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Abstract. One-round authenticated key exchange (ORKE) is an es-
tablished research area, with many prominent protocol constructions
like HMQV (Krawczyk, CRYPTO 2005) and Naxos (La Macchia et
al., ProvSec 2007), and many slightly different, strong security models.
Most constructions combine ephemeral and static Diffie-Hellman Key
Exchange (DHKE), in a manner often closely tied to the underlying se-
curity model.
We give a generic construction of ORKE protocols from general assump-
tions, with security in the standard model, and in a strong security model
where the attacker is even allowed to learn the randomness or the long-
term secret of either party in the target session. The only restriction is
that the attacker must not learn both the randomness and the long-term
secret of one party of the target session, since this would allow him to
recompute all internal states of this party, including the session key.
This is the first such construction that does not rely on random ora-
cles. The construction is intuitive, relatively simple, and efficient. It uses
only standard primitives, namely non-interactive key exchange, a digital
signature scheme, and a pseudorandom function, with standard security
properties, as building blocks.

Keywords: One-round key exchange, eCK security, provable security.

1 Introduction

Key Exchange Protocols and Their Security. Interactive key exchange
protocols are fundamental cryptographic building blocks. Two-party protocols,
where two parties A and B exchange messages in order to establish a com-
mon secret kAB , are particularly important in practice. Popular examples are
SSL/TLS [13], SSH [34], and IPSec IKE [22].

Following the seminal works of Bellare and Rogaway (BR) [1] and Canetti
and Krawczyk [8], security for such protocols is usually defined with respect to
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active attackers [23, 25, 32], which may intercept, read, alter, replay, or drop any
message transmitted between parties (see Section 3.3 for a precise definition). An
attacker in such a security model interacts with a collection of oracles π1

1 , . . . , π
`
d,

where all oracles π1
i , . . . , π

d
i share the same long-term public and secret keys

of party Pi. An adversary breaks the security of the protocol, if she is able
to distinguish the session key k shared between two oracles πsi and πtj from a
random value from the same distribution. To this end, the attacker may ask a
Test(i, s)-query to oracle πsi . Oracle πsi returns either the real key k or a random
value, each with probability 1/2.

Typical security models also allow the attacker to corrupt selected parties,
that is, to learn their long-term secret keys, or to reveal keys, that is, to learn
the shared keys of sessions which are not related to the Test session. Stronger
models [8, 23, 25, 32] allow the attacker furthermore to learn the randomness used
by an oracle (which is easy to define clearly), or even internal computation states
(which are difficult to define precisely).

One-Round Key Exchange. In this paper we consider one-round key ex-
change (ORKE) protocols, where two parties are able to establish a key in a
single round. Such protocols are particularly interesting, due to their simplicity
and their efficiency in terms of messages exchanged between parties.

In a (public-key, two-party) ORKE protocol, only two messages are ex-
changed between two parties A and B. If (pkA, skA) is the public key pair
of A, and (pkB , skB) that of B, key establishment proceeds as follows. Party
A chooses a random nonce rA, computes a message mA = f(skA, pkB , rA),
and sends mA to B. B chooses a random nonce rB and responds with mes-
sage mB = f(skB , pkA, rB) (cf. Section 3.2). Note that mB does not depend
on mA, thus, messages mA and mB may be computed and sent simultane-
ously in one round. The key is computed by evaluating a function g with
g(skA, pkB , rA,mB) = g(skB , pkA, rB ,mA).

Security Models. Some combinations of adversarial queries lead to trivial
attacks, these trivial attacks must of course be excluded from the security defi-
nition. For instance, in all models, the attacker is not allowed to simultaneously
reveal the session key of an oracle πsi , and then ask a Test query to πsi , as this
would trivially allow the adversary to correctly answer the Test query with prob-
ability 1. Moreover, the attacker must also not learn both the long-lived secret
key (Corrupt) and the randomness (RevealRand) of an oracle involved in the
Test-session, because then the attacker would learn the entire internal state of
this oracle, and thus would be able to re-compute everything the oracle is able
to compute, including the secret session key.

Research Challenges. The strongest form of security that is possible to
achieve in such a model is to allow corruptions and randomness reveals even
against oracles involved in the Test-session, provided that the attacker does not
reveal both the randomness and the long-term secret of one oracle. (Corruptions



of parties are of course only allowed after the key has been established, as oth-
erwise trivial man-in-the-middle attacks are possible.) Is it possible to construct
an ORKE protocol that achieves security in such a strong model?

If a party is corrupted, the adversary can impersonate this party in the future.
In some cases, the adversary can also break the security of session keys that have
been generated in the past (e.g. if RSA key transport is used). The property that
session keys computed before the corruption remain secure is known as perfect
forward secrecy (PFS) [16, 14]. In reaction to a conjecture of Krawczyk that
ORKE protocols could only achieve a weaker form of PFS [24], Cremers showed
that full PFS is generally achievable for ORKE protocols [11]. However until
now, none of the proposed ORKE protocols has this property. Can we construct
an ORKE protocol that achieves perfect forward secrecy in such a strong model
as eCK?

Contributions. In this paper, we make the following contributions:

– Novel generic construction. We give an intuitive, relatively simple and effi-
cient construction of an ORKE protocol with provable security in a model
that allows all non-trivial combinations of corrupt- and reveal-queries, even
against the Test-session.

– Non-DH ORKE instantiation. Instantiating our protocol with the factoring
based NIKE protocol by Freire et al. [15], this yields an ORKE protocol based
on the hardness of factoring large integers. This provides an alternative to
known constructions based on (decisional) Diffie-Hellman.

– First ORKE with perfect forward security under standard assumptions. Our
protocol is the first one-round AKE protocol which provides perfect forward
security without random oracles.

– Well-established, general assumptions. The construction is based on general
assumptions, namely the existence of secure non-interactive key exchange
(NIKE) protocols [9, 15], (unique) digital signatures, and a pseudorandom
function. For all building blocks we require standard security properties.

– Security in the Standard Model. The security analysis is completely in the
standard model, that is, without resorting to the Random Oracle heuristic [2]
and without relying on non-standard complexity assumptions.

The Advantages of Generic Constructions. From a theoretical point
of view, generic constructions show relations and implications between different
types of cryptographic primitives. From a practical point of view, a generic
protocol construction based on abstract building blocks allows to instantiate
the protocol with arbitrary concrete instantiations of these building blocks —
provided that they meet the required security properties. For instance, in order
to obtain a “post-quantum”-instantiation of our protocol, it suffices to construct
a NIKE scheme, digital signatures, and a PRF with post-quantum security and
plug these primitives into the generic construction.

A common disadvantage of generic constructions is that they tend to be
significantly less efficient than direct constructions. However, when instantiated



with the NIKE schemes from [15], our protocol is already efficient enough to be
deployed in practice. See Section 5 for an efficiency comparison to other ORKE
protocols.

