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Abstract. RECTANGLE is a newly proposed lightweight block cipher
which allows fast implementations for multiple platforms by using bit-
slice techniques. It is an iterative 25-round SPN block cipher with a
64-bit block size and a 80-bit or 128-bit key size. Until now, the results
on analyzing the cipher are not too much, which includes an attack on
the 18-round reduced version proposed by the designers themselves. In
this paper, we find all 15-round differential characteristics with 26–30 ac-
tive S-boxes for given input, output and round subkey differences, which
have a total probability 2−60.5. Based on these differential characteristic-
s, we extend the corresponding distinguisher to 2 rounds backward and
forward respectively, and propose an attack on the 19-round reduced
RECTANGLE-80 with data complexity of 262 plaintexts, time complex-
ity of about 267.42 encryptions and memory complexity of 272. TThese
data and time complexities are much lower than that of the designers for
the 18-round reduced RECTANGLE-80.

Keywords: RECTANGLE block cipher, Mixed-integer linear program-
ming, Related-key differential attack.

1 Introduction

Lightweight block ciphers can be widely used in small embedded devices such
as RFIDs and sensor networks. They are becoming more and more popular,
and this can be seen from the phenomena that many lightweight algorithms
were proposed in recent years, including PRESENT [6], LED [10], LBlock [23],
PRINCE [7], Zorro [9], and two lightweight block ciphers designed by the U.S.
National Security Agency, Simon and Speck [1]. Very recently, a new lightweight
block cipher called RECTANGLE was proposed by Zhang et al. [24], which is
an iterative 25-round SPN block cipher with a 64-bit block size and a 80-bit or
128-bit key size to allow fast implementations on multiple platforms by using
bit-slice techniques.

Security is crucially important for a cipher, and a new cipher must be able to
resist against all known attacks. Differential cryptanalysis [4] and linear crypt-
analysis [15] are two of the most basic and effective attacks on block ciphers.
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There are many variants of differential analysis, such as related-key differential
attack [2], truncated differential attack [11] and impossible differential attack [3],
and essentially, all of these differential attacks study the differential behavior of
the target cipher.

A differential characteristic with high probability can be used to construct
a distinguisher or recover some secret keys. In general, for SPN block ciphers,
the probability of a differential characteristic can be characterized by the num-
ber of active S-boxes in the corresponding differential characteristic. Therefore,
counting the number of active S-boxes is a useful and interesting problem. On
one hand, if the minimum number of active S-boxes is large, it proves that the
cipher can resist against the differential attack. On the other hand, a differential
characteristic with fewer active S-boxes can be used to construct a distinguisher.

The problem of counting active S-boxes of a word-oriented symmetric cipher
was transformed to be a mixed-integer linear programming (MILP) problem by
Mouha et al. [16]. They proposed a series of inequalities or equalities over inte-
gers to describe some operations over finite fields with characteristic 2, such as
XORs and linear transformations. Two word-oriented symmetric ciphers, AES
and Enocoro-128v2, were then considered along this line, and they proved that
Enocoro-128v2 is secure enough to resist against differential and linear cryptanal-
ysis. Subsequently, Sun et al. proposed a method to obtain a series of inequalities
over integers for describing an S-box and generalized Mouha et al.’s method to
apply to bit-oriented symmetric ciphers [20, 21]. In [21], it was proved that the
cipher PRESENT-80 is secure enough to resist against standard related-key d-
ifferential attack and the lower bound of probabilities of related-key differential
characteristics of the full-round LBlock is upper bounded by 2−56. Very recently,
by using the method proposed by Mauha et al. and Sun et al., Qiao et al. proved
that the cipher FOX is strong enough to resist against single-key differential
attack [17] and Ma et al. showed that 18 and 39 rounds are sufficient for the
block cipher MIBS to resist against the single-key and related-key differential
attacks, respectively [14]. Besides, Sun et al. proposed a method for automat-
ic enumeration of all (related-key) differential characteristics with given input
or/and output differences [22].

