in order to implement Fmcot from DDH, then for each of the t executions
we need to use 9ρ`t fixed-base exponentiations and 1.5ρ`t regular exponentiations, and need to
send a total of 5ρ`t group elements. However, note we need to use a group of much larger size
(in order to support elements of size (t + 1)n). This has the adverse effect of drastically reducing
the computational efficiency as now we need to perform modular exponentiations over much larger
groups.

Fortunately, the situation can be remedied using “length extension” techniques for Fccot. Specif-
ically, first we realize the protocol for Fccot as above except we replace each actual element, say
Xi,j,k

0 , that needs to be transferred by a single group element, say Ki,j,k
0 , that will be interpreted

as a “key”. Then, once the protocol for Fccot is executed, the sender now sends encryptions of the
each actual element under the corresponding key (e.g., G(Ki,j,k

0) ⊕Xi,j,k
0 where G is a PRG). As

is the case with 1-out-of-2 OT length extension, this length extension transformation for Fccot is
also UC-secure. The proof is also identical to the case for 1-out-of-2 OT length extension and is
omitted. In summary, by tolerating an additional cost of sending 2ρ`t2 symmetric elements (for
each of the t executions), we can work over standard DDH groups as in Lindell’s protocol [Lin13].

2.1.2 Alternative Approaches

As discussed before, Fmcot can be realized using general secure computation, but this results in
extremely poor efficiency. In particular, the circuit computing Fmcot is of size at least nρ`t, and
realization by state-of-the-art secure protocols would further include a multiplicative ns overhead.
We leave a more efficient realization of Fmcot from either Fccot or directly from DDH as an open
question.

In settings where the ρt2/s multiplicative overhead of realizing Fmcot through our protocol is
expensive relative to the size of the circuit, one may wonder whether it is possible to use XOR-tree
approaches to obtain better efficiency. Unfortunately, we do not know if this approach can be
made to work with standard Yao garbled circuits [LP07]. Specifically, it is no longer clear how P1,
without any knowledge of the evaluation sets, can batch P2’s input keys together in a way that lets
P2 learn different sets of input keys corresponding to different evaluation circuits and yet within
each evaluation bucket guaranteeing that P2 can learn only input keys corresponding to the same
set of inputs. However, if we assume that the garbling scheme is adaptively secure, then this lets us
perform the oblivious transfer step after P1 commits to its garbled circuits. Now P2 can reveal its
evaluation buckets one-by-one thereby letting P1 to successfully batch P2’s input keys in the right
manner. (See our protocol for sequential executions in Section 3 for a full description on how to do
this.)

Finally, we note that the overhead of implementing the XOR-tree along with the necessary
commitments can be quite prohibitive for certain choices of parameters [LP11, LPS08], and a
careful comparison with our Fmcot realization is advised before using XOR-tree type constructions.

13

2.2 Using Fmcot in the Parallel Execution Setting

The input vectors ~xi, for i ∈ [`], contain the key pairs associated with the ith input wire for P2 in
each of the ρt circuits. The vector ~σk corresponds to the inputs used by P2 in the kth execution.
An honest P2 chooses sets J1, . . . , Jt such that they are pairwise non-intersecting and each set is
of size exactly ρ/2. The main observation is that, for a given execution k ∈ [t], P2 obtains check
values χkj from Fmcot only for j ∈ Jk. Therefore, once the parties complete the interaction with
Fmcot and P1 sends all the garbled circuits, we let P1 determine the evaluation circuits in each
bucket based on whether P2 sends the corresponding check values. At this point, P1 checks that
each bucket of evaluation circuits is well-defined and that these buckets are of equal size, i.e., ρ/2.
If not, P1 aborts. To overcome technical difficulties, we also require P2 to provide “check values”
for the check circuits as well. A check value for check circuit GCj , denoted χj , may simply be the
set of all input keys (i.e., both the 0-key and the 1-key) on all wires in circuit GCj .

Applying the cheating-punishment technique. Inspired by Lindell’s protocol [Lin13], we use
the knowledge of two different garbled values for a single output wire as a “proof” that P2 received
inconsistent outputs in a given execution. P2 can use this proof to obtain P1’s input in a cheating-
punishment phase. This cheating-punishment phase is implemented via a secure computation
protocol, and thus it is important that the second phase functionality has a small circuit. We
employ several optimizations proposed by Lindell [Lin13] to keep the size of this circuit small. One
important difference in our setting is that, unlike in Lindell’s protocol [Lin13], we cannot have, for
a given output wire w, the same output keys b0w, b1w across all garbled circuits. This is because in
our setting garbled circuits are assigned to different evaluation buckets, and the circuits in each
bucket can be evaluated with different input values, and thus can produce different outputs. Thus
(even an honest) P2 could potentially learn, say, output key b0w in one execution and output key b1w
in another. We address this by simply removing the requirement that the set of output keys across
different garbled circuits are the same. Thus, the circuit for the cheating-punishment phase for the
kth execution must now take as input from P1 all of the output keys in all of the evaluation circuits
in the kth bucket, and from P2 a pair of output keys that serve as proof of cheating. Somewhat
surprisingly, we show that the size of the circuit (measured as the number of non-XOR gates) for
the cheating-punishment phase is essentially the same as the circuit in Lindell’s protocol [Lin13].4

Another detail we wish to point out is that in our protocol we need to run separate cheating-
punishment phases for each execution. This is a restriction imposed by the way in which P1 proves
consistency of its inputs [Lin13, LP11]. However, we can run all of the t cheating-punishment
phases in parallel. For this reason we use the universally composable variant of Lindell and Pinkas’s
protocol [LP11] (which is essentially obtained by replacing oblivious transfers and zero-knowledge
subprotocols with their universally composable variants) to implement each cheating-punishment
phase.

Other details. We now describe other important details of our protocol.

• Input consistency across multiple executions. It is important to guarantee that P1 pro-
vides consistent inputs across all circuits in the kth execution. Fortunately, existing mech-
anisms [Lin13, LP11] for ensuring input consistency in the single execution setting can be
readily extended to the multiple execution setting as well.

4Of course, the cost of realizing our cheating-punishment phase is more than the corresponding cost in Lindell’s
protocol [Lin13], mainly due to P1’s input being larger (but only by a factor of ρ/2).

14

• Encoded translation tables for garbled circuits. As in Lindell’s protocol [Lin13], we modify the
output translation tables used in the garbled circuits. Specifically, for keys k0

i , k
1
i on output

wire i, we create an encoded output table [h(k0
i), h(k1

i)], where h is some one-way function. We
require that the output keys (or more precisely, the output of h applied to the output keys)
corresponding to 0 and 1 are distinct. This encoding gives us the following two properties:
(1) P2 after evaluating a garbled circuit can use the encoded translation tables to determine
whether the output is 0 or 1, and (2) the encoded translation table does not reveal the other
output key (since this is equivalent to inverting the one-way function) to P2.

• Optimizing the cheating-punishment circuit. We can apply similar techniques as shown by
Lindell [Lin13] to optimize the size of the cheating-punishment circuit to contain only ` non-
XOR gates. See Section 2.2.1.

Formal description. We proceed to the formal description of our protocol.

Inputs: P1 has input x = (x1, . . . , xt), where xk ∈ {0, 1}`, and P2 has input y = (y1, . . . , yt), where
yk ∈ {0, 1}`.