Practical Motivation of the Model. Most cryptographic protocols in-
herently require “good” (i.e., independent and uniform) randomness to achieve
their security goals. The availability of “good” random coins is simply assumed
in the theoretical security analysis. However in practice, there are many famous
examples where a flawed (i.e., low-entropy) generation of random numbers has
led to serious security flaws. These include, for instance, the Debian OpenSSL
bug,1 the results of Lenstra et al. [28] and Heninger et al. [17] on the distribution
of public keys on the Internet, or the case of certified smart cards considered by
Bernstein et al. [3].

In our security model we allow the attacker to learn the full randomness of
each party. Thus, even if this randomness is completely predictable, the protocol
still provides security — as long as the long-lived secret keys of all parties are
generated with good, “secret” randomness.

2 Related Work

Authenticated Key Exchange. An important line of research on the field
of authenticated key exchange protocols started with Bellare and Rogaway [1]
(the BR model) and Canetti and Krawczyk [8] (the CK model). The CK model
is usually used to analyze one-round protocols, where authentication and key
negotiation is performed very efficiently by two parties, only sending one message
per party. Examples of such one-round protocols are MQV [27], KEA [30, 26], or
NAXOS [25]. HMQV [23], SMQV [32] were proposed to meet stronger security
definitions. A comparison of different variants of the CK model can be found
in [10, 35]. Most constructions are proven secure in the Random Oracle Model
(ROM) [2], with only a few exceptions [31, 5, 33].

PFS and KCI attacks. Perfect forward secrecy (PFS) is an important secu-
rity goal for key-exchange protocols. Loosely speaking, PFS guarantees the se-
crecy of older session keys, even when the parties long-term key is compromised.
Krawczyk [24] conjectured that no one-round protocol with implicit authenti-
cation can achieve full PFS in a CK -type model and introduced the notion of
weak PFS (wPFS); this conjecture was refuted by Cremers et al. [11]. A protocol
is wPFS secure, if the session key is indistinguishable from a random key and
the parties long-term key is compromised if the adversary was passive during
the session key negotiation [24, Section 3.2]. Similar to [11], we define rules for
the security game to model and prove (full) PFS. In our security definition, the
party corresponding to the tested oracle is allowed to be corrupted before the
session completes. The only restriction to the corruption of parties in the test

1 https://www.debian.org/security/2008/dsa-1571



session is that the intended partner of the tested oracle is uncorrupted until the
tested oracle accepts.

Another security goal of AKE protocols is security against key-compromise
impersonation (KCI) attacks [24]. In a KCI attack, an adversary corrupts a party
A and is able to authenticate herself to A as some uncorrupted party B. Since
in the eCK model the adversary is always allowed to corrupt some party and
learn the session randomness of the matching session, security in the eCK model
naturally brings security against KCI attacks.

eCK Models. The term “extended Canetti-Krawczyk model” (eCK) was first
introduced in [25]. The main difference to the CK model is that the RevealState-
query (which has to be specified for each protocol) is replaced with a different
query, namely RevealEphemeralExponent (which is a meaningful definition only
for DH-based protocols, or other protocols where ephemeral exponents appear).
In subsequent publications, the eCK model was often slightly modified, such
that it is difficult to speak of “the” eCK model.

The eCK -PFS Security model. In 2012 Cremers and Feltz introduced a
variant of the extended Canetti-Krawczyk model to capture perfect forward
security [11]. The major difference between the eCK and eCK -PFS security
models is the definition of session identifiers. Cremers et al. introduced the notion
of origin sessions, which solves technical problems with the session identifier
definition from the original eCK -model [12].

We slightly enhanced the eCK -PFS model in order to better model PFS, by
introducing an explicit counter of adversarial interactions as done by Jager et al.
[20] for the BR security model. Thus, we have a clear order of events and we
can formally validate if a party was corrupted before or after a session accepted
another party as a communication partner.

3 Preliminaries

In this paragraph we will define non-interactive key exchange (NIKE) and one-
round key exchange (ORKE) protocols and their security.

3.1 Secure Non-Interactive Key Exchange

Definition 1. A non-interactive key exchange (NIKE) scheme consists of two
deterministic algorithms (NIKEgen,NIKEkey).

NIKEgen(1λ, r) takes a security parameter λ and randomness r ∈ {0, 1}λ. It

outputs a key pair (pk , sk). We write (pk , sk)
$← NIKEgen(1λ) to denote that

NIKEgen(1λ, r) is executed with uniformly random r
$← {0, 1}λ.

NIKEkey(sk i, pk j) is a deterministic algorithm which takes as input a secret key
sk i and a public key pk j, and outputs a key ki,j.



We say that a NIKE scheme is correct, if for all (pk i, sk i)
$← NIKEgen(1λ) and

(pk j , sk j)
$← NIKEgen(1λ) holds that NIKEkey(sk i, pk j) = NIKEkey(sk j , pk i).

A NIKE scheme is used by d parties P1, . . . , Pd as follows. Each party Pi gen-
erates a key pair (pk i, sk i) ← NIKEgen(1λ) and publishes pk i. In order to com-
pute the key shared by Pi and Pj , party Pi computes ki,j = NIKEkey(sk i, pk j).
Similarly, party Pj computes kj,i = NIKEkey(sk j , pk i). Correctness of the NIKE
scheme guarantees that ki,j = kj,i.

CKS-light security. The CKS-light security model for NIKE protocols is
relatively simplistic and compact. We choose this model because other (more
complex) NIKE security models like CKS , CKS-heavy and m-CKS-heavy are
polynomial-time equivalent to CKS-light. See [15] for more details.

Security of a NIKE protocol NIKE is defined by a game NIKE played between
an adversary A and a challenger. The challenger takes a security parameter λ
and a random bit b as input and answers all queries of A until she outputs a bit
b′. The challenger answers the following queries for A:

– RegisterHonest(i). A supplies an index i. The challenger runs NIKEgen(1λ)
to generate a key pair (pki, ski) and records the tuple (honest, pki, ski) for
later and returns pki to A. This query may be asked at most twice by A.

– RegisterCorrupt(pki). With this query A supplies a public key pki. The chal-
lenger records the tuple (corrupt, pki) for later.

– GetCorruptKey(i, j). A supplies two indexes i and j where pki was registered
as corrupt and pkj as honest. The challenger runs k ← NIKEkey(skj , pki)
and returns k to A.

– Test(i, j). The adversary supplies two indexes i and j that were registered
honestly. Now the challenger uses bit b: if b = 0, then the challenger runs
ki,j ← NIKEkey(pki, skj) and returns the key ki,j . If b = 1, then the chal-
lenger samples a random element from the key space, records it for later,
and returns the key to A.

