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Abstract—Having ciphers that provide confidentiality and
authenticity, that are fast in software and efficient in hardware,
these are the goals of the CAESAR authenticated encryption
competition. In this paper, the promising CAESAR candidate
ASCON is implemented in hardware and optimized for different
typical applications to fully explore ASCON’s design space. Thus,
we are able to present hardware implementations of Ascon suit-
able for RFID tags, Wireless Sensor Nodes, Embedded Systems,
and applications that need maximum performance. For instance,
we show that an ASCON implementation with a single unrolled
round transformation is only 7 kGE large, but can process up to
5.5 Gbit/sec of data (0.75 cycles/byte), which is already enough
to encrypt a Gigabit Ethernet connection. Besides, ASCON is
not only fast and small, it can also be easily protected against
DPA attacks. A threshold implementation of ASCON just requires
about 8 kGE of chip area, which is only 3.1 times larger than the
unprotected low-area optimized implementation.

I. INTRODUCTION

Symmetric cryptography has a rich history of competitions
to find good and secure cryptographic primitives. Winners of
such competitions like Rijndael—now known as the Advanced
Encryption Standard (AES)—serve as base of our modern
information and communication systems. Currently, in a com-
petition called CAESAR [1], over 45 different authenticated
encryption (AE) schemes battle for entry in the final portfolio
to be tomorrows information security working horses. The final
portfolio will be announced at the end of 2017 and till then,
the participating primitives have to survive an annual selection
process.

Cryptanalysis is not enough to settle the battle for the entry
in the next rounds. It is likely—as in competitions before—
that we get to some point during CAESAR, where every
remaining authenticated encryption scheme, has no shown
cryptographic weaknesses and equivalent cryptographic prop-
erties as the other candidates. Thus, cryptanalysis results of the
pure algorithms should be supported by implementation results
at this point regarding the selection process. Therefore, it is
useful to compare other properties of the different algorithms
like speed and code size of software implementations, area
and throughput of hardware implementations, or the costs
of protection mechanism against implementation attacks like
side-channel analysis.

Providing hardware implementations of CAESAR can-
didates is an important task to base the decisions during
CAESAR on quantifiable numbers and not on intuition. Thus,
preliminary hardware implementations have been included
in many submissions to the CAESAR competition like for

NORX [2] and ICEPOLE [3]. However, these preliminary
implementations are often only optimized for one specific
design criteria (e.g. speed), and do not include any mechanisms
to counteract side channel attacks. Moreover, not all CAESAR
candidates already provide hardware implementation results.
Therefore, the design space evaluation and comparison of the
CAESAR candidates is an ongoing process [1].

In this work, we provide the first hardware implementations
for the CAESAR candidate ASCON. We maximize the impact
of our contribution by not focusing on only one criteria. In-
stead, we investigate the requirements of typical authenticated
encryption applications and check the suitability of ASCON for
all of them. In particular, we present implementations of
ASCON suitable for RFID tags, Wireless Sensor Nodes, Em-
bedded Systems, and applications, which need a maximum
of performance. In addition, we provide protected imple-
mentations of ASCON for applications, where side-channel
analysis is a threat. The resulting ASCON implementations
are compared with all the hardware implementations of other
CAESAR competitors available to us. This comparison shows
that ASCON provides the flexibility to meet the requirements
of many AE applications and is even able to compete with
ciphers designed for one specific use case. To the best of our
knowledge, this is the first work where such a vast amount of
design spaces is evaluated and compared to other competitors
regarding CAESAR.

This paper is structured as follows: Section II derives
the requirements of today’s most demanding applications for
authenticated encryption. The ASCON algorithm itself is then
briefly presented in Section III. In Section IV, the different
variants of ASCON hardware designs are discussed and their
underlying design principles are explained in more detail.
Furthermore, it is shown how the ASCON implementations
can be easily protected against first-order differential power
analysis (DPA) attacks. Finally, the results of the hardware
implementations are discussed in Section V, and compared to
other CAESAR candidates and other authenticated encryption
schemes.

II. TARGET APPLICATIONS OF AUTHENTICATED
ENCRYPTION SCHEMES

The authenticated encryption candidates from the
CAESAR competition will be implemented in software and
in hardware. Although general-purpose microprocessors are
constantly improving, certain demanding applications
necessitate dedicated hardware designs. Software
implementation would simply not perform sufficiently.