Auxiliary Inputs: A statistical security parameter s, a computational security parameter n, the
description of a circuit C where C(x, y) = f(x, y), the number of evaluations t of the function f , and
(G, q, g) where G is a cyclic group with generator g and prime order q, where q is of length n. Let
Ext : G → {0, 1}n be a function mapping group elements to bitstrings. In the following, ρ = ρ(s, t) is
the replication factor defined as being the smallest u ∈ N such that for all m ∈ {u/2, . . . , ut/2} it holds
that t ·

(
ut−m
ut/2

)(
m
u/2
)
/
(
ut
ut/2
)(
ut/2
u/2
)
≤ 2−s. If no such u exists or if ρ ≥ s, then parties abort this protocol,

and instead run the fast C&C protocol [Lin13] for the function f (t).

Outputs: P2 receives f (t)(x, y) and P1 receives no output. Let `′ denote the length of the output of
f(x, y).

Protocol:

1. Input key choice and circuit preparation:

• P1 chooses random values a0
1, a

1
1, . . . , a

0
` , a

1
` ∈R Zq, r1, . . . , rρt ∈R Zq and (b0

1,1, b
1
1,1,

. . . , b0
1,`′ , b1

1,`′), . . . , (b0
ρt,1, b

1
ρt,1, . . . , b

0
ρt,`′ , b1

ρt,`′) ∈R {0, 1}n`
′

such that for every c1, c2 ∈
{0, 1}, j1, j2 ∈ [ρt], i1, i2 ∈ [`′] it holds that bc1

j1,i1
= bc2

j2,i2
iff i1 = i2 and j1 = j2 and

c1 = c2.
• Let w1, . . . , w` denote the input wires corresponding to P1’s input, let wi,j denote the ith

input wire in the jth garbled circuit, and let kbi,j denote the key associated with bit b on
wire wi,j . P1 sets kbi,j as follows:

k0
i,j = Ext(ga0

i ·rj) and k1
i,j = Ext(ga1

i ·rj).

• Let w′1, . . . , w′`′ denote the output wires. The keys for wire w′i in the jth garbled circuit are
set to b0

j,i and b1
j,i.

• P1 constructs ρt independent garblings, GC1, . . . , GCρt, of circuit C, using random keys
except for wires w1, . . . , w` and w′1, . . . , w

′
m, where the keys are set as above.

2. Oblivious transfers: P1 and P2 run Fmcot as follows:

15

• For i ∈ [`], let ~zi denote a vector containing the ρt pairs of keys associated with P2’s
ith input bit in all the garbled circuits. P1 inputs ~z1, . . . , ~z`, as well as random values
χ1

1, . . . , χ
1
ρt; . . . ;χt1, . . . , χtρt.

• P2 inputs random sets J1, . . . , Jt which are pairwise non-intersecting subsets of [ρt] such
that for all k ∈ [t] it holds that |Jk| = ρ/2. Let J = [ρt] \ ∪k∈[t]Jk. P2 also inputs bits
(σ1,1, . . . , σ1,`), . . . , (σt,1, . . . , σt,`) ∈ {0, 1}`, where σk,i = yk,i for every i ∈ [`] and k ∈ [t].

• For j ∈ J , P2 receives both input keys associated with its input wires in garbled circuit GCj ,
and for each k ∈ [t] and j ∈ Jk, P2 receives the keys associated with its input yk on its input
wires in garbled circuit GCj . Also, for every k ∈ [t] and j ∈ Jk, P2 receives χkj .

3. Send circuits and commitments: P1 sends P2 the garbled circuits GC1, . . . , GCρt, the “seed”
for the randomness extractor Ext, the following commitment to the garbled values associated with
P1’s input wires:

{(i, 0, ga
0
i), (i, 1, ga

1
i)}i∈[`] and {(j, grj)}ρtj=1

and the encoded output translation tables:

{[(h(b0
j,1), h(b1

j,1)), . . . , (h(b0
j,`′), h(b1

j,`′))]}j∈[ρt].

If h(b0
j,i) = h(b1

j,i) for any 1 ≤ i ≤ `′, 1 ≤ j ≤ ρt, then P2 aborts.

4. Send cut-and-choose challenge: P2 sends P1 the sets J, J1, . . . , Jt along with values
{χ1

j}j∈J1 , . . . , {χtj}j∈Jt , and all the keys associated with its input wires in all circuits GCj for
j ∈ J . If the values received by P1 are (1) incorrect, or (2) the sets J1, . . . , Jt are not pairwise
non-intersecting, or (3) the input keys associated with P2’s input wires in circuits GCj are revealed
incorrectly, or (4) there exists some k ∈ [t] such that |Jk| 6= ρ/2, then it outputs ⊥ and aborts.
Circuits GCj for j ∈ J are called check circuits and circuits GCj for j ∈ Jk are called evaluation
circuits in the kth bucket.

5. Send garbled input values in the evaluation circuits: For each k ∈ [t]: P1 sends the input
keys associated with input xk for the evaluation circuits in the kth bucket: For each j ∈ Jk and
every wire i ∈ [`], P1 sends the value k′i,j = ga

xk,i
i
·rj and P2 sets ki,j = Ext(k′i,j).

6. Circuit evaluation: For each k ∈ [t], P2 does the following:

• For each j ∈ Jk and every wire i ∈ [`′], P2 computes b′j,i by evaluating GCj . If P2 receives
exactly one valid output value per output wire, then let zk denote this output. In this case,
it chooses random values bk0 , bk1 ∈R {0, 1}

n. If P2 receives two valid outputs on any output
wire then it sets bk0 = b′j1,i

and bk1 = b′j2,i
, where j1, j2 ∈ Jk denote the conflicting circuit

indices. If P2 receives no valid output values on any output wire, then P2 aborts.

7. Run secure computation to detect cheating: For each k ∈ [t], P1 and P2 do the following
in parallel:
P1 defines a circuit with the values {b0

j,1, b
1
j,1, . . . , b

0
j,`′ , b1

j,`′}j∈Jk hardcoded. The circuit computes
the following function:

• P1 inputs xk ∈ {0, 1}` and has no output.
• P2 inputs a pair of values bk0 , bk1 .
• If there exists values i ∈ [`′] and j1, j2 ∈ Jk such that bk0 = b0

j1,i
and bk1 = b1

j2,i
, then P2’s

output is xk; otherwise it receives no output.

P1 and P2 run the UC-secure protocol of Lindell and Pinkas [LP11] on this circuit (except for the
proof of P1’s input values), as follows:

16

• P1 inputs xk; P2 inputs bk0 and bk1 as computed in Step 6.
• The garbled circuits constructed by P1 use the same a0

i , a
1
i values as were chosen in Step 1,

and the parties use 3(s+ log t) copies of the circuit for the cut-and-choose.

If this computation results in an abort, then both parties halt.

8. Check circuits for computing f (t)(x, y):

• For j ∈ J , P1 sends rj to P2, and P2 checks that these values are consistent with the pairs
{(j, grj)}j∈J received in Step 3. If not, P2 aborts.

• For every j ∈ J , P2 uses the ga0
i , ga

1
i values received in Step 3 and the rj values received

above to compute the keys for P1’s input wires as k0
i,j = Ext(ga0

i ·rj), k1
i,j = Ext(ga1

i ·rj). In
addition, P2 uses the keys obtained from Fmcot in Step 2 for its own input wires. P2 verifies
that GCj is a correct garbling of C. If there exists a circuit for which this does not hold,
then P2 aborts.

9. Verify consistency of P1’s input: For each k ∈ [t]: Let Ĵk be the set of check circuits used in
the 2PC computation in Step 7 for the kth bucket, let r̂j,k be the value used in that computation,
and let k̂i,j be the analogous value of k′i,j in Step 5 received by P2 in the computation in Step 7.
For each k ∈ [t], P1 and P2 do the following in parallel:

• For every input wire i ∈ [`′], P1 proves a zero-knowledge proof-of-knowledge that there exist
some σk,i ∈ {0, 1} such that for every j ∈ Jk and every j′ 6∈ Ĵk, it holds that k′i,j = ga

σk,i
i
·rj

and k̂i,j = ga
σk,i
i
·r̂j′,k . If any of the t proofs fail, then P2 aborts.