The game NIKE outputs 1, denoted by NIKEANIKE(λ) = 1 if b = b′ and 0
otherwise. We say A wins the game if NIKEANIKE(λ) = 1.

Definition 2. For any adversary A playing the above NIKE game against a
NIKE scheme NIKE, we define the advantage of winning the game NIKE as

AdvCKS-light
NIKE (A) = Pr

[
NIKEANIKE(λ) = 1

]
− 1

2

Let λ be a security parameter, NIKE be a NIKE protocol and A an adver-
sary. We say NIKE is a CKS-light-secure NIKE protocol, if for all probabilis-
tic polynomial-time adversaries A, the function AdvCKS-light

NIKE (A) is a negligible
function in λ.



3.2 One-Round Key Exchange Protocols

Definition 3. A one-round key exchange (ORKE) scheme consists of three de-
terministic algorithms (ORKEgen,ORKEmsg,ORKEkey).

– ORKEgen(1λ, r) takes a security parameter λ and randomness r ∈ {0, 1}λ.

It outputs a key pair (pk , sk). We write (pk , sk)
$← ORKEgen(1λ) to denote

that ORKEgen is executed with uniformly random r
$← {0, 1}λ.

– ORKEmsg(ri, sk i, pk j) takes as input randomness ri ∈ {0, 1}λ, secret key sk i
and a public key pk j, and outputs a message mi.

– ORKEkey(sk i, pk j , ri,mj) takes as input a secret key sk i, a public key pk j,
randomness ri, and message mj. It outputs a key k.

We say that a ORKE scheme is correct, if for all (pk i, sk i)
$← ORKEgen(1λ)

and (pk j , sk j)
$← ORKEgen(1λ), and for all ri, rj

$← {0, 1}λ holds that

ORKEkey(sk i, pk j , ri,mj) = ORKEkey(sk j , pk i, rj ,mi),

where mi := ORKEmsg(ri, sk i, pk j) and mj := ORKEmsg(rj , sk j , pk i).

A ORKE scheme is used by d parties P1, . . . , Pd as follows. Each party Pi gen-

erates a key pair (pk i, sk i)
$← ORKEgen(1λ) and publishes pk i. Then, two parties

Pi, Pj can establish a shared key as follows (see Figure 1 for an illustration).

1. Pi chooses ri
$← {0, 1}λ, computes mi := ORKEmsg(ri, sk i, pk j), and sends

mi to Pj .

2. Pj chooses rj
$← {0, 1}λ, computes mj := ORKEmsg(rj , sk j , pk i), and sends

mj to Pi.
(Both messages mi and mj may be sent simultaneously, as this is a one-round
protocol).

3. The shared key is computed by party Pi as ki,j := ORKEkey(sk i, pk j , ri,mj).
Similarly, party Pj computes kj,i = ORKEkey(sk j , pk i, rj ,mi). Correctness
of the ORKE scheme guarantees that ki,j = kj,i.

3.3 Secure One-Round Key Exchange

Security models for one-round key exchange have two major building blocks.
The first defines the execution environment provided to an attacker on the AKE
protocol. The second defines the rules of the game and the winning condition
for an attacker.

Execution Environment Consider a set of parties {P1, . . . , Pd}, d ∈ N, where
each party Pi ∈ {P1, . . . , Pd} is a (potential) protocol participant and has a long-
term key pair (pki, ski). To formalize several sequential and parallel executions
of the protocol, each party Pi is modeled by a collection of ` oracles. Each oracle
represents a process that executes one single instance of the protocol. All oracles



Pi Pj

(ski, pki)
$← ORKEgen(1λ, i) (skj , pkj)

$← ORKEgen(1λ, j)

πsi

ri
$← {0, 1}λ

mi := ORKEmsg(ri, sk i, pk j) mi

πtj

rj
$← {0, 1}λ

mj := ORKEmsg(rj , sk j , pk i)

mj

ki,j := ORKEkey(sk i, pk j , ri,mj) kj,i = ORKEkey(sk j , pk i, rj ,mi)

Fig. 1. Execution of an ORKE protocol

representing party Pi have access to the same long-term key pair (pki, ski) of
Pi and to all public keys pk1, . . . , pkd. Moreover, each oracle πsi maintains as
internal state the following variables:

– Acceptedsi ∈ N ∪ {reject}. This variable indicates whether and when the
oracle accepted. It is initialized to Acceptedsi = reject.

– Keysi ∈ K ∪ {∅}, where K is the keyspace of the protocol and ∅ is the empty
string, initialized to Keysi = ∅.

– Partnersi containing the intended communication partner. We assume that
each party Pi is uniquely identified by its public key pki, and therefore use
public keys as identities.2 The variable is initialized to Partnersi = ∅.

– A variable Mi,s
out storing the message sent by an oracle and a variable Mi,s

in

storing the received protocol message. Both are initialized asMi,s
in =Mi,s

out =
∅.

– A variable Randomnesssi , which contains a uniformly string from {0, 1}κ. This
string corresponds to the local randomness of an oracle. It is never changed
or modified by an oracle.

– Variables RevealedKeysi ,Corruptedi ∈ N, which will be used to determine
if and when a RevealKey or Corrupt query was asked to this oracle or the
corresponding party was corrupted (see below for details). These variables
are initialized as RevealedKeysi = Corruptedi =∞.

We will assume (for simplicity) that

Keysi 6= ∅ ⇐⇒ Acceptedsi ∈ N.

We assume the adversary controls the network. Thus she is able to generate,
manipulate or delay messages. Furthermore, the adversary can learn session keys,

2 In practice, several keys may be assigned to one identity. There are other ways to
determine identities, for instance by using certificates. However, this is out of scope
of this paper.



parties’ secret long term keys and even the session randomness in our model.
Formally the adversary may interact with the execution environment by issuing
the following queries.

– Send(i, s,m) → m′: The adversary sends message m to oracle πsi . Party Pi
processes message m according to the protocol specification and its inter-
nal oracle state πsi , updates its state3, and optionally outputs an outgoing
message m′.
There is a distinguished initialization message ini which allows the adver-
sary to activate the oracle with certain information. In particular, the ini-
tialization message contains the identity Pj of the intended partner of this
oracle.

– RevealKey(i, s): if this is the τ -th query issued by A, then the challenger sets
RevealedKeysi := τ and responds with the contents of variable Keysi . Recall
that Keysi 6= ∅ iff Acceptedsi ∈ N.