Some results of security analysis on RECTANGLE have been proposed by
the designers in their design document [24]. The designers completed described
a 18-round differential attack by two 14-round differential characteristics with
the same input and output differences. The time, data and memory complexities
are 278.69, 264 and 272, respectively. For other attacks, the designers pointed out
that the amplitude of the correlation coefficients of the best linear character-
istic is 2−37, and asserted that RECTANGLE has enough security against the
statistical saturation attack [8], impossible differential cryptanalysis [3], integral
cryptanalysis [13] and key schedule attacks [2, 5]. Recently, Selvam et al. reduce
the key research space from 280 to 288 by the differential power analysis [19].

Our contribution. In this paper, we apply the methods proposed by Mouha
et al. and Sun et al. to find out a 15-round related-key differential characteristic
with 26 active S-boxes, whose input, output and round subkey differences are
with low Hamming weight. For the obtained input, output and round subkey
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differences, we find out all 15-round differential characteristics with 26-30 active
S-boxes by using the method proposed in [22]. The number of the differential
characteristics is 1254 and the total probability is 2−60.5. Based on these dif-
ferential characteristics, we extend the corresponding distinguisher to 2 rounds
backward and forward respectively and propose an attack on the 19-round re-
duced RECTANGLE-80. The data complexity of our attack is 262 plaintexts,
the time complexity is about 267.42 19-round encryptions and the memory com-
plexity is 272. Compared with the designers’ differential analysis, we can attack
one more round, and the data and time complexities are much better.

A difficult point in our attack is that there is a large number of active S-
boxes in the extended 2 rounds backward and forward. By a general method,
the number of the key counters is more than 280, here the method we use is to
guess a lot of bits in the 0th round subkey, and then more bits in the 1st, 18th
and 19th round subkeys are determined according to the key schedule. Thereby,
we can reduce the number of the key counters to 272.

Organization of this paper. In Section 2, we briefly describe the RECT-
ANGLE block cipher. In Section 3, we introduce the MILP based methods pro-
posed by Mouha et al. and Sun et al. The related-key differential attack on
the round reduced RECTANGLE is proposed in Section 4. Finally, Section 5
concludes this study.

2 A Brief Description of RECTANGLE

In this section, we briefly describe the block cipher RECTANGLE and refer the
readers to [24] for more details.

RECTANGLE is a lightweight block cipher with an SPN structure proposed
by Zhang et al. [24] in 2014. It allows fast implementations on multiple platforms
by using bit-slice techniques. Its block length is 64 bits, while two versions of the
key length, 80 bits and 128 bits, are provided. In this paper, we only consider
the version with 80-bit secret keys.

For convenience, we introduce a notation for a 4l-bit block throughout this
paper. Let B = (b4l−1, · · · , b3l, · · · , bl−1, b0) be a 4l-bit block, it can be written
as a 4× 16 rectangle 

bl−1 bl−2 · · · b2 b1 b0
b2l−1 b2l−2 · · · bl+2 bl+1 bl
b3l−1 b3l−2 · · · b2l+2 b2l+1 b2l
b4l−1 b4l−2 · · · b3l+2 b3l+1 b3l

 .
Let B(j) denote the vector in the jth column of the rectangle, i.e., B(j) =
(bj , bj+l, bj+2l, bj+3l), where 0 ≤ j ≤ l− 1. Let B(i,j) denote the entry in the ith
row and jth column of the rectangle, i.e., B(i,j) = bj+il. For example, a 64-bit
plaintext, a 64-bit intermediate state, or a 64-bit ciphertext (w63, w62, · · · , w0),
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it is viewed as a 4× 16 rectangle
w15 w14 · · · w2 w1 w0

w31 w30 · · · w18 w17 w16

w47 w46 · · · w34 w33 w32

w63 w62 · · · w50 w49 w48

 .
The master key and the round subkeys (k79, k78, · · · , k0) are viewed as 4 × 20
rectangles below. 

k19 k18 · · · k2 k1 k0
k39 k38 · · · k22 k21 k20
k59 k58 · · · k42 k41 k40
k79 k78 · · · k62 k61 k60

 .
The cipher has 25 rounds of iterations. Each round consists of three steps:

AddRoundkey, SubColumn and ShiftRow (Please see Figure 1). In the first step

AddRoundKey

S S……

SubColumn ShiftRow

Fig. 1. Round transformation of RECTANGLE.