In the following, a summary of typical applications is given
to elaborate their respective requirements on authenticated
encryption implementations.

A common concern of symmetric cryptography is perfor-
mance. Especially servers and encrypted/authenticated high-
speed network links potentially require hardware accelerators
to cope with the protected network traffic. Prominent examples
for hardware accelerators are Intel’s AES [4] and upcoming
SHA [5] instructions. The most important characteristic of
those hardware accelerators is throughput. However, other
applications have different requirements.

One target application of authenticated encryption are
passively powered Radio Frequency Identification (RFID)
tags. These tags are wirelessly supplied by the reader field
and have extremely high cost constraints in order to fulfill
the requirements for mass production. The vital characteristic
of these tags is the maximum read range. The limiting factor
for the read range of passive RFID tags is their power con-
sumption. Therefore, CAESAR candidates suitable for RFID
should consume very low power and should be optimized for
low area.

Similarly to RFID tags, Wireless Sensor Nodes constitute
an important topic for the community. When wireless sensor
nodes are deployed in the field, a single battery should ideally
last for a life-cycle. Therefore, it is crucial to have CAESAR
candidates, which can be optimized for low energy consump-
tion. Current wireless sensor nodes come with low-energy
microprocessors. Therefore, a low-energy cipher design must
come with a bus interface to be usable for the microprocessor.

While servers, RFID tags, and wireless sensor nodes are
very specific applications, most currently deployed systems
nowadays are Embedded Systems that come with a micro-
processor and a lot of peripherals. These microprocessors
are the default solution for many consumer and industrial
applications. Manufacturers add small but performant memory-
mapped cryptographic coprocessors in order to fulfill versatile
security tasks. On the one hand these coprocessors should be
as small as possible, but on the other hand they should also
be very fast which is normally a contradiction. Therefore, they
can be best characterized in terms of throughput per area—in
the following also referred to as efficiency.

TABLE I. OPTIMIZATION GOALS FOR DIFFERENT AUTHENTICATED
ENCRYPTION APPLICATIONS

Application Optimization Goal Interface
High performance computing high throughput custom
RFID tags low power and low area custom
Wireless sensor nodes low energy memory-mapped
Embedded systems high throughput per area memory-mapped

Table I summarizes the optimization goals for different
applications measured in traditional hardware metrics. An
additional design dimension is implementation security. In
fact, there is a whole class of practical side-channel attacks
which modern devices need to be prepared for. Protecting
implementations against physical attacks is not trivial. Since
Kocher et al.’s [6] paper about differential power analysis, the
research community struggles with the secure implementation
of AES. To avoid such challenges, it is an important require-
ment for all CAESAR candidates to be easily protectable
against implementation attacks.

In the following, it is shown that ASCON is extremely
flexible and can be optimized according to the needs of
all of the above mentioned applications. Furthermore, it is
demonstrated that ASCON can be efficiently protected against
power analysis attacks.
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Fig. 1. The encryption of ASCON-128 (taken from [7])

III. ASCON

ASCON [7] has a sponge-like mode of operation as depicted
in Figure 1. Its state size, the permutation p and mode of
operation are chosen in a way that allows compact hard-
ware implementations, while still providing high throughput.
ASCON comes in two different versions, namely ASCON-128
and ASCON-96 with 128 and 96 bit security level, respectively.
This paper focuses on ASCON-128, while the modifications for
the faster ASCON-96—essentially a doubling of the rate—are
straight-forward.

A. Mode of Operation

ASCON has a state size of 320 bits (consisting of five
64-bit words x0, . . . , x4) that are updated in four phases:
Initialization, Processing of Associated Data, Processing of
Plaintext/Ciphertext, and Finalization. All phases use the same
permutation function p that is applied twelve times in the
Initialization and Finalization phase. The lighter variant of p
with six rounds is used for processing the data and ensures
high performance. The data is handled in 64-bit blocks.

The Initialization phase takes the secret key K (128 bits)
and the public nonce N (128 bits). This nonce has to be fresh
for every encryption and must not be used twice. If the nonce
is used twice or multiple times, then the confidentiality is
jeopardized.