– RevealRand(i, s): the challenger responds with the contents of Randomnesssi .
– Corrupt(i, pk∗): if this is the τ -th query issued by A (in total), then the chal-

lenger sets the oracle state Corruptedi := τ and responds with ski. Moreover,
the public key pki is replaced (globally) with the adversarially-chosen key
pk∗.4

– Test(i, s): This query may be asked only once throughout the game, it is

answered as follows. Let k1 := Keysi and k0
$← K. If Acceptedsi ∈ N, the

oracle flips a fair coin b
$← {0, 1} and returns kb. If Acceptedsi = reject or

if Partnersi = j and Pj is corrupted when Test is issued, terminate the game
and output a random bit.

eCK -PFS Security Definition In the following we give the security definition
for one-round key-exchange protocols in the extended Canetti-Krawczyk model
with perfect forward security. Firstly we introduce the partnering definitions
from Cremers and Feltz. Secondly we define the rules by which an adversary has
to play the AKE game in the eCK -PFS -model. Finally we define the security
for one-round key-exchange protocols in the model.

Definition 4 (Origin session). Consider two parties Pi and Pj with oracles

πsi and πtj. We say πsi has origin session πtj, if Mi,s
in =Mj,t

out, and denote this by

πsi
os←− πtj.

Alternatively we could say πtj is an origin session of πsi , if Mi,s
in =Mj,t

out.

Using the concept of origin sessions, we can define matching sessions as a
symmetric relation of origin sessions: two sessions match, if they are origin ses-
sions to each other. We capture this in the following definition.

3 In particular, if πs
i accepts after the τ -th query, set Acceptedsi = τ .

4 Note, that the adversary does not ‘take control’ of oracles corresponding to a cor-
rupted party. But he learns the long-term secret key, and can henceforth simulate
these oracles.



Definition 5 (Matching session). Consider two parties Pi and Pj with ora-
cles πsi and πtj. We say πsi has a matching session to πtj (and vice versa), if πsi
is an origin session of πtj and πtj is an origin session of πsi .

The notions of origin and matching sessions will be used in Definition 6 to
exclude trivial attacks from the security model: If Test(i, s) is asked, restrictions
are imposed on oracle πsi itself, and on oracles and parties from which the test
oracle has received a message. On the other hand, sessions and parties to which
a message was sent from the test session do not necessary play any role in
Definition 6, for example if the test session has no matching session.

AKE Game. Consider the following security experiment AKEAΠ(λ) played be-
tween a challenger C and an adversary A. The challenger receives the security
parameter λ as an input and sets up all protocol parameters (like long term keys
generation etc.). C simulates the protocol Π and keeps track of all variables of
the execution environment. The adversary interacts by issuing any combination
of the above mentioned queries. At some point of time during the game, she asks
the Testsi query and gets a key kb, which is either the exchanged key or a random
key as described in the previous section. She may continue asking queries and
finally outputs a bit b′. The game AKE outputs 1, denoted by AKEAΠ(λ) = 1
if b = b′ and 0 otherwise.

Definition 6 (eCK -PFS -rules). A plays the AKE game by eCK -PFS -rules,
if the following conditions hold simultaneously when she issues Test(i, s):

– Acceptedsi = τ with τ ∈ N.
– A did not ask both Corrupt(i, pk∗) and RevealRand(i, s).
– If πsi has an origin session πtj, then it does not hold that both Corruptedj ≤ τ

and A asked RevealRand(j, t).
– If πsi has no origin session but intended partner Partnersi = j, then it does

not hold that Corruptedj ≤ τ .

When A terminates and outputs a bit b′, it also holds that A did not ask
RevealKey(i, s) and (if πsi has a matching session to πtj) RevealKey(j, t).

We say A wins the AKE game, if AKEAΠ(λ) = 1.

Definition 7 (eCK -PFS -security). We define the advantage of A winning
this game playing by eCK -PFS-rules as

AdveCK-PFS
Π (A) = Pr

[
AKEAΠ(λ) = 1

]
− 1

2
.

Let λ be a security parameter, Π be an AKE protocol and A an adversary.
We say Π is an eCK -secure AKE protocol, if it is correct and for all proba-
bilistic polynomial-time adversaries A playing by eCK -PFS-rules, the function
AdveCK-PFS

Π (A) is a negligible function in λ.

Remark 1. Note that this security definition includes perfect-forward secrecy
and security against KCI attacks.



3.4 Further Building Blocks

Digital signatures. A digital signature scheme consists of three polynomial-
time algorithms SIG = (SIGgen,SIGsign,SIGvfy). The key generation algorithm

(sk, pk)
$← SIGgen(1λ) generates a public verification key pk and a secret signing

key sk on input of security parameter λ. Signing algorithm σ
$← SIGsign(sk,m)

generates a signature for message m. Verification algorithm SIGvfy(pk, σ,m) re-
turns 1 if σ is a valid signature for m under key pk, and 0 otherwise.

Definition 8. We say that SIG is deterministic, if SIGsign is deterministic.

Consider the following security experiment played between a challenger C
and an adversary A.

1. The challenger generates a public/secret key pair (sk, pk)
$← SIGgen(1λ), the

adversary receives pk as input.
2. The adversary may query arbitrary messages mi to the challenger. The chal-

lenger replies to each query with a signature σi = SIGsign(sk,mi). Here i is
an index, ranging between 1 ≤ i ≤ q for some q ∈ N. Queries can be made
adaptively.

3. Eventually, the adversary outputs a message/signature pair (m,σ).

Definition 9. We define the advantage on an adversary A in this game as

AdvsEUF-CMA
SIG (A) := Pr

[
(m,σ)

$← AC(λ)(pk) :
SIGvfy(pk,m, σ) = 1,
(m,σ) 6= (mi, σi) ∀i

]

SIG is strongly secure against existential forgeries under adaptive chosen-
message attacks (sEUF-CMA), if AdvsEUF-CMA

SIG (A) is a negligible function in
λ for all probabilistic polynomial-time adversaries A.

Remark 2. Deterministic signatures with sEUF-CMA security can be construc-
ted, for instance, from verifiable unpredictable or verifiable random functions
with large input spaces [29, 18, 4, 19].

Pseudorandom functions. A pseudo-random function is an algorithm PRF.
This algorithm implements a deterministic function z = PRF(k, x), taking as
input a key k ∈ {0, 1}λ and some bit string x, and returning a string z ∈ {0, 1}µ.

Consider the following security experiment played between a challenger C
and an adversary A.

1. The challenger samples k
$← {0, 1}λ uniformly random.

2. The adversary may query arbitrary values xi to the challenger. The chal-
lenger replies to each query with zi = PRF(k, xi). Here i is an index, ranging
between 1 ≤ i ≤ q for some q ∈ N. Queries can be made adaptively.

3. Eventually, the adversary outputs value x and a special symbol >. The

challenger sets z0 = PRF(k, x) and samples z1
$← {0, 1}µ uniformly random.

Then it tosses a coin b
$← {0, 1}, and returns zb to the adversary.



4. Finally, the adversary outputs a guess b′ ∈ {0, 1}.

The Adversary wins the game, if she outputs b′ such that b = b′.