AddRoundkey, the cipher state is XORed the rightmost 64-bit of the round
subkey. In the second step SubColumn, parallelly apply the S-box S to each
column of the cipher state, where the S-box S used in RECTANGLE is a 4-bit
to 4-bit permutation as described in the following table in hexadecimal notation:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 9 4 F A E 1 0 6 C 7 3 8 2 B 5 D

In the third step ShiftRow, the last three rows are left rotated 1 bit, 12 bits and
13 bits, respectively. After 25 rounds of iterations, there is a final subkey XOR.

For the key schedule for the 80-bit key version, it also consists of three steps
described in Figure 2. The S-box is the same as in a round transformation.
The rows are left rotated 7 bits, 9 bits, 11 bits and 13 bits, respectively. The
round constants RC[i ] (0 ≤ i ≤ 24) are generated by a 5-bit LFSR with the
initial state RC[0]=(0,0,0,0,1). At each round i > 0, the round constant RC[i] =
(ri,4, · · · , ri,1, ri,0) is equal to (ri−1,3, · · · , ri−1,0, ri−1,4 ⊕ ri−1,2).

Some results of security analysis on the RECTANGLE cipher were proposed
by the designers in their design document [24]. Recently, Selvam et al. reduce
the key research space from 280 to 288 by the differential power analysis [19]. We
will propose the related-key analysis on RECTANGLE-80 by the method based
on MILP in this paper.
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S

RC[i]

Fig. 2. Key schedule of RECTANGLE.

3 Description of the Extended MILP

In this section, we introduce the MILP based methods proposed by Mouha et
al. and Sun et al. The mixed integer linear programming (MILP) problem is an
optimization problem derived from linear programming with some or all variables
restricted over integers. It can be described as:

MILP: Find a vector x ∈ Zk × Rn−k ⊂ Rn with Ax ≤ b, such that the
linear function c1x1 + c2x2 + · · · + cnxn is minimized (or maximized),
where (c1, c2, · · · , cn) ∈ Rn, A ∈ Rm×n and b ∈ Rm.

To count the minimum number of active S-boxes for some ciphers, Mouha et
al. transformed it to an MILP problem [16]. To this end, some operations over
finite fields with characteristic 2 are described by several linear constraints over
integers. The following two operations were considered by Mouha et al.

(i) XOR operation ⊕: Fw2 × Fw2 → Fw2 . Assume that a = (a0, · · · , aw−1),
b = (b0, · · · , bw−1) and c = (c0, · · · , cw−1) are the input and output differences
of the XOR operation, i.e., ai ⊕ bi = ci for all 0 ≤ i ≤ w − 1. Then the equality
can be described by the following inequalities over integers:

ai + bi + ci ≥ 2di,
di ≥ ai,
di ≥ bi,
di ≥ ci,

(1)

where di ∈ F2 is a dummy variable and 0 ≤ i ≤ w − 1.
Note that the description on the operation XOR above is not complete. For

example, if (ai, bi, ci, di) = (1, 1, 1, 1), it is easily checked that (ai, bi, ci, di) sat-
isfies inequalities (1), but not satisfies the operation XOR since 1 ⊕ 1 = 0. An
additional inequality over integers ai + bi + ci ≤ 2, combining with inequalities
(1), can equivalently describe the operation XOR.

(ii) Linear transformation L: Fm2w → Fm2w , where m is the word size. The
branch number BL of L is defined as

BL = min
x6=0
{wt(x) + wt(Lx) : x ∈ Fm2w},

where the Hamming weight wt(x) is the number of the nonzero components of
x. Let ∆x = (∆x0, ∆x1, · · · , ∆xm−1) and ∆y = (∆y0, ∆y1, · · · , ∆ym−1) be the
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input and output differences of L, then ∆xL = ∆y. The linear constraints of L
over integers are 

m−1∑
i=0

(∆xi +∆yi) ≥ BLdL,

dL ≥ ∆xi, 0 ≤ i ≤ m− 1,
dL ≥ ∆yi, 0 ≤ i ≤ m− 1,

where dL ∈ F2 is a dummy variable.
Subsequently, Sun et al. proposed two methods to obtain linear constraints

of an S-box based on logical condition modelling and computational geometry
[20, 21].

