A More Explicit Formula for Linear Probabilities of Modular Addition Modulo a Power of Two

S. M. Dehnavi¹, A. Mahmoodi Rishakani², M. R. Mirzaee Shamsabad³

¹Kharazmi University, Faculty of Mathematical and Computer Sciences, Tehran, Iran
std_dehnavism@khu.ac.ir

²Shahid Rajaee Teacher Training University, Faculty of Sciences, Tehran, Iran
am.rishakani@srttu.edu

³Shahid Bahonar University, Faculty of Mathematics and Computer Science, Kerman, Iran
mohammadmirzaesh@yahoo.com

Abstract: Linear approximations of modular addition modulo a power of two was studied by Wallen in 2003. He presented an efficient algorithm for computing linear probabilities of modular addition. In 2013 Schulte-Geers investigated the problem from another viewpoint and derived a somewhat explicit formula for these probabilities. In this note we give a closed formula for linear probabilities of modular addition modulo a power of two, based on what Schulte-Geers presented: our closed formula gives a better insight on these probabilities and more information can be extracted from it.

Key Words: Modular addition modulo a power of two, Linear probability, Symmetric cipher, Linear cryptanalysis

1. Introduction

Linear cryptanalysis is a strong tool in cryptanalysis of symmetric ciphers. In [1] linear approximations of modular addition modulo a power of two is investigated and an efficient algorithm for computing these probabilities is given. A somewhat explicit formula for linear probabilities of this operator is also given in [2]. In this note, we propose a closed formula for linear probabilities of modular addition modulo a power of two based on the algorithm presented in [2]. Our closed formula exhibits a better insight for these probabilities and more information can be derived from it.

In this note, we use the following notations:

\(w(x) \): Hamming weight of a binary vector \(x = (x_{n-1}, \ldots, x_0) \),
2. A Closed Formula for Linear Probabilities of Modular Addition

Suppose that the input masks \((a_{n-1}, \ldots, a_0)\) and \((b_{n-1}, \ldots, b_0)\) and the output mask \((c_{n-1}, \ldots, c_0)\) are given. We wish to compute

\[\left| P(a \cdot x \oplus b \cdot y = c \cdot r) - \frac{1}{2} \right|, \tag{1} \]

where

\[r = x + y \mod 2^n, \]

\[x = (x_{n-1}, \ldots, x_0), \quad y = (y_{n-1}, \ldots, y_0) \quad \text{and} \quad r = (r_{n-1}, \ldots, r_0). \]

To compute (1), we recall the algorithm presented in [2]: put

\[s_i = a_{n-1-i} \oplus b_{n-1-i} \oplus c_{n-1-i}, \quad 0 \leq i < n. \]

Now put \(z_0 = 0\) and

\[z_{i+1} = z_i \oplus s_i, \quad 0 \leq i < n - 1. \]

The bias (1) is zero if there exists an \(0 \leq i < n\) such that \(z_{n-1-i} = 0\) holds and \(a_i = b_i = c_i\) does not hold. Otherwise, we have

\[\left| P(a \cdot x \oplus b \cdot y = c \cdot r) - \frac{1}{2} \right| = 2^{-w(z)+1}, \quad z = (z_{n-1}, \ldots, z_0). \]

We can reformulate the above algorithm in this form: put
\[S_i = a_{n-1-i} + 2b_{n-1-i} + 4c_{n-1-i}, \quad 0 \leq i < n. \]

So we have a sequence \(S_0, \ldots, S_{n-1}\) of symbols in \(\{0, \ldots, 7\}\). It is not hard to see that (1) can be computed by means of the (informal) automata of Picture 1. We begin by state 0 in the automata and traverse the diagram symbol by symbol. If we meet “halt” then (1) is equal to zero, and otherwise (1) is equal to \(2^{-w}\). We illustrate our algorithm through some examples:

Example 1. Let \(n = 9\) and

\[
(a_8, \ldots, a_0) = (0,1,1,0,1,1,0,0,0), \\
(b_8, \ldots, b_0) = (0,1,1,0,1,0,0,0,0), \\
(c_8, \ldots, c_0) = (0,1,1,0,1,0,1,0,1).
\]

Then we have

\[S_0 \ldots S_8 = 077073504. \]

Traversing the diagram, we get the bias \(2^{-6}\).