10. Output evaluation: For each k ∈ [t], P2 does the following:

• If P2 received no inconsistent outputs in Step 6, then it uses the encoded translation tables to
decode the outputs it received, and sets zk to that value. If P2 received inconsistent output,
then let xk be the output that P2 received from the circuit in Step 7. Let zk = f(xk, yk) be
the output in this case.

P2 outputs z = (z1, . . . , zt) and terminates.

We prove the following theorem in Appendix B.

Theorem 2. Let s (resp., n) be the statistical (resp., computational) security parameter. If the
decisional Diffie-Hellman assumption holds in (G, g, q), h is a one-way function, and the underlying
circuit garbling procedure is secure, then for all t = poly(n), the protocol described above securely
computes f (t) in the presence of a malicious adversary with error at most 2−s + µ(n) for some
negligible function µ(·).

2.2.1 Optimizing the Circuit in Step 7

We use an optimization inspired by Lindell [Lin13] to construct an alternate circuit that minimizes
the number of non-XOR gates. Specifically, Lindell [Lin13] shows how to efficiently construct a
garbled circuit that checks if a given n-bit string is contained in a set S of size m. The garbled circuit
has the property that it only requires ` (where ` equals the length of each party’s input) non-XOR
gates, and thus can be essentially computed for free using, e.g., the free-XOR technique [KS08].
This optimization relies on the fact that to take an n-wise AND of two n-bit strings, it suffices

17

to encrypt the output 1-key with the 1-keys on the input wires. Therefore, to compare two n bit
strings, we first XOR the two strings bit-by-bit, take the NOT of these bits, and finally output the
n-wise AND of the resulting bits using the trick described above. Next, to check that a n-bit string
equals any of the m strings in S, we need to evaluate the m-wise OR of each of these comparisons.
Instead of using m − 1 OR gates, we can set the 1-key on all of the output wires from the n-wise
ANDs above to be the 1-key on the output wire of the OR. Since the XOR and NOT gates can be
evaluated for free [KS08], it follows that the above circuit can essentially be securely evaluated for
free.5

We now adapt these optimizations to our setting, while still minimizing the number of non-
XOR gates. For string b and set S, we use the notation b

?
∈ S to denote a boolean expression that

evaluates to 1 iff b ∈ S. In our protocol we require a circuit that takes, in addition to an `-bit string u
(representing P1’s actual input), a pair of n-bit strings, say b0, b1, and two sets S0, S1 of n-bit strings,
each set of size m = ρ`′/2, and outputs u iff ((b0

?
∈ S0) ∧ (b1

?
∈ S1)) ∨ ((b0

?
∈ S1) ∧ (b1

?
∈ S0)) = 1,

i.e., an additional cost of 3 non-XOR gates. Alternatively, we may instead evaluate the expression
b0 ⊕ b1

?
∈ S, where S = {b⊕ b′ : b ∈ S0, b

′ ∈ S1}. (Note that a cheating P2 can guess a value in S
only with negligible probability.) This has the additional advantage of reducing P2’s input length
from 2n to n (and the resulting gains from performing a lesser number of cut-and-choose oblivious
transfers). In summary, it is possible to design the circuit in Step 7 using exactly ` non-XOR gates
(i.e., ` AND gates to select the length-` P1 input depending on whether the relevant conditions are
satisfied). It follows from the protocol description that the total number of garbled gates sent in
Step 7 is 3`(s+ log t) in each of the t executions.

3 The Sequential Execution Setting

We now consider the setting where the parties securely evaluate the same function f multiple times
sequentially (see Appendix A.2 for the formal security definition). Let t denote the number of times
the parties wish to evaluate f . Let P1’s (resp., P2’s) input in the kth execution be denoted by xk
(resp., yk). Let f [t] denote the reactive functionality that computes f a total of t times sequentially.

The main difference between this setting and the parallel setting discussed in Section 2 is that
in the sequential setting the parties may not know their inputs to all executions at the start of
the protocol. In particular, inputs may depend on outputs from previous executions. Thus, the
parallel execution protocol does not immediately carry over to the sequential setting. To see why,
observe for instance that Fmcot requires P2 to submit all of its inputs at once6. This is not possible
since in the sequential setting we cannot assume that P2 has all its inputs at the beginning of the
protocol. Instead, we take a different route; namely, we use the “XOR-tree” approach [LP07, Woo07]
to protect against the so-called “selective failure attack” [KS06, MF06, sS11]. (In the parallel
execution setting, this attack was implicitly avoided due to the use of Fmcot.) In this approach,
the circuit C to be evaluated is first modified into an equivalent circuit CXT (to include an “XOR-
tree” for P2’s inputs). Then, P1 sends commitments to input keys corresponding to P2’s input
wires in CXT. The corresponding decommitments are revealed to P2 via a standard one-out-of-two

5 Note that in order to prove security of the “free-XOR” technique in the standard model, one needs to make
additional assumptions about the encryption used in Yao’s garbled circuits [App13, CKKZ12, KS08].

6Standard oblivious transfer precomputation/“correction” techniques [Bea95] still apply to Fmcot as well; however,
it is not clear how to “correct” Fmcot correlations in a way suitable for the sequential setting.

18

oblivious transfer. In order to prevent P2 from using different inputs across evaluation circuits
within the same bucket, P1 batches together the decommitments corresponding to a particular
input wire across all evaluation circuits in a given bucket. Note that herein lies an opportunity for
a malicious P1 to force P2 to abort the protocol depending on its input. (This can be done for
instance by sending incorrect decommitments for say only the 0-key on a particular wire.) However,
the modified circuit CXT is such that the success of any such selective OT attack is statistically
independent of P2’s actual input value. Therefore, if an honest P2 receives an invalid decommitment
and is unable to decrypt the evaluation circuit, then it simply aborts knowing that its privacy is
not compromised. Finally, we note that since we use one-out-of-two oblivious transfer (as opposed
to Fmcot), we can leverage oblivious transfer extension techniques [IKNP03, IPS08, NNOB12] to
obtain better efficiency.

We stress that the oblivious transfer step happens after P1 sends all the GCs to P2. This is
because P2’s inputs to all t executions are not available at the beginning of the protocol. Further,
P2’s inputs may depend on previous outputs, which can be obtained only by decrypting evaluation
circuits, i.e., after the evaluation bucket for the current execution is fully determined. Note that
our cut-and-choose technique guarantees that there is at least one good evaluation circuit in every
bucket under the assumption that P1 has already committed to all its (good and bad) garbled
circuits before the check sets and the evaluation sets are determined. Unfortunately, the above
ordering of the oblivious transfer step and the garbled circuit sending step now allows a malicious
P2 to choose its input as a function of the garbled circuits it receives. To counter this, we need to use
adaptively secure garbling schemes [BHR12] instead of standard garbled circuits; adaptively secure
garbling schemes can be constructed efficiently in the programmable random oracle model [BHR12].
Note that we do not need the use of adaptively secure garbling schemes for implementing the
cheating-punishment phase. Indeed, all the inputs for that subprotocol are known before the phase
begins, and therefore, the oblivious transfer step can be carried out before P1 sends its garbled
circuits for that phase.

Formal description. We now proceed to the formal description of the protocol.