(iii) S-box S: Fw2 → Fw2 . The input and output differences of S are denoted as
∆α = (∆α0, ∆α1, · · · , ∆αw−1) and ∆β = (∆β0, ∆β1, · · · , ∆βw−1), respectively.
Let δ denote whether the S-box S is active or not, i.e.,

δ =

{
0, (∆α0, ∆α1, · · · , ∆αw−1) = 0,
1, otherwise.

The equivalent description over integers between δ and ∆α is{
δ −∆αi ≥ 0, 0 ≤ i ≤ w − 1,
∆α0 +∆α1 + · · ·+∆αw−1 − δ ≥ 0.

(2)

Additionally, for an invertible S-box, since the input difference is nonzero if and
only if the corresponding output difference is nonzero, the constraints described
over integers are as follows:{

(∆α0 +∆α1 + · · ·+∆αw−1)w − (∆β0 +∆β1 + · · ·+∆βw−1) ≥ 0,
(∆β0 +∆β1 + · · ·+∆βw−1)w − (∆α0 +∆α1 + · · ·+∆αw−1) ≥ 0.

(3)

Finally, similarly as the description of linear transformation, the branch number
of an S-box S, denoted by BS , is defined as

BS = min
∆α6=0

{wt(∆α) + wt(∆β) |#(∆α,∆β) > 0} ,

where #(∆α,∆β) = #{x ∈ Fw2 |S(x)⊕S(x⊕∆α) = ∆β}. The linear constraints
of S over integers are 

w−1∑
i=0

(∆αi +∆βi) ≥ BSdS ,

dS ≥ ∆αi, 0 ≤ i ≤ w − 1,
dS ≥ ∆βi, 0 ≤ i ≤ w − 1,

(4)

where dS ∈ F2 is a dummy variable.
The linear constraints (2), (3) and (4) of an S-box introduced above are

not complete. That is, there exists a vector pair simultaneously satisfying in-
equalities (2), (3) and (4), while the vector pair is an impossible differential
characteristic of the S-box. For this reason, Sun et al. proposed a new method
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based on computational geometry to obtain linear constraints of an S-box, where
the constraints are selected from the H-representation of the convex hull of all
differential characteristics [21].

H-representation of convex hull. The convex hull of a set X is the min-
imum convex set containing X, where X is a set of some discrete points in Rn.
The convex hull can be regarded as the feasible solutions of a system of linear
equalities and inequalities. There are a number of algorithms for computing the
convex hull for a finite set of points. For an n× n S-box S, all differential char-
acteristics can be regarded as some discrete points in R2n, by using the SAGE
computer algebra system, the convex hull consisting of several inequalities can
be obtained.

In general, the number of equalities and inequalities in the convex hull of
a set X ⊂ Rn increases rapidly as n increases. There are several hundreds of
inequalities for a 4 × 4 S-box. To make an MILP problem solvable in practical
time, one needs to select a small number of inequalities in the convex hull. Sun
et al. utilized a greedy algorithm to choose some “good” inequalities [21].

We refer the readers to [16, 20, 21] for more information on an MILP prob-
lem and linear constraints describing several operations over finite fields with
characteristic 2.

4 Differential Attack on RECTANGLE-80

In this section, we firstly introduce some notations used in the next subsections
for convenience. Let P (P ′), C (C ′), ∆P and ∆C denote the plaintext, the
ciphertext, and the differences of the plaintext and ciphertext, respectively. Let
Ki (K ′i), Ii (I ′i) and Oi (O′i) denote the round subkey, the input and output of
the operation SubColumn in the ith round, respectively. Similarly, let ∆Ki, ∆Ii
and ∆Oi denote the differences of the round subkey, the input and output of the
operation SubColumn in the ith round, respectively.

With the preparations above, we will propose a related-key differential attack
on 19-round RECTANGLE-80. To this end, we find a huge number of 15-round
differential characteristics from the 2nd round to the 17th round with the same
input, output and round subkey differences. Subsequently, a related-key differen-
tial attack on 19-round RECTANGLE-80 is obtained by respectively extending
2 rounds backward and forward.

4.1 Differential characteristics

In this subsection, we use the methods proposed by Mouha et al. and Sun et al.
to obtain several differential characteristics with high probabilities.