Example 2. Let \(n = 11\) and

\[
(a_{10}, \ldots, a_0) = (0,0,1,1,0,1,1,0,0,1), \\
(b_{10}, \ldots, b_0) = (0,0,1,1,0,0,0,1,1,1), \\
(c_{10}, \ldots, c_0) = (0,0,1,1,1,0,0,1,0,1).
\]

Then we have

\[S_0 \ldots S_{10} = 00777015267. \]

Traversing the diagram, we get the bias 0.

In the appendix we have presented a pseudo-code for computing (1). It can be easily checked that the algorithm is very fast.

With the aid of Picture (1) which is by itself derived from [2], the proof of following theorem is straightforward:
Theorem 1. Notations as before, let

\[S_0, \ldots, S_{n-1} = B_1 \ldots B_m. \]

Here, \(B_i \)'s, \(1 \leq i \leq m \), are \(o \)-blocks, \(e \)-blocks, \(0 \)-blocks or \(7 \)-blocks. Define \(\alpha_1 = 0 \) and for \(1 < i \leq m \)

\[
\alpha_i = \begin{cases}
1 & \# \{ B_j; 1 \leq j < i, B_j \text{ is 7-block of odd length} \} + \# \{ B_j; 1 \leq j < i, B_j \text{ is } o \text{-block} \} \text{ is odd,} \\
0 & \# \{ B_j; 1 \leq j < i, B_j \text{ is 7-block of odd length} \} + \# \{ B_j; 1 \leq j < i, B_j \text{ is } o \text{-block} \} \text{ is even.}
\end{cases}
\]

Then (1) is equal to

\[
\frac{q}{2^w},
\]

where

\[
q = \prod_{i=1}^{m} (1 - \bar{\alpha}_i \{ B_i \text{ is } o \text{-block or } e \text{-block} \}),
\]

and

\[
w = 1 + \sum_{B_i \text{ is } o \text{-block or } e \text{-block}} |B_i| + \sum_{B_i \text{ is 7-block}} \frac{|B_i|}{2} + \sum_{B_i \text{ is } 0 \text{-block}} \alpha_i |B_i|.
\]

We state some of the direct consequences of Theorem 1 here:
If (1) is not zero, then we cannot see a symbol in \(\{1,2,4\}\) followed by some blocks which are not 7-blocks followed by a symbol in \(\{1, \ldots , 6\}\): as a special case, there cannot be a symbol in \(\{1,2,4\}\) before a symbol in \(\{1, \ldots , 6\}\).

If (1) is not zero, then it is less than or equal to \(2^{-(d+1)}\) where \(d\) is the total number of symbols in \(\{1, \ldots , 6\}\).

If (1) is not zero, then there are (at least) \(3^f 4^g - 1\) other sequences with the same probability, where

\[
 f = \sum_{B_i \text{ is } o-block \ or \ e-block} |B_i|,
\]

\[
 g = \sum_{B_i \text{ is } 0-block} \alpha_i |B_i|.
\]

If (1) is zero, then there are (at least) \(3^f 4^g - 1\) other sequences with zero bias, where

\[
 f = \sum_{B_i \text{ is } o-block \ or \ e-block} |B_i|,
\]

\[
 g = \sum_{B_i \text{ is } 0-block} |B_i|.
\]

References

Appendix

Input: $S[0],...,S[n-1]$
Output: halt (zero bias) or w (value of the exponent)

$i=0$, $s=0$, $w=1$

while $(i<n)$ do
 index=i
 $j=0$
 if ($S[index]=7$)
 while ($S[i]=7$)
 $j=j+1$
 $i=i+1$
 end (while)
 if (j is odd) $s=1-s$
 $w = w + (j \div 2)$
 else if ($S[index]=0$)
 $i=i+1$
 if ($s=1$) $w=w+1$
 else if ($S[index]$ is in $\{1,2,4\}$)
 if ($s=0$) halt
 $s=1-s$
 $w=w+1$
 $i=i+1$
 else if ($S[index]$ is in $\{3,5,6\}$)
 if ($s=0$) halt
 else
 $w=w+1$
 $i=i+1$
 end (if)
end (if)
end (while)