Auxiliary Input: A statistical security parameter s, a computational security parameter n, the description of a
circuit C where C(x, y) = f(x, y), the number of evaluations t of the function f , and (G, q, g) where G is a cyclic
group with generator g and prime order q, where q is of length n. Let Ext : G→ {0, 1}n be a randomness extractor
known to both parties. In the following, ρ is the replication factor implicitly defined by parameters t and s as
being the smallest u ∈ N such that for all m ∈ {u/2, . . . , ut/2} it holds that t ·

(
ut−m
ut/2

)(
m
u/2

)/(
ut
ut/2

)(
ut/2
u/2

)
≤ 2−s .

If no such u exists or if ρ ≥ s + log t, then the parties abort this protocol and instead run the protocol of
Lindell [Lin13] for function f a total of t times sequentially.
Additional Notation: Let `, `′ denote the length of each input and the final output f(x, y), respectively, and
let CXT denote the circuit C enhanced with the XOR-tree.

Offline Phase:

1. Input key choice and circuit preparation:
P1 chooses random values a0

1, a
1
1, . . . , a

0
` , a

1
` , r1, . . . , rρt ∈R Zq and (b0

1,1, b
1
1,1, . . . , b

0
1,`′ , b1

1,`′), . . . ,
(b0
ρt,1, b

1
ρt,1, . . . , b

0
ρt,`′ , b1

ρt,`′) ∈R {0, 1}n`
′

such that for every c1, c2 ∈ {0, 1}, j1, j2 ∈ [ρt], i1, i2 ∈ [`′] it
holds that bc1

j1,i1
= bc2

j2,i2
iff i1 = i2 and j1 = j2 and c1 = c2.

Let w1, . . . , w` be the input wires corresponding to P1’s input in CXT, let wi,j denote the ith input
wire in the jth garbled circuit, and let kbi,j denote the key associated with bit b on wire wi,j . P1 sets
kbi,j as follows:

19

k0
i,j = Ext(ga

0
i ·rj) and k1

i,j = Ext(ga
1
i ·rj).

Let w̃1, . . . , w̃`XT be the input wires corresponding to P2’s input in CXT, and denote by w̃i,j the
instance of wire w̃i in the jth garbled circuit, and k̃bi,j the key associated with bit b on wire w̃i,j . Then,
P1 picks the keys for P2’s input wires uniformly at random, and computes (standard) commitments

e0
i,j = com(k̃0

i,j) and e1
i,j = com(k̃1

i,j).
Let d0

i,j and d1
i,j denote the corresponding decommitments.

Let w′1, . . . , w′`′ denote the output wires in CXT. The keys for wire w′i in the jth garbled circuit are
set as b0

j,i, b1
j,i.

P1 constructs ρt independent adaptively secure garblings of circuit CXT, denoted GC1, . . . , GCρt,
using random keys except for wires w1, . . . , w` and w′1, . . . , w

′
m, where the keys are as above.

2. Send circuits and commitments: P1 sends P2 the garbled circuits, the “seed” for the randomness
extractor Ext, the commitments to the garbled values associated with P1’s input wires:

{(i, 0, ga
0
i), (i, 1, ga

1
i)}i∈[`] and {(j, grj)}ρtj=1,

the encoded output translation tables:

{[(h(b0
j,1), h(b1

j,1)), . . . , (h(b0
j,`′), h(b1

j,`′))]}j∈[ρt],

and the commitments to the garbled values associated with P2’s input wires:

{e0
i,j , e

1
i,j}i∈[`XT],j∈[ρt].

If h(b0
j,i) = h(b1

j,i) for any 1 ≤ i ≤ `′, 1 ≤ j ≤ ρt, then P2 aborts.
3. Cut-and-choose challenge: P1 and P2 run a secure coin-tossing protocol to compute a set J ⊆ [ρt]

such that |J | = ρt/2. Circuits GCj for j ∈ J are called check-circuits.
4. Check circuits for computing f [t](x, y):

Send all input garbled values in check-circuits: For every check-circuit GCj , party P1 sends
the value rj to P2, and P2 checks that these are consistent with the pairs {(j, grj)}j∈J received in
Step 3. If not, P2 aborts.
Send all decommitments for P2’s input wires in check circuits: For every check-circuit GCj ,
party P1 sends the decommitments {d0

i,j , d
1
i,j}i∈[`XT] for commitments {e0

i,j , e
1
i,j}i∈[`XT], and P2 checks

that these are valid decommitments, and computes the corresponding keys {k̃0
i,j , k̃

1
i,j}i∈[`XT]. If not,

P2 aborts.
Correctness of check circuits: For every j ∈ J , P2 uses the ga

0
i , ga

1
i values received in Step 3 and

the rj values received in Step 4 to compute the values k0
i,j = Ext(ga

0
i ·rj), k1

i,j = Ext(ga
1
i ·rj) associated

with P1’s input. Given all the garbled values for all input wires in GCj , i.e., {k0
i,j , k

1
i,j}i∈[`XT] and

{k̃0
i,j , k̃

1
i,j}i∈[`XT], party P2 decrypts the circuit and verifies that it is a garbling of CXT, using the

encoded translation tables for the output values. If there exists a circuit for which this does not hold,
then P2 aborts.

On-line Phase: For each 1 ≤ k ≤ t execute the following sequentially:

1. Receive inputs: P1 and P2 obtain inputs xk and yk, respectively. Using additional randomness, P2
transforms its input yk for circuit C into an equivalent input ỹk for circuit CXT.

2. Second-stage cut-and-choose challenge: P2 picks Jk ⊆ [ρt] \ J of size ρ/2 such that J1, . . . , Jk are
pairwise non-intersecting. P2 sends Jk to P1, who aborts the protocol if |Jk| 6= ρ/2 or Jk intersects with
a previously sent subset. We call Jk the kth evaluation bucket.

3. Oblivious transfers: For each i ∈ [`XT], party P1 prepares D0
i,k = {d0

i,j}j∈Jk , and D1
i,k = {d1

i,j}j∈Jk .
P1 and P2 then engage in `XT parallel invocations of FOT where in the ith invocation:

Acting as sender, P1 inputs (D0
i,k, D

1
i,k).

Acting as receiver, P2 inputs ỹk,i, and receives Dỹk,i
i,k = {dỹk,ii,j }j∈Jk .

20

If there exists j ∈ Jk and i ∈ [`XT] such that dỹk,ii,j is not a valid decommitment to eỹk,ii,j , then P2 aborts

and outputs ⊥. Else, P2 computes the keys {k̃ỹk,ii,j }i∈[`XT],j∈Jk corresponding to the decommitments it

received. Let k̃i,j = k̃
ỹk,i
i,j

4. P1 sends its garbled input values in the evaluation circuits: P1 sends the input keys associated
with input xk for the evaluation circuits in the kth bucket: For each j ∈ Jk and every wire i ∈ [`], P1

sends the value k′i,j = ga
xk,i
i
·rj and P2 sets ki,j = Ext(k′i,j).

5. Circuit evaluation: P2 uses the keys {ki,j}i∈[`] associated with P1’s input and the keys {k̃i,j}i∈[`XT]
associated with its own input to evaluate the circuits GCj for j ∈ Jk as follows:

For every wire i ∈ [`′], P2 computes b′j,i by evaluating GCj . If P2 receives exactly one valid output
value per output wire, then let zk denote this output. In this case, it chooses bk0 , bk1 ∈R {0, 1}n. If P2
receives two valid outputs on any output wire, then it sets bk0 = b′j1,i and bk1 = b′j2,i, where j1, j2 ∈ Jk
are the conflicting circuit indices and i ∈ [`′] is the conflicting wire. If P2 receives no valid output
values on any output wire, then P2 aborts.