In the RECTANGLE block cipher, only the operations XOR and S-box
need to be transformed to linear constraints over integers. According to the
descriptions in Section 3, the constraint conditions on XOR and S-box are
obtained. In addition, since the differential of keys is necessarily nonzero in
the related-key attack model, there is an additional constraint condition as
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“∆k0 +∆k1 + · · ·+∆k79 ≥ 1”. The objective function is that “min
∑
δ”, where

δ denotes that the corresponding S-box is active or not introduced by (2) in
Section 3. The process above is implemented to generate a “.lp” file which is
an MILP instance containing an objective function and linear constraints. Then
the Gurobi optimizer is used to solve the MILP instance.

The differential distributions of the S-box in RECTANGLE is showed in
Table 1. According to Table 1, we can compute the probability for a specific
differential characteristic. The results of related-key attacks on the n-round re-
duced RECTANGLE are showed in Table 2, where 7 ≤ n ≤ 15. The values of
the column “Probability” in Table 2 are the probabilities of specific differential
characteristics which correspond to the numbers of active S-boxes in Table 2.
When the numbers of the rounds are 7, 8 and 9 marked by “ * ”, the values in
the column “Number of active S-boxes” correspond to the minimal numbers of
active S-boxes for all possible differential characteristics. When the numbers of
the rounds are 10, 11, 12, 13, 14, 15, the values in the column “Number of active
S-boxes” correspond to the minimal numbers of active S-boxes for some possible
differential characteristics.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 2 2 0 2 2 0 4 0 2 0 2

2 0 0 0 0 0 0 4 4 0 0 0 0 0 0 4 4

3 0 2 0 2 4 0 0 0 2 0 0 2 0 0 2 2

4 0 0 0 0 0 4 2 2 0 0 0 0 4 0 2 2

5 0 0 0 0 0 2 0 2 2 2 4 0 0 2 2 0

6 0 4 2 2 0 0 0 0 0 4 2 2 0 0 0 0

7 0 2 2 0 4 0 0 0 2 0 2 0 0 0 2 2

8 0 0 2 2 0 4 0 0 0 0 2 2 4 0 0 0

9 0 0 0 4 0 2 0 2 2 2 0 0 0 2 2 0

A 0 0 2 2 0 0 0 0 0 0 2 2 4 4 0 0

B 0 2 0 2 4 0 2 2 2 0 0 2 0 0 0 0

C 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2

D 0 0 4 0 0 2 2 0 2 2 0 0 0 2 0 2

E 0 4 0 0 0 0 0 0 0 4 0 0 4 4 0 0

F 0 2 2 0 4 0 2 2 2 0 2 0 0 0 0 0

Table 1. Differential distributions of the S-box in RECTANGLE

We find a 15-round differential characteristic with probability 2−64. In this
differential characteristic, the input difference of the operation SubColumn in
the 2nd round and the output difference of the operation SubColumn in the
16th round are

∆I2 =
0000010000001000
0000010000000000
0000000000000000
0000000000000000

and ∆O16 =
0000001000000000
0000000000000000
0000000000000000
0000000000000000

,
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Rounds Number of active S-boxes Probability

7∗ 7 2−18

8∗ 10 2−25

9∗ 12 2−32

10 16 2−41

11 19 2−44

12 20 2−51

13 23 2−56

14 24 2−59

15 26 2−64

Table 2. n-round differential characteristics with fewer active S-boxes

and the differences of the 2nd round and the 16th round subkeys are

∆K2 =
00000000000000000000
00000000000000000000
00001000000000000000
00000000000000000000

and ∆K16 =
00000000000000000000
00000000000000000000
00000000001000000000
00000000000000000000

.

By fixing ∆I2, ∆O16, ∆K2 and ∆K16, we obtain all 15-round differential
characteristics with 26, 27, 28, 29 and 30 active S-boxes by using the method
proposed in [22], and the results are listed in Table 3. The total probability
of all the differential characteristics in Table 3 is 2−60.5. This high differential
probability with given ∆I2, ∆O16, ∆K2 and ∆K16 can be used to construct a
distinguisher and recover partial secret keys. We propose the attack progress in
the next subsection.