After the Initialization phase the optional associated data
Ai is processed. Associated data is information, which does
not need to be confidential, but must not be altered by an
attacker. Each block Ai is added to the secret state. If there is
no associated data to process, the whole step can be omitted.

In the Encryption phase, each plaintext block Pi is xored
with the secret state to produce one ciphertext block Ci. Six
consecutive round transformations p are executed for each of
the 64-bit data blocks.

After the generation of the ciphertext, the Finalization
starts. The output of the Finalization is the 128-bit tag T .
With the help of this tag, modifications of the ciphertext
and the associated data can be detected during decryption
(validation). Decryption is very similar to encryption. Just
the part, where the ciphertext is processed instead of the
plaintext differs slightly. Thus, no inverse of the permutation
is needed for decryption. So, both encryption and decryption
can be implemented with just a slight overhead compared to
encryption only.



B. Permutation

ASCON-128 uses two permutations p6 and p12. The two
permutations are the 6 and 12 iterative execution of the round
transformation p. The round transformation p consists of a
constant addition to x2, followed by an application of a
substitution layer, and a linear layer.

The substitution layer is the parallel application of 64
5-bit S-boxes. The S-boxes used for ASCON are an affine
transformation of the χ mapping of Keccak [8]. This affine
mapping improves some cryptographic properties of the Kec-
cak’s χ mapping, while still leaving the core of the S-box
and therefore the algebraic degree of 2 intact. Moreover, the
ASCON S-box can be implemented, using only a few logical
operations, which are highly parallelizeable (Figure 2).
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Fig. 2. Substitution layer with 5-bit S-box (left) and linear layer (right)

The linear layer consists of five applications of the function
Σli,ri(xi) = xi⊕ (xi ≫ li)⊕ (xi ≫ ri) to each 64-bit word
of the state (x0, . . . , x4). The Σ function is similar to the one
used in SHA-2 [9], except that other rotation values (li, ri) are
used. The rotation values (li, ri) are different for every 64-bit
word in one round and are: (19, 28) for x0, (61, 39) for x1,
(1, 6) for x2, (10, 17) for x3, and (7, 41) for x4.

C. Hardware Security Properties of ASCON

In order to protect ASCON against side-channel attacks
it is important to reflect on the properties of ASCON that
make the life of an attacker hard. ASCON uses a mode of
operation which is based on MonkeyDuplex [10]. In contrast
to MonkeyDuplex, ASCON uses a keyed Initialization and
Finalization. This has the effect that a state recovery during the
processing of data neither leads to the recovery of the secret
key, nor allows universal forgeries.

Therefore, Power-analysis attacks on the data processing
phase may be applied in order to recover the internal states,
but do not allow the attacker to recover the key. In addition,
power-analysis attacks on the Finalization are hard, since the
attacker would have to attack both the key and many unknown
state bits that have no influence on the emitted tag. In fact, the
most vulnerable phase is the Initialization. For ASCON-128,
three out of five input bits of the first S-boxes are publicly
known and the other two bits belong to the secret key.

To prevent side-channel analysis, ASCON allows to apply
well known protection mechanisms. The ASCON S-box is
an affine transformation of the Keccak S-box. Hence, it is
possible to reuse essential parts of techniques for side channel
protection like the threshold implementation of Keccak from
Bilgin et al. [11] as discussed in Section IV-D. Therefore,
ASCON can be protected against first-order DPA attacks by
using only three shares and four random bits per round.

IV. HARDWARE DESIGNS

ASCON allows to be optimized for many practical applica-
tions, where both confidentiality and authenticity are required.
These include all applications mentioned in Section II with
their different optimization goals. In the following, three imple-
mentation variants with different design goals are introduced.

