
Tree-Structured Composition of Homomorphic Encryption:

How to Weaken Underlying Assumptions

Koji Nuida∗†, Goichiro Hanaoka∗, Takahiro Matsuda∗

∗ National Institute of Advanced Industrial Science and Technology (AIST)
{k.nuida, hanaoka-goichiro, t-matsuda}@aist.go.jp
† Japan Science and Technology Agency (JST), PRESTO

November 20, 2014

Abstract

Cryptographic primitives based on infinite families of progressively weaker assump-
tions have been proposed by Hofheinz–Kiltz and by Shacham (the n-Linear assump-
tions) and by Escala et al. (the Matrix Diffie–Hellman assumptions). All of these
assumptions are extensions of the decisional Diffie–Hellman (DDH) assumption. In
contrast, in this paper, we construct (additive) homomorphic encryption (HE) schemes
based on a new infinite family of assumptions extending the decisional Composite
Residuosity (DCR) assumption. This is the first result on a primitive based on an
infinite family of progressively weaker assumptions not originating from the DDH as-
sumption. Our assumptions are indexed by rooted trees, and provides a completely
different structure compared to the previous extensions of the DDH assumption.

Our construction of a HE scheme is generic; based on a tree structure, we recur-
sively combine copies of building-block HE schemes associated to each leaf of the tree
(e.g., the Paillier cryptosystem, for our DCR-based result mentioned above). Our
construction for depth-one trees utilizes the “share-then-encrypt” multiple encryption
paradigm, modified appropriately to ensure security of the resulting HE schemes. We
prove several separations between the CPA security of our HE schemes based on differ-
ent trees; for example, the existence of an adversary capable of breaking all schemes
based on depth-one trees, does not imply an adversary against our scheme based
on a depth-two tree (within a computational model analogous to the generic group
model). Moreover, based on our results, we give an example which reveals a type
of “non-monotonicity” for security of generic constructions of cryptographic schemes
and their building-block primitives; if the building-block primitives for a scheme are
replaced with other ones secure under stronger assumptions, it may happen that the
resulting scheme becomes secure under a weaker assumption than the original.

Keywords: Homomorphic encryption, Composite Residuosity assumption, tree-shaped
assumption family, generic construction

1

1 Introduction

In modern cryptology, cryptographic primitives based on as weak assumptions as possible
have been intensively studied. In particular, several primitives based on infinite families of
assumptions, which are either one-dimensional (the n-Linear assumptions [20, 32], includ-
ing the decisional Diffie–Hellman (DDH) and the Decision Linear assumptions as special
cases) or two-dimensional (the Matrix Diffie–Hellman assumptions [12]) extensions of the
DDH assumption, were proposed. Assumptions in each family have (non-)implication re-
lations; for example, the ability to break the n-Linear assumption with a larger n implies
the ability to break all assumptions with a smaller n, but the converse does not hold
(proven in the generic group model [33]).

Here we point out that, all the previous work on such constructions of primitives are
based on extensions of the Diffie–Hellman (DH) assumptions. Our present work aims at
constructing, possibly by a different approach, primitives based on an infinite family of
assumptions which are extensions of different standard assumptions.

1.1 Our Contributions

In this paper, we develop the first construction of primitives based on an infinite family of
assumptions which are extensions of standard assumptions other than the DH assumption,
namely the Composite Residuosity (CR) assumption. More precisely, starting from an
(additive) homomorphic encryption (HE) scheme Π, we construct new HE schemes by
combining copies of Π in various ways. Hence, our result is a generic construction rather
than concrete constructions as in the previous work [12, 20, 32]; the CR-based construction
is derived by choosing the Paillier cryptosystem [30] as the building-block scheme Π. We
also extend the construction to a more general case that a new HE scheme is obtained by
combining different building-block HE schemes with common plaintext space.

Our construction is recursive, indexed by a rooted tree; it is completely different from
the previous “line-shaped” [20, 32] and “matrix-shaped” [12] constructions. Each copy
of the building-block scheme is associated to a leaf of the tree; the scheme at a (non-
leaf) vertex is constructed by combining the schemes at the child vertices; and finally our
proposed scheme is obtained as the scheme at the root of the tree.

Essence of our construction. As an example, we consider the case that ℓ copies of
the Paillier cryptosystem is combined to obtain an HE scheme associated to the parent
vertex. Our construction is based on the existing “share-then-encrypt” multiple encryption
paradigm (see e.g., [10]), where the easiest ℓ-out-of-ℓ secret sharing (i.e., the secret is the
sum of shares) is used in order to simplify our analysis. To encrypt m ∈ Z/nZ, we first
divide it into random shares s1, . . . , sℓ ∈ Z/nZ, and then encrypt each si by the i-th copy
of the Paillier cryptosystem. One may naively expect that this idea would improve the
security, since to learn information on m, it would be necessary to learn information on
all of s1, . . . , sℓ by breaking the ℓ ciphertext components simultaneously.

Now we in fact need to be extra careful, since we are dealing with homomorphic
encryption. Namely, if the base elements of the ciphertext space (Z/n2Z)× involved in
the public key of each copy of the Paillier cryptosystem are equal, then the adversary can
merge the ℓ ciphertext components into a single ciphertext of plaintext m for the Paillier
cryptosystem by using its additive homomorphic property (i.e., recovering the secret m
from the shares s1, . . . , sℓ homomorphically). Consequently, breaking the new scheme is
not more difficult than breaking the Paillier cryptosystem, which is not desirable.

2

Therefore, we must use different base elements g1, . . . , gℓ for the ℓ components, each
being a part of a public key for a copy of the Paillier cryptosystem. On the other hand,
the other part n of the public key for the Paillier cryptosystem must be common for the
ℓ components. However, such a separated treatment of individual parts of a public key is
not suitable to generalize to a generic (black-box) construction.

To resolve the problem, we re-interpret each base element gi as a ciphertext of a
different plaintext with a fixed base element g (say, g = 1 + n mod n2), and re-interpret
the encryption of si with base element gi as a “rerandomized scalar multiplication” of si to
gi; i.e., if gi = gai ·rin is a ciphertext of ai ∈ Z/nZ, then the encryption result gi

si ·r′in with
base element gi is a (rerandomized) ciphertext of si ·ai (since gisi · r′in = gsi·ai · (risi · r′i)n).
Hence, the original public key (n, gi) for the Paillier cryptosystem at each component is
converted to the pair of a common public key (n, g) (which can be used in a black-box
manner) and a ciphertext gi by the common public key. This enables us to extend the
construction to other building-block HE scheme, provided it is also endowed with “scalar
multiplication” and “rerandomization” functionalities (the resulting HE scheme also has
these additional functionalities, therefore the recursive construction is indeed possible).

(Non-)implication relations. We prove several separation relations between the under-
lying assumptions for the CPA security of our proposed HE schemes indexed by different
trees. For the case that the schemes are constructed from a single building-block scheme,
first we prove that, for the assumptions indexed by trees of depth one with ℓ ≥ 1 leaves,
the assumption with smaller ℓ implies that with larger ℓ but the converse does not hold.
It is analogous to the relations of the n-Linear assumptions. This also implies that our
new assumptions are strictly weaker than the assumption for the building-block scheme,
since the latter is in fact equivalent to the assumption with ℓ = 1.

Moreover, we prove that, even if all the assumptions indexed by the trees of depth one
are broken, it does not immediately imply that the assumption indexed by a tree T § of
depth two is efficiently breakable (see Example 2 in Section 5.1 for the definition of T §).
Hence, our assumption family indeed has beyond one-dimensional degrees of freedom.

When the building-block scheme is the Paillier cryptosystem, the strength of our new
“tree-shaped” assumptions are all lying strictly between the Computational Composite
Residuosity (CCR) and the Decisional Composite Residuocity (DCR) assumptions. Hence,
our result reveals an interesting fact that there are infinitely many assumptions, having
the rich variety, between the closely related CCR and DCR assumptions.

Our computational model for non-implications. The non-implication relations for
our assumptions above are proven in a new computational model, which is an analogy of the
generic group model [33] with modifications made in order to deal with separations between
generic constructions of primitives. Our computational model is a variant of the Boolean
circuit model (see e.g., Section 1.2.4.1 of [14]), where we can treat black-box elements of
the ciphertext space (as well as ordinary bits), and each circuit involves gates for black-box
computations on ciphertexts via homomorphic functionalities (as well as ordinary gates
for bit operations). We emphasize that plaintexts are expressed by bit sequences (rather
than black-box elements) and any (efficient) operations on the bit sequences expressing
plaintexts are allowed, for making the computational model reasonably powerful.

For example, when the building-block scheme is the Paillier cryptosystem, our com-
putational model has strong enough functionality to be comparable to the generic group
model on the ciphertext space (Z/n2Z)× of the Paillier cryptosystem; see Remark 2 in
Section 6.

3

Application: “Non-monotonicity” of combined security. By using our result, we
construct HE schemes Π1, . . . ,Π4 satisfying the following: The assumptions for Π1 and Π2

are strictly stronger (within the computational model mentioned above) than Π3 and Π4,
respectively; but conversely, the assumption for our proposed HE scheme that combines
Π1 and Π2 is strictly weaker than that combining Π3 and Π4. See Section 8. This suggests
that the precise strength of our new assumptions may be further weaker than evaluated
in this paper. It also gives an insight that, in a generic construction of a cryptographic
primitive, the security is in general inherited not monotonically from the building blocks.

1.2 Related Work

In the previous work by Escala et al. [12] mentioned above, they proposed several primitives
based on their assumptions, but did not propose HE schemes. On the other hand, the
framework for HE schemes by Armknecht et al. [1] does not entirely cover our class of
HE schemes, and their ElGamal-like HE schemes based on the n-Linear assumptions are
much different from ours. This shows the independent significance of our work.

One may feel that our generic construction has a flavor similar to the “robust com-
biners” for several kinds of primitives (e.g., [2, 4, 9, 18, 19, 26]), where the constructed
scheme is secure provided at least one of the building-block schemes is secure (or to the
quantitative security amplification such as Yao’s XOR lemma, cf., [15, 21, 22, 23, 24]).
We emphasize that our proposed scheme can be secure even when all of the building-block
schemes are insecure, which is also a noteworthy feature of our construction.

1.3 Organization of This Paper

In Section 2, we summarize some notations, terminology and basic definitions used in this
paper. In Section 3, we define the class of HE schemes considered in this paper, and give
an equivalent but simplified notion of the CPA security for these HE schemes. In Section 4,
we show some instances of the HE schemes in the literature. In Section 5, we construct our
proposed HE schemes and show some implication relations for the CPA security between
them. We give our main non-implication relations for the CPA security in Section 7, using
the computational model in Section 6. Finally, in Section 8, we present an example of the
non-monotonicity of security in generic constructions of cryptographic primitives.

2 Preliminaries

In this paper, k denotes the security parameter unless otherwise specified. We say that
a quantity ε ≥ 0 is negligible, if ε = k−ω(1); and ε is overwhelming, if 1 − ε is negligible.
For probability distributions D1 and D2, we write D1 ∼ D2 to mean that D1 and D2 are
identical, while we say that D1 and D2 are statistically close, if their statistical distance
1
2

∑
x |Pr[x ← D1] − Pr[x ← D2]| is negligible. We say that a finite set X is samplable

(respectively, approximately samplable), if there exists a probabilistic polynomial-time
(PPT) algorithm with output distribution identical (respectively, statistically close) to
the uniform distribution on X. Let an expression “x ←R X” mean that an element x is
chosen from a set X uniformly at random.

We recall the syntax for public key encryption schemes and their security notion dis-
cussed in this paper.

4

Definition 1 (Public key encryption). We say that Π = (Gen,Enc,Dec) is a public key
encryption (PKE) scheme, if it consists of the following three algorithms:

• The PPT algorithm Gen outputs a pair (pk, sk) ← Gen(1k) of public key pk and
secret key sk. Finite sets M and C of plaintexts and ciphertexts, respectively, are
also associated to pk.

• The PPT algorithm Enc outputs a ciphertext c ← Enc(pk,m) in C of plaintext
m ∈M under public key pk.

• The algorithm Dec, with a secret key sk and a ciphertext c ∈ C as inputs, outputs
either an element ofM or a “failure symbol” ⊥ ̸∈ M.

Let Cm ⊂ C be a set of valid ciphertexts of plaintext m ∈ M (under a given public key
pk), which is supposed to satisfy

Pr[m← Dec(sk, c)] = 1 for every c ∈ Cm .

Then Π is supposed to satisfy (perfect) correctness:

c ∈ Cm for any c← Enc(pk,m) with m ∈M .

We often omit the symbols pk and sk for public and secret keys unless it causes ambiguity.

Definition 2 (CPA security). We say that a PKE scheme Π is CPA secure, if for any
PPT adversary A = (A1,A2), the advantage AdvA(k) := |Pr[b = b∗] − 1/2| of A for a
game defined by the following procedure is negligible:

[(pk, sk)← Gen(1k); (m0,m1, state)← A1(pk);

b∗ ←R {0, 1}; c∗ ← Enc(pk,mb∗); b← A2(pk, c
∗, state)] .

3 Our Class of Homomorphic Encryption

In this section, we formalize the class of HE schemes with some additional functionalities
mentioned in the introduction. We call such an HE scheme a rerandomizable module-
homomorphic encryption scheme (RMHE scheme, in short).1 We give the definition:

Definition 3 (RMHE schemes). Let (Gen,Enc,Dec) be a PKE scheme, Add and Mult be
polynomial-time deterministic algorithms2 and Rerand be a PPT algorithm, where

• Add(pk, c1, c2) outputs a ciphertext from public key pk and ciphertexts c1, c2,

• Mult(pk,m, c) outputs a ciphertext from pk, plaintext m and ciphertext c,

• Rerand(pk, c) outputs a ciphertext from pk and ciphertext c.

Then we say that Π = (Gen,Enc,Dec,Add,Mult,Rerand) is an RMHE scheme, if the fol-
lowing conditions are satisfied, where pk is any public key (see Section 2 for notations):

1The term “module-homomorphic” is inspired by the notion of “module” in the area of abstract algebra,
which is a set endowed with addition and scalar multiplication analogously to vector spaces.

2The arguments in this paper can be easily extended to the case of probabilistic algorithms.

5

• The plaintext spaceM is a finite commutative ring with efficiently computable ring
operations, and bothM and its subsetM× of invertible elements are samplable.3

• We have Add(pk, c1, c2) ∈ Cm1+m2 for any c1 ∈ Cm1 and c2 ∈ Cm2 .

• We have Mult(pk,m, c′) ∈ Cm·m′ for any m ∈M and c′ ∈ Cm′ .

• For any c ∈ Cm, Rerand(pk, c) outputs an element of Cm and its output distribution
is identical4 to the output distribution of Enc(pk,m).

The Paillier cryptosystem is an RMHE scheme with Add(c1, c2) = c1 ·c2, Mult(m, c′) =
c′m and Rerand(c) = Add(c,Enc(0)). See Section 4 for other existing examples.

For RMHE schemes, the CPA security is in fact not weakened even by restricting the
two challenge plaintexts by the adversary to pairs of 0 and a uniformly random element.
Precisely, first we give the following definition:

Definition 4 (ZPA security). We say that a PKE scheme Π is zero plaintext attack (ZPA)
secure, if for any PPT adversary A, the advantage AdvA(k) := |Pr[b = b∗]− 1/2| of A in
the following procedure is negligible:

[(pk, sk)← Gen(1k); m0 := 0; m1 ←RM;

b∗ ←R {0, 1}; c∗ ← Enc(pk,mb∗); b← A(pk, c∗)] .