Definition 10. We denote the advantage of an adversary A in winning this
game as

AdvprfPRF(A) = Pr
[
b = b′ for b′

$← AC(λ)(1λ)
]
− 1

2

We say that PRF is a secure pseudo-random function, if for all probabilistic
polynomial time adversaries A AdvprfPRF(A) is a negligible function in λ.

4 Generic Construction of eCK-Secure Key Exchange

Let SIG = (SIGgen,SIGsign,SIGvfy) be a deterministic signature scheme, NIKE =
(NIKEgen,NIKEkey) be a NIKE scheme, and let PRF be a pseudo-random func-
tion. Let sort be an arbitrary function which takes as input two strings (mi,mj),
and outputs them according to some order (e.g. lexicographically). That is,

sort(mi,mj) :=

{
(mi,mj), if mi ≤ mj ,

(mj ,mi), if mi > mj ,

where ≤ and > are defined with respect to some (arbitrary) ordering. We con-
struct an ORKE protocol Π = (ORKEgen,ORKEmsg,ORKEkey) as follows (see
also Figure 2).

ORKEgen(1λ) computes key pairs for the NIKE and digital signature scheme, re-

spectively, as (pknike
i , sknike

i )
$← NIKEgen(1λ) and (pk sig

i , sk sig
i )

$← SIGgen(1λ),
and outputs

(pk i, sk i) := ((pknike
i , pk sig

i ), (sknike
i , sk sig

i ))

ORKEmsg(ri, sk i, pk j) parses sk i = (sknike
i , sk sig

i ). Then it samples ri
$← {0, 1}λ

and runs the key generation algorithm (pk tmp
i , sk tmp

i )
$← NIKEgen(1λ, ri) to

generate a key pair of the NIKE scheme. Then it computes a signature

over pk tmp
i as σi

$← SIGsign(sk sig
i , pk tmp

i ) and outputs the message mi :=
(pk tmp

i , σi).

ORKEkey(sk i, (pknike
j , pk sig

j ), ri,mj) first parses its input as mj = (pk tmp
j , σj) and

sk i = (sknike
i , sk sig

i ). If

SIGvfy(pk sig
j , pk tmp

j , σj) 6= 1,

then it outputs ⊥. Otherwise it runs (pk tmp
i , sk tmp

i )
$← NIKEgen(1λ, ri) to

re-compute sk tmp
i from ri. Finally it derives the key k as follows.

1. Compute T := sort(pk tmp
i , pk tmp

j ).



2. Compute

knike,nike := PRF(NIKEkey(sknike
i , pknike

j ), T ), (1)

knike,tmp := PRF(NIKEkey(sknike
i , pk tmp

j ), T ), (2)

ktmp,nike := PRF(NIKEkey(sk tmp
i , pknike

j ), T ), (3)

ktmp,tmp := NIKEkey(sk tmp
i , pk tmp

j ). (4)

3. Compute k as

k := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp

and output k.

Pi Pj(
(sknike

i , sk sig
i ), (pknike

i , pk sig
i )

) (
(sknike

j , sk sig
j ), (pknike

j , pk sig
j )

)

πs
i

ri
$← {0, 1}λ

(sk tmp
i , pk tmp

i )← NIKEgen(1λ, ri)

σi ← SIGsign(sk sig
i , pk

tmp
i )

If: SIGvfy(pk sig
j , pk

tmp
j , σj) = 1:

(pk tmp
i , σi)

T := sort(pk tmp
i , pk tmp

j )

knike,nike = PRF(NIKEkey(sknike
i , pknike

j ), T )

knike,tmp = PRF(NIKEkey(sknike
i , pk tmp

j ), T )

ktmp,nike = PRF(NIKEkey(sk tmp
i , pknike

j ), T )

ktmp,tmp = PRF(NIKEkey(sk tmp
i , pk tmp

j ))

πt
j

rj
$← {0, 1}λ

(sk tmp
i , pk tmp

j )← NIKEgen(1λ, rj)

σj ← SIGsign(sk sig
j , pk

tmp
j )

If: SIGvfy(pk sig
i , pk

tmp
i , σj) = 1:

(pk tmp
j , σj)

T := sort(pk tmp
i , pk tmp

j )

knike,nike = PRF(NIKEkey(sknike
j , pknike

i ), T )

knike,tmp = PRF(NIKEkey(sknike
j , pk tmp

i ), T )

ktmp,nike = PRF(NIKEkey(sk tmp
j , pknike

i ), T )

ktmp,tmp = PRF(NIKEkey(sk tmp
j , pk tmp

i ))

ki,j := knike,nike ⊕ knike,tmp

⊕ktmp,nike ⊕ ktmp,tmp

kj,i := knike,nike ⊕ knike,tmp

⊕ktmp,nike ⊕ ktmp,tmp

Fig. 2. Execution of protocol Π.

Remark 3. In our generic construction Π we use a deterministic, strong existen-
tially-unforgeable (sEUF -CMA) signature scheme. We could use a probabilistic
signature scheme instead, but in this case we require a strong existentially-
unforgeable public coin signature scheme.

The reason why we need strong existential unforgeability is the strictness of
the matching conversation definition, which is also discussed in [7]. When using
a probabilistic signature scheme, then we would need the public coin property
to simulate RevealRand queries.



Even though such signatures may be easier or more efficiently to construct,
we would not gain a better understanding of the reduction. Only the proofs
would become harder to follow. For this reason we decided to use a deterministic
scheme for simplicity.

Theorem 1. From each attacker A, we can construct attackers Bsig, B(1)nike, B
(0)
nike,

and Bprf such that

AdveCK
Π (A) ≤ 4 · d2`2 ·

(
AdvCKS-light

NIKE (B(1)nike) + AdvprfPRF(Bprf)
)

+ 4 · d ·AdvsEUF-CMA
SIG (Bsig) + 4 ·AdvCKS-light

NIKE (B(0)nike)

The running time of Bsig, B(1)nike, B
(0)
nike, and Bprf is equal to the running time

of A plus a minor overhead for the simulation of the security experiment for A.

In order to prove Theorem 1, we will distinguish between four different types
of attackers. Without loss of generality, we assume that an attacker always asks
a Test(i, s)-query for some (i, s). (Otherwise it is impossible to have a non-zero
advantage, as then all computations are independent of the bit b sampled by the
Test-query.) We distinguish between the following four types of attackers.

1. A Type-RR-attacker never asks RevealRand(i, s). If there exists an oracle πtj
such that πsi

os←− πtj , then it also never asks RevealRand(j, t).
2. A Type-RC-attacker never asks RevealRand(i, s). If there exists an oracle πtj

such that πsi
os←− πtj , then it also never asks Corrupt(j, ·).

3. A Type-CR-attacker never asks Corrupt(i, ·). If there exists an oracle πtj such

that πsi
os←− πtj , then it also never asks RevealRand(j, t).