A. High Throughput Design (ASCON-fast)

Due to the low complexity of ASCON’s round trans-
formation, it is possible to fully unroll a complete round
transformation and still achieve high frequencies. As it turns
out, the round transformations are so hardware-friendly that
even multiple rounds can be computed in a single clock cycle.
The ASCON-fast variants aim at a maximal data throughput
with a minimum of processing delay. Therefore, at least one
round transformation is performed in every clock cycle and
no pipelining stages are used. Each ASCON-fast variant uses
a different number of unrolled round transformations. The
datapath of ASCON-fast as it is shown in Figure 3 mainly
consists of the unrolled round transformations (five 64-bit state
registers, 64 parallel S-boxes, and the linear diffusion layer).
Only a few additional multiplexers and XOR-gates are needed
to connect the unrolled round transformation with the data bus
and the key register.
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Fig. 3. Datapath of ASCON-fast (one round transformation per cycle)

B. 64-bit Datapath Design (ASCON-64-bit)

The design idea behind the ASCON-64-bit implementation
is based on the inherent 64-bit structure of ASCON. Instead
of a concrete implementation of the S-box and the linear
diffusion layer, this design uses an arithmetic logic unit (ALU)
comparable to a microcontroller design. Consequently, the
controlpath works similar to a sequential program code that
is executed by the datapath in Figure 4.

Besides the five state registers, there exist also two tem-
porary registers, which—together with the inputs from the
controlpath—form the input operands of the ALU. The ALU
itself consists of an iterative barrel-shifter unit, three logic
operations, and a data-storage unit that takes the 64-bit bus
data input and stores it either in the high or the low part of
the selected operand. On the output of the ALU the result of
the operation is selected that is then applied to the destination
register. During the execution, the S-box and linear layer are
iteratively calculated using the operations of the ALU. Thus,
one round operation takes 59 clock cycles.
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C. Low Area Design (ASCON-x-low-area)

The datapath of the so-called ASCON-x-low-area variant
(see Figure 5) uses a radical low-area approach, which can
be summarized as “one bit operation per cycle”. The state
consists of five clock gated shift registers with independent
shift-enable inputs. For the S-box calculation, all state registers
are activated and shifted bit-slice-wise through the single S-
box instance. The result is stored in the least-significant bits
of the state. Accordingly, the whole S-box layer operation
consumes 64 cycles. The subsequent linear diffusion layer is
split up into five interleaved subiterations in which each state
register is updated individually. As a single state bit depends
on two other bits of the same state row, the linear layer cannot
be calculated without temporarily storing either the results or
the state row itself, respectively. Thus, another (temporary)
shift register is needed that in one iteration holds the result
of the current linear layer operation and in the next iteration
is used to write the result back. Once the first subiteration of
the linear layer is finished, the calculation of the next state
row and the write back operation can be done in parallel. This
uncompromising low-area approach results in 512 clock cycles
per round transformation.
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D. Protecting ASCON against Side Channel Analysis Attacks

In practice it is not sufficient to have fast, small, low-power,
or low-energy designs. In addition, those designs need to be be
protected against the serious threat of implementation attacks
like power-analysis attacks. In 2006, Nikova et al. [12] intro-
duced the concept of a threshold implementation (TI) scheme

that is provably resistant against first-order DPA attacks. The
basic principle behind TI is that the calculations are never
performed directly on the security critical data but indirectly by
applying modified transformations on so-called shares (named
A, B and C in Figure 6).
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Fig. 6. The principle of secret sharing explained on one round of ASCON

Linear transformations, like the addition of the round
constant or ASCON’s linear layer, can be performed on each
share separately. Non-linear operations, like S-box lookups,
have to be carefully transformed to remain valid. To withstand
first-order DPA attacks, the S-box component functions have
to fulfill the correctness, non-completeness, and uniformity
properties. A sharing of an S-box is said to be correct if the
sum of the resulting output shares equals the result of the S-box
function applied to the sum of the input shares (see Figure 6.b).
Also the non-completeness property is represented in Figure
6.b by having three S-box component functions which are
each independent of at least one input share. The last property
which is required for a valid TI is the so-called uniformity
which results for an S-box implementation in the equivalent
requirement for each component function to be invertible.

One of the best explored algorithm regarding threshold
implementations is the new SHA-3 standard Keccak [8]. In
2014, Bilgin et al. [11] not only showed how to share the
Keccak’s S-box function χ very efficiently with three shares,
but also how to reduce the high amount of random bits required
to recover the uniformity property. ASCON uses an affine
transformation of Keccak’s χ function. Therefore, the current
findings of Bilgin et al. and all future findings on the Keccak
S-box can be directly applied to ASCON. Since, the sharing of
the χ function is already well explained by Bilgin et al., the
details of ASCON’s shared S-box are summarized in Appendix
A for the interested reader.