Then we give the following result, whose proof is analogous to the CPA security for
the ElGamal cryptosystem [11] under the DDH assumption:

Lemma 1. An RMHE scheme Π is CPA secure if and only if it is ZPA secure.

Proof. Since the CPA security implies the ZPA security by definition, we show that Π is
CPA secure if it is ZPA secure.

Let A = (A1,A2) be any PPT CPA adversary for Π. We convert it efficiently into a
ZPA adversary A† for Π in the following manner. Given a challenge (pk, c∗) for A† with
c∗ ← Enc(mb∗) as in the ZPA game, the algorithm A† first generates (m′

0,m
′
1, state) ←

A1(pk). Secondly, A† generates j ←R {0, 1} and c′ ← Rerand(Add(c∗,Enc(m′
j))). Finally,

A† generates bj ← A2(pk, c
′, state) and outputs b := bj XOR j.

We have c′ ∼ Enc(m′
j) when b∗ = 0, while c′ ∼ Enc(m1 + m′

j) ∼ Enc(m†) where

m† ←R M when b∗ = 1 (since m1 is uniformly random and independent of m′
j). This

implies that the distribution of the input for A executed in A† for the case b∗ = 0 is
identical to the CPA game, while the input for A in the case b∗ = 1 is independent of j.
Therefore, we have

AdvA(k) =

∣∣∣∣Pr[bj = j | b∗ = 0]− 1

2

∣∣∣∣ = ∣∣∣∣2Pr[bj = j ∧ b∗ = 0]− 1

2

∣∣∣∣
=

∣∣∣∣2(Pr[bj XOR j = b∗]− 1

2

)
− 2Pr[(bj , j) ∈ {(0, 1), (1, 0)} ∧ b∗ = 1] +

1

2

∣∣∣∣
3Our results can be naturally extended to the cases thatM andM× are approximately samplable.
4The property “identical” can in fact be relaxed to “statistically close”; due to this fact, our class of

HE schemes here is not entirely included in the class of “group homomorphic encryption” studied in [1].

6

and this is not larger (by the triangle inequality) than

2AdvA†(k) +

∣∣∣∣Pr[(bj , j) ∈ {(0, 1), (1, 0)} | b∗ = 1]− 1

2

∣∣∣∣
= 2AdvA†(k) +

∣∣∣∣12 (Pr[bj = 0 | b∗ = 1] + Pr[bj = 1 | b∗ = 1])− 1

2

∣∣∣∣
= 2AdvA†(k) +

∣∣∣∣12 − 1

2

∣∣∣∣ = 2AdvA†(k) .

Hence, AdvA(k) is negligible if AdvA†(k) is negligible, concluding the proof of Lemma
1.

Owing to Lemma 1, instead of the CPA security, we study the ZPA security for RMHE
schemes, which is defined by a non-interactive game, in order to simplify our argument.

Remark 1. The operation Rerand for RMHE schemes plays a crucial role in Lemma 1. For
example, if we modify the Paillier cryptosystem (supposed to be CPA secure) in a way
that the new encryption algorithm with plaintext 1 uses no randomness, then the modified
scheme satisfies the conditions for RMHE schemes except the existence of Rerand; it is still
ZPA secure since the probability that 1 ∈M is chosen as the random challenge plaintext
is negligible; but the scheme is no longer CPA secure, since the unique fresh ciphertext of
challenge plaintext 1 ∈M is now easily recognizable.

4 Examples of RMHE Schemes

In this section, we summarize some existing HE schemes in the literature, which indeed
satisfy the conditions for RMHE schemes.

4.1 Paillier Cryptosystem and Its Variants

Here we summarize the construction of the Damg̊ard–Jurik cryptosystem [7] which is a
generalization of the Paillier cryptosystem [30]. In fact, we describe a simplified (without
loss of security) version of the Damg̊ard–Jurik cryptosystem given in the same paper [7],
which also includes a simplified version of the Paillier cryptosystem. See the original
papers for some omitted details.

The Damg̊ard–Jurik cryptosystem is parameterized by a publicly known positive in-
teger s, where the choice s = 1 yields the Paillier cryptosystem. Its public key is the
product n = pq of two different large random primes p, q of the same bit length. The
corresponding secret key is λ := lcm(p − 1, q − 1). The plaintext space is M := Z/nsZ.
A ciphertext of m ∈ M is given by c := (1 + n)mrn

s
mod ns+1 with r ←R (Z/ns+1Z)×.

We define Add(pk, c, c′) = c · c′, Mult(pk,m, c′) := c′m and Rerand(pk, c) := c · rns
with

r ←R (Z/ns+1Z)×.5 Then a straightforward argument shows that all the conditions for
RMHE schemes are indeed satisfied.

5We note that, in order to make the exponentiation c′m for the Mult operation well-defined, here we
regard the plaintext m as an integer rather than a residue class in the ring Z/nsZ. The same remark is
also applied to the Okamoto–Uchiyama cryptosystem below.

7

4.2 Okamoto–Uchiyama Cryptosystem

The Okamoto–Uchiyama cryptosystem [28] has a similar structure to the Paillier cryp-
tosystem (see the original paper for some omitted details). Its public key is (n, g, h), where
n = p2q is a composite integer with p, q being two different large random primes of the same
bit length, g ←R (Z/nZ)× with gp ̸= 1 mod p2, and h := gn ∈ (Z/nZ)×. The correspond-
ing secret key is (p, q). The plaintext space isM := Z/nZ. A ciphertext of m ∈M is given
by c := gmhr ∈ (Z/nZ)× with r ←R {0, 1, . . . , n − 1}. We define Add(pk, c, c′) := c · c′,
Mult(pk,m, c′) := c′m and Rerand(pk, c) := c · hr with r ←R {0, 1, . . . , n − 1}. Then a
straightforward argument shows that all the conditions for RMHE schemes are indeed
satisfied.

4.3 Goldwasser–Micali Cryptosystem and Its Variants

The ciphertexts in some other known HE schemes, such as the Goldwasser–Micali cryp-
tosystem [16, 17], the Benaloh cryptosystem [3, 13] and the Naccache–Stern cryptosys-
tem [27], have similar structures as the Paillier and the Okamoto–Uchiyama cryptosys-
tems. For example, a ciphertext in the Goldwasser–Micali cryptosystem of a plaintext
m ∈ M := {0, 1} is of the form c = y2xm mod N where N = pq is an RSA integer, x is

an integer with Legendre symbols
(
x
p

)
=
(
x
q

)
= −1, and y ←R (Z/NZ)×. On the other

hand, given an integer r ≥ 2, a ciphertext in the Benaloh cryptosystem (more precisely,
its corrected version in [13]) of a plaintext m ∈M := Z/rZ is of the form c = ymur mod n
where n = pq, p and q are large primes with the property that r divides p − 1, r and
(p− 1)/r are relatively prime and r and q− 1 are relatively prime, y ∈ (Z/nZ)× satisfying
that y = gα mod p for a generator g of (Z/pZ)× and some α which is coprime to r, and
u←R (Z/nZ)×. The ciphertexts in the Naccache–Stern cryptosystem also have a similar
structure, where the range of plaintexts can be much larger than the two cryptosystems
above, owing to the use of Chinese Remainder Theorem. By virtue of the similarity of
ciphertext structures, an argument similar to the previous two examples shows that these
cryptosystems are also RMHE schemes (provided, for the case of the Benaloh cryptosys-
tem, that a factorization of r is known and (Z/rZ)× is approximately samplable).

4.4 “Lifted” ElGamal Cryptosystem and Its Variant

It is known that the ElGamal cryptosystem [11], which is originally a multiplicative HE
scheme, can be used as an additive HE scheme by regarding the exponents of group
elements (rather than group elements themselves) as the plaintexts, as long as such an
exponent is efficiently computable from a given group element. Usually, the efficient
computability of exponents is guaranteed by restricting the range of plaintexts. However,
when an HE scheme is used in our generic construction, the plaintexts vary over the full
range of exponents. Consequently, to be used in our generic construction, the underlying
group for the cryptosystem should be a Trapdoor Discrete Log (TDL) group (see e.g.,
[25, 29, 31]) in order to make the decryption always efficient.

For future reference, here we describe the additive homomorphic “lifted” ElGamal
cryptosystem by assuming the existence of a TDL group, denoted by G. Let g be a
generator of G, and let d denote the order of g. A public key consists of G, g and
h := gx with x ←R Z/dZ. The corresponding secret key is x and the trapdoor infor-
mation for G. The plaintext space is M := Z/dZ. A ciphertext of m ∈ M is given
by c = (c1, c2) := (gr, hrgm) with r ←R Z/dZ, which can be efficiently decrypted by

8

computing c1
−x · c2 = gm first and then recovering the exponent m by the TDL prop-

erty for G. We define Add(pk, c, c′) := (c1 · c′1, c2 · c′2), Mult(pk,m, c′) := (c′1
m, c′2

m) and
Rerand(pk, c) := (c1g

r, c2h
r) with r ←R Z/dZ. Then a straightforward argument shows

that all the conditions for RMHE schemes are indeed satisfied. We note that the same
argument can be applied to the Damg̊ard’s variant [6] of the ElGamal cryptosystem.

5 Our Construction of Homomorphic Encryption

In Section 5.1, we describe our proposed construction of an RMHE scheme, denoted by
Γ(T), indexed by a rooted tree T to which some building-block RHME schemes Π are
associated. (The scheme Γ(T) for the “smallest” tree T becomes equivalent to Π.) Then
in Section 5.2, we show that, when the tree T is converted to a “larger” tree (see Theorem
1 for the precise meaning), the ZPA (hence the CPA) security for the resulting scheme is
at least as difficult to break as the original scheme. Some cases where the latter scheme
becomes strictly more difficult to break than the former will be studied in later sections.

5.1 Construction

Let Π = (GenΠ,EncΠ,DecΠ,AddΠ,MultΠ,RerandΠ) denote an RMHE scheme with plain-
text space MΠ and ciphertext space CΠ. Here we construct an RMHE scheme Γ(T)
corresponding to a rooted tree T , where a building-block RMHE scheme Π(v) = Π(T ; v)
is associated to each leaf v of T . In a special case that all the building-block schemes are
the same RMHE scheme Π, we sometimes write Γ(T) as Γ(T ; Π) to specify the choice of
the building-block scheme. When T is a trivial rooted tree consisting of the root r = r(T)
only, we define Γ(T) := Π(T ; r). For non-trivial trees T , we define Γ(T) recursively.

In our proposed construction, the collection of the building-block schemes has a re-
quirement. Roughly speaking, the building-block schemes must have a common plaintext
space. Here we note that the plaintext space of each scheme is in general dependent on
the choice of its public key, therefore the requirement should also be dependent on the dis-
tributions of public keys for these building-block schemes. To make it clear, we introduce
the following condition for the building-block schemes of our proposed RMHE schemes:

Definition 5 (Combinable schemes). We say that a finite non-empty set S of RMHE
schemes is combinable, if there exists a polynomial-time samplable random variable KeyS =
KeyS(1

k) on the set of the tuples of key pairs (PKΠ,SKΠ) for Π ∈ S satisfying the following
conditions, where for each non-empty subsetS′ ⊂ S, KeyS′ denotes the restriction of KeyS
to the components (PKΠ′ , SKΠ′) indexed by Π′ ∈ S′:

• We have Key{Π} ∼ GenΠ for each Π ∈ S.6 7

• For any pair of non-empty subsets S′ ⊂ S′′ ⊂ S, there exists a PPT algorithm
ExpandKeyS′→S′′ with the property that the distribution of (PKΠ)Π∈S′′ given by
(PKΠ,SKΠ)Π∈S′ ← KeyS′ and (PKΠ)Π∈S′′\S′ ← ExpandKeyS′→S′′((PKΠ)Π∈S′) is
identical to the distribution of (PKΠ)Π∈S′′ given by KeyS′′ .8

6Namely, KeyS is a joint distribution with marginal distributions GenΠ, Π ∈ S.
7The following construction is easily extendable to a slightly more general case that the two distributions

are statistically close. The same also holds for the other parts of the definition.
8Intuitively, given public keys (but not secret keys) for some schemes in S, public keys for other schemes

in S can be efficiently sampled with the correct conditional probability; this property will be required in
the security proofs below.

9

• For any (PKΠ,SKΠ)Π∈S generated by KeyS, the plaintext spacesMΠ associated to
the public key PKΠ are common for all Π ∈ S.

We note that this (somewhat technical) definition indeed covers both of the following
two important cases:

• There is only a single building-block scheme in S.

• For each security parameter, the possibility of the plaintext space for each Π ∈ S is
unique and it is common for all Π. Now KeyS can be the combination of independent
distributions GenΠ for Π ∈ S, and the construction of ExpandKey is obvious.

In the following arguments, unless otherwise specified, we suppose that S is a com-
binable set of RMHE schemes and the RMHE scheme Π(v) = Π(T ; v) associated to a leaf
v of a tree T is a member of S. We define S[T] to be the set of Π(T ; v) for all leaves v
of T (we do not assume that S[T] = S, i.e., not all members in S are always used as the
building-block schemes in each construction).

We describe our proposed construction of RMHE schemes. Let V = V (T) and E =
E(T) be the vertex set and the edge set of the tree T . For e ∈ E, let top(e) and bot(e)
denote the vertices of e closer to and farther from the root r, respectively. Let v1 → v2
denote the edge e with top(e) = v1 and bot(e) = v2. For v ∈ V , let Tv denote the subtree
of T with root v, let v↓ denote the set of the child vertices of v, and let v∗ denote the
last element of v↓ (in a fixed ordering). Then we recursively construct our RMHE scheme
Γ(T) = (GenT ,EncT ,DecT ,AddT ,MultT ,RerandT) as follows (see Figure 1), where, for each
v ∈ V , we write

pk∧v := (PKΠ)Π∈S[Tv] ∪ (PKe)e∈E(Tv) ,

sk∧v := (SKΠ)Π∈S[Tv] ∪ (SKe)e∈E(Tv) .

GenT (1
k). The algorithm generates (PKΠ, SKΠ)Π∈S[T] ← KeyS[T](1

k) where KeyS[T] is the
random variable introduced in Definition 5, and sets M :=MΠ. Then for e ∈ E,
the algorithm generates SKe ←R M× and PKe ← Encbot(e)(pk∧bot(e), SKe), where
we abbreviate EncTv to Encv for v ∈ V (we also use similar abbreviations for other
algorithms). The output of the algorithm is the pair (pk, sk) := (pk∧r, sk∧r).

EncT (pk,m) (m ∈M). The algorithm generates sv ←R M for each v ∈ r↓ \ {r∗}, and
sets sr∗ := m −

∑
u∈r↓\{r∗} su. Then for each v ∈ r↓, the algorithm generates

cv ← Rerandv(pk∧v,Multv(pk∧v, sv,PKr→v)). Now the output is c := (cv)v∈r↓ .

DecT (sk, c) (c = (cv)v∈r↓). The algorithm first generates tv ← Decv(sk∧v, cv) for each v ∈
r↓. If tv = ⊥ or SKr→v ̸∈ M× for some v, then the output is ⊥. Otherwise, the
output is

∑
v∈r↓ tv/SKr→v ∈M.

AddT (pk, c, c
′). The algorithm generates c′′v ← Addv(pk∧v, cv, c

′
v) for each v ∈ r↓. Then

the output is c′′ = (c′′v)v∈r↓ .

MultT (pk,m, c′). The algorithm generates c′′v ← Multv(pk∧v,m, c′v) for each v ∈ r↓. Then
the output is c′′ = (c′′v)v∈r↓ .