4. A Type-CC-attacker never asks Corrupt(i, ·). If there exists an oracle πtj such

that πsi
os←− πtj , then it also never asks Corrupt(j, ·).

Note that each valid attacker in the sense of Definition 7 falls into (at least) one
of these four categories. We will consider attackers of each type seperately in the
sequel.

Intuition for the proof of Theorem 1. Let us now give some intuition why this
classification of attackers will be useful for the security proof of Π. Recall that
in protocol Π the key is computed as k := knike,nike⊕knike,tmp⊕ktmp,nike⊕ktmp,tmp,
where the keys knike,nike, knike,tmp, ktmp,nike, ktmp,tmp are computed as described in
Equations 1 to 4. The idea behind this construction is that in the proof we
want to be able to reduce the indistinguishability of the ORKE-key k to the
indistinguishability of a NIKE-key.

Recall that in the NIKE security experiment the attacker receives two chal-

lenge public-keys pknike, pknike′ from the challenger. In the reduction, we want to
embed these keys into the view of the ORKE-attacker, such that we can embed
the NIKE-challenge key into k while at the same time being able to answer all
queries of the ORKE-attacker, in particular all Corrupt and RevealRand queries.



A Type-RR-attacker never asks RevealRand(i, s) and RevealRand(j, t) (if ap-
plicable). Thus, when considering Type-RR-attackers, then we can embed the
NIKE-keys obtained from the NIKE-challenger as

pk tmp
i := pknike and pk tmp

j := pknike′,

where pk tmp
i and pk tmp

j are the ephemeral keys generated by oracles πsi and πtj ,
respectively. Moreover, we embed the NIKE-challenge key knike as ktmp,tmp :=
knike.

However, this embedding strategy does not work for Type-RC-attackers, be-
cause such an attacker might ask RevealRand(j, t). However, we know that a
Type-RC attacker never asks a Corrupt(j, ·), therefore we are able to embed the
NIKE challenge public keys as

pk tmp
i := pknike and pknike

j := pknike′,

where pk tmp
i is the ephemeral keys generated by πsi , and pknike

j is the long-term
secret of party Pj . The NIKE-challenge key knike is in this case embedded as
ktmp,nike := PRF(knike, T ). The additional PRF is necessary in this case, because
the embedding involves a long-term secret of one party of the test session. This
long-term secret is used in (potentially) many protocol executions involving party
Pj . Similarly, CR- and CC-type attackers can be handled by embedding the
NIKE challenge public- and session as appropriate for each case.

Thus, the four different types of attackers correspond exactly to all four pos-
sible combinations of Corrupt- and RevealRand-queries against the Test-session
that the attacker is allowed (resp. not allowed) to ask in our security model.

The full proof of Theorem 1 can be found in Appendix A.

5 Efficiency comparison with other ORKE protocols

In Table 5 we compare the efficiency of instantiations of our construction to other
one-round key-exchange protocols. We count the number of exponentiations and
pairing evaluations. We do not distinguish an exponentiation in a DH group
from an exponentiation in an RSA group.

We see that our generic construction ORKE, if instantiated with the most
efficient NIKE primitive from [15], will be almost as efficient as the NAXOS pro-
tocol if the Cremers-Feltz compiler is applied [11]. The efficient NIKE primitive
is secure in the random oracle model, but its security is based on the factoring
problem.

The very high number of pairing evaluations within the standard model in-
stantiation results from the fact, that the underlying NIKE scheme needs 3
pairing evaluations for key computation and we have to compute 4 NIKE keys
per key-exchange at each party.



Standard PFS weak KCI exp. pairing Security
Model PFS per party evaluations model

T S1 [21] 7 7 7 7 1 - BR1

T S3 [21] 3 3 3 7 3 - BR1

MQV 7 7 3 7 1 - CK

HMQV 7 7 3 3 2 - CK

KEA 7 7 3 3 2 - CK

P1 [6] 3 7 7 3 8 2 CK

P2 [6] 3 7 3 3 10 2 CK

NAXOS 7 7 3 3 4 - eCK

Okamoto 3 +πPRF 7 3 3 8 - eCK

NAXOS2
pfs 7 3 3 3 4 - eCK -PFS

ORKE3 7 (NIKE) 3 3 3 5 - eCK -PFS

ORKE4 3 3 3 3 16 12 eCK -PFS

Table 1. Efficiency comparison of popular one-round key-exchange protocols to our
generic construction.
1 A variant of the Bellare-Rogaway model [1] with modified partnering definition. No
ephemeral states can be revealed.
2 The NAXOS protocol after application of the Cremers-Feltz compiler [11].
3 Our construction instantiated with a secure NIKE scheme in the random-oracle
model.
4 Our construction instantiated with a standard-model NIKE scheme.
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A Proof of Theorem 1

Type-RR-attackers. We begin with Type-RR-attackers, as this is the most
simple case.

Lemma 1. From each Type-RR-attacker A, we can construct Bsig, B(0)nike, B
(1)
nike,

such that

AdveCK
Π (A) ≤ d2`2 ·AdvCKS-light

NIKE (B(1)nike)

+ d ·AdvsEUF-CMA
SIG (Bsig) + AdvCKS-light

NIKE (B(0)nike)

The running time of Bsig, B(0)nike, and B(1)nike is equal to the running time of A plus
a minor overhead for the simulation of the security experiment for A.

Proof. The proof will proceed in a sequence of games, played between an attacker
A and a challenger according to the security experiment from Definition 7. In
the sequel let Xi denote the event that the attacker wins, that is, the attacker
outputs b′ such that b = b′, in Game i, and let Advi := Xi − 1/2 denote the
advantage of A in Game i.

Game 0. This is the original security experiment. By definition, we have

Adv0 = AdveCK -PFS
Π (A)

Game 1. In this game the security experiment proceeds exactly like in Game 0,
except that we add an abort condition. We raise event abortnoOrigin and let the
experiment output a random bit b, if attacker A ever asks a Test(i, s)-query and
there exists no oracle πtj such that πsi has an origin session at πtj .

Note that Game 1 is perfectly indistinguishable from Game 0, unless A issues
a Test(i, s)-query to an oracle πsi such that both following conditions are satisfied.



1. There exists no oracle πtj such that πsi has a origin session at πtj .
2. But still πsi has accepted with an uncorrupted partner Pj . More precisely, if

it holds that Partnersi = j, then it holds that Acceptedsi < Corruptedj .

Recall that if the attacker asks a Test(i, s)-query to an oracle πsi such that the
second condition is not satisfied, then the experiment is aborted anyway, by
definition of the security experiment.

We use the security of the signature scheme to argue that Game 1 is compu-
tationally indistinguishable from Game 0. We claim that from each attacker A
we can construct an attacker Bsig such that

Pr [abortnoOrigin] ≤ d ·AdvsEUF -CMA
SIG (Bsig).

