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Abstract. In this paper we analyze the Kahrobaei-Lam-Shpilrain (KLS) key
exchange protocols that use extensions by endomorpisms of matrices over a
Galois field proposed in [2]. We show that both protocols are vulnerable to a
simple linear algebra attack.
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1. Introduction

The key-exchange protocol proposed by Habeeb, Kahrobaei, Koupparis, and
Shpilrain (HKKS) in [1] uses exponentiation in general semidirect products of
(semi)groups. When used with an appropriate finite field, it gives the standard
Diffie-Hellman protocol based on cyclic groups. The authors of [1] claimed that
“when the protocol is used with non-commutative (semi)groups, it acquires several
useful features” and proposed a particular platform semigroup which is the exten-
sion of the semigroup of 3× 3 matrices over the group ring F7[A5] (where A5 is the
alternating group) using inner automorphisms of GL3(F7[A5]). It was shown in [3]
that the protocol is susceptible to a simple linear algebra attack.

Later, Kahrobaei, Lam, and Shpilrain in [2] (see also [patent]) proposed two other
instantiations of the HKKS protocol that use certain extension of the semigroup of
2 × 2 matrices over the field GF(2127) and claim that the new protocols are safe
for the linear attack described in [3]. In this paper we discuss security properties
of the new protocols and show that they are susceptible to attacks similar to those
of [3]. A slightly different attack was proposed recently by V. Roman’kov in [4].

2. HKKS key exchange protocol

Let G and H be groups, let Aut(G) be the group of automorphisms of G, and
let ρ : H → Aut(G) be a group homomorphism. The semidirect product of G and
H with respect to ρ is the set of pairs {(g, h) | g ∈ G, h ∈ H} equipped with the
binary operation given by

(g, h) · (g′, h′) = (gρ(h
′)g′, h ◦ h′).

for g ∈ G and h ∈ H . It is denoted by G⋊ρ H . Here gρ(h
′) denotes the image of g

under the automorphism ρ(h′), and h ◦h′ denotes a composition of automorphisms
with h acting first.

Some specific semidirect products can be constructed as follows. First choose
your favorite group G. Then let H = Aut(G) and ρ = idG. In which this case
the semidirect product G ⋊ρ H is called the holomorph of G. More generally, the
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group H can be chosen as a subgroup of Aut(G). Using this construction, the
authors of [1] propose the following key exchange protocol.

Algorithm 1. HKKS key exchange protocol

Initial Setup: Fix the platform group G, an element g ∈ G, and ϕ ∈ Aut(G).
All this information is made public.

Alice’s Private Key: A randomly chosen m ∈ N.
Bob’s Private Key: A randomly chosen n ∈ N.
Alice’s Public Key: Alice computes (g, ϕ)m = (ϕm−1(g) . . . ϕ2(g)ϕ(g)g, ϕm) and

publishes the first component a = ϕm−1(g) . . . ϕ2(g)ϕ(g)g of the pair.
Bob’s Public Key: Bob computes (g, ϕ)n = (ϕn−1(g) . . . ϕ2(g)ϕ(g)g, ϕn) and

publishes the first component b = ϕn−1(g) . . . ϕ2(g)ϕ(g)g of the pair.
Alice’s Shared Key: Alice computes the key KA = ϕm(b)a taking the first com-

ponent of the product (b, ϕn)·(a, ϕm) = (ϕm(b)a, ϕnϕm). (She cannot compute
the second component since she does not know ϕn.)

Bob’s Shared Key: Bob computes the key KB = ϕn(a)b taking the first compo-
nent of the product (a, ϕm) · (b, ϕn) = (ϕn(a)b, ϕmϕn). (He cannot compute
the second component since he does not know ϕm.)

Note that KA = KB since (b, ϕn) · (a, ϕm) = (a, ϕm) · (b, ϕn) = (g, ϕ)n. The
general protocol described above can be used with any non-abelian group G and
an inner automorphism ϕ (conjugation by a fixed non-central element of G). Fur-
thermore, since all formulas used in the description of this protocol hold if G is a
semigroup and ϕ is a semigroup automorphism of G, the protocol can be used with
semigroups. The private keys m,n can be chosen smaller than the order of (g, φ).
For a finite group G, this can be bounded by (#G) · (#Aut(G)).