RerandT (pk, c). The algorithm generates sv ←R M for each v ∈ r↓ \ {r∗}, and sets
sr∗ := −

∑
u∈r↓\{r∗} su. Then for each v ∈ r↓, the algorithm generates c′v ←

Rerandv(pk∧v,Addv(pk∧v, cv,Multv(pk∧v, sv,PKr→v))). The output is c′ := (c′v)v∈r↓ .

10

Key generation GenT (1
k)

(
pk∧v := (PKΠ)Π∈S[Tv] ∪ (PKe)e∈E(Tv)

sk∧v := (SKΠ)Π∈S[Tv] ∪ (SKe)e∈E(Tv)
(v ∈ V)

)
(PKΠ, SKΠ)Π∈S[T] ← KeyS[T](1

k),M :=MΠ

For e ∈ E: SKe ←RM×, PKe ← Encbot(e)(pk∧bot(e), SKe) ⇝ Output (pk, sk) := (pk∧r, sk∧r)

Encryption EncT (pk,m), m ∈M

For each v ∈ r↓:

sv ←RM (if v ̸= r∗)

sv := m−
∑

u̸=r∗
su (if v = r∗)

cv ← Rerandv(pk∧v,Multv(pk∧v, sv,PKr→v))

Output c := (cv)v∈r↓

Decryption DecT (sk, c), c = (cv)v∈r↓ ∈ C

For each v ∈ r↓:

tv ← Decv(sk∧v, cv)

If tv = ⊥ or SKr→v ̸∈ M×, then

output ⊥
Output

∑
v∈r↓

tv/SKr→v

Addition AddT (pk, c, c
′), c, c′ ∈ C

For each v ∈ r↓: c
′′
v ← Addv(pk∧v, cv, c

′
v)

Output c′′ := (c′′v)v∈r↓

Scalar multiplication MultT (pk,m, c′), m ∈M, c′ ∈ C

For each v ∈ r↓: c
′′
v ← Multv(pk∧v,m, c′v)

Output c′′ := (c′′v)v∈r↓

Rerandomization RerandT (pk, c), c ∈ C

For each v ∈ r↓: sv ←RM (if v ̸= r∗), sv := −
∑

u̸=r∗
su (if v = r∗)

c′v ← Rerandv(pk∧v,Addv(pk∧v, cv,Multv(pk∧v, sv,PKr→v)))

}
⇝

Output

c′ := (c′v)v∈r↓

Figure 1: Recursive construction of our proposed RMHE scheme Γ(T) (here r is the root of the

tree T = (V,E); r∗ is the last element of the set r↓ of the child vertices of r; some subscripts “Tv”

of algorithms are abbreviated to v; we set Γ(Tv) := Π(v) ∈ S for any leaf v of T ; and we define

S[T] to be the set of all Π(v) for leaves v of T)

We say that a tuple of plaintexts is a share set of m ∈M, if their sum is m. We note
that the tuples (sv)v in the definitions of EncT and RerandT are uniformly random share
sets of m and of 0, respectively. Then a straightforward argument shows the following
property:

Proposition 1. The scheme Γ(T) is an RMHE scheme, where the set CT,m of valid
ciphertexts of plaintext m in Γ(T) is defined recursively to be the union of the direct product∏

v∈r↓ CTv ,mv ·SKr→v over all share sets (mv)v∈r↓ of m (see above for the terminology).

Moreover, by using the notations in Figure 1, we have cv ∼ Encv(pk∧v, sv · SKr→v) for
outputs of EncT , and c′v ∼ Encv(pk∧v,Decv(sk∧v, cv) + sv · SKr→v) for outputs of RerandT .

Proof. The claim is obvious when T is the trivial tree; now Γ(T) = Π(T ; r). Hence, we
consider the case of non-trivial trees T only. The condition for the plaintext space is
implied by that for the building-block RMHE schemes.

We use induction on the depth of T . First, the properties cv ∼ Encv(pk∧v, sv ·SKr→v) for
outputs of EncT and c′v ∼ Encv(pk∧v,Decv(sk∧v, cv) + sv · SKr→v) for outputs of RerandT
follow from the properties of the RMHE schemes Γ(Tv). Now for the algorithm EncT ,
(sv)v∈r↓ is a uniformly random share set of m, therefore the outputs of EncT belong to
the set CT,m defined in the statement. On the other hand, for the algorithm DecT (sk, c)
for c = (cv)v∈r↓ ∈ CT,m with cv ∈ CTv ,mv·SKr→v for each v, we have tv = mv · SKr→v and
Skr→v ∈M×, therefore the output is

∑
v∈r↓ mv = m. Hence the correctness holds.

By the structures of the valid ciphertext spaces CT,m specified in the statement, the
conditions for the algorithms AddT and MultT follow from the properties for the RMHE
schemes Γ(Tv) and the fact that the component-wise addition of share sets (mv)v∈r↓ and

11

(m′
v)v∈r↓ of m and m′, respectively, is a share set of m + m′, and the component-wise

scalar multiplication (m · m′
v)v∈r↓ for a share set (m′

v)v∈r↓ of m′ by m ∈ M is a share
set of m · m′. Moreover, for the algorithm RerandT (pk, c) for c = (cv)v∈r↓ ∈ CT,m with
cv ∈ CTv ,mv ·SKr→v for each v, we have c′v ∼ Encv(pk∧v, (mv + sv) ·SKr→v) by the properties
of the RMHE schemes Γ(Tv). Since (mv)v∈r↓ is a share set of m and (sv)v∈r↓ is a uniformly
random share set of 0, it follows that (mv + sv)v∈r↓ is a uniformly random share set of
m, therefore we have c′ ∼ EncT (pk,m) by the argument in the previous paragraph. This
completes the proof of Proposition 1.

Example 1. We consider the case of the tree, denoted by Tℓ, of depth one consisting
of the root r, ℓ leaves v1, . . . , vℓ and ℓ edges r → v1, . . . , r → vℓ (ℓ ≥ 1). A public
key pk for Γ(Tℓ) consists of a public key PKΠ for each Π ∈ S[Tℓ] and ℓ ciphertexts
PKr→vj ← EncΠ(j)(PKΠ(j), SKr→vj) in Π(j) with SKr→vj ←R M× (j = 1, . . . , ℓ), where
we abbreviate Π(vj) to Π(j).

To encrypt m ∈M, we choose s1, . . . , sℓ−1 ←RM and generate

cvj ←

{
RerandΠ(j)(MultΠ(j)(sj ,PKr→vj)) for j = 1, . . . , ℓ− 1 ,

RerandΠ(ℓ)(MultΠ(ℓ)(m−
∑ℓ−1

i=1 si,PKr→vℓ)) for j = ℓ .

Therefore, a ciphertext c consists of ℓ ciphertexts cv1 , . . . , cvℓ in the building-block RMHE
schemes. The homomorphic operations in Γ(Tℓ) are made from those in the building-block
schemes for the ℓ components.

Example 2. We consider the case of the tree, denoted by T §, of depth two with five
vertices r = r(T §), v1, v2, v3, v4 and four edges r → v1, r → v2, v2 → v3 and v2 → v4.
For the four components of a public key pk for Γ(T §) other than public keys PKΠ for
Π ∈ S[T §], we have PKe ← EncΠ(PKΠ, SKe) with SKe ←R M× for e = (r → v1),
(v2 → v3) and (v2 → v4), where Π = Π(v1), Π(v3) and Π(v4) for the three choices of the

edge e, respectively. To generate the remaining component PKr→v2 = (PK
(1)
r→v2 ,PK

(2)
r→v2)

of pk, we choose spk ←RM and generate

PK(1)
r→v2 ← RerandΠ(v3)(MultΠ(v3)(spk,PKv2→v3)) ,

PK(2)
r→v2 ← RerandΠ(v4)(MultΠ(v4)(SKr→v2 − spk,PKv2→v4))

as in the definition of EncTv2
(where we omit the symbols PKΠ). Summarizing, pk consists

of PKΠ for each Π ∈ S[T §] and five ciphertexts in the building-block RMHE schemes.
To encrypt m ∈M, we first choose s1 ←RM and generate

cv1 ← RerandΠ(MultΠ(s1,PKr→v1)) .

To generate the other component cv2 , we choose s2 ←RM and generate

cv3 ← RerandΠ(AddΠ(MultΠ(m− s1,PK
(1)
r→v2),MultΠ(s2,PKv2→v3))) ,

cv4 ← RerandΠ(AddΠ(MultΠ(m− s1,PK
(2)
r→v2),MultΠ(−s2,PKv2→v4))) .

Then we have cv2 = (cv3 , cv4), therefore a ciphertext c of plaintext m consists of three
ciphertexts cv1 , cv3 and cv4 in the building-block schemes. The homomorphic operations in
Γ(T §) are also decomposed into combinations of homomorphic operations in the building-
block schemes for the three components of ciphertexts.

12

5.2 Security Implications for Different Trees

Here we study some implication relations of the ZPA (hence the CPA) security for Γ(T)
between different trees T . For the purpose, we define some transformations of the trees
T = (V,E), where we also concern the correspondences between building-block RMHE
schemes in S and the leaves of T . Let L = L(T) denote the set of leaves of T , and let r
be the root of T . Then the transformations for the trees are defined as follows:

Forkv(T) (for v ∈ V \ L): Add a new edge e† with top(e†) = v; now bot(e†) is a new leaf
of the resulting tree. Moreover, associate an RMHE scheme Π(bot(e†)) to the new
leaf bot(e†).

Dividev,v′(T) (for (v → v′) ∈ E): Add a new vertex v† between v and v′.

Grow(T): Add a new root r†, i.e., r is the unique child vertex of r† in the new tree.

We show below that the ZPA security becomes at least as difficult to break as the original
situation when the transformation Forkv is applied to the tree T , while the other trans-
formations Dividev,v′ and Grow do not change the difficulty to break the ZPA security.

We note that, when the parent vertex of v′ ∈ V , denoted here by v′↑, is a child vertex
of v ∈ V and v′ is the unique child vertex of v′↑, the inverse transformation of Dividev,v′

can be applied to T ; it concatenates the two edges v → v′↑ and v′↑ → v′ to form a new
edge v → v′. Similarly, when the root r of T has a unique child vertex r′, the inverse
transformation of Grow can be applied to T ; it removes r and makes r′ the new root.

We define the relation T ⪯ T ′ for trees which means that T can be converted to T ′ by
a (possibly empty) sequence of transformations of the form Forkv, Dividev,v′ , Divide−1

v,v′ ,

Grow or Grow−1. We emphasize that the assignments of building-block schemes to the
leaves are relevant to the definition of the relation. We also note that, since the five kinds
of transformations above do not remove any leaf of the tree, it follows that if T ⪯ T ′, then
any leaf v of T is also a leaf of T ′ and we have Π(T ; v) = Π(T ′; v). To compare the ZPA
security for Γ(T) and Γ(T ′), we give the following lemma, which implies that a random
challenge in the ZPA game for Γ(T) can be efficiently converted to a random challenge in
the ZPA game for Γ(T ′):

Lemma 2. For each Φ ∈ {Forkv,Dividev,v′ ,Divide−1
v,v′ ,Grow,Grow−1} and any T to which

the transformation Φ is applicable, there exists a PPT transformation φΦ,T of pairs of
public keys and ciphertexts, not using the secret keys for Γ(T), satisfying the following:

For a public key pk of Γ(T) following the distribution GenT (1
k) and c ← EncT (pk,m)

with m = 0 or m←RM, respectively, (pk′, c′)← φΦ,T (pk, c) satisfies the followings:

• pk′ is a public key of Γ(Φ(T)) and has the same component PKΠ(v) as pk for each
leaf v of T (hence the same plaintext space).

• The distribution of pk′ is identical to the distribution of the first component of the
output of GenΦ(T)(1

k).

• The distribution of c′ is identical to the output distribution of EncΦ(T)(pk
′,m), where

m = 0 or m←RM as above.

Proof. We prove the claim, together with the following auxiliary property: For each fixed
m as in the statement, we have c′ ∼ EncΦ(T)(pk

′,m · σ) where σ ∈M× may depend on pk
but is independent of m, and c′ is computable from pk′, c and σ only. We note that, if it

13

holds, then m · σ ∼ m for each case of m = 0 and m←RM, therefore the third condition
in the statement follows.

When Φ = Grow, pk′ is correctly generated from pk by adding a component PKr†→r ←
EncT (pk, SKr†→r) with SKr†→r ←RM×, and we define c′ := (c), i.e., c′ consists of a unique
component c. Then the claim holds, with σ = (SKr†→r)

−1. Conversely, when Φ = Grow−1,
pk′ is correctly generated by removing the component PKr†→r from pk, and c′ is set to be
the unique component of c, which satisfies the claim, with σ = SKr†→r.

For the other Φ, we use induction on the depth of v. When Φ = Forkv and v = r, pk′

is given by first generating an additional public key component PKΠ(bot(e†)) for Π(bot(e†))
by using the algorithm ExpandKeyS′→S′′ given in Definition 5 with S′ := S[T] and S′′ :=
S′ ∪ {Π(bot(e†))}, and then adding a component PKe† ← EncΠ(bot(e†))(PKΠ(bot(e†)), SKe†)
where SKe† ←R M×. On the other hand, c′ is given by first converting c to a ciphertext
of m for Γ(Φ(T)) by adding a component cbot(e†) ← EncΠ(bot(e†))(PKΠ(bot(e†)), 0) and then
rerandomizing the resulting ciphertext for Γ(Φ(T)). Hence the claim holds, with σ = 1.

For the remaining cases, let w be the unique element of r↓ with v ∈ V (Tw) when Φ =
Forkv (and v ̸= r) and v′ ∈ V (Tw) when Φ ∈ {Dividev,v′ ,Divide−1

v,v′}. We set (w′,Φ′) :=

(v†,Grow) if Φ = Dividev,v′ and v = r (now w = v′); set (w′,Φ′) := (v′,Grow−1) if Φ =
Divide−1

v,v′ and v = r (now w = v′↑); and set (w′,Φ′) := (w,Φ) otherwise (now v ∈ V (Tw)).

Let sk′ denote the secret key after the transformation. To generate pk′, we first convert the
pair (pk∧w,PKr→w) to (pk

′
∧w′ ,PK′

r→w′)← φΦ′,Tw(pk∧w,PKr→w). By the induction hypoth-
esis, we have PK′

r→w′ ∼ Encw′(pk′∧w′ , SKr→w·σ) with σ ∈M× associated to φΦ′,Tw . We also
convert PKr→u for each u ∈ r↓ \ {w} to PK′

r→u ← Rerandu(pk∧u,Multu(pk∧u
, σ,PKr→u));

then we have PK′
r→u ∼ Encu(pk∧u, SKr→u ·σ). This choice of pk′ corresponds to SK′

r→w′ :=
SKr→w · σ and SK′

r→u := SKr→u · σ. On the other hand, to generate c′, we convert the
component cw of c to the second component c′w′ of φΦ′,Tw(pk∧w, cw) computed from pk′∧w,
cw and σ, and set c′u ← Rerandu(pk∧u,Multu(pk∧u, σ, cu)) for each u ∈ r↓ \ {w}. By the
induction hypothesis, when cu ∈ CTu,mu·SKr→u for each u ∈ r↓, we have

c′w′ ∼ Encw′(pk′∧w′ ,mw · SKr→w · σ) ∼ Encw′(pk′∧w′ ,mw · SK′
r→w′) ,

c′u ∼ Encu(pk
′
∧u,mu · SKr→u · σ) ∼ Encu(pk

′
∧u,mu · SK′

r→u) for u ̸= w .

This implies that c′ ∼ EncΦ(T)(pk
′,m), therefore the claim holds, where σ = 1.