To see this, let Pj be the intended parter of πsi , that is, Partnersi = j. Let mj =
(pk tmp

j , σj) denote the message received by πsi (note that this message must exist,
because Keysi 6= ⊥, as otherwise the experiment aborts on a Test(i, s)-query).
Since Pr [abortnoOrigin] occurs only if there exists no oracle πtj which is an origin

session of πsi , there exists no oracle which ever has output mj = (pk tmp
j , σj). But

πsi accepts only if σj is a valid signature for pk tmp
j . Thus, by a straightforward

reduction we obtain attacker Bsig breaking the strong existential unforgeability
of SIG with probability at least Pr [abortnoOrigin]. The running time of Bsig consists
essentially of the running time of A, plus a minor overhead for the simulation of
the experiment for A. Therefore we have

Adv0 ≤ Adv1 + Pr [abortnoMatch] ≤ Adv1 + d ·AdvsEUF -CMA
SIG (Bsig)

With the modifications introduced in Game 1, we ensure that if the attacker
asks a test-query Test(i, s) to an oracle πsi which does not cause the experiment
to abort, then there exists an oracle πtj which is controlled by the experiment
and has previously output the message mj received by πsi .

Game 2. For our further analysis it will be helpful to ensure that all NIKE-keys
ever computed by oracles in the experiment are unique. Thus, Game 2 is defined
identically to Game 1, except that we raise event abortcoll, abort the game, and
let the experiment output a random bit b, if any oracle ever computes a NIKE-
key pknike (either as part of a long-term key or as a temporary session key) such
that there exists another oracle which has previously computed the same key.
A straightforward reduction to the security of the NIKE scheme shows that we

can construct a NIKE-attacker B(0)nike such that

Pr [abortcoll] ≤ AdvCKS-light
NIKE (B(0)nike)

Game 3. In Game 2 the attacker issues a Test(i, s)-query such that oracle πsi has
an origin session at another oracle πtj , as otherwise the experiment is aborted.
In Game 3 we add another abort condition. At the beginning of the game, the



experiment samples uniform indices (i′, s′), (j′, t′)
$← [d] × [`]. The experiment

raises abortindex and outputs a random bit b′, if (i′, s′, j′, t′) 6= (i, s, j, t).
We have

Pr [X3] = 1/2 · Pr [abortindex] + Pr [X2] · (1− Pr [abortindex])

= 1/2 · Pr [abortindex] + (1/2 + Adv2) · (1− Pr [abortindex])

= 1/2 + Pr [abortindex] ·Adv2

Since we have Pr [abortindex] = d−2`−2, this implies

Adv3 = Pr [abortindex] ·Adv2 = d−2`−2 ·Adv2

Game 4. Finally, we change the way how the experiment computes the session
key k for oracle πsi . Recall that in Game 3 this key is computed as

k := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp,

where in particular ktmp,tmp := NIKEkey(sk tmp
i , pk tmp

j ). In Game 4 the experiment
instead chooses ktmp,tmp uniformly random for oracle πsi . This also makes the key
k uniform and independent of all other computations performed by πsi .

Let us first observe that

Adv4 = 0

for all attackers (even computationally unbounded), because the attacker A al-
ways receives an indepedent, uniformly random key in response to the Test-query.
Thus, all computations of A are independent of the bit b sampled by the Test-
query.

Note that now we are in a game where the attacker issues a Test(i, s)-query
such that oracle πsi has a matching session to another oracle πtj , but the attacker
never issues RevealRand(i, s)- and RevealRand(j, t)-queries, as we are considering
RR-type attackers. Moreover, from the beginning of the game on, the experiment
knows (i′, s′, j′, t′) ∈ ([d]× [`])

2
such that (i′, s′, j′, t′) = (i, s, j, t). We claim that

this enables us to construct an efficient attacker B(1)nike from any efficient attacker
A such that

|Adv3 −Adv4| ≤ AdvCKS-light
NIKE (B(1)nike),

which implies Adv3 ≤ Adv4 + AdvCKS-light
NIKE (B(1)nike) = AdvCKS-light

NIKE (B(1)nike).

Attacker B(1)nike interacts with a NIKE-challenger according to Definition 2.

Moreover, B(1)nike runs attacker A as a subroutine, by simulating the security
experiment exactly as in Game 3 for A, with the following exception. At the

beginning of the game, B(1)nike issues two RegisterHonest-queries to its challenger,

receiving in response two public keys pk tmp
i , pk tmp

j . B(1)nike embeds these public

keys into the messages mi = (pk tmp
i , σi) and mj = (pk tmp

j , σj) sent by πsi and πtj ,
respectively.



The RR-type attacker never issues RevealRand(i, s)- and RevealRand(j, t)-

queries, therefore B(1)nike will never have to reveal the random coins used to com-

pute pk tmp
i and pk tmp

j . Thus, B(1)nike is able to answer all RevealRand-queries of A
correctly.

If B(1)nike needs to compute the function NIKEkey(sk tmp
i , ·), where sknike

i is the

secret key corresponding to pk tmp
i , on any input p̂k tmp such that p̂k tmp 6= pknike

j ,

then it proceeds as follows. B(1)nike first issues a RegisterCorrupt(p̂k tmp)-query to

the NIKE challenger, and then asks GetCorruptKey to obtain the key k̂ =

NIKEkey(sk tmp
i , p̂k tmp).

Similarly, B(1)nike is also able to use the NIKE challenger to compute the func-

tion NIKEkey(sk tmp
j , ·), where sknike

j is the secret key corresponding to pk tmp
j , on

all inputs which are not equal to pknike
i .

Note that B(1)nike is not able to compute the function NIKEkey(sk tmp
i , pk tmp

j ).
However, since all public NIKE keys occurring in the experiment are unique (due

to our changes introduced in previous games), B(1)nike needs to compute this func-

tion only once, namely when A issues the Test(i, s)-query. Then B(1)nike computes
the key as

k := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ k̂,
where k̂ is obtained from a Test-query for pk tmp

i and pk tmp
j to the NIKE chal-

lenger.
Now, if k̂ is the “real” key determined by (pk tmp

i , pk tmp
j ), then the simulation

of the ORKE security experiment by B(1)nike is perfectly indistinguishable from

Game 3, while if k̂ is an indepedent random key, then B(1)nike simulates Game 4

perfectly. The running time of B(1)nike consists essentially of the running time of A,
plus a minor overhead for the simulation of the experiment for A. This proves
the claim.

Summing up probabilities from Game 4 to Game 0, we obtain that

AdveCK
Π (A) ≤ d2`2 ·AdvCKS-light

NIKE (B(1)nike)+

d ·AdvsEUF -CMA
SIG (Bsig) + AdvCKS-light

NIKE (B(0)nike)

Type-RC-attackers. Let us now turn to RC-type attackers. The analysis
of this class of attackers is slightly more involved, as it requires an additional
step in the sequence of games which involves the security of the pseudo-random
function.