6. Run secure computation to detect cheating: P1 defines a circuit C′ as follows:
The circuits has the values {b0

j,1, b
1
j,1, . . . , b

0
j,`′ , b1

j,`′}j∈Jk hardcoded.
P1 inputs xk ∈ {0, 1}` and has no output.
P2 inputs a pair of values bk0 , bk1 .
If there exists values i ∈ [`′] and j1, j2 ∈ Jk such that bk0 = b0

j1,i and bk1 = b1
j2,i, then P2’s output is

xk; otherwise it receives no output.
P1 and P2 run the protocol of [LP11] (except for the proof of P1’s input values) on C′ as follows:

P1 inputs xk; P2 inputs bk0 and bk1 as computed in Step 5.
The garbled circuits constructed by P1 use the same a0

i , a
1
i values as were chosen in Step 1, and the

parties use 3(s+ log t) copies of the garbled circuit for the cut-and-choose.
If this computation results in an abort, then both parties halt at this point.

7. Verify consistency of P1’s input: Let Ĵk be the set of check circuits in the 2PC computation in
Step 6, and likewise, let r̂j,k be the value used in that computation as the equivalent of the rj values in
Step 1 of the offline-phase. Let k̂i,j be the analogous value of k′i,j in Step 4 received by P2 in the 2PC
computation in Step 6.
P1 and P2 do the following in parallel: For every input wire i ∈ [`], P1 proves a zero-knowledge proof-of-
knowledge that there exists some σk,i ∈ {0, 1} such that for every j ∈ Jk and every j′ 6∈ Ĵk, it holds that
k′i,j = ga

σk,i
i
·rj and k̂i,j = ga

σk,i
i
·r̂j′,k . If any of the proofs fail, then P2 aborts.

8. Output evaluation: If P2 received no inconsistent outputs in Step 6, then it uses the encoded translation
tables to decode the outputs it received, and sets zk to that value. If P2 did receive inconsistent output,
then let xk be the output that P2 received from the 2PC computation in Step 7; P2 sets zk = f(xk, yk).
Finally, P2 outputs zk.

We prove the following theorem in Appendix C.

Theorem 3. Let s (resp., n) be the statistical (resp., computational) security parameter. If the
decisional Diffie-Hellman assumption holds in (G, g, q), h is a one-way function, and the circuit is
garbled using an adaptively secure garbling scheme, then for all polynomial values of t, the protocol
described above securely computes f [t] in the presence of a malicious adversary with error at most
2−s + µ(n) for some negligible function µ(·).

21

Acknowledgments

Work of Yan Huang and Jonathan Katz supported in part by NSF award #1111599. Work
of Vladimir Kolesnikov supported in part by the Intelligence Advanced Research Project Activ-
ity (IARPA) via Department of Interior National Business Center (DoI/NBC) contract Number
D11PC20194. Work of Ranjit Kumaresan supported by funding from the European Community’s
Seventh Framework Programme (FP7/2007–2013) under grant agreement number 259426. Work
of Alex J. Malozemoff conducted with Government support through the National Defense Science
and Engineering Graduate (NDSEG) Fellowship, 32 CFG 168a, awarded by DoD, Air Force Office
of Scientific Research.

The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

References

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding func-
tions with constant online rate or how to compress garbled circuits keys. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part
II, volume 8043 of Lecture Notes in Computer Science, pages 166–184, Santa Barbara,
CA, USA, August 18–22, 2013. Springer, Berlin, Germany. Full version available at
https://eprint.iacr.org/2012/693.

[App13] Benny Applebaum. Garbling XOR gates “for free” in the standard model. In Amit
Sahai, editor, TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of
Lecture Notes in Computer Science, pages 162–181, Tokyo, Japan, March 3–6, 2013.
Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/2012/
516.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor, Advances
in Cryptology – CRYPTO’95, volume 963 of Lecture Notes in Computer Science, pages
97–109, Santa Barbara, CA, USA, August 27–31, 1995. Springer, Berlin, Germany.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In Xiaoyun Wang
and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume 7658
of Lecture Notes in Computer Science, pages 134–153, Beijing, China, December 2–6,
2012. Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/
2012/564.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, pages
136–145, Las Vegas, Nevada, USA, October 14–17, 2001. IEEE Computer Society Press.
Full version available at https://eprint.iacr.org/2000/067.

22

https://eprint.iacr.org/2012/693
https://eprint.iacr.org/2012/516
https://eprint.iacr.org/2012/516
https://eprint.iacr.org/2012/564
https://eprint.iacr.org/2012/564
https://eprint.iacr.org/2000/067

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. Highly-scalable searchable symmetric encryption with sup-
port for boolean queries. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Sci-
ence, pages 353–373, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Berlin,
Germany. Full version available at https://eprint.iacr.org/2013/169.

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the
security of the “free-XOR” technique. In Ronald Cramer, editor, TCC 2012: 9th Theory
of Cryptography Conference, volume 7194 of Lecture Notes in Computer Science, pages
39–53, Taormina, Sicily, Italy, March 19–21, 2012. Springer, Berlin, Germany. Full
version available at https://eprint.iacr.org/2011/510.

[DO10] Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest majority:
From passive to active security at low cost. In Tal Rabin, editor, Advances in Cryptology
– CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 558–576,
Santa Barbara, CA, USA, August 15–19, 2010. Springer, Berlin, Germany. Full version
available at https://eprint.iacr.org/2010/318.

[FJN+13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebas-
tian Nordholt, and Claudio Orlandi. MiniLEGO: Efficient secure two-party computation
from general assumptions. In Thomas Johansson and Phong Q. Nguyen, editors, Ad-
vances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer
Science, pages 537–556, Athens, Greece, May 26–30, 2013. Springer, Berlin, Germany.
Full version available at https://eprint.iacr.org/2013/155.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Tal Rabin, editor, Advances in
Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages
465–482, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Berlin, Germany. Full
version available at https://eprint.iacr.org/2009/547.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM
CCS 12: 19th Conference on Computer and Communications Security, pages 513–
524, Raleigh, NC, USA, October 16–18, 2012. ACM Press. Full version available at
https://eprint.iacr.org/2011/482.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation
using symmetric cut-and-choose. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 18–35, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Berlin,
Germany. Full version available at https://eprint.iacr.org/2013/081.

23

https://eprint.iacr.org/2013/169
https://eprint.iacr.org/2011/510
https://eprint.iacr.org/2010/318
https://eprint.iacr.org/2013/155
https://eprint.iacr.org/2009/547
https://eprint.iacr.org/2011/482
https://eprint.iacr.org/2013/081

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 145–161, Santa Barbara, CA, USA,
August 17–21, 2003. Springer, Berlin, Germany.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 572–591, Santa Barbara, CA,
USA, August 17–21, 2008. Springer, Berlin, Germany.

[JJK+13] Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and
Michael Steiner. Outsourced symmetric private information retrieval. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Conference
on Computer and Communications Security, pages 875–888, Berlin, Germany, Novem-
ber 4–8, 2013. ACM Press. Full version available at https://eprint.iacr.org/2013/
720.

[KS06] Mehmet Kiraz and Berry Schoenmakers. A protocol issue for the malicious case of
Yao’s garbled-circuit construction. In 27th Symposium on Information Theory in the
Benelux, pages 283–290, June 2006.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th
International Colloquium on Automata, Languages and Programming, Part II, volume
5126 of Lecture Notes in Computer Science, pages 486–498, Reykjavik, Iceland, July 7–
11, 2008. Springer, Berlin, Germany.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert ad-
versaries. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages
1–17, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Berlin, Germany. Full
version available at https://eprint.iacr.org/2013/079.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Moni Naor, editor, Advances in
Cryptology – EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science,
pages 52–78, Barcelona, Spain, May 20–24, 2007. Springer, Berlin, Germany. Full ver-
sion available at https://eprint.iacr.org/2008/049.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose
oblivious transfer. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography
Conference, volume 6597 of Lecture Notes in Computer Science, pages 329–346, Provi-
dence, RI, USA, March 28–30, 2011. Springer, Berlin, Germany. Full version available
at https://eprint.iacr.org/2010/284.