By applying Lemma 2 repeatedly, if T ⪯ T ′, then an input for an adversary in the
ZPA game for Γ(T) can be efficiently converted to a correctly distributed input for an
adversary in the ZPA game for Γ(T ′), therefore an attack to break Γ(T) can be reduced
to an attack breaking Γ(T ′). This implies the following result:

Theorem 1. If Γ(T) is ZPA secure and T ⪯ T ′, then Γ(T ′) is ZPA secure as well.

In particular, since we have Tv ⪯ T for any leaf v of T , the argument above implies
the following property, which means that the underlying assumption for the ZPA security
of Γ(T) is at least as weak as the logical OR of those for the building-block schemes:

Theorem 2. If at least one of the RMHE schemes Π ∈ S[T] is ZPA secure, then Γ(T)
is ZPA secure as well.

Moreover, we consider the case of a single building-block scheme; S = {Π}. We use
the notations Tℓ with ℓ ≥ 1 for the trees of depth one as in Example 1, and let T0 denote
the trivial tree. In this case, we have Tℓ+1 = Forkr(Tℓ)(Tℓ) for ℓ ≥ 1, and T1 = Grow(T0),
therefore T1 ⪯ T0 ⪯ T1 ⪯ T2 ⪯ · · · . Hence, by Theorem 1, we have the following result:

14

Theorem 3. Suppose that S = {Π}. Then for any ℓ ≥ 1, the ZPA security for Γ(Tℓ; Π)
implies the ZPA security for Γ(Tℓ+1; Π). Moreover, the ZPA security for Γ(T1; Π) is equiv-
alent to the ZPA security for Π.

6 Computational Model for Non-Implication Results

In this section, in order to discuss non-implication relations between the ZPA security for
our RMHE schemes Γ(T) with different trees T , we introduce a computational model to
formalize a class of “natural” reductions between the ZPA adversaries for these schemes.
Our model is a variant of the Boolean circuit model (see e.g., Section 1.2.4.1 of [14]) with
a flavor of the generic group model [33], associated to the building-block RMHE schemes
Π in a combinable set S. Each circuit in the model represents a ZPA adversary for some
scheme Γ(T), called an outer scheme, and it internally uses oracles that break the ZPA
security of other schemes Γ(T ′), called inner schemes. We note that each challenge in
the ZPA game for any scheme Γ(T) is composed of a public key for each building-block
scheme Π ∈ S[T] and a number of ciphertexts for these schemes.

As usual, each circuit C in the computational model is an acyclic data flow. Each node
is given some objects from its incoming edges as its local inputs (or a part of the input for
C, if it is an input (source) node), computes its local output (if it is either an input node
or the unique output (sink) node, then there is no local computation), and then sends its
copies to the outgoing edges (or it is the output of C, if the node is the output node).

In the model, the possible data types of the objects are bit and ciphertext ; the latter is
further classified into Π-ciphertext for each Π ∈ S. Each object of Π-ciphertext-type is a
black-box object, which can only be generated or modified via internal nodes corresponding
to the functionalities of the building-block scheme Π, and only be viewed by internal
nodes corresponding to the ZPA oracles for the inner schemes (see below for the details).
We emphasize that plaintexts are represented by collections of bits, and any (efficient)
operation on plaintexts, which may be non-algebraic, is allowed in the model. (On the
other hand, the public key PKΠ for each Π ∈ S involved in each challenge in the ZPA
game is made implicit for simplifying the description.) Each edge of a circuit is assigned
one of the data types, and it can carry the corresponding kind of objects only.

In a circuit C in the model, each input node is given either a ciphertext for some
building-block scheme Π (which is a component of a challenge for the outer scheme) or
a uniformly random bit (which represents the internal randomness for C). On the other
hand, there exists a unique output node and it has a unique incoming edge, which is of
bit-type (i.e., the output of C is a single bit). Moreover, the types of the internal nodes
are one of the followings, where Π ∈ S:

EncΠ(m; r), AddΠ(c, c
′), MultΠ(m, c′), RerandΠ(c; r): Here m is a plaintext (expressed

by a bit sequence);9 c and c′ are ciphertexts for Π; and r is a bit sequence. The
output is of Π-ciphertext-type and it is the same as the corresponding algorithms
for Π with public key PKΠ, where r (if it exists) is used as the internal randomness
of the algorithm.

AND(b, b′), OR(b, b′), NOT(b): These nodes behave as the ordinary bit operations.

SwitchΠ(c, c
′; b): For two ciphertexts c, c′ for Π, the output is c if b = 0, and c′ if b = 1.

9For a technical reason, if the bit sequence does not represent a valid plaintext, then the outputs of
EncΠ and MultΠ nodes are defined to be a random ciphertext of a uniformly random plaintext.

15

OT ′(c⃗): The input c⃗ is a collection of ciphertexts for some schemes Π ∈ S, which (together
with the public keys PKΠ for these Π) forms a challenge for an inner scheme Γ(T ′).
This node represents an oracle (outputting a bit) that breaks the ZPA security for
Γ(T ′).

Remark 2. When Π is the Paillier cryptosystem, multiplication of h1, h2 ∈ G := (Z/n2Z)×,
inverse of h ∈ G and random sampling onG can be computed in our model by AddΠ(h1, h2),
MultΠ(−1, h) and EncΠ(m; r) with uniformly random m and r. This suggests that our
model has reasonably strong functionality comparable to the generic group model on G,
hence it is worthy to study the relations between the security of our proposed schemes on
the model (note that the results in Section 5.2 can indeed be described within our model).

7 Main Result: Security Non-Implications

In this section, we study non-implication relations between the ZPA security for our RMHE
schemes Γ(T) with different trees T . Here we assume that the building-block schemes
Π ∈ S satisfy the following two technical conditions on the plaintext spaces; we note that
these are indeed satisfied by the Paillier cryptosystem (unless it is totally broken):

Assumption 1 The ratio |M×|/|M| is overwhelming (hence 1/|M| is negligible).

Assumption 2 It is computationally hard to find an element ofM\ (M× ∪ {0}).10

Then we have the following, which is the main theorem of this paper:

Theorem 4. Let T out be any tree. Under Assumptions 1 and 2, there are no polynomial-
time constructible circuit families C = (Ck)k≥1 in the model in Section 6 with the fol-
lowing property: If the (not necessarily polynomial-time computable) oracle OT in has a
non-negligible advantage as a ZPA adversary for Γ(T in) for every tree T in of depth one
with T out ̸⪯ T in, then C is also a ZPA adversary for Γ(T out) with non-negligible advantage.

Intuitively, Theorem 4 says that, even if the ZPA security of Γ(T in) for all trees T in as
in the statement are broken, it cannot be efficiently converted (by a “natural” reduction
algorithm described in our model in Section 6) to an adversary that breaks Γ(T out).

Now we start to describe the proof of Theorem 4. The proof is divided into several
steps as shown in the following subsections.

7.1 Restriction of Possibilities of the Outer Scheme

At the beginning of the proof, we show that, to prove the theorem, it is sufficient to
consider the cases T out = Tℓ (ℓ ≥ 1) and T out = T § (see Examples 1 and 2 in Section 5.1
for the definitions of Tℓ and T §).

We suppose that, for a tree T ′, we have T ′ ⪯ T out and T ′ ̸⪯ T in for any depth-one tree
T in with T out ̸⪯ T in. Now the set of depth-one trees T in with T out ̸⪯ T in is not changed
when T out is replaced with T ′. In this case, Theorem 4 for the tree T out is implied by that
for the tree T ′; if a circuit family C as in the statement exists for the case of T out, then by
Theorem 1, it can be efficiently converted to another circuit family as in the statement for
the case of T ′. From now, we show that T ′ = Tℓ or T

′ = T § indeed satisfies the condition.

10For the case of the Paillier cryptosystem withM = Z/nZ, sinceM\M× = {a ∈M | gcd(a, n) > 1},
any element ofM\ (M× ∪ {0}) yields the factorization of n, which reveals the secret key.

16

First we note that the condition above is preserved by applying the transformations
Φ = Divide−1

v,v′ and Φ = Grow−1, since now T ′ ⪯ Φ(T ′) ⪯ T ′ by the definition of ⪯. Hence,
by applying these transformations in advance, we assume without loss of generality that
these transformations cannot be applied to T out, that is, every non-leaf vertex of T out has
at least two child vertices. If T out is a trivial tree, then we may consider T1 = Grow(T out)
instead of T out, since T out ⪯ Grow(T out) ⪯ T out. Now T out is of the desired form Tℓ if it
has depth one; from now, we consider the other case that T out has depth at least two.

By the condition on the depth, T out has at least one non-leaf vertex of depth one, say
v′2. By the condition above, v′2 has at least two child vertices, say v′3 and v′4. On the other
hand, the root of T out also has at least two child vertices; let v′1 be its child vertex other
than v′2. Now by the definition of ⪯, we have T § ⪯ T out, where for each leaf vi of T §

with i ∈ {1, 3, 4}, one of the building-block schemes associated to some leaf of (T out)v′i is

associated to vi. Moreover, we have T § ̸⪯ T in for any depth-one tree T in by the definition
of ⪯. This shows that T ′ = T § indeed satisfies the condition in this case.

Hence we have shown that, to prove Theorem 4, we may assume without loss of
generality that T out = Tℓ or T out = T §. We use the notations in Examples 1 and 2
for Tℓ and T §, and we often abbreviate vj to j.

7.2 Construction of the Oracles

From now, we assume that a circuit family C = (Ck)k≥1 as in the statement exists, and
deduce a contradiction. First, we determine the oracles OT in involved in C concretely.

When T in = Tℓ′ (ℓ
′ ≥ 1), we write Πj := Π(vj) for 1 ≤ j ≤ ℓ′ if it is not confusing.

Then a challenge in the ZPA game for Γ(Tℓ′) consists of a public key pk and a challenge
ciphertext c∗ = (c∗1, . . . , c

∗
ℓ′), where pk consists of a public key PKΠj and a ciphertext

PKr→j ∈ CΠj ,SKr→j
for 1 ≤ j ≤ ℓ′, and c∗j ∈ CΠj ,sj ·SKr→j

for each 1 ≤ j ≤ ℓ′, where (sj)
ℓ′
j=1

is a share set of the challenge plaintext mb∗ . Now we have

mb∗ =
ℓ′∑

j=1

sj · SKr→j

SKr→j
=

∑ℓ′

j=1

(
sj · SKr→j ·

∏
1≤j′≤ℓ′ , j′ ̸=j SKr→j′

)
SKr→1 · · ·SKr→ℓ′

=

∑ℓ′

j=1

(
DecΠj (c

∗
j) ·
∏

1≤j′≤ℓ′ , j′ ̸=j DecΠj′ (PKr→j′)
)

SKr→1 · · ·SKr→ℓ′
,

therefore we have mb∗ = 0 (which is equivalent to b∗ = 0 except a negligible probability11)
if and only if the numerator of the right-hand side is zero.

Based on the observation, we introduce the following polynomial in the variables
Z1, . . . , Zℓ′ and Z ′

1, . . . , Z
′
ℓ′ :

Fℓ′ :=

ℓ′∑
j=1

(
Zj · Z ′

1 · · ·Z ′
j−1Z

′
j+1 · · ·Z ′

ℓ′
)

.

Then we havemb∗ = 0 if and only if the value Fℓ′(DecΠj (c
∗
j);DecΠj (PKr→j)) of Fℓ′ given by

substituting DecΠj (c
∗
j) to Zj and DecΠj (PKr→j) to Z ′

j for each 1 ≤ j ≤ ℓ′ is equal to zero.
Now we define the oracleOT in as follows: OT in outputs 0 if Fℓ′(DecΠj (c

∗
j);DecΠj (PKr→j)) =

0, and outputs 1 otherwise. Then by the argument above, OT in has a non-negligible ad-
vantage as a ZPA adversary for Γ(T in). Note that OT in is in general not polynomial-time

11Note that Pr[mb∗ = 0 | b∗ = 1] = 1/|M|, which is negligible by Assumption 1.

17

computable (i.e., the computation of the values of DecΠj (c
∗
j) and DecΠj (PKr→j) would

need brute-force attacks), but it is indeed allowed in the statement of the theorem. Hence,
this oracle OT in indeed satisfies the desired condition.

7.3 Overall Strategy: Hybrid Argument

Here we summarize the overall strategy for the remaining proof. First, for each security
parameter k, we choose an ordering of the nodes in the circuit Ck with the property that
there are no paths in Ck from a node appearing later to a node appearing earlier (with
respect to the ordering). Note that this can be done in polynomial time, since C itself is
polynomial-time constructible (in particular, the number of nodes in Ck is polynomially
bounded). Let ρ denote the total number of the oracle nodes OT in in Ck; hence ρ is
polynomially bounded as well.

From now, we construct a sequence of circuits C0
k := Ck, C

1
k , . . . , C

ρ
k recursively, in

the following manner. To construct Cρ′

k for each ρ′ = 1, 2, . . . , ρ, we modify the previous

circuit Cρ′−1
k by replacing the ρ′-th oracle node OT in with another node O′

T in determined

later. By the definition, the input distribution for the OT in in Cρ′−1
k is identical to that

for the O′
T in in Cρ′

k ; we construct O′
T in in such a way that the output distribution of the

O′
T in is statistically close to that of the OT in . This implies that the output distributions

of Cρ′−1
k and Cρ′

k are also statistically close; hence, since ρ is polynomially bounded, the
output distributions of Ck = C0

k and Cρ
k are statistically close as well. We also show

that the output of Cρ
k is independent of the challenge bit b∗ in the ZPA game for Γ(T out);

this implies that Cρ
k has zero advantage as a ZPA adversary for Γ(T out), therefore the

advantage of Ck is negligible by the argument above. This is a contradiction, which will
complete the proof of Theorem 4. This is the outline of our proof.

In the remaining part of the proof, we sometimes associate a superscript “in” or “out”
to an object related to the inner schemes Γ(T in) or the outer scheme Γ(T out), respectively,
when we want to clarify which of them the object is associated.

7.4 Expressions of Plaintexts for the Ciphertexts

Before constructing O′
T in mentioned above, we give some preliminary argument on the

behaviors of plaintexts corresponding to the ciphertexts in the circuit Ck.
Let X denote the set of plaintexts appearing in the whole construction of the challenge

in the ZPA game for Γ(T out) which is the input for Ck (see below for examples). Then for
each ciphertext for some building-block scheme which is a component of the input for Ck,
denoted here by γout, the plaintext for γout is a polynomial in elements of X , denoted by
F [γout]. More precisely, we have the following:

• For the case T out = Tℓout (see Example 1 for the notations for the tree Tℓ), X consists
of SKr→j for 1 ≤ j ≤ ℓout, sj for 1 ≤ j ≤ ℓout − 1, and mb∗ . We have

F [PKout
r→j] = SKr→j for 1 ≤ j ≤ ℓout ,

F [c∗j out] = sj · SKr→j for 1 ≤ j ≤ ℓout − 1 ,

F [c∗ℓ out] = (mb∗ −
ℓout−1∑
j=1

sj) · SKr→ℓout .

18

• For the case T out = T § (see Example 2 for the notations for the tree T §), X consists
of SKr→1, SKr→2, SK2→3, SK2→4, spk, s1, s2 and mb∗ . We have

F [PKout
r→1] = SKr→1 ,

F [PKout(1)
r→2] = spk · SK2→3 ,

F [PKout(2)
r→2] = (SKr→2 − spk) · SK2→4 ,

F [PKout
2→3] = SK2→3 ,

F [PKout
2→4] = SK2→4 ,

F [c∗1out] = s1 · SKr→1 ,

F [c∗3out] = ((mb∗ − s1)spk + s2) · SK2→3 ,

F [c∗4out] = ((mb∗ − s1)(SKr→2 − spk)− s2) · SK2→4 .