Number of active S-boxes Number of differential characteristics Total probability

26 4 2−62

27 30 2−62

28 119 2−62.82

29 324 2−64.31

30 777 2−65.97

Table 3. All 15-round differential characteristics with 26 – 30 active S-boxes

4.2 A related-key differential attack on RECTANGLE-80

In this subsection, we will give a related-key differential attack on RECTANGLE-
80 by using the differential characteristics in Subsection 4.1 and respectively
extending 2 rounds backward and forward. To this goal, we assume that the
19-round reduced RECTANGLE consists of 19 rounds of iterations and a final
subkey XOR. We number the rounds from 0 to 19. The 0th round subkey K0

is the master key and the final subkey is denoted by K19. Next we propose our
attack in detail.
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We focus on illustrating how to extend 2 rounds backward and extending 2
rounds forward is similar. By the differences ∆I2 and ∆K2, the output difference
∆O1 of the operation SubColumn in the 1st round is obtained by the inverse
operations AddRoundKey and ShiftRow, which is listed below

∆O1 =
0000010000001000
0000001000000000
0000000000001000
0000000000000000

. (5)

By the differential distributions of the S-box in Table 1, we find that only when
the input difference of the S-box is 1100, 0110, 1110, 1101, 0111 or 1111, the
output difference of the S-box is 1000 for the 10th column, and similar observa-
tions are found for the 3rd and 9th columns. Therefore, the input difference ∆I1
of the operation SubColumn in the 1st round must have the following form

∆I1 =
00000??00000?000
000001?000000000
00000??00000?000
00000??00000?000

,

where the mark “?” denotes an undetermined value 0 or 1. Further, ∆I1 has
6 × 7 × 6 = 27.98 cases in total. For a candidate ∆I1 in the 27.98 cases, the
probability of ∆O1 in (5) is equal to 1

6 ×
1
7 ×

1
6 = 2−7.98. By the key schedule,

the difference of the 1st round subkey is

∆K1 =
00000000000000000000
00000000000000000000
00000000000000010000
00000000000000000000

.

Similarly as the analysis of the 1st round, the output and input differences of
the operation SubColumn in the 0th round are

∆O0 =
00000??00000?000
0000001?00000000
0??00001?0000000
00??00000?000000

and ∆I0 =
0???0?????00?000
0???0?????00?000
0???0?????00?000
0???0?????00?000

.

Note that there are 27.98 cases for ∆O0 and 236 cases for ∆I0. Therefore, for
a random input difference ∆I0, the probability of the output difference ∆O0

belonging to the 27.98 cases is 2−28.02. Besides, the differences of the 0th round
subkey and the plaintexts are

∆K0 =
00000000000000000000
00000000000000000000
00000010000000000000
00000000000000000000

and ∆P =
0???0?????00?000
0???0?????00?000
0???0?????00?000
0???0?????00?000

.

Similarly, we can also extend 2 rounds forward. Since the difference of the
17th round subkey is

∆K17 =
00000000000000000000
00000000000000000000
00000000000000000001
00000000000000000000

,
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the input and output differences of the operation SubColumn in the 17th round
are

∆I17 =
0000001000000000
0000000000000000
0000000000000001
0000000000000000

and ∆O17 =
000000?00000000?
000000?00000000?
000000?000000001
000000?00000000?

.

By the differential distributions of the S-box in Table 1, if the input differ-
ence of the S-box is ∆IS = 0010, the output difference of the S-box ∆OS ∈
{1010, 0110, 1110, 0011, 0111, 1111}. Therefore, the difference of the 18th round
subkey is

∆K18 =
000000000000*0000000
0000000000*000000000
00000000100000000000
000000*0000000000000

,

where **1*∈ {1010, 0110, 1110, 0011, 0111, 1111}. In our attack, we assume that
the difference ∆K18 is determined, because we can use our attack six times for
each value in the set {1010, 0110, 1110, 0011, 0111, 1111}. Then the differences of
the operation SubColumn in the 18th round are

∆I18 =
000000?0*000000?
00000?*0000000?0
0001100000?00000
00?000000?000000

, ∆O18 =
00?????0???000??
00?????0???000??
00?11??0???000??
00?????0???000??