2.1. Proposed parameters for the HKKS key exchange protocol. In the
original paper [1], the authors propose and extensively analyze the following specific
instance of their key exchange protocol. Consider the alternating group A5, i.e. the
group of even permutations on five symbols (a simple group of order 60) and the
field F7 = GF(7). Let G = Mat3(F7[A5]) be the monoid of all 3×3 matrices over the
ring F7[A5] equipped with multiplication. As usual, by GL3(F7[A5]) we denote the
group of invertible 3× 3 matrices over the ring F7[A5]. Fix an inner automorphism
of G, i.e., a map ϕ = ϕH : G→ G for some H ∈ GL3(F7[A5]) defined by:

M 7→ H−1MH.

Clearly, we have (ϕH)m = ϕHm and

ϕm−1
H (M) . . . ϕ2

H(M)ϕH(M)M

= H−(m−1)MHm−1 . . .H−2MH2 ·H−1MH1 ·M

= H−m(HM)m.

This way we obtain the following specific instance of the HKKS key exchange
protocol.

Algorithm 2. HKKS key exchange protocol using Mat3(F7[A5])
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Initial Setup: Fix matrices M ∈ Mat3(F7[A5]) and H ∈ GL3(F7[A5]). They are
made public.

Alice’s Private Key: A randomly chosen m ∈ N.
Bob’s Private Key: A randomly chosen n ∈ N.
Alice’s Public Key: Alice computes A = H−m(HM)m and makes A public.
Bob’s Public Key: Bob computes B = H−n(HM)n and makes B public.
Shared Key: KA = KB = H−n−m(HM)n+m.

The security of this protocol is based on the assumption that, given the matrices
M ∈ Mat3(F7[A5]), H ∈ GL3(F7[A5]), A = H−m(HM)m, and B = H−n(HM)n,
it is hard to compute the matrix H−n−m(HM)n+m.

In [3] it was shown that the problem above can be easily solved using the fact
that H is invertible. Indeed, any solution of the system:















LA = R,

LH = HL,

RHM = HMR,

L is invertible,

with unknown matrices L,R immediately gives the shared key as the product
L−1BR. To solve the system above we describe the set of all solutions to the
linear system:







LA = R,

LH = HL,

RHM = HMR,

and try-and-check if L is invertible for randomly chosen solutions. With high prob-
ability a required solution will be found in a few tries.

3. Defense against the linear attack

The attack described in Section 2.1 splits the public key A into a product of
two “appropriate” matrices L,R that act as H−m and (HM)m, respectively. The
following countermeasure was proposed in [2, Section 5] to prevent the attack. If
M is not invertible, then M is not invertible and the annihilator of HM :

Ann(HM) = {K ∈ Mat3(F7[A3]) | K ·HM = O}

(where O is the zero matrix) is not trivial. Since in addition we have m,n > 0,
then adding OA, OB ∈ Ann(HM) to the public keys A and B changes the keys,
but does not change the deduced shared key. This gives the following scheme.

Algorithm 3. Modified HKKS key exchange protocol using Mat3(F7[A5])

Initial Setup: Fix matrices M ∈ Mat3(F7[A5]) and H ∈ GL3(F7[A5]). They are
made public.

Alice’s Private Key: A randomly chosen m ∈ N and OA ∈ Ann(HM).
Bob’s Private Key: A randomly chosen n ∈ N and OB ∈ Ann(HM).
Alice’s Public Key: Alice computes A = H−m(HM)m+OA and makesA public.
Bob’s Public Key: Bob computes B = H−n(HM)n +OB and makes B public.
Shared Key: KA = KB = H−n−m(HM)n+m.
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The idea behind this modification is that one can not simply split A into a
product of two matrices and move one of them to the left hand side. Below, using
the property that annihilator is a left ideal and H is invertible, we show that this
is incorrect and the same attack applies. Indeed, it is easy to see that any solution
of the system of equations:























LA = R+ Z

LH = HL

R ·HM = HM · R
Z ·HM = O,

L is invertible.

with unknown matrices L,R and Z, immediately gives the shared key as the product
L−1BR. It is important that H is invertible.