From now, we associate to each edge of Ck of ciphertext-type a collection m⃗ =
(m[γ̃out])γ̃out of elements m[γ̃out] ∈M, which we call a coefficient vector. Here, the index
γ̃out is either a ciphertext component γout of the input for Ck as above, or a symbol “const”
(which means “constant term”). Given a coefficient vector m⃗, we define an element m⃗ · F
ofM by

m⃗ · F :=
∑
γ̃out

m[γ̃out] · F [γ̃out] =
∑
γout

m[γout] · F [γout] +m[const] ,

where we set F [const] := 1 for simplifying the notation. We define the coefficient vectors
recursively in such a way that the following holds:

Lemma 3. Let m⃗ be a coefficient vector associated to an edge of Ck of type ciphertext.
Then the plaintext corresponding to the ciphertext carried by the edge is equal to m⃗ · F .
Moreover, if it is a ciphertext for buliding-block scheme Π, then we have m[γout] = 0 for
any component γout of the input for Ck which is a ciphertext for a building-block scheme
other than Π.

To define the coefficient vectors m⃗ recursively, first, if the edge is an outgoing edge of
an input node corresponding to a component γout of the input for Ck, then we define m⃗
by m[γout] := 1 and m[γ̃out] := 0 for any γ̃out ̸= γout. Then we have m⃗ · F = F [γout],
therefore Lemma 3 holds for this case by the definition of F [γout]. For the remaining cases,
the definition is as follows:

• For the case that the edge is an outgoing edge of an EncΠ node with input (m′; r),
we define m⃗ by m[const] := m′ and m[γout] := 0 for any γout.12 Then we have
m⃗ · F = m′, therefore Lemma 3 holds for this case.

12As mentioned in Section 6, if the bit sequence m′ does not represent a correct plaintext, then the
output of the node is defined to be a random ciphertext of a uniformly random plaintext. Accordingly, we
define m⃗ in this case by m[const]←R M and m[γout] := 0 for any γout; now Lemma 3 holds for this case.

19

• For the case that the edge is an outgoing edge of an AddΠ node with input (c′, c′′),
suppose that coefficient vectors m⃗′ and m⃗′′ are associated to the incoming edges
for the two input components c′ and c′′, respectively, and Lemma 3 holds for these
incoming edges. Then we define m⃗ to be the component-wise addition of m⃗′ and m⃗′′.
Now we have m⃗ · F = m⃗′ · F + m⃗′′ · F , while c′ and c′′ are ciphertexts of plaintexts
m⃗′ · F and m⃗′′ · F , respectively, by the choice of m⃗′ and m⃗′′. Hence Lemma 3 holds
for this case (note that the latter part of the claim is also satisfied, since c′ and c′′

are also ciphertexts for the same scheme Π).

• For the case that the edge is an outgoing edge of a MultΠ node with input (m′, c′′),
suppose that a coefficient vector m⃗′′ is associated to the incoming edge for the input
component c′′, and Lemma 3 holds for this incoming edge. Then we define m⃗ to be
the scalar multiplication m′ · m⃗′′ to the vector m⃗′′ by m′.13 Now we have m⃗ · F =
m′ · (m⃗′′ · F), while c′′ is a ciphertext of plaintext m⃗′′ · F by the choice of m⃗′′. Hence
Lemma 3 holds for this case (note that the latter part of the claim is also satisfied,
since c′ is also a ciphertext for the same scheme Π).

• For the case that the edge is an outgoing edge of a RerandΠ node with input (c′; r),
suppose that a coefficient vector m⃗′ is associated to the incoming edge for the input
component c′, and Lemma 3 holds for this incoming edge. Then we define m⃗ by
m⃗ := m⃗′; now Lemma 3 holds for this case, since the algorithm RerandΠ does not
change the plaintext corresponding to the ciphertext.

• For the case that the edge is an outgoing edge of a SwitchΠ node with input (c′, c′′; b),
suppose that coefficient vectors m⃗′ and m⃗′′ are associated to the incoming edges for
the two input components c′ and c′′, respectively, and Lemma 3 holds for these
incoming edges. Then we define m⃗ by m⃗ := m⃗′ if b = 0 and m⃗ := m⃗′′ if b = 1; now
Lemma 3 holds for this case.

Summarizing the arguments above, it follows that Lemma 3 holds. We also note that the
overhead of the computational cost to calculate the coefficient vectors for all those edges,
in addition to the original execution of the circuit Ck, is polynomially bounded, since the
process above to determine the coefficient vector for a new edge is efficient.

7.5 Definition of the Auxiliary Oracles

To proceed the recursive construction of Cρ′

k for ρ′ = 1, 2, . . . , ρ, we describe the construc-

tion of the new oracle O′(ρ′) = O′
T in which replaces the ρ′-th oracle node OT in in Cρ′−1

k .
We construct these oracles O′

T in in such a way that the following holds:

Lemma 4. In the circuit Cρ
k , the coefficient vector associated to each edge of ciphertext-

type is independent of the values of the plaintexts in the set X defined above, and the bit
carried by each edge of bit-type is independent of the values of the plaintexts in X .

Once Lemma 4 is proven, the bit carried by the incoming edge of the output node,
which is the output of Cρ

k , is independent of the values of the plaintexts in X ; in particular,
it is independent of the challenge plaintext mb∗ . This implies that the output of Cρ

k is
independent of the challenge bit b∗ in the ZPA game for Γ(T out), as desired.

13By the same reason as the case of EncΠ node, if the bit sequence m′ does not represent a correct
plaintext, then we define m⃗ by m[const]←R M and m[γout] := 0 for any γout.

20

To prove Lemma 4, first we note that for each node of Cρ
k other than the oracle nodes,

if the claim of Lemma 4 holds for all the incoming edges, then the claim also holds for
the outgoing edges by the definitions of the nodes and the coefficient vectors. Therefore,
it suffices to show the following property:

Lemma 5. For each oracle node O′
T in in Cρ

k , if the claim of Lemma 4 holds for any
outgoing edge of every node in Cρ

k which precedes O′
T in in Cρ

k (with respect to the ordering
of nodes specified in Section 7.3), then the claim of Lemma 4 also holds for any outgoing
edge of O′

T in.

First we note that, by the choice of the ordering of nodes mentioned in Lemma 5, any
incoming edge for the node O′

T in is an outgoing edge of a node which precedes O′
T in with

respect to the ordering of nodes. Therefore, in the situation of Lemma 5, the coefficient
vector associated to each incoming edge for the node O′

T in is independent of the values of
the plaintexts in X . Moreover, if O′

T in is the ρ′-th oracle node (1 ≤ ρ′ ≤ ρ), then the input

distribution for O′
T in in Cρ

k is identical to that in Cρ′

k . From now, we focus on the circuit

Cρ′−1
k and construct the oracle O′

T in which replaces the ρ′-th oracle node OT in in Cρ′−1
k .

Let ℓin ≥ 1 denote the number of leaves of T in; T in = Tℓin .
In the setting, OT in is a ZPA adversary for Γ(Tℓin); let c∗j

in and PKin
r→j (1 ≤ j ≤ ℓin)

denote the components of the input for OT in mentioned in Section 7.2. For γin = c∗j
in and

γin = PKin
r→j , let m⃗[γin] = (m[γin; γ̃out])γ̃out denote the coefficient vector associated to the

incoming edge corresponding to the input component γin for OT in . Then by Lemma 3,
the plaintext for the ciphertext γin is m⃗[γin] · F . Therefore, OT in outputs 0 if the value of
the polynomial Φ in the elements of X defined by

Φ := Fℓin(m⃗[c∗j
in] · F ; m⃗[PKin

r→j] · F)

(see Section 7.2 for the definition of the polynomial Fℓin) becomes 0 when the actual values
of plaintexts in X are substituted, and OT in outputs 1 otherwise.

We define O′
T in in such a way that it outputs 0 if Φ = 0 as a polynomial (i.e., all the

coefficients of Φ are zero), and outputs 1 otherwise. Now note that the coefficients of Φ
are determined from the coefficient vectors m⃗[γin]. Hence, by the argument above, the
coefficients of Φ are independent on the values of plaintexts in X ; therefore the output of
O′

T in is also independent of the values of plaintexts in X . This proves Lemma 5, which
implies as mentioned above that the output of the circuit Cρ

k is independent of the challenge
bit b∗ in the ZPA game for Γ(T out). We also note that the polynomial Φ can be computed in
polynomial time; indeed, each coefficient vector is efficiently computable, while Φ involves
a constant number (depending solely on T out) of variables and has a polynomially bounded
degree (since ℓin is polynomially bounded, owing to the property that Ck is polynomial-
time constructible), therefore Φ has only a polynomially many terms. Hence, O′

T in can be
computed in polynomial time.

7.6 Evaluation of Statistical Distances: Preliminaries

By the results above, our remaining task is to show that the statistical distance between the
output distributions of OT in and O′

T in is bounded by a negligible value, which is common
for all OT in . First we note that, if O′

T in outputs 0 (i.e., Φ = 0 as a polynomial) for a given
input, then OT in also outputs 0 (i.e., the value of Φ becomes zero when the actual values
of plaintexts in X is substituted) for the same input. Therefore, it suffices to bound the

21

probability that O′
T in outputs 1 but OT in outputs 0, i.e., Φ is a non-zero polynomial but

its value becomes zero.
We note that, by the definition of Γ(T out), the value of each plaintext in X is chosen

uniformly at random from either M or M×. Now, to bound the probability above, we
present the following lemma:

Lemma 6. Let g(t1, . . . , tn) be any non-zero polynomial of degree deg(g) over the ringM
in n variables t1, . . . , tn. Then the number of zeroes a⃗ = (a1, . . . , an) of g, i.e., a⃗ ∈ Mn

with g(a1, . . . , an) = 0, is at most n · deg(g)|M|n−1(|M| − |M×|).

Proof. First we consider the case n = 1. By the polynomial remainder theorem, we can
decompose g(t) as g(t) = (t − a1) · · · (t − ad)h(t) in such a way that 0 ≤ d ≤ deg(g),
a1, . . . , ad ∈ M and the non-zero polynomial h(t) overM has no zeroes inM. Then for
each zero b ∈M of g, we have (b− a1) · · · (b− ad)h(b) = 0, while h(b) ̸= 0 by the choice of
h. Therefore, at least one of b − ai is not invertible inM. This implies that the number
of such b is at most d(|M| − |M×|) ≤ deg(g)(|M| − |M×|), as desired.

From now, we consider the case n ≥ 2. We focus on the variable tn and take the
coefficient g† of the highest power of tn in g, therefore g† is a non-zero polynomial overM
in variables t1, . . . , tn−1 having degree at most deg(g). By induction on n, the number of
a⃗ ∈ Mn−1 satisfying g†(a1, . . . , an−1) = 0 is at most deg(g)(n − 1)|M|n−2(|M| − |M×|).
On the other hand, for each (a1, . . . , an−1) ∈ Mn−1 with g†(a1, . . . , an−1) ̸= 0, the non-
zero polynomial g(a1, . . . , an−1, tn) overM in a single variable tn of degree at most deg(g)
has at most deg(g)(|M| − |M×|) zeroes. Therefore, the number of zeroes a⃗ ∈ Mn of g
satisfying g†(a1, . . . , an−1) ̸= 0 is at most |M|n−1 ·deg(g)(|M|−|M×|). Hence the number
of zeroes of g is at most

|M| · deg(g)(n− 1)|M|n−2(|M| − |M×|) + |M|n−1 · deg(g)(|M| − |M×|)
≤ deg(g) · n · |M|n−1(|M| − |M×|) ,

concluding the proof of Lemma 6.

By Lemma 6, when a uniformly random element of either M or M× is substituted
into each variable tj of a polynomial g in the statement of Lemma 6, the probability that
the value of g becomes zero is not larger than

n · deg(g)|M|n−1(|M| − |M×|)
|M×|n

= n · deg(g)
(
|M|
|M×|

)n−1(|M|
|M×|

− 1

)
= n · deg(g) 1− |M×|/|M|

(1− (1− |M×|/|M|))n
,

which is negligible if both n and deg(g) are polynomially bounded (since 1 − |M×|/|M|
is negligible by Assumption 1).

Now note that the number of variables in Φ (i.e., |X |) and the degree of Φ are both
polynomially bounded, since Ck is polynomial-time constructible. Then by the previous
paragraph, in the case of the challenge bit b∗ = 1 (i.e., mb∗ is uniformly random), if Φ ̸= 0
as a polynomial, then the probability that its value becomes zero is negligible.14 On the
other hand, in the other case b∗ = 0 (i.e., mb∗ = 0), if the polynomial Φ′ := Φ|mb∗=0 is non-
zero, then the probability that its value becomes zero is negligible as well. Therefore, the
remaining task is to show the following: The probability that Φ ̸= 0 but Φ′ = Φ|mb∗=0 = 0
as polynomials is negligible.

14Here we used the fact that the coefficients of Φ are independent of the values of plaintexts in X .

22

7.7 Properties of Polynomials for Plaintexts

To evaluate the probability specified above, here we investigate some properties of the
polynomials F [γout] introduced in Section 7.4, which are used in the construction of Φ.

Here we note that the study of polynomials over M for the case that M is a field is
much easier than the general case, mainly due to the fact that the polynomial ring (with
a finite number of variables) over a field is a unique factorization domain (UFD), hence
any irreducible polynomial g is also a prime polynomial, i.e., if g divides the product f1f2
of two polynomials, then g also divides one of f1 and f2 (see e.g., [5]). In order to reduce
the argument in the general case to the special case that M is a field, we fix a maximal
ideal m of the (finite commutative) ringM and let F :=M/m be the quotient ring, which
is now a finite field by the maximality of m (see e.g., [5]). Let φ : M → F denote the
quotient map. Note that, for any m ∈M×, φ(m) is also an invertible element of F, hence
φ(m) ̸= 0. We emphasize that it is not required in the following argument that such
F =M/m and φ are efficiently computable. For any coefficient vector m⃗, let φ(m⃗) denote
the vector obtained by taking the image of every component of m⃗ by φ. Moreover, for any
polynomial Ψ overM, let φ(Ψ) denote the polynomial over F given by applying the map
φ to every coefficient of Ψ.

In our argument below, the (ir)reducibility of polynomials of the form φ(m⃗ · F)|mb∗=0

plays a key role. First, we present the following lemma:

Lemma 7. Let t1, . . . , tn be distinct variables, and let f0, f1, . . . , fn be polynomials over the
field F which do not involve the variables t1, . . . , tn. If f := f0+

∑n
j=1 fjtj is reducible (i.e.,

having a divisor which is not a scalar multiple of itself), then the polynomials f0, . . . , fn
have a non-constant common divisor.

Proof. Since f is reducible, we have f = h0 · h1 for some non-constant polynomials h0
and h1. For each index 1 ≤ j ≤ n with fj ̸= 0, the variable tj has degree one in f by
the assumption. Since f is a polynomial over the field F, it follows that either h0 or h1,
say hij , has degree zero with respect to tj , and the other polynomial h1−ij has degree one
with respect to tj . Now the coefficient of tj in f , which is fj ̸= 0 by the assumption, is a
multiple of hij . Therefore, by the assumption on fj , the polynomial hij does not involve
the variables t1, . . . , tn; while h1−ij involves the variable tj as above. This implies that the
index ij ∈ {0, 1} must be common for all 1 ≤ j ≤ n with fj ̸= 0, therefore the non-constant
polynomial hij is a divisor of every f1, . . . , fn. Moreover, since f is a multiple of hij , now
hij is also a divisor of f −

∑n
j=1 fjtj = f0. Hence Lemma 7 holds.