24

https://eprint.iacr.org/2013/720
https://eprint.iacr.org/2013/720
https://eprint.iacr.org/2013/079
https://eprint.iacr.org/2008/049
https://eprint.iacr.org/2010/284

[LPS08] Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-party com-
putation efficiently with security against malicious adversaries. In Rafail Ostrovsky,
Roberto De Prisco, and Ivan Visconti, editors, SCN 08: 6th International Conference
on Security in Communication Networks, volume 5229 of Lecture Notes in Computer
Science, pages 2–20, Amalfi, Italy, September 10–12, 2008. Springer, Berlin, Germany.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In Juan A. Garay and Rosario Gennaro, editors, Ad-
vances in Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Com-
puter Science, pages 476–494, Santa Barbara, CA, USA, August 17–21, 2014. Springer,
Berlin, Germany. Full version available at https://eprint.iacr.org/2014/667.

[MF06] Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious two-party
computation. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, edi-
tors, PKC 2006: 9th International Conference on Theory and Practice of Public Key
Cryptography, volume 3958 of Lecture Notes in Computer Science, pages 458–473, New
York, NY, USA, April 24–26, 2006. Springer, Berlin, Germany.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a secure two-
party computation system. In Matt Blaze, editor, 13th USENIX Security Symposium,
San Diego, California, USA, August 9–13, 2004. USENIX Association.

[MR13] Payman Mohassel and Ben Riva. Garbled circuits checking garbled circuits: More effi-
cient and secure two-party computation. In Ran Canetti and Juan A. Garay, editors, Ad-
vances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Com-
puter Science, pages 36–53, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Berlin, Germany. Full version available at https://eprint.iacr.org/2013/051.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 681–700, Santa Barbara,
CA, USA, August 19–23, 2012. Springer, Berlin, Germany. Full version available at
https://eprint.iacr.org/2011/091.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference, volume
5444 of Lecture Notes in Computer Science, pages 368–386. Springer, Berlin, Germany,
March 15–17, 2009. Full version available at https://eprint.iacr.org/2008/427.

[Pin03] Benny Pinkas. Fair secure two-party computation. In Eli Biham, editor, Advances in
Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 87–105, Warsaw, Poland, May 4–8, 2003. Springer, Berlin, Germany.

[PVK+14] Vasilis Pappas, Binh Vo, Fernando Krell, Seung Geol Choi, Vladimir Kolesnikov, Steven
Bellovin, Angelos Keromytis, and Tal Malkin. Blind seer: A scalable private DBMS. In
2014 IEEE Symposium on Security and Privacy, San Jose, California, USA, May 18–21,
2014. IEEE Computer Society Press.

25

https://eprint.iacr.org/2014/667
https://eprint.iacr.org/2013/051
https://eprint.iacr.org/2011/091
https://eprint.iacr.org/2008/427

[sS11] abhi shelat and Chih-Hao Shen. Two-output secure computation with malicious adver-
saries. In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011,
volume 6632 of Lecture Notes in Computer Science, pages 386–405, Tallinn, Esto-
nia, May 15–19, 2011. Springer, Berlin, Germany. Full version available at https:
//eprint.iacr.org/2011/533.

[Woo07] David P. Woodruff. Revisiting the efficiency of malicious two-party computation. In
Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007, volume 4515 of
Lecture Notes in Computer Science, pages 79–96, Barcelona, Spain, May 20–24, 2007.
Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/2006/
397.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto,
Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press.

A Security Definitions

Our security definitions allows one of the two participating parties to be corrupted by A. We
assume that there is an environment Z which interacts with A and the honest party in the way
specified below. At the end of the execution, Z needs to distinguish between the case where A
runs a protocol with the real honest party, and the case where A and the honest party invoke
a trusted entity TP that computes the function f = (f1, f2) on their behalf and returns their
respective outputs. We assume, without loss of generality [LP07, LP09], that only the circuit
evaluation receives output, and thus that f1(·, ·) = ⊥. Loosely speaking, the protocol is secure if
Z’s advantage in distinguishing the two cases is negligible.

A.1 Definition of Security for Parallel Executions

Execution in the ideal model. In the ideal model, we have parties P1 and P2, and an adversary
A who can corrupt one of the two parties. Let Pj for j ∈ {1, 2} denote the corrupted party and Pi
for i = {1, 2}\{j} denote the honest party. An ideal execution for the computation of the function
f multiple times in parallel proceeds as follows.

Auxiliary Input: P1 and P2 hold 1n, where n is the security parameter, and Z holds auxiliary
input z. In addition, Z provides P1 and P2 a parameter t which denotes the number of times f
is executed.
Inputs: P1 and P2 obtain inputs ~x = (x1, . . . , xt) ∈ ({0, 1}`)t and ~y = (y1, . . . , yt) ∈ ({0, 1}`)t,
respectively, from Z .
Send inputs to TP: The honest party sends its input to the trusted party, TP. The corrupted
party may send any value of its choice. Denote the pair of inputs sent to the trusted party by
(~x′, ~y′).
TP sends outputs to A: If ~x′ (resp., ~y′) is not a valid input, TP sets ~x′ (resp., ~y′) to some
default value. TP sends fj(~x′, ~y′) to A (recall that j denotes the index of the malicious party).
TP sends outputs to honest party: The adversary chooses whether to continue or abort;
this is formalized by having A send either a continue or abort message to TP. In the former

26

https://eprint.iacr.org/2011/533
https://eprint.iacr.org/2011/533
https://eprint.iacr.org/2006/397
https://eprint.iacr.org/2006/397

case, the trusted party sends fi(~x′, ~y′) to the honest party (recall that i denotes the index of the
honest party). In the latter case, the trusted party sends the special symbol ⊥ to the honest
party.

Outputs: The corrupted party outputs nothing, and A outputs an arbitrary function of its
view to Z . The honest party outputs whatever it was sent by the trusted party to Z . In the
end, Z outputs a bit. We let Idealf,A,Z(z)(1n) denote the output of Z .

Execution in the real model. In the real model, we have parties P1 and P2 who execute a
two-party protocol Πf . The protocol Πf has a parameter t initialized by Z, which specifies the
number of times f is evaluated in parallel. P1 and P2 obtain their inputs ~x and ~y, respectively,
from Z, and obtain their outputs ~z1 and ~z2, respectively, by executing Πf using their respective
inputs. The honest party sends its output to Z and the adversary sends an arbitrary function of
its view to Z . Throughout the protocol execution, A obtains the inputs of the corrupted party
and sends all messages on its behalf, whereas the honest party follows the instructions of Πf . In
the end, Z outputs a bit. We let RealΠf ,A,Z(z)(1n) denote the output of Z .

Security as emulation of an ideal execution in the real model. Having defined the ideal and
real models, we can now define security of a protocol. Loosely speaking, the definition asserts that
a secure protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated as follows:

Definition 1. Protocol Πf is said to securely compute f (t) if for every ppt adversary A in the
real model, there exists a ppt adversary SS in the ideal model such that for every non-uniform
probabilistic polynomial-time environment Z that specifies the number of executions as t, it holds
that

{Idealf,S,Z(z)(1n)} c≈ {RealΠf ,A,Z(z)(1n)}

Remarks. The definition above is somewhat similar to security definitions in the Universal Com-
posability (UC) framework [Can01] in the way we define security as the success probability of an
environment Z that attempts to distinguish between the ideal world and the real world. In spite
of this we stress that our definition is not as strong as the UC definition, as the latter allows Z to
interact arbitrarily with A during the protocol execution. On the other hand, our security definition
is somewhat closer to the security definition for parallel composition of protocols [Can00].