4. HKKS protocol using an extension of the semigroup of matrices

over a Galois field by an endomorphism

Another countermeasure suggested in [2, Section 4] is to replace the inner au-
tomorphism ϕH with a more complex endomorphism. That requires change of the
platform semigroup. Consider the semigroup G = Mat2(GF(2127)) of 2×2 matrices
over a finite field GF(2127). Let ψ be the endomorphism of G which raises every
entry of a given matrix to the 4th power:

[

a b

c d

]

ψ
7→

[

a4 b4

c4 d4

]

.

Fix H ∈ GL2(GF(2127)) and the corresponding inner automorphism ϕH . Now,
ϕ = ψ ◦ϕH with ψ acting first. This choices give us another instance of the HKKS
protocol.

4.1. Analysis of the protocol. The map x
τ
7→ x4 defined on GF(2127) can be

recognized as a square of the Frobenius automorphism and, in particular, τ ∈
Aut(GF(2127)). It induces an automorphism ψ of Mat2(GF(2127)):

[

a b

c d

]

ψ
7→

[

a4 b4

c4 d4

]

.

Lemma 4.1. |τ | = 127 in Aut(M2(GF(2127))). Therefore, |ψ| = 127 in Aut(Mat3(GF(7))).

Proof. Consider the Frobenius automorphism ρ which squares elements ofGF(2127).

Then ρ127(x) = x2
127

= x for every x ∈ GF(2127). On the other hand, since

x2
k

− x = 0 can not have more than 2k solutions in a field, we can deduce that
|ρ| = 127. Now |τ | = |ρ2| = 127. �

Now, ϕ is the composition of the endomorphism ψ and conjugation by H :

ϕ(M) = H−1ψ(M)H

for every M ∈M2(GF(2127)). For every k ∈ N we have:

ϕk(M) =

k−1
∏

i=0

ψi(H−1) · ψk(M) ·

0
∏

i=k−1

ψi(H).



A LINEAR ATTACK ON A KEY EXCHANGE PROTOCOL USING EXTENSIONS OF MATRIX SEMIGROUPS5

With so defined ϕ, the Alice’s public key A = ϕm−1(M) . . . ϕ(M)M is of the form:
(

m−1
∏

i=0

ψi(H−1) · ψm(M) ·

0
∏

i=m−1

ψi(H)

)

·

(

m−2
∏

i=0

ψi(H−1) · ψm−1(M) ·

0
∏

i=m−2

ψi(H)

)

. . . H−1ψ(M)H ·M

=

(

m−1
∏

i=0

ψi(H−1) · ψm(M)

)

ψm−1(H)ψm−1(M)·ψm−2(H)ψm−2(M)·. . .·ψ(H)ψ(M)·HM

=

(

m
∏

i=0

ψi(H−1)

)

·

(

0
∏

i=m

ψi(HM)

)

Since |ψ| = 127 we can divide m = 127 · q + r and write the key as follows:

A =

(

126
∏

i=0

ψi(H−1)

)q

·

(

r
∏

i=0

ψi(H−1)

)

·

(

0
∏

i=r

ψi(HM)

)

·

(

0
∏

i=126

ψi(HM)

)q

.

The Bob’s public key B is has a similar form (with n = 127 · s+ t):

B =

(

126
∏

i=0

ψi(H−1)

)s

·

(

t
∏

i=0

ψi(H−1)

)

·

(

0
∏

i=t

ψi(HM)

)

·

(

0
∏

i=126

ψi(HM)

)s

.

Now we can use the “old trick”. For each 0 ≤ r ≤ 126 try to solve the system of
equations:



















L · A =
(
∏r
i=0 ψ

i(H−1)
)

·
(

∏0
i=r ψ

i(HM)
)

· R,

L ·
∏126
i=0 ψ

i(H−1) =
∏126
i=0 ψ

i(H−1) · L,

R ·
∏0
i=126 ψ

i(HM) =
∏0
i=126 ψ

i(HM) · R,
L is invertible.

If the pair (L,R) satisfies the system above, then L−1BR is the shared key.

5. Conclusion

In this paper we analyzed two modifications of the HKKS protocol proposed in
[2] and proved that both protocols can be easily broken by simple linear algebra
attacks.
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