,

where the mark “*” denotes a determined value in {0, 1} for a specific attack
and the mark “?” determined an undetermined value in {0, 1}. The number of
∆O18 at most is 226.54. Since the difference of the final subkey

∆K19 =
00000*00000000000000
0*000000000000000000
00000000000000000100
0000000000000*000000

is determined, the number of the difference of the ciphertext

∆C =
0*?????0???000??
0?????0???000??0
00??00?11??0???0
0??00?????0???00

at most is 226.54. Therefore, the probability of the ciphertext difference satisfying
the form ∆C is 2−37.46.
-Data Collect Phase. Choose 2x structures. In each structure, there are 236

plaintexts with fixing the values in the 0th, 1st, 2nd, 4th, 5th, 11th and 15th
columns and traversing the values in the 3rd, 6th, 7th, 8th, 9th, 10th, 12th, 13th
and 14th columns. The 236 plaintexts can generate about 272 ordered pairs.
Combining with the probabilities in the 1st and 0th rounds, the probability that
a pair of plaintexts in a structure can result in the expected input difference ∆I2
is 2−35.77. Therefore, the expected number of the plaintext pairs corresponding
to ∆I2 and ∆O16 is 2x+72−36−60.5 = 2x−24.5.
-Key Recover Phase. For each structure, there are 272−37.46 = 234.54 ordered
pairs left according to the difference of the ciphertext ∆C. Therefore, the ex-
cepted number of remaining pairs is 2x+34.54.
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– Step 1. Guess the value of a part of subkey bits of K0:

• (a). Guess K
(3)
0 , and compute the output difference of the 3rd S-box for

each remaining plaintext pair, i.e.,

S(P (3) ⊕K(3)
0 )⊕ S(P ′(3) ⊕K(3)

0 ⊕∆K(3)
0 ).

If the difference do not have the form ?000, discard the pair. Then the
number of expected remaining pairs is 2x+31.54.

• (b). Repeatedly guess K
(6)
0 , K

(7)
0 , K

(8)
0 , K

(9)
0 , K

(10)
0 , K

(12)
0 , K

(13)
0 and

K
(14)
0 , there are 2x+8.54 right pairs left.

– Step 2. Guess the value of a part of subkey bits of K1 by guessing some bits
of K0 or K1:
• (a). Since many bits of K1 are obtained from K0 directly by shifting and

adding constant, we only need to guess some bits for a column in K1.
For the 3rd column of K1, by the key schedule we have

(K
(0,3)
1 ,K

(1,3)
1 ,K

(2,3)
1 ,K

(3,3)
1 ) = (K

(0,16)
0 ,K

(1,14)
0 ,K

(2,12)
0 ,K

(3,10)
0 ).

Therefore, we only need to guess K
(0,16)
0 = K

(0,3)
1 . Then the number of

expected remaining pairs is 2x+4.54.

• (b). Guess the bits K
(1,1)
0 , K

(2,19)
0 , K

(3,17)
0 , and then check up whether

S(I
(10)
1 ⊕K(10)

1 )⊕ S(I
′(10)
1 ⊕K(10)

1 ⊕∆K(10)
1 ) = 1000,

since (K
(0,10)
1 ,K

(1,10)
1 ,K

(2,10)
1 ,K

(3,10)
1 ) = (K

(0,3)
0 ,K

(1,1)
0 ,K

(2,19)
0 ,K

(3,17)
0 ).

On average, there are 2x+0.54 right pairs left.

• (c). Similarly as Step 2(b), guess the bits K
(0,2)
0 , K

(1,9)
1 , K

(2,18)
0 and

K
(3,16)
0 , then there are 2x−3.46 right pairs left on average.

– Step 3. Guess the value of a part of subkey bits of K19:

• (a). For the 11th column of O18, the secret bits K
(0,11)
19 , K

(1,12)
19 , K

(2,7)
19

and K
(3,8)
19 of K19 are involved. Guess the bits K

(0,18)
0 , K

(3,2)
0 , K

(1,2)
0 ,

K
(0,19)
0 and K

(3,1)
0 , then combining with the guessed bits from Step 1

to Step 2, the involved secret bits K
(0,11)
19 , K

(1,12)
19 , K

(2,7)
19 , K

(3,8)
19 of K19

are determined. Then by using the method in Step 1.a, there are 2x−7.46

right pairs left on average. Further, the bits K
(0,12)
19 , K

(1,13)
19 , K

(2,8)
19 and

K
(3,9)
19 are also determined, which are related to the 12th column of O18.