In order to investigate the additional costs for protecting
ASCON against first-order DPA attacks, three-share TI versions
of the fast and the x-low-area variants are implemented.
ASCON-fast-TI is assumed to be used in an embedded system
scenario as a cryptographic co-processor that is controlled
by a microcontroller. The microcontroller is responsible for
performing the initial sharing of the state and for distributing
its source of randomness. The necessary random bits (four
fresh random bits per round transformation) are delivered over



the 64-bit AMBA APB bus interface in advance of each round
transformation and stored in an internal register.

ASCON-x-low-TI, on the other hand, is designed to be
used within a microcontroller-free design, e.g., a commercial
RFID tag. Therefore, a direct access to a random number
generator is assumed to be available, like it is used in EPC
Gen2 UHF tags. Because the ASCON-x-low-TI implementation
only performs one S-box operation per cycle, the output of the
random number generator is directly used and does not need
to be stored in advance.

In the next section we evaluate how the implemented
ASCON designs perform compared to each other and compared
to related work.

V. RESULTS

All ASCON designs are implemented in VHDL and eval-
uated using a Cadence-based ASIC design-flow. The VHDL
code is open-source and is available online.1 This will facilitate
future comparisons by fellow researchers using different ASIC
or FPGA design flows. For the following results, a 90 nm UMC
standard performance low-K library from Faraday is used with
a global clock of 1 MHz and a 1 V power supply. The designs
are compiled with the Cadence Encounter RTL compiler
version v08.10-s28 1 and routed with Cadence NanoRoute
v08.10-s155.

TABLE II. CHARACTERISTICS OF THE ASCON-128 HARDWARE
IMPLEMENTATIONS

Design Chip Area Throughput Power Energy
w/o interface w/ interface at 1 MHz

[kGE] [kGE] [cycles/byte] [Mbps] [µW] [µJ/byte]

Unprotected Implementations
ASCON-fast

1 round 7.08 7.95 0.75 5,524 43 33
2 rounds 10.61 11.48 0.38 8,425 72 27
3 rounds 14.26 15.13 0.25 10,407 102 25
6 rounds 24.93 25.80 0.13 13,218 184 23

ASCON-64-bit 4.99 5.86 44.25 72 32 1,397
ASCON-x-low-area 2.57 3.75 384.00 14 15 5,706

Threshold Implementations
ASCON-fast-TI

1 round 28.61 30.42 0.75 3,774 183 137
2 rounds 47.46 49.13 0.38 6,289 315 118
3 rounds 66.45 68.27 0.25 7,143 447 112
6 rounds 123.52 125.19 0.13 9,018 830 104

ASCON-x-low-TI 7.97 9.19 384.00 15 45 17,234

The results of all practical evaluations are collected in
Table II. Some implementations can process up to 8 bytes
of data in a single clock cycle (0.125 cycles per byte) and
other implementations are as small as 2.57 kGE. Especially
the characteristics of ASCON-fast with one unrolled round are
impressive. This implementation needs 7.08 kGE (7.95 kGE
with key register and 64-bit bus interface), reaches a maximum
clock frequency of 517 MHz, and can therefore process up to
5.5 Gbit per second. This means that the most straightforward
design is easily sufficient to encrypt a gigabit Ethernet con-
nection on the fly. At 100 MHz, the design only needs 529 µW
(38 µW static leakage and 4.9µW/MHz dynamic power) and
is therefore also suitable for mobile applications. As it also
provides the best performance per throughput, it is perfectly
suitable for embedded systems.

If higher throughput is required, ASCON-fast with six
unrolled rounds can process more than 13 Gbit/sec at 206 MHz.