A.2 Definition of Security for Sequential Executions

Execution in the ideal model. In the ideal model, we have parties P1 and P2, and an adversary
A who can corrupt one of the two parties. Let Pj for j ∈ {1, 2} denote the corrupted party and Pi
for i = {1, 2}\{j} denote the honest party. An ideal execution for the computation of the function
f multiple times sequentially proceeds as follows.

Auxiliary Input: P1 and P2 hold 1n, where n is the security parameter, and Z holds auxiliary
input z. In addition, Z provides P1 and P2 a parameter t which denotes the number of times f
is executed.

For 1 ≤ k ≤ t:

Inputs: P1 and P2 obtain inputs xk ∈ {0, 1}` and yk ∈ {0, 1}`, respectively, from Z .

27

Send inputs to TP: The honest party sends its input to the trusted party, TP. The
corrupted party, Pj , may send any value of its choice. Denote the pair of inputs sent to the
trusted party by (x′k, y′k).

TP sends outputs to A: If x′k (resp., y′k) is not a valid `-bit input, TP sets x′k (resp., y′k)
to some default value. TP sends fj(x′k, y′k) to A.

TP sends outputs to honest party: The adversary chooses whether to continue or abort;
this is formalized by having A send either a continue or abort message to TP. In the former
case, the trusted party sends fi(x′k, y′k) to the honest party. In the latter case, the trusted
party sends the special symbol ⊥ to the honest party.

Outputs: The corrupted party outputs nothing, and A outputs an arbitrary function of its
view to Z . The honest party outputs whatever it was sent by the trusted party to Z . If
the honest party receives ⊥ as output from the trusted party in iteration k, then it aborts
the rest of the protocol.

At the end of t iterations, Z outputs a bit. We let Idealf,A,Z(z)(1n) denote the output of Z .

Execution in the real model. In the real model, we have parties P1 and P2 who execute a
two-party protocol Πf . The protocol Πf has a parameter t initialized by Z, which specifies the
number of times f is evaluated. Protocol Πf is stateful across its execution spanning t stages.
In each stage, P1 and P2 obtain their inputs xk respectively yk from Z, and obtain their outputs
z1
k respectively z2

k by executing Πf using their respective inputs. At the end of each stage, the
honest party sends its output to Z and the adversary sends an arbitrary function of its view to Z
. Throughout the protocol execution, A obtains the inputs of the corrupted party and sends all
messages on its behalf, whereas the honest party follows the instructions of Πf . At the end of t
stages of Πf , Z outputs a bit. We let RealΠf ,A,Z(z)(1n) denote the output of Z.

Security as emulation of an ideal execution in the real model. Having defined the ideal and
real models, we can now define security of a protocol. Loosely speaking, the definition asserts that
a secure protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated as follows.

Definition 2. Protocol Πf is said to securely compute f [t] if for every ppt adversary A in the
real model, there exists a ppt adversary SS in the ideal model such that for every non-uniform
probabilistic polynomial-time environment Z that specifies the number of executions as t, it holds
that

{Idealf,S,Z(z)(1n)} c≈ {RealΠf ,A,Z(z)(1n)}

Remarks. As in the parallel executions case, this definition differs from the definitions in the
Universal Composability (UC) framework [Can01], since in our setting we restrict Z to interact
with A only between stages of the protocol Πf , but never within a stage.

B Proof in the Parallel Execution Setting

Theorem. Let s (resp., n) be the statistical (resp., computational) security parameter. If the
decisional Diffie-Hellman assumption holds in (G, g, q), h is a one-way function, and the underlying
circuit garbling procedure is secure [LP07], then for all t = poly(n), the protocol described in

28

Section 2 securely computes f (t) in the presence of a malicious adversary with error at most 2−s +
µ(n) for some negligible function µ(·).

Proof. We prove security in a hybrid model where a trusted third party computes the batch single-
choice multi-stage cut-and-choose oblivious transfer functionality in Step 2, the zero-knowledge
proof-of-knowledge functionality in Step 9. We split the analysis into two cases depending on
whether P1 or P2 is corrupted.

P1 is corrupted. The intuition is that P1 can cheat only if it can construct incorrect circuits. To
do this, P1 needs to construct a small enough number of incorrect circuits such that it will not get
caught in the first cut-and-choose stage; however, it need also construct a large enough number
such that one of the buckets contains all incorrect circuits. This is due to the fact that P2 aborts
if it finds an invalid check circuit, and learns P1’s input (and thus the correct output) if a given
bucket contains at least one correctly constructed circuit. This implies that the number of corrupt
circuits m constructed by a malicious P1 must be such that ρ/2 ≤ m ≤ ρt/2. We stress that m is
fixed once P1 sends the circuits in Step 3; that is, P1 cannot further “corrupt” circuits after this
step. Now observe that the probability with which m bad circuits escape detection in the first
stage cut-and-choose is

(ρt−m
ρt/2

)
/
(ρt
ρt/2

)
. Conditioned on this event happening, the probability that a

particular bucket contains all bad circuits is
(m
ρ/2
)
/
(ρt/2
ρ/2
)
. Applying the union bound, we conclude

that the probability that P1 succeeds in cheating is bounded by

t

(
ρt−m
ρt/2

)(
m

ρ/2

)/(
ρt

ρt/2

)(
ρt/2
ρ/2

)
.

Since it is given that the maximum value of this expression is less than 2−s for parameter ρ chosen
in the protocol, we have that the probability of cheating is at most 2−s. We now proceed to the
formal proof.

Let A be an adversary controlling P1 with input x = (x1, . . . , xt). Since P1 receives no output,
we need only show that the difference in probability that P2 aborts in the real world versus the
ideal world in negligible. We construct a simulator S with access to a trusted party computing f (t)

as follows:

1. S acts as an honest P2 would for the entire protocol execution, using input y = (0`, . . . , 0`)
throughout.

2. For each k ∈ [t], let xk = σk,1, . . . , σk,` be P1’s witness to the zero-knowledge proof-of-
knowledge in Step 9. S extracts these values through the ideal functionality interface.

3. If would P2 abort at any point in the protocol, then S sends ⊥ to the ideal functionality
computing f (t). Otherwise, it sends x = (x1, . . . , xt) and receives back z = f (t)(x, y).

We now claim that the distributions from A interacting with P2 in the real world versus A inter-
acting with S in the ideal world are indistinguishable. To do so, we construct a set of hybrids,
starting from the real execution and ending at the ideal execution, and show that each hybrid is
indistinguishable from its neighbors. Here, we provide a sketch of these hybrids.

The first hybrid is simply the real world execution of the protocol. The next hybrid is equivalent,
except that we extract P1’s input x′ = (x′1, . . . , x′t) from the zero-knowledge proof-of-knowledge ideal

29

functionality in Step 9. Instead of outputting P2’s output from the execution of the protocol, we
instead pass x′ to the trusted third party, and output f (t)(x′, y).

These two hybrids differ if the output of P2 differs from the output computed by the trusted
third party. This happens if one of the evaluation buckets contains all maliciously constructed
circuits. As was shown above, this happens with probability < 2−s, and thus we conclude that
these hybrids are indistinguishable.

The next hybrid is the same as the prior one, except that P2 uses input y = (0`, . . . , 0`)
throughout. Noting that P2 only uses y as input to the Fmcot functionality in Step 2, we conclude
that the two hybrids are perfectly indistinguishable.