Then there are 2x−11.46 right pairs left on average.

• (b). Guess K
(1,16)
0 , K

(2,4)
0 and K

(1,11)
0 , then combining with the guessed

bits from Step 1 to Step 3(a), the secret bits K
(0,1)
19 , K

(1,2)
19 , K

(2,13)
19 and

K
(3,14)
19 are determined, which are related to the 1st column of O18. Then

the number of remaining expected pairs is 2x−14.46.

• (c). Similarly as Steps 3(a) and 3(b), we respectively guess the bitsK
(0,1)
0 ,

K
(3,19)
0 and K

(0,4)
0 for the 6th column, the bits K

(1,8)
19 , K

(1,18)
0 and K

(2,2)
0
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for the 7th column, the bit K
(2,12)
19 for the 0th column, the bits K

(0,9)
19 ,

K
(2,5)
19 , K

(0,17)
0 , K

(1,19)
0 and K

(2,1)
0 for the 9th column, the bits K

(2,6)
19

and K
(3,7)
19 for the 10th column, the bits K

(0,5)
19 , K

(1,6)
19 and K

(3,2)
19 for the

5th column, and the bits K
(0,13)
19 , K

(1,14)
19 and K

(2,9)
19 for the 13th column.

Then the number of remaining expected pairs is 2x−36.46.
– Step 4. The involved secret bits of K18 have guessed in Steps 1-3, and we do

not need to guess any other secret bits. There are 2x−44.46 right pairs left on
average. Add one to the corresponding counter, if there is a right pair left.

– Step 5. If the counter is larger than 1, keep the guess of the subkey bits as
the candidates of the right subkeys. For each survived candidate, compute
the seed key by doing an exhaustive search for other secret bits.

-Complexity Analysis. Since the expected number of the plaintext pairs cor-
responding to ∆I2 and ∆O16 is 2x+72−36−60.5 = 2x−24.5, we take x = 26 such
that the expected number can reach to 3. Therefore, the data complexity is 262.

To analyze the time complexity, we will analyze the time complexity in each
step. In the encryption phase, the time complexity is 263 19-round encryptions.
In Step 1.a, the time complexity is 2×2x+34.54×24× 1

16×
1
19 ≈ 2x+29.54 19-round

encryptions. In Step 1.b, the time complexity is

2×
(

2x+39.54 + 2x+40.54 + 2x+41.54 + 2x+42.54 + 2x+43.54

+2x+44.54 + 2x+45.54 + 2x+46.54
)
× 1

16
× 1

19
≈ 2x+40.54.

In Step 2, the time complexity is 2×
(
2x+45.54 + 2x+44.54 + 2x+44.54

)
× 1

16 ×
1
19 ≈

2x+39.54 19-round encryptions. In Step 3, the time complexity is

2×
(

2x+45.54 + 2x+41.54 + 2x+40.54 + 2x+40.54 + 2x+40.54 + 2x+37.54

+2x+39.54 + 2x+38.54 + 2x+38.54 + 2x+38.54
)
× 1

16
× 1

19
≈ 2x+38.54.

In Step 4, the time complexity is about 2x+28.54 19-round encryptions. Therefore,
the total time complexity is 267.42. The memory complexity is 272 key counters.

5 Conclusions

In this paper, we used the methods proposed by Mouha et al. and Sun et al.
to find out a 15-round differential characteristic with 26 active S-boxes and low
Hamming weight of the input, output and round subkey differences. Then we
found out a huge number of 15-round related-key differential characteristics with
the obtained input, output and round subkey differences. The total probability
is 2−60.5. Based on these differential characteristics, we proposed a related-key
differential attack on the 19-round reduced RECTANGLE by respectively ex-
tending 2 rounds backward and forward, with a data complexity of 262, a time
complexity of 267.42 19-round encryptions and a memory complexity of 272.
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A number of related-key differential characteristics with high total proba-
bility for more rounds may help to attack RECTANGLE for more rounds. It
is meaningful to determine a lower bound of the number of active S-boxes for
some rounds which can illustrate whether this cipher is security enough to resist
against the standard related-key differential attack.
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