1http://ascon.iaik.tugraz.at/implementation.html

TABLE III. CHARACTERISTICS OF RELATED IMPLEMENTATIONS

Design Chip Area Throughput Power Technology

[kGE] [Mbps] [µW/MHz]

AES-CCM [13] 3.77 57 5.12 STM 65 nm
AES-OCB2 [13] 5.92 113 8.11 STM 65 nm
AES-ALE [13] 2.70 244 10.55 STM 65 nm
Minalpher [14] low-area 2.81 369 —
SILC [15] V1 15.70 764 —
AES-OCB [16] 22.55 854 — TSMC 90 nm
SILC [15] V2 23.10 2,635 —
Scream ED [17] 1 Round 6.23 4,577 — STM 65 nm
Keccak MonkeyDupl. [18] 5.90 4,900 42
Scream ED [17] 2 Round 8.31 5,190 — STM 65 nm
Minalpher [14] high-speed 14.32 6,104 —
Norx [2] 59.00 10,000 — UMC 180 nm
ICEPOLE [3] — 41,364 — Xilinx Virtex 6

This is more than sufficient even for 10 gigabit network con-
nections. For RFID applications, where size as well as power
matter, ASCON-x-low is only 2.57 kGE large and requires as
little as 15 µW for a 1 MHz clock source. In an for RFID
tags more suitable, power saving 130 nm low-leakage UMC
technology, the power consumption is reduced to 4.1 µW.

Energy, the most critical characteristic of wireless sensor
nodes, is the product of power and runtime. The ASCON-fast
implementations require the least amount of energy because of
their low runtimes. Even though six unrolled rounds give the
best energy results it probably would be more reasonable to
use ASCON-fast with one unrolled round for wireless sensor
nodes.

A. Related Work

A fair comparison of hardware designs is a difficult task.
Different designers make diverging assumptions about, e.g.,
key registers or bus interfaces. Additionally, results are highly
dependent on the used manufacturing technology, the used
toolchain (e.g., Cadence, Synopsis, Menthor, Xilinx, or Altera),
and the external operating conditions (e.g., power supply
voltage or ambient temperature). Therefore, the following
comparison with related work has to be interpreted carefully.

In Table III, the hardware results of several authenticated
encryption designs are listed. There are standardized AES-
based implementations [13], [16] and CAESAR candidates
based on sponge constructions [2], [3], [18] and block ci-
phers [17], [15], [14] depicted. Figure 7 visually combines
Tables II and III. The horizontal axis shows the throughput
and the vertical axis depicts the area footprint. The dashed
equi-efficiency lines indicate a constant throughput per area
ratio.

It seems that ASCON provides, together with Keccak
MonkeyDuplex [18], excellent performance per area. All AES
implementations are a magnitude slower than even the slowest
ASCON-fast implementation. Only Norx [2] and ICEPOLE [3]
achieve similar or higher performance. However, Norx is more
than twice as large (59 kGE) as the largest ASCON design
(26 kGE). There are no ASIC results available for ICEPOLE so
far. In terms of size, ASCON needs six times fewer registers
to store the state and the processed data (1280 + 1024 vs.
320 + 64) than ICEPOLE. ICEPOLE S-boxes also have an
algebraic degree of four and are thus potentially harder to share



than the ASCON S-boxes which probably results in a higher
overhead for protected implementations.

B. First-Order DPA Resistant Threshold Implementations

Compared to the unprotected versions, the state size
intuitively triples for the TI variants ASCON-fast-TI and
ASCON-x-low-TI because of the three state shares. Further-
more, also the logic inside the datapath is implemented in
triplicate, but the S-box sharing results in a increased resource
consumption because of the more complex component func-
tions. This increase in the resource requirements affects the
ASCON-fast-TI more than the ASCON-x-low-TI because the
latter only uses one S-box instance. As a result, ASCON-fast-TI
is 4.0 times larger than ASCON-fast. Nevertheless, it still offers
a throughput of 3.77 Gbit/sec. ASCON-x-low-TI, on the other
hand, has a comparably low overhead factor of only 3.1.

The authors of this paper are not aware of the existence of
any other side-channel protected CAESAR candidates so far
to compare ASCON to. Due to its prevalence, a lot of effort of
the hardware security community was spent on the question
on how to protect AES against DPA attacks. In 2011, Moradi
et al. [19] (later improved by Bilgin et al.[20]) implemented a
low-area version of AES (encryption only), which is protected
by the TI masking scheme. As it turned out, the overhead
factor for protecting their AES core against first-order DPA
attacks is about 4.6 (2.4 kGE vs. 11 kGE). The major reason
for this implementation overhead is the S-box, which is very
difficult to protect compared to the S-box of ASCON.