As this last hybrid is the same as the simulator S given above, we conclude that the protocol
is secure.

P2 is corrupted. The intuition for security in the case that P2 is corrupt is standard [LP11, Lin13],
and thus we jump right to the proof.

Let A be an adversary controlling P2 with input y = (y1, . . . , yt). We assume the existence
of a simulator S ′ which constructs garbled circuits with fixed outputs which are indistinguishable
from correctly garbled circuits. Such a simulator is known to exist [LP09, LP07]. Also, we use the
simulator from [LP11], which we denote as S ′′.

We construct a simulator S with access to a trusted party computing f (t) as follows:

1. S extracts P2’s input y and sets J, J1, . . . , Jt from the call to Fmcot.

2. S sends y to the trusted party, receiving back z = (z1, . . . , zt) = f (t)(x, y).

3. For every j ∈ J , S constructs a valid garbled circuit. For every k ∈ [t] and for every j ∈ Jk,
S uses S ′ to construct a garbled circuit that outputs the fixed string zk irrespective of the
input.

4. S uses S ′′ to simulate the 2PC protocol in Step 7.

5. Otherwise, S runs the protocol as an honest P1 would.

6. Upon protocol termination, Soutputs whatever A outputs and halts.

We now claim that the distributions from A interacting with P2 in the real world versus A in-
teracting with S in the ideal world are indistinguishable. To do so, we again construct a set of
hybrids, starting from the real world and ending at the ideal world, and show that each hybrid is
indistinguishable from its neighbors. Here, we provide a sketch of these hybrids.

The first hybrid is simply the real world execution of the protocol. The following hybrid is
equivalent, except as follows. We extract A’s input y′ = (y′1, . . . , y′t) and the sets J1, . . . , Jt from
the call to Fmcot in Step 2. Let z = (z1, . . . , zt) = f (t)(x, y′) be the output of the trusted third
party. Let J = [ρt] \ ∪kJk. For j ∈ J , we construct correctly garbled circuits, and for j ∈ Jk for all
k, we use S ′ to construct a circuit which always outputs zk.

We claim that these two hybrids are indistinguishable. Note that A can distinguish if either
he can open one of the simulated garbled circuits, or he can evaluate a simulated garbled circuit
in bucket k on something other than y′k. The only way for one of the above situations to occur
is if A can guess input keys for garbled circuits in Step 4. Clearly, this happens with negligible
probability.

30

The following hybrid is the same as the above hybrid, except we replace the real 2PC execution
in Step 7 with a simulated execution using S ′′. Due to the security of S ′′ (as was shown in [LP11]),
we conclude that these two hybrids are indistinguishable.

Finally, the last hybrid is the same as the above one, except that we use x = (0`, . . . , 0`) as P1’s
input throughout. Note that this affects Step 5, where A receives P1’s inputs ga

xk,i
i ·rj ; however,

by the decisional Diffie-Hellman assumption, A cannot extract axk,ii from this expression, and thus
cannot deduce that P1’s input is x as defined above. Thus, the two hybrids are indistinguishable.

As this last hybrid is the same the simulator S given above, we conclude that the protocol is
secure.

C Proof in the Sequential Execution Setting

Theorem. Let s (resp., n) be the statistical (resp., computational) security parameter. If the
decisional Diffie-Hellman assumption holds in (G, g, q), h is a one-way function, and the circuit is
garbled using an adaptively secure garbling scheme, then for all polynomial values of t, the protocol
described in Section 3 securely computes f [t] in the presence of a malicious adversary with error at
most 2−s + µ(n) for some negligible function µ(·).

Proof. The proof is similar to the parallel case. The two major changes are the use of the XOR-tree
to avoid the selective failure attack (in place of cut-and-choose oblivious transfer), and the use of
adaptively secure garbling.
P1 is corrupted. The intuition here is the same as for the parallel execution setting, and thus we
jump straight to the simulator. Let A be an adversary controlling P1. We construct a simulator S
with access to a trusted party computing f as follows:

1. S acts exactly as an honest P2 would for the entire off-line phase of the protocol.

2. Likewise, S acts exactly as an honest P2 would for each of the t executions of the on-line
phase, using y = 0` as its input for each iteration, except as follows:

S extracts P1’s input xk from the zero-knowledge proof-of-knowledge in Step 7 of the
on-line phase, and sends it to the trusted third party, receiving back the output zk.
If an honest P2 would abort at any step in the protocol, S sends ⊥ to the trusted third
party; otherwise, S sends x and receives f(x, y) in return.

Now, as was shown in [Lin13] and in Appendix B, the probability that the output in the ideal and
real world are identical across all t executions is exactly one minus the probability that a given
bucket contains all maliciously constructed circuits. As was shown in Appendix B, this probability
is < 2−s.
P2 is corrupted. Let A be an adversary controlling P2 . Again, the intuition here is similar to
the parallel execution setting. However, we cannot use the standard simulator for garbled circuits
anymore, as we need adaptively secure garbled circuits. Instead, we make use of an adaptively
secure garbling simulator [BHR12]. In particular, we need to use a simulator for the all2 definition
of security, which provides fine-grained adaptive security in terms of privacy, obliviousness, and
authenticity. Bellare, Hoang, and Rogaway [BHR12] show the existence of such a simulator, which
we denote by S ′ = (S ′1,S ′2), in the Random Oracle Model. This simulator has two “stages”: S ′1

31

constructs a simulated garbled circuit, and S ′2, given input y, constructs simulated input keys for
input y. We also utilize the simulator for [LP11], which we denote by S ′′. We construct a simulator
S with access to a trusted party computing f as follows:

1. S the acts exactly as an honest P1 would for the entire off-line phase of the protocol, except
for the following:

Prior to Step 1, S chooses a random string r of size ρt such that half of the bits in r are
set to one. Then, for each i ∈ [ρt], if ri = 1 then S constructs a correctly garbled circuit;
if r1 = 0 then S uses S ′1 to construct a simulated adaptively-secure garbled circuit. In
Step 1(c), for those circuits with ri = 1, S uses the inputs keys generated by S ′1, otherwise
S constructs the input keys as specified in the protocol.
In Step 3, S sets the secure coin-tossing protocol to output r.

2. In the on-line phase, S acts as follows:

S uses x = 0` as its input for each iteration.
In Step 3, S receives P2’s input ỹk from the OT functionality. It then runs S ′2 on ỹk, receiv-
ing back encoded values (D0

i,k, D
1
i,k), and sends Dỹk,i

i,k to P2 through the OT functionality
interface.
In Step 6, S uses S ′′ to simulate the execution of circuit C ′.
Otherwise, S runs exactly as an honest P1 would.

We now claim that the distributions from A interacting with P2 in the real world versus A inter-
acting with S in the ideal world are indistinguishable by Z . The argument is nearly equivalent to
that shown in the parallel execution case, and is thus omitted.

Changelog

• Version 1.0 (February 3, 2015): First release. This is the full version of the proceedings
version published at CRYPTO 2014.

32

	Introduction
	Preliminaries
	Naïve Approaches to Combining Fast Cut-and-Choose with LEGO.

	Overview of Our Approach
	Related Work
	Security Definition

	The Parallel Execution Setting
	Generalizing Cut-and-Choose Oblivious Transfer
	Cost of Realizing Fmcot from DDH
	Alternative Approaches

	Using Fmcot in the Parallel Execution Setting
	Optimizing the Circuit in Step 7

	The Sequential Execution Setting
	Security Definitions
	Definition of Security for Parallel Executions
	Definition of Security for Sequential Executions

	Proof in the Parallel Execution Setting
	Proof in the Sequential Execution Setting