We introduce an auxiliary terminology; we say that a coefficient vector m⃗ is invertible,
if every non-zero component of m⃗ is invertible inM. Now we introduce the following clas-
sification of non-zero invertible coefficient vectors m⃗, which will be used in our argument:

Type I The polynomial φ(m⃗ · F)|mb∗=0 is reducible.

Type II For some non-zero invertible coefficient vector m⃗′, the polynomial φ(m⃗·F)|mb∗=0

divides φ(m⃗′ · F)|mb∗=0 but is not a scalar multiple of φ(m⃗′ · F)|mb∗=0.

Type III Otherwise.

Then we have the following:

Lemma 8. The coefficient vectors m⃗ of types I and II are as listed in Tables 1 and 2.

23

Table 1: Coefficient vectors m⃗ of type I and type II in Lemma 8, when T out = Tℓout (here
the last column means that every component m[γ̃out] of m⃗ with index γ̃out not listed there
is equal to zero)

type indices γ̃out for possibly non-zero components

I I-i c∗i
out, PKout

r→i

(ℓout ≥ 2, 1 ≤ i ≤ ℓout) (m[c∗i
out] ̸= 0)

I-0 c∗1
out, PKout

r→1, c
∗
2
out, PKout

r→2

(ℓout = 2) (φ(m[c∗1
out]) = −αφ(m[c∗2

out]) ̸= 0 and

φ(m[PKout
r→1]) = αφ(m[PKout

r→2]) for some α ∈ F \ {0})

II (ℓout ≥ 2) PKout
r→i (1 ≤ i ≤ ℓout, m[PKout

r→i] ̸= 0)

const (m[const] ̸= 0)

(ℓout = 2) PKout
r→1, PK

out
r→2 (m[PKout

r→1],m[PKout
r→2] ̸= 0)

Table 2: Coefficient vectors m⃗ of type I and type II in Lemma 8, when T out = T § (here
the last column means that every component m[γ̃out] of m⃗ with index γ̃out not listed there
is equal to zero)

type indices γ̃out for possibly non-zero components

I I-1 PKout
r→1, c

∗
1
out (m[c∗1

out] ̸= 0)

I-2 PKout
2→3, PK

out(1)
r→2 , c∗3

out (m[PK
out(1)
r→2] ̸= 0 or m[c∗3

out] ̸= 0)

I-3 PKout
2→4, PK

out(2)
r→2 , c∗4

out (m[PK
out(2)
r→2] ̸= 0 or m[c∗4

out] ̸= 0)

II PKout
e (e = (r → 1), (2→ 3) or (2→ 4), m[PKout

e] ̸= 0)

const (m[const] ̸= 0)

Proof. Since m⃗ is invertible, we have φ(m[γ̃out]) ̸= 0 for any non-zero component m[γ̃out]
of m⃗. First we note that, if m[const] is the only non-zero component of m⃗, then m⃗ is of
type II (since m⃗ · F is a constant), as listed in Tables 1 and 2. From now, we consider the
other case that some component of m⃗ other than m[const] is non-zero. In this case, if m⃗
is of type II, then the coefficient vector m⃗′ in the definition of type II is of type I.

We divide the argument into the following three cases.

Case 1: T out = T2. In this case, we have

m⃗ · F|mb∗=0 = m[const] +m[c∗1
out] · s1 · SKr→1 +m[PKout

r→1] · SKr→1

−m[c∗2
out] · s1 · SKr→2 +m[PKout

r→2] · SKr→2 .

If m⃗ is of type I, then by Lemma 7 applied to the variables SKr→1 and SKr→2, the
three polynomials φ(m[const]), φ(m[c∗1

out]) · s1 + φ(m[PKout
r→1]) and −φ(m[c∗2

out]) · s1 +
φ(m[PKout

r→2]) have a non-constant common divisor (hence each polynomial is not constant
unless it is zero). In particular, φ(m[const]) must be zero, and for each j ∈ {1, 2}, we have
φ(m[PKout

r→j]) = 0 whenever φ(m[c∗j
out]) = 0.

For each j ∈ {1, 2}, if φ(m[c∗j
out]) = φ(m[PKout

r→j]) = 0, then we have φ(m[c∗3−j
out]) ̸= 0

24

since m⃗ is non-zero. This case is listed as “type I-i” with i = 3− j in Table 1; note that,
in such a case, φ(m⃗ · F)|mb∗=0 is indeed reducible, therefore m⃗ is indeed of type I.

For the other case that φ(m[c∗j
out]) ̸= 0 for any j ∈ {1, 2}, φ(m[c∗1

out])·s1+φ(m[PKout
r→1])

and −φ(m[c∗2
out]) · s1 + φ(m[PKout

r→2]) are of degree one and have a non-constant common
divisor. This is possible only when these two polynomials are constant multiple of each
other. This case is listed as “type I-0” in Table 1; note that, in such a case, φ(m⃗ ·F)|mb∗=0

is indeed reducible, therefore m⃗ is indeed of type I.
Moreover, as mentioned above, if m⃗ is of type II, then φ(m⃗ · F)|mb∗=0 is a divisor of

φ(m⃗′ · F)|mb∗=0 for some m⃗′ of type I. Now the result above on type I implies that the
possibilities of m⃗ are as listed in Table 1. Hence, the claim holds for Case 1.

Case 2: T out = Tℓout with ℓout ̸= 2. In this case, we have

m⃗ · F|mb∗=0 = m[const] +
ℓout−1∑
j=1

(m[c∗j
out] · sj · SKr→j +m[PKout

r→j] · SKr→j)

−m[c∗ℓout
out] ·

ℓout−1∑
j=1

sj

 · SKr→ℓout +m[PKout
r→ℓout] · SKr→ℓout .

If m⃗ is of type I, then by Lemma 7 applied to the variables SKr→j for 1 ≤ j ≤ ℓout,
the polynomials φ(m[const]), φ(m[c∗j

out]) · sj + φ(m[PKout
r→j]) for 1 ≤ j ≤ ℓout − 1, and

−φ(m[c∗ℓout
out]) ·

∑ℓout−1
j=1 sj +φ(m[PKout

r→ℓout]) have a non-constant common divisor (hence

each polynomial is not constant unless it is zero). This does not happen when ℓout = 1,
since m⃗ is non-zero. From now, we consider the case ℓout > 2. In this case, the argument
above implies that m[const] = 0 and only one of the remaining ℓout polynomials above,
say j-th with 1 ≤ j ≤ ℓout, is non-zero. Now we have φ(m[c∗j

out]) ̸= 0; this case is listed
as “type I-i” with i = j in Table 1. Note that, in such a case, φ(m⃗ · F)|mb∗=0 is indeed
reducible, therefore m⃗ is indeed of type I.

Moreover, as mentioned above, if m⃗ is of type II, then φ(m⃗ · F)|mb∗=0 is a divisor of
φ(m⃗′ · F)|mb∗=0 for some m⃗′ of type I. Now the result above on type I implies that the
possibilities of m⃗ are as listed in Table 1. Hence, the claim holds for Case 2.

Case 3: T out = T §. In this case, we have

m⃗ · F|mb∗=0 = m[const] +
(
m[PKout

r→1] +m[c∗1
out] · s1

)
· SKr→1

+
(
m[PKout

2→3] +m[PK
out(1)
r→2] · spk +m[c∗3

out] · (−s1 · spk + s2)
)
· SK2→3

+
(
m[PKout

2→4] +m[PK
out(2)
r→2] · (SKr→2 − spk) +m[c∗4

out](−s1 · (SKr→2 − spk)− s2)
)
· SK2→4 .

If m⃗ is of type I, then by applying Lemma 7 to the variables SKr→1, SK2→3 and SK2→4

similarly to Case 2 above, it follows that m[const] = 0, precisely one of the three polyno-

mials m[PKout
r→1]+m[c∗1

out] ·s1, m[PKout
2→3]+m[PK

out(1)
r→2] ·spk+m[c∗3

out] · (−s1 ·spk+s2) and

m[PKout
2→4] +m[PK

out(2)
r→2] · (SKr→2 − spk) +m[c∗4

out](−s1 · (SKr→2 − spk)− s2) is non-zero,
and the non-zero polynomial is not constant. These cases are listed in Table 2, where
“type I-1”, “type I-2” and “type I-3” correspond to the cases that the first, the second
and the third polynomials above are non-zero, respectively. Note that, in such a case,
φ(m⃗ · F)|mb∗=0 is indeed reducible, therefore m⃗ is indeed of type I.

Moreover, as mentioned above, if m⃗ is of type II, then φ(m⃗ · F)|mb∗=0 is a divisor of
φ(m⃗′ · F)|mb∗=0 for some m⃗′ of type I. Now the result above on type I implies that the
possibilities of m⃗ are as listed in Table 2. Hence, the claim holds for Case 3.

25

This completes the proof of Lemma 8.

By using Lemma 8, we give another key property in our argument below:

Lemma 9. Let m⃗ be a non-zero invertible coefficient vector, which is either of type I except
type I-0 for T out = T2 (see Table 1), or of type III. Let γ̃out0 be an index with m[γ̃out0] ̸= 0.
Then for any collection of non-zero invertible coefficient vectors m⃗(i), 1 ≤ i ≤ n, which is
not of type I-0 for Γout = Γ2, if φ(m⃗ · F)|mb∗=0 divides

∏n
i=1 φ(m⃗

(i) · F)|mb∗=0, then there
exists an index 1 ≤ h ≤ n satisfying that, for each index γ̃out,

φ

(
m(h)[γ̃out]− m(h)[γ̃out0]

m[γ̃out0]
·m[γ̃out]

)
= 0 .

Proof. First, we consider the case that m⃗ is of type III. Then the polynomial φ(m⃗·F)|mb∗=0

is irreducible (hence is a prime polynomial, as mentioned above), therefore it divides some
φ(m⃗(h) ·F)|mb∗=0. Since m⃗ is not of type II, we have φ(m⃗(h) ·F)|mb∗=0 = γ ·φ(m⃗ ·F)|mb∗=0

for some γ ∈ F, therefore φ(m(h)[γ̃out0]/m[γ̃out0]) = γ and φ(m(h)[γ̃out]) = γ ·φ(m[γ̃out]) for
every index γ̃out. Hence the claim holds in this case.

From now, we consider the other case that m⃗ is of type I except type I-0 for T out = T2.
First, we suppose that T out = Tℓout , ℓ

out ≥ 2. Let the type of m⃗ be type I-i. Set

f :=

{
φ(m[c∗i

out])si + φ(m[PKout
r→i]) if 1 ≤ i ≤ ℓout − 1 ,

−φ(m[c∗ℓout
out]

∑ℓout−1
j=1 sj + φ(m[PKout

r→ℓout]) if i = ℓout .

Then f is an irreducible (hence prime) polynomial and is a non-constant divisor of φ(m⃗ ·
F)|mb∗=0 (see Table 1). Therefore, f divides some φ(m⃗(h) ·F)|mb∗=0. Now by the shape of
these polynomials, f is not a scalar multiple of φ(m⃗(h) ·F)|mb∗=0, therefore m⃗

(h) is of type
I. Since neither m⃗ nor m⃗(h) is of type I-0 for T out = T2 by the assumption, the existence
of such a common divisor f implies (by Table 1) that φ(m⃗(h) · F)|mb∗=0 must be a scalar
multiple of φ(m⃗ · F)|mb∗=0. Now the claim follows by the same argument as the previous
paragraph.

On the other hand, we suppose that T out = T §. Let the type of m⃗ be type I-i. Set

f :=


φ(m[PKout

r→1])− φ(m[c∗1
out]) · s1 if i = 1 ,

φ(m[PKout
2→3]) + φ(m[PK

out(1)
r→2]) · spk + φ(m[c∗3

out]) · (−s1 · spk + s2) if i = 2 ,

φ(m[PKout
2→4]) + φ(m[PK

out(2)
r→2]) · (SKr→2 − spk)

+φ(m[c∗4
out])(−s1 · (SKr→2 − spk)− s2) if i = 3 .

Then f is a non-constant divisor of φ(m⃗ · F)|mb∗=0. Now the same argument as the
previous paragraph (using Table 2 instead of Table 1) implies that some φ(m⃗(h) ·F)|mb∗=0

must be a scalar multiple of φ(m⃗ · F)|mb∗=0, therefore the claim holds. Hence the proof
of Lemma 9 is concluded.

7.8 Evaluation of the Probability: Overall Strategy

We come back to the evaluation of the probability that Φ ̸= 0 but Φ′ = Φ|mb∗=0 = 0 as
polynomials, using the results above. The overall strategy is as follows: We construct a
PPT algorithm D of the following form. The input for D is the security parameter k,
and its output is one of ⊤, ⊥ and an element ofM\ (M× ∪ {0}). For some subroutines
D′

1, . . . ,D′
ρ specified later, the algorithm D proceeds as follows:

26

1. Generate a challenge for the ZPA game for Γ(T out).

2. Choose an index 1 ≤ ρ′ ≤ ρ uniformly at random.

3. Calculate the collection, denoted by ⃗⃗m, of coefficient vectors m⃗[γin] = (m[γin; γ̃out])γ̃out

associated to the input components γin for the ρ′-th oracle O′
T in , by emulating the

circuit Cρ
′

k with the challenge above as input.

4. Execute the subroutine D′
ρ′ with input (pk, ⃗⃗m), and output the output of D′

ρ′ .

We will construct the subroutines D′
ρ′ to satisfy the following conditions:

1. If D′
ρ′ outputs ⊤, then Φ = 0 as a polynomial.

2. If D′
ρ′ outputs ⊥, then Φ|mb∗=0 ̸= 0 as a polynomial.

Then the probability that Φ ̸= 0 but Φ|mb∗=0 = 0 as polynomials, considered in the case
of the ρ′-th oracles OT in and O′

T in , does not exceed the probability that D′
ρ′ outputs an

element ofM\ (M×∪{0}), hence does not exceed ρ times the probability that D outputs
an element ofM\ (M× ∪ {0}) (in particular, the bound is independent of ρ′). Moreover,
the latter probability is negligible, by Assumption 2 and the assumption here that D is
PPT. Since ρ is polynomially bounded, it will follow that the probability that Φ ̸= 0 but
Φ|mb∗=0 = 0 as polynomials is negligible, which will complete the proof of Theorem 4.

From now, we define the subroutine D′ = D′
ρ′ as follows, where we set T in = Tℓin :

1. If m[γin; γ̃out] ∈ M \ (M× ∪ {0}) for some indices γin and γ̃out, then output the
element ofM\ (M× ∪ {0}) and halt.

2. If m⃗[PKin
r→j] is the zero vector 0⃗ for some 1 ≤ j ≤ ℓin, then:

(a) If m⃗[PKin
r→j′] ̸= 0⃗ for every 1 ≤ j′ ≤ ℓin with j′ ̸= j and m⃗[c∗j

in] ̸= 0⃗, then
output ⊥ and halt.

(b) Otherwise, output ⊤ and halt.

3. For each 1 ≤ j ≤ ℓin, if m[PKin
r→j ; γ̃

out] ̸= 0 for some index γ̃out ̸= const, then choose
such an index γ̃j

out := γ̃out; otherwise, set γ̃j
out := const. Moreover, perform the

replacement

m⃗[c∗j
in]← 1

m[PKin
r→j ; γ̃j

out]
· m⃗[c∗j

in] , m⃗[PKin
r→j]←

1

m[PKin
r→j ; γ̃j

out]
· m⃗[PKin

r→j] .