Lemma 2. From each Type-RC-attacker A, we can construct attackers Bsig,

B(0)nike, B
(1)
nike, and Bprf such that

AdveCK
Π (A) ≤d2`2 ·

(
AdvCKS-light

NIKE (B(1)nike) + AdvprfPRF(Bprf)
)

+ d ·AdvsEUF-CMA
SIG (Bsig) + AdvCKS-light

NIKE (B(0)nike)



The running time of Bsig, B(0)nike, B
(1)
nike, and Bprf is equal to the running time

of A plus a minor overhead for the simulation of the security experiment for A.

Proof. Again we proceed in a sequence of games, where we let Xi denote the
event that the attacker wins, that is, the attacker outputs b′ such that b = b′, in
Game i, and let Advi := Xi − 1/2 denote the advantage of A in Game i.

Game 0. This is the original security experiment. By definition, we have Adv0 =
AdveCK

Π (A).

Game 1. This game is identical to Game 3 from the proof of Lemma 1. With
the same arguments as before, we have

Adv0 ≤ d ·AdvsEUF -CMA
SIG (Bsig) + AdvCKS-light

NIKE (B(0)nike) + d2`2 ·Adv1

Game 2. Let pk tmp
i denote the NIKE public key contained in the message mi =

(pk tmp
i , σi) output by oracle πsi , and let sk tmp

i denote the corresponding secret

key. Let pknike
j denote the long-term public key of party Pj , with corresponding

secret key sknike
j . We change the way how the functions NIKEkey(sk tmp

i , pknike
j )

and NIKEkey(sknike
j , pk tmp

i ) are computed. Note that

NIKEkey(sk tmp
i , pknike

j ) = NIKEkey(sknike
j , pk tmp

i )

Note also that in the experiment there may be more than one oracle computing
these functions:

– Certainly, πsi will have to compute NIKEkey(sk tmp
i , pknike

j ).

– Moreover, if the attacker A forwards message mi = (pk tmp
i , σi) from πsi to

many oracles π1
j , π

2
j , . . . corresponding to party Pj , then all these oracles will

have to compute NIKEkey(sknike
j , pk tmp

i ).

In Game 2 the experiment chooses a uniformly random key k̃ at the begin-
ning of the experiment. Whenever an oracle evaluates NIKEkey either on input
(sk tmp

i , pknike
j ) or on input (sknike

j , pk tmp
i ), the experiment replaces the result with

k̃.
We claim that there exists an attacker B(1)nike which has about the same running

time as A, such that

|Adv1 −Adv2| ≤ AdvCKS-light
NIKE (B(1)nike).

B(1)nike is nearly identical to the corresponding algorithm from Game 3 in the proof
of Lemma 1, which interacts with a NIKE challenger and runs attacker A as a
subroutine by simulating the ORKE security experiment for A.

At the beginning of the game, B(1)nike retrieves two keys pk tmp
i , pknike

j by issuing

two RegisterHonest-queries to the NIKE-challenger. It embeds pk tmp
i into the



message mi = (pk tmp
i , σi) sent by oracle πsi , and pknike

j into the long-term public

key pk j = (pknike
j , pk sig

j ) of party Pj . Then it starts attacker A, simulating the
ORKE experiment by invoking the NIKE-challenger when necessary, using the
same technique as in Game 3 of the proof of Lemma 1.

Note that B(1)nike can provide a consistent simulation of the ORKE security
experiment, since now we are using the fact that we are considering an RC-
type attacker, which never issues a RevealRand(i, s)-query or an Corrupt(j)-query.
Thus, with the same arguments as in Game 3 of Lemma 1, we have

|Adv1 −Adv2| ≤ AdvCKS-light
NIKE (B(1)nike),

which implies Adv1 ≤ Adv2 + AdvCKS-light
NIKE (B(1)nike).

Game 3. Note that oracle πsi computes the key as

k := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp,

where in particular ktmp,nike := PRF(k̃, T ). In Game 3, we replace ktmp,nike with
a uniformly random key. This also makes the key k uniform and independent of
all other computations performed by πsi .

Let us first observe that
Adv3 = 0

for all attackers (even computationally unbounded), because the attacker A al-
ways receives an indepedent, uniformly random key in response to the Test-query.
Thus, all computations of A are independent of the bit b sampled by the Test-
query.

Now, let mj = (pk tmp
j , σj) denote the message received by πsi . Note that

πsi and its partner oracle πtj are the only oracles in the experiment which ever

evaluate the PRF with seed k̃ on input T , where T = sort(pk tmp
i , pk tmp

j ). Thus,
by a straightforward reduction to the security of the pseudorandom function, we
can construct an attacker Bprf against the security of PRF, which has about the
same running time as A and it holds that

Adv2 ≤ Adv3 + Advprf
PRF(Bprf) = Advprf

PRF(Bprf).

Summing up probabilities from Game 3 to Game 0, we obtain that

AdveCK
Π (A) ≤ d2`2 ·

(
AdvCKS-light

NIKE (B(1)nike) + Advprf
PRF(Bprf)

)

+ d ·AdvsEUF -CMA
SIG (Bsig)

Type-CR- and Type-CC- attackers. Finally, in order to prove Theorem 1, it
remains to consider Type-CR- and Type-CC-attackers. Their analysis is nearly
identical to the proof of Lemma 2, except that the NIKE-keys obtained from
the NIKE-challenger are embedded in places suitable for each type of attacker.
Therefore we give the following lemmas without proof.



Lemma 3. From each Type-CR-attacker A, we can construct attackers Bsig,

B(0)nike, B
(1)
nike, and Bprf such that

AdveCK
Π (A) ≤d2`2 ·

(
AdvCKS-light

NIKE (B(1)nike) + AdvprfPRF(Bprf)
)

+ d ·AdvsEUF-CMA
SIG (Bsig) + AdvCKS-light

NIKE (B(0)nike)

The running time of Bsig, B(0)nike, B
(1)
nike, and Bprf is equal to the running time

of A plus a minor overhead for the simulation of the security experiment for A.

Lemma 4. From each Type-CC-attacker A, we can construct attackers Bsig,

B(0)nike, B
(1)
nike, and Bprf such that

AdveCK
Π (A) ≤d2`2 ·

(
AdvCKS-light

NIKE (B(1)nike) + AdvprfPRF(Bprf)
)

+ d ·AdvsEUF-CMA
SIG (Bsig) + AdvCKS-light

NIKE (B(0)nike)

The running time of Bsig, B(0)nike, B
(1)
nike, and Bprf is equal to the running time

of A plus a minor overhead for the simulation of the security experiment for A.

Finishing the proof of Theorem 1. Since all attackers fall into at least one
of the four categories considered above, Theorem 1 follows from Lemmas 1 to 4.