VI. CONCLUSIONS

In this work we exhaustively evaluated that ASCON is
ready for all challenges that today’s authenticated encryption
applications pose. We demonstrated how to implement high-
throughput designs that can process up to 13.2 gigabit of
data per second. A design designated for RFID applications
requires as little as 2.6 kGE and 15 µW of power at 1 MHz.
ASCON-fast also fulfills all requirements of wireless sensor
nodes in particular and embedded systems in general. It
requires only 7.1 kGE and 33 µJ of energy per byte and can
easily encrypt and authenticate the traffic of an one-gigabit
Ethernet connection. As additional contribution, we demon-
strated the ease of protecting ASCON against power-analysis
attacks. ASCON-fast-TI is a power-analysis protected threshold
design that is still able to process 3.6 gigabit of data per
second. The comparison with other authenticated-encryption
designs showed that ASCON is ready for all challenges the
CAESAR competition might hold. And there is still room for
improvement: a pipelined ASCON design can process more
data at higher frequencies. Such a design can easily be derived
from the released Apache-licensed source codes.2
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APPENDIX

The efficient implementation of a non-linear function like
the S-box of ASCON is not trivial. Quite nicely, ASCON is
using an affine transformation of the χ function used in
Keccak [8], the new SHA-3 standard. In 2014, Bilgin et al. [11]
showed a shared implementation of the Keccak S-box based on
three shares with direct-sharing property. This property results
in a very compact shared representation of the S-box χ with
low hardware costs.

In the following, the same notation as in Bilgin et al.’s
paper is used on ASCON. The state shares are represented by
the capital letters A, B and C, with the bit index i (modulo 5)

inside one of the 64 5-bit state slices with index j.

A′i ← χ′i(B,C) , Bi + (Bi+1 + 1)Bi+2

+Bi+1Ci+2 +Bi+2Ci+1

B′i ← χ′i(C,A) , Ci + (Ci+1 + 1)Ci+2

+ Ci+1Ai+2 + Ci+2Ai+1

C ′i ← χ′i(A,B) , Ai + (Ai+1 + 1)Ai+2

+Ai+1Bi+2 +Ai+2Bi+1

(1)

The shared S-box implementation in Equation 1 fulfills the
correctness and the non-completeness properties of TI imple-
mentations, but the component functions are not invertible and
therefore also not uniform. However, because of the similarities
to the Keccak S-box, the findings of Bilgin et al. can also
be applied to the ASCON S-box. A straight-forward way to
recover the uniformity is the insertion of additional random
bits in form of the virtual variables S and P in Equation 2.
Even though this ensures the uniformity of the component
functions, this would require 640 fresh high-quality random
bits per cipher round which is not quite practical!

A′i ← χ′i(B,C) + Pi + Si

B′i ← χ′i(C,A) + Pi

C ′i ← χ′i(A,B) + Si

(2)

Bilgin et al. showed that when only three out of the five S-
box output bits are considered, the joint uniformity is already
satisfied. Consequently, only the two remaining state slice bits
need to be repaired by using Equation 2. Thus, for bit slice
positions i ∈ {0, 1, 2} Equation 1 is sufficient.

The requirement for fresh random bits can be decreased
further when the relation between the individual state slices is
considered. Since, each sharing of one state slice is indepen-
dent of the other shared slices, these independent shares can
be used to recover the uniformity property of a different state
slice sharing. It only needs to be ensured that the independence
between the state slices is not violated. Equation 3 can then
be applied to all bits of the state slices where the bit index
i ∈ {3, 4} except the one slice with the state slice index j = 0



which requires fresh randomness in order to not violate the
independence requirement. The total amount of fresh random
bits per cipher round is then reduced to only four bits. The
rest of the bits required for the virtual variables is taken from
independent bit slices.

A′(j)i ← χ′i(B
(j), C(j)) +A

(j−1)
i +B

(j−1)
i

B′(j)i ← χ′i(C
(j), A(j)) +A

(j−1)
i

C ′(j)i ← χ′i(A
(j), B(j)) +B

(j−1)
i

(3)