4. Initialize a set I by I := {1, 2, . . . , ℓin}, and set m⃗I [c∗j
in] := m⃗[c∗j

in] for each j ∈ I.

5. Repeat, until |I| becomes 1, the following (referred to as the “first-level loop”):

(a) If mI [c∗j
in; γ̃out] ∈ M \ (M× ∪ {0}) for some j ∈ I and an index γ̃out, then

output the element ofM\ (M× ∪ {0}) and halt.

(b) Repeat the following for each j ∈ I (referred to as the “second-level loop”):

27

i. If for some index γ̃out, we have

m[PKin
r→h; γ̃

out]−m[PKin
r→h; γ̃

out
j] ·m[PKin

r→j ; γ̃
out] ∈M \ (M× ∪ {0})

for some h ∈ I \ {j}, or

mI [c∗j
in; γ̃out]−mI [c∗j

in; γ̃outj] ·m[PKin
r→j ; γ̃

out] ∈M \ (M× ∪ {0}) ,

then output this element ofM\ (M× ∪ {0}) and halt.

ii. If we have

m⃗[PKin
r→h] ̸= m[PKin

r→h; γ̃
out
j] · m⃗[PKin

r→j] for every h ∈ I \ {j}

and
m⃗I [c∗j

in] ̸= mI [c∗j
in; γ̃outj] · m⃗[PKin

r→j] ,

then replace j with the next element of I and repeat the second-level loop.

iii. If m⃗I [c∗j
in] = mI [c∗j

in; γ̃outj] · m⃗[PKin
r→j], then set I ′ := I \ {j}, choose an

element h ∈ I ′, set m⃗I′ [c∗j′
in] := m⃗I [c∗j′

in] for each j′ ∈ I ′ \ {h}, set

m⃗I′ [c∗h
in] := m⃗I [c∗h

in] +mI [c∗j
in; γ̃outj] · m⃗[PKin

r→h] ,

perform the replacement I ← I ′, and repeat the first-level loop.

iv. Set I ′ := I \ {j} and choose an element h ∈ I ′ satisfying m⃗[PKin
r→h] =

m[PKin
r→h; γ̃

out
j] · m⃗[PKin

r→j]. Then set m⃗I′ [c∗j′
in] := m⃗I [c∗j′

in] for each j′ ∈
I ′ \ {h}, set

m⃗I′ [c∗h
in] := m⃗I [c∗h

in] +m[PKin
r→h; γ̃

out
j] · m⃗I [c∗j

in] ,

perform the replacement I ← I ′, and repeat the first-level loop.

(c) Output ⊥ and halt.

6. Let j be the unique element of I. If mI [c∗j
in; γ̃out] ∈M\ (M× ∪{0}) for some index

γ̃out, then output the element ofM\ (M× ∪ {0}) and halt.

7. If m⃗I [c∗j
in] = 0⃗, then output ⊤ and halt.

8. Output ⊥ and halt.

We evaluate the computational complexity of D′. Each task in D′ can be efficiently
executed, and the number of tasks in D′ is of order O((ℓin)3) (note that the number of
indices γ̃out, which depends solely on T out, is now a constant). Since ℓin is polynomi-
ally bounded, it follows that the computational complexity of D′ is also bounded by a
polynomial (common for all D′ = D′

ρ′). Hence D is PPT, as desired.

7.9 Analysis of the Subroutine

Now the remaining task is to prove the above-mentioned relations between the output of
D′ and the polynomials Φ and Φ|mb∗=0. For the purpose, it suffices to consider the case
that D′ does not output an element ofM\ (M× ∪ {0}).

28

In the present situation, D′ does not halt at Step 1, therefore all the coefficient vectors
m⃗[γin] are invertible. Now by the definition of Φ, we have Φ = 0 (as a polynomial) if and
only if

ℓin∑
j=1

(m⃗[c∗j
in] · F)

∏
1≤h≤ℓin ;h̸=j

(m⃗[PKin
r→h] · F) = 0 , (1)

while Φ|mb∗=0 = 0 if and only if

ℓin∑
j=1

(m⃗[c∗j
in] · F|mb∗=0)

∏
1≤h≤ℓin ; h̸=j

(m⃗[PKin
r→h] · F|mb∗=0) = 0 . (2)

For Step 2, if 1 ≤ j ≤ ℓin and m⃗[PKin
r→j] = 0⃗, then (1) is equivalent to

(m⃗[c∗j
in] · F)

∏
1≤h≤ℓ ; h̸=j

(m⃗[PKin
r→h] · F) = 0 ,

which implies that

φ(m⃗[c∗j
in] · F)

∏
1≤h≤ℓ ; h̸=j

φ(m⃗[PKin
r→h] · F) = 0 .

This also implies (since the coefficient ring F is now a field) that either φ(m⃗[c∗j
in] · F) = 0

or φ(m⃗[PKin
r→h] · F) = 0 for some h ̸= j. By the shapes of polynomials F [γout], it also

follows that either φ(m⃗[c∗j
in]) = 0⃗ or φ(m⃗[PKin

r→h]) = 0⃗ for some h ̸= j. Moreover, since

the coefficient vectors are all invertible as mentioned above, we have either m⃗[c∗j
in] = 0⃗

or m⃗[PKin
r→h] = 0⃗ for some h ̸= j, which now implies (1). Summarizing, in the present

case, (1) is equivalent to that m⃗[c∗j
in] = 0⃗ or m⃗[PKin

r→h] = 0⃗ for some h ̸= j. The same

argument also implies that, in the present case, (2) is also equivalent to that m⃗[c∗j
in] = 0⃗

or m⃗[PKin
r→h] = 0⃗ for some h ̸= j. Therefore, in Step 2, D′ outputs ⊤ if and only if Φ = 0,

and D′ outputs ⊥ if and only if Φ|mb∗=0 ̸= 0, as desired.
For Step 3, we note that whether (1) holds or not is preserved by the operations in the

step, and the same also holds for (2). Therefore, owing to Step 3, we assume from now
without loss of generality that

m[PKin
r→j ; γ̃j

out] = 1 for each 1 ≤ j ≤ ℓin . (3)

We study the behavior of the first-level loop recursively. Let I0 denote the set of all
j ∈ I with γ̃j

out = const. We note that, for each j ∈ I0, we have m[PKin
r→j ; γ̃

out] = 0

for any γ̃out ̸= const and m[PKin
r→j ; const] = 1 owing to Step 3. Here we assume (as the

recursion hypothesis) that, for the index set I in the first-level loop, we have Φ = 0 if and
only if ∏

j∈{1,...,ℓin}\I

(m⃗[PKin
r→j] · F)

∑
j∈I

(m⃗I [c∗j
in] · F)

∏
j′∈I\{j}

(m⃗[PKin
r→j′] · F) = 0 , (4)

and Φ|mb∗=0 = 0 if and only if∏
j∈{1,...,ℓin}\I

(m⃗[PKin
r→j] ·F|mb∗=0)

∑
j∈I

(m⃗I [c∗j
in] ·F|mb∗=0)

∏
j′∈I\{j}

(m⃗[PKin
r→j′] ·F|mb∗=0) = 0 .

(5)
We note that the assumption is indeed satisfied at the initial choice of I = {1, . . . , ℓin}.
Moreover, we also assume (as another recursion hypothesis) the following condition:

29

(*) For each j ∈ I \ I0, let Π(T in; j) denote the building-block scheme associated to
the leaf j of T in. Then we have mI [c∗j

in; γout] = 0 and m[PKin
r→j ; γ

out] = 0 for

any ciphertext component γout of the input for Cρ′

k with Π(T out; γout) ̸= Π(T in; j),
where Π(T out; γout) ∈ S denotes the building-block scheme satisfying that γout is a
ciphertext for Π(T out; γout).

By the latter part of Lemma 3, the assumption (*) is also satisfied at the initial choice of
I = {1, . . . , ℓin}.

The key property in the analysis of D′ is the following:

Lemma 10. In the first-level loop, suppose that |I| ≥ 2 and (5) is satisfied. Then the
condition in Step 5(b)ii is not satisfied for some j ∈ I; hence, for the choice of j, the
execution of the algorithm reaches Step 5(b)iii.

Proof. First we note that, in the present case, the coefficient vectors m⃗[PKin
r→j] for 1 ≤

j ≤ ℓin and m⃗I [c∗j
in] for j ∈ I are all invertible owing to Step 5a. Therefore, the condition

(5) implies that ∑
j∈I

(m⃗I [c∗j
in] · F|mb∗=0)

∏
j′∈I\{j}

(m⃗[PKin
r→j′] · F|mb∗=0) = 0 (6)

(note that φ(m⃗[PKin
r→j]) ̸= 0⃗ for any j ∈ {1, . . . , ℓin} \ I by (3)). Moreover, now the

coefficient vectors m⃗I [c∗j
in] − mI [c∗j

in; γ̃outj] · m⃗[PKin
r→j] and m⃗[PKin

r→h] − m[PKin
r→h; γ̃

out
j] ·

m⃗[PKin
r→j] for any h ∈ I \ {j} are invertible owing to Step 5(b)i. Therefore, the claim is

equivalent to the following; for some j ∈ I, we have

φ(m⃗I [c∗j
in]) = φ(mI [c∗j

in; γ̃outj]) · φ(m⃗[PKin
r→j])

or
φ(m⃗[PKin

r→h]) = φ(m[PKin
r→h; γ̃

out
j]) · φ(m⃗[PKin

r→j]) for some h ∈ I \ {j} .

In the following argument, we use Lemma 8 and Lemma 9 (see also Tables 1 and 2).

Case 1: For some j ∈ I, m⃗[PKin
r→j] is either of type I except type I-0 for

T out = T2 or of type III. By the shape of (6), the polynomial φ(m⃗[PKin
r→j] · F)|mb∗=0

divides the product of φ(m⃗I [c∗j
in]·F)|mb∗=0 and φ(m⃗[PKin

r→j′]·F)|mb∗=0 over all j
′ ∈ I\{j}.

Now the claim above follows from Lemma 9 applied to γ̃0
out := γ̃j

out; recall (3).

Case 2: For every j ∈ I, m⃗[PKin
r→j] is of type II except the last row in Table 1

(for T out = T2). By Tables 1, 2 and (3), for each j ∈ I, we have m[PKin
r→j ; γ̃j

out] = 1 and

m[PKin
r→j ; γ̃

out] = 0 for every γ̃out ̸= γ̃j
out. Moreover, if T out = Tℓout with ℓout ̸= 2, then

γ̃j
out is either const (i.e., φ(m⃗[PKin

r→j] · F)|mb∗=0 = 1) or PKout
r→ij for some 1 ≤ ij ≤ ℓout

(i.e., φ(m⃗[PKin
r→j] · F)|mb∗=0 = SKr→ij); while if T out = T §, then γ̃j

out is either const (i.e.,

φ(m⃗[PKin
r→j] · F)|mb∗=0 = 1) or PKout

ej for some ej ∈ {(r → 1), (2 → 3), (2 → 4)} (i.e.,

φ(m⃗[PKin
r→j] · F)|mb∗=0 = SKej). Hence, the claim holds if γ̃j

out = γ̃j′
out for some distinct

j, j′ ∈ I. From now, we consider the other case that all γ̃j
out for j ∈ I are different (in

particular, |I0| ≤ 1). We have the following two cases.

Case 2-1: T out = T §. In this case, for each j ∈ I \ I0, (6) implies that SKej divides

the product of φ(m⃗I [c∗j
in] ·F)|mb∗=0 and φ(m⃗[PKin

r→j′] ·F)|mb∗=0 over all j
′ ∈ I \{j}. Since

30

the indices γ̃j′
out for j′ ∈ I are all different, it follows from the shapes of φ(m⃗[PKin

r→j′] ·
F)|mb∗=0 mentioned above that SKej divides φ(m⃗I [c∗j

in] · F)|mb∗=0. This implies that

φ(m⃗I [c∗j
in] · F)|mb∗=0 = Ξj · SKej , where Ξj is defined as

Ξj =



φ(mI [c∗j
in;PKout

r→1])− φ(mI [c∗j
in; c∗1

out]) · s1 if ej = (r → 1) ,

φ(mI [c∗j
in;PKout

2→3]) + φ(mI [c∗j
in;PK

out(1)
r→2]) · spk

+φ(mI [c∗j
in; c∗3

out]) · (−s1 · spk + s2) if ej = (2→ 3) ,

φ(mI [c∗j
in;PKout

2→4]) + φ(mI [c∗j
in;PK

out(2)
r→2]) · (SKr→2 − spk)

+φ(mI [c∗j
in; c∗4

out])(−s1 · (SKr→2 − spk)− s2) if ej = (2→ 4) .

If I0 = ∅, then the equality (6) implies that

∑
j∈I

Ξj · SKej

∏
j′∈I\{j}

SKej′ =

∑
j∈I

Ξj

∏
j∈I

SKej = 0 ,

therefore we have
∑

j∈I Ξj = 0. On the other hand, if I0 consists of a unique element, say
j0, then the equality (6) implies that∑

j∈I\{j0}

Ξj · SKej

∏
j′∈I\{j,j0}

SKej′ + m⃗I [c∗j0
in] · F|mb∗=0

∏
j′∈I\{j0}

SKej′

=

 ∑
j∈I\{j0}

Ξj + m⃗I [c∗j0
in] · F|mb∗=0

 ∏
j∈I\{j0}

SKej = 0 ,

therefore we have
∑

j∈I\{j0} Ξj + m⃗I [c∗j0
in] ·F|mb∗=0 = 0. In any case, by the shape of each

polynomial, the equality above holds only when Ξj is constant for some j ∈ I \ I0. Now
the claim holds for the j ∈ I. Hence the claim holds in Case 2-1.

Case 2-2: T out = Tℓout. In this case, for each j ∈ I\I0, (6) implies that SKr→ij divides

the product of φ(m⃗I [c∗j
in] ·F)|mb∗=0 and φ(m⃗[PKin

r→j′] ·F)|mb∗=0 over all j
′ ∈ I \{j}. Since

now the indices ij′ for j′ ∈ I are all different, it follows that SKr→ij divides φ(m⃗I [c∗j
in] ·

F)|mb∗=0. By the shape of the polynomial, this implies that φ(m⃗I [c∗j
in] · F)|mb∗=0 =

ΞjSKr→ij , where Ξj is defined as

Ξj =

{
φ(mI [c∗j

in; c∗ij
out])sij + φ(mI [c∗j

in;PKout
r→ij]) if ij ̸= ℓout ,

−φ(mI [c∗j
in; c∗ℓout

out])
∑ℓout−1

h=1 sh + φ(mI [c∗j
in;PKout

r→ℓout]) if ij = ℓout .

If I0 = ∅, then the equality (6) implies that

∑
j∈I

ΞjSKr→ij

∏
j′∈I\{j}

SKr→ij′ =

∑
j∈I

Ξj

∏
j∈I

SKr→ij = 0 ,

therefore we have
∑

j∈I Ξj = 0. On the other hand, if I0 consists of a unique element, say
j0, then the equality (6) implies that∑

j∈I\{j0}

ΞjSKr→ij

∏
j′∈I\{j,j0}

SKr→ij′ + φ(m⃗I [c∗j0
in] · F)|mb∗=0

∏
j′∈I\{j0}

SKr→ij′

=

 ∑
j∈I\{j0}

Ξj + φ(m⃗I [c∗j0
in] · F)|mb∗=0

 ∏
j∈I\{j0}

SKr→ij = 0 ,

31

therefore we have
∑

j∈I\{j0} Ξj + φ(m⃗I [c∗j0
in] · F)|mb∗=0

= 0.
In any case, if Ξj is not constant for every j ∈ I \ I0, then by the shape of each

polynomial, the terms of polynomials Ξj with j ∈ I \ I0 involving any of the variables
s1, . . . , sℓout−1 should be cancelled within the sum

∑
j∈I\I0 Ξj . Since all the indices ij are

different, it follows that ij = ℓout for some j ∈ I \I0, and for each 1 ≤ h ≤ ℓout−1, the non-
zero coefficient −φ(mI [c∗j

in; c∗ℓout
out]) of sh in Ξj is cancelled by the (non-zero) coefficient

φ(mI [c∗jh
in; c∗h

out]) of sh in some Ξjh with jh ∈ I \ (I0 ∪ {j}) and ijh = h. We note that j
and these jh are all different, since ij = ℓout and ijh = h are all different, too. Now by the
condition (*), we have Π(T out; c∗ℓout

out) = Π(T in; j) and Π(T out; c∗h
out) = Π(T in; jh) for any

1 ≤ h ≤ ℓout− 1. This means that, for each leaf of T out = Tℓout , the building-block scheme
associated to the leaf is equal to the one associated to a leaf of T in = Tℓin , and the latter
leaves are all different. This implies that T out ⪯ T in, which contradicts the condition for
T in in the statement of Theorem 4.

By the previous paragraph, it follows that Ξj is constant for some j ∈ I \ I0. Now the
claim holds for the j ∈ I. Hence the claim holds in Case 2-2, therefore in Case 2.

Case 3: T out = T2, and the case is different from Cases 1 and 2. Now for each
j ∈ I, m⃗[PKin

r→j] is either of type I-0 (see Table 1) or of type II. Moreover, there is some

j0 ∈ I for which m⃗[PKin
r→j0] is either of type I-0 or as in the last row of type II in Table 1.

If m⃗[PKin
r→j0] is of type I-0, then by Table 1, we have φ(m[PKin

r→j0 ; c
∗
1
out]) ̸= 0 and

φ(m[PKin
r→j0 ; c

∗
2
out]) ̸= 0. On the other hand, if m⃗[PKin

r→j0] is as in the last row of type

II in Table 1, then we have φ(m[PKin
r→j0 ;PK

out
r→1]) ̸= 0 and φ(m[PKin

r→j0 ;PK
out
r→2]) ̸= 0. In

any case, the condition (*) implies that, for each of the two leaves v of T out = T2, the
building-block scheme Π(T out; v) associated to the leaf is the same as the building-block
scheme Π(T in; j0) associated to the leaf j0 in T in.

Now if I \ I0 contains some element j ̸= j0, then we have φ(m[PKin
r→j ; γ̃j

out]) ̸= 0 and

γ̃j
out ̸= const, therefore the condition (*) implies that Π(T in; j) = Π(T out; v) = Π(T in; j0).

By the result of the previous paragraph, this implies that T out ⪯ T in, contradicting the
condition in the statement of Theorem 4. Hence, we have I \ I0 = {j0}. Moreover, if I0
has two or more elements, then the claim holds for any j ∈ I0. From now, we consider
the other case that |I0| ≤ 1. Since |I| ≥ 2 by the halting condition of the first-level loop,
it follows that |I0| = 1 and |I| = 2; let j1 denote the unique element of I0.

Now the equality (6) implies that

φ(m⃗I [c∗j0
in] · F)|mb∗=0 + φ(m⃗I [c∗j1

in] · F)|mb∗=0 · φ(m⃗[PKin
r→j0] · F)|mb∗=0 = 0 .

By the shape of φ(m⃗[PKin
r→j0] · F)|mb∗=0 mentioned above, both SKr→1 and SKr→2 have

degree one in φ(m⃗[PKin
r→j0] · F)|mb∗=0, while both SKr→1 and SKr→2 have degree at most

one in φ(m⃗I [c∗j0
in] · F)|mb∗=0. This implies that both SKr→1 and SKr→2 have degree zero

in φ(m⃗I [c∗j1
in] · F)|mb∗=0, i.e., φ(m⃗

I [c∗j1
in] · F)|mb∗=0 is constant as well as φ(m⃗I [PKin

r→j1] ·
F)|mb∗=0. Hence the claim holds for the j1 ∈ I, therefore the claim holds in Case 3.

This completes the proof of Lemma 10.

By Lemma 10, if the algorithm D′ outputs ⊥ at Step 5c in the first-level loop with
the index set I, then the condition in (5) is not satisfied. By the assumption given before
Lemma 10, this implies that Φ|mb∗=0 ̸= 0, therefore Φ ̸= 0, as desired. From now, we
consider the other case that the execution of the second-level loop with index set I reaches
Step 5(b)iii with index j ∈ I.

32

First, we consider the case that the condition m⃗I [c∗j
in] = mI [c∗j

in; γ̃j
out] · m⃗[PKin

r→j] in
Step 5(b)iii is satisfied. Then for the element h ∈ I ′ as in Step 5(b)iii, the polynomial∑

p∈I(m⃗
I [c∗p

in] · F|mb∗=0)
∏

p′∈I\{p}(m⃗[PKin
r→p′] · F|mb∗=0) is equal to

mI [c∗j
in; γ̃j

out] · m⃗[PKin
r→j] · F|mb∗=0

∏
h′∈I\{j}

m⃗[PKin
r→h′] · F|mb∗=0

+
(
m⃗I′ [c∗h

in]−mI [c∗j
in; γ̃j

out] · m⃗[PKin
r→h]

)
· F|mb∗=0

∏
h′∈I\{h}

m⃗[PKin
r→h′] · F|mb∗=0

+
∑

j′∈I\{j,h}

m⃗I′ [c∗j′
in] · F|mb∗=0

∏
h′∈I\{j′}

m⃗[PKin
r→h′] · F|mb∗=0

= m⃗[PKin
r→j] · F|mb∗=0 ·

∑
j′∈I′

m⃗I′ [c∗j′
in] · F|mb∗=0

∏
h′∈I′\{j′}

m⃗[PKin
r→h′] · F|mb∗=0 ,

(7)

therefore the left-hand side of (5) for the index set I ′ is equal to that for the index set
I. Similarly, the left-hand side of (4) for the case of the set I ′ is equal to that for the
case of the set I. Moreover, the condition (*) for m⃗I′ [c∗h

in] is implied by the condition
(*) for m⃗I [c∗h

in] and m⃗[PKin
r→h]; the indices at which the components become zero due to

the condition (*) are common for m⃗I [c∗h
in] and m⃗[PKin

r→h]. Hence, the assumption given
before Lemma 10 is also satisfied for the case of index set I ′.

Secondly, we consider the case that the execution of the second-level loop with index
set I and index j ∈ I reaches Step 5(b)iv. Let h be an element of I ′ = I \ {j} as in Step
5(b)iv. Then

∑
p∈I m⃗

I [c∗p
in] · F|mb∗=0

∏
p′∈I\{p} m⃗[PKin

r→p′] · F|mb∗=0 is equal to(
m⃗I′ [c∗h

in]−m[PKin
r→h; γ̃j

out] · m⃗I [c∗j
in]
)
· F|mb∗=0

∏
h′∈I\{h}

m⃗[PKin
r→h′] · F|mb∗=0

+ (m⃗I [c∗j
in] · F|mb∗=0) ·m[PKin

r→h; γ̃j
out] · (m⃗[PKin

r→j] · F|mb∗=0)
∏

h′∈I\{j,h}

m⃗[PKin
r→h′] · F|mb∗=0

+
∑

j′∈I\{j,h}

m⃗I [c∗j′
in] · F|mb∗=0

∏
h′∈I\{j′}

m⃗[PKin
r→h′] · F|mb∗=0

= m⃗[PKin
r→j] · F|mb∗=0 ·

∑
j′∈I′

m⃗I′ [c∗j′
in] · F|mb∗=0

∏
h′∈I′\{j′}

m⃗[PKin
r→h′] · F|mb∗=0 ,

(8)

therefore the left-hand side of (5) for the index set I ′ is equal to that for the index set I.
Similarly, the left-hand side of (4) for the case of the set I ′ is equal to that for the case of
the set I. Moreover, for the condition (*), if h ∈ I \I0, then the component of m⃗[PKin

r→h] =
m[PKin

r→h; γ̃j
out] · m⃗[PKin

r→j] at some index γ̃out ̸= const is non-zero, therefore m⃗[PKin
r→j]

has the same property, hence j ̸∈ I0, and m[PKin
r→h; γ̃j

out] ̸= 0. Now the property j ̸∈ I0
implies that γ̃j

out ̸= const, therefore we have Π(T in; j) = Π(T out; γ̃j
out) = Π(T in;h). This

implies that the indices at which the components become zero due to the condition (*)
are common for m⃗I [c∗h

in] and m⃗I [c∗j
in]. Hence, the assumption given before Lemma 10 is

also satisfied for the case of index set I ′.
By the result above, a recursive argument implies that the desired relations between

the output of D′ and the polynomials Φ and Φ|mb∗=0 hold for the case that the execution
of D′ halts during the first-level loop; and, for the other case, after the first-level loop
which is finished by achieving the halting condition |I| = 1, say I = {j}, we have Φ = 0

33

if and only if  ∏
h∈{1,...,ℓin}\{j}

m⃗[PKin
r→h] · F

 · (m⃗I [c∗j
in] · F) = 0 , (9)

and we have Φ|mb∗=0 = 0 if and only if ∏
h∈{1,...,ℓin}\{j}

m⃗[PKin
r→h] · F|mb∗=0

 · (m⃗I [c∗j
in] · F|mb∗=0) = 0 . (10)

Moreover, since D′ does not output an element ofM\ (M× ∪ {0}), the coefficient vector
m⃗I [c∗j

in] is invertible (see Step 6) as well as the vectors m⃗[PKin
r→h]. By the property, if (9)

is satisfied, then we have either φ(m⃗[PKin
r→h] · F) = 0 for some h ∈ {1, . . . , ℓin} \ {j} or

φ(m⃗I [c∗j
in] · F) = 0, which also implies (by (3)) that φ(m⃗I [c∗j

in]) = 0⃗, hence m⃗I [c∗j
in] = 0⃗.

Conversely, the condition m⃗I [c∗j
in] = 0⃗ implies (9). Therefore, we have Φ = 0 if and only

if m⃗I [c∗j
in] = 0⃗. The same argument (using (10) instead of (9)) also implies that we have

Φ|mb∗=0 = 0 if and only if m⃗I [c∗j
in] = 0⃗. Hence, D′ outputs ⊤ at Step 7 if and only if

Φ = 0; and D′ outputs ⊥ at Step 8 if and only if Φ|mb∗=0 ̸= 0.
Summarizing, we have proven that D′ outputs ⊤ if and only if Φ = 0; and it outputs

⊥ if and only if Φ|mb∗=0 ̸= 0, as desired. This completes the proof of Theorem 4.

8 On Non-Monotonicity of Combined Security

In a generic construction of a cryptographic scheme from some building-block primitives,
it would be naively expected in general that the superiority/inferiority of building-block
primitives (in a certain sense) is monotonically inherited by the resulting scheme; namely, if
a building-block primitive is superior to some other primitive, then the scheme constructed
from the former primitive would also be superior to the one constructed from the latter
primitive. In this section, based on our results in the previous sections, we construct an
example which shows that, despite the natural expectation above, such a monotonicity in
generic constructions does not always hold.

More precisely, in this section, we construct four RMHE schemes Π1, Π2, Π3 and Π4

with the following properties, where ZPA(Π) means the ZPA security for Π, ZPA(Π) →
ZPA(Π′) means that the ZPA security for Π implies the ZPA security for Π′, and ZPA(Π) ̸→
ZPA(Π′) means that the ZPA security for Π does not imply the ZPA security for Π′ (here
the non-implication relations are considered in our proposed computational model, which
is used in our proof of Theorem 4):

• We have ZPA(Π1) ← ZPA(Π3), ZPA(Π1) ̸→ ZPA(Π3), ZPA(Π2) ← ZPA(Π4) and
ZPA(Π2) ̸→ ZPA(Π4).

• We have ZPA(Γ(Π1,Π2))→ ZPA(Γ(Π3,Π4)) and ZPA(Γ(Π1,Π2)) ̸← ZPA(Γ(Π3,Π4)),
where Γ(Π,Π′) denotes the RMHE scheme obtained by our proposed construction
indexed by the tree T2 with two building-block schemes Π,Π′ associated to the two
leaves of T2.

In other words, for our generic construction of RMHE schemes, when some building-
block schemes (Π3 and Π4 above) require strictly stronger underlying assumptions than

34

other building-block schemes (Π1 and Π2 above), the required assumption for the scheme
constructed from the former building-block schemes can even be strictly weaker than the
scheme constructed from the latter. Moreover, we also show that such an example can be
constructed even in a way that Π3 and Π4 are absolutely not ZPA secure; now the scheme
Γ(Π3,Π4) generated from primitives Π3,Π4 which are known to be insecure is even more
reliable than the scheme Γ(Π1,Π2) generated from ordinary primitives Π1,Π2.

We explain the construction of the example. Let Π′
0 and Π′

1 be any combinable RMHE
schemes with common plaintext spaceM, which satisfies Assumption 1 in Section 7. Now
we construct an RMHE scheme Λ0 in the following manner: The key pair is generated
by the joint key distribution for Π′

0 and Π′
1 introduced in Definition 5, and the plaintext

space isM2. A ciphertext of (m0,m1) ∈M2 is given by (EncΠ′
0
(m0),EncΠ′

1
(m1)), and the

decryption is performed by decrypting each component of the ciphertext by the decryption
algorithms of Π′

0 and Π′
1. The homomorphic operations are defined in a component-wise

manner as follows:

AddΛ0((c0, c1), (c
′
0, c

′
1)) := (AddΠ′

0
(c0, c

′
0),AddΠ′

1
(c1, c

′
1)) ,

MultΛ0((m0,m1), (c0, c1)) := (MultΠ′
0
(m0, c0),MultΠ′

1
(m1, c1)) ,

RerandΛ0(c0, c1) := (RerandΠ′
0
(c0),RerandΠ′

1
(c1)) .

We also define an RMHE scheme Λ1 by exchanging the order of the two components in
Λ0; i.e., a ciphertext of (m0,m1) is given by (EncΠ′

1
(m0),EncΠ′

0
(m1)).

The following property is obvious by the definition:

Lemma 11. In the setting, we have ZPA(Λi)→ ZPA(Π′
j) for any i ∈ {0, 1} and j ∈ {0, 1}.

On the other hand, we consider the RMHE scheme Γ(Λ0,Λ1) combining Λ0 and Λ1;
we note that Λ0 and Λ1 are combinable, where the joint key distribution generates the
same key pair for both Λ0 and Λ1. Namely, a public key for the scheme consists of

PK0 = (PK0,0,PK0,1) =
(
EncΠ′

0
(U(M×)),EncΠ′

1
(U(M×))

)
,

PK1 = (PK1,0,PK1,1) =
(
EncΠ′

1
(U(M×)),EncΠ′

0
(U(M×))

)
as well as public keys for Π′

0 and Π′
1, where U(X) denotes the uniform distribution on a

set X. A ciphertext of (m0,m1) ∈M2 for the scheme is a pair of ciphertexts(
RerandΠ′

0
(MultΠ′

0
(s0,PK0,0)),RerandΠ′

1
(MultΠ′

1
(s1,PK0,1))

)
for Λ0 ,(

RerandΠ′
1
(MultΠ′

1
(s′0,PK1,0)),RerandΠ′

0
(MultΠ′

0
(s′1,PK1,1))

)
for Λ1 ,

where s0, s1, s
′
0 and s′1 are randomly chosen fromM in such a way that m0 = s0+ s′0 and

m1 = s1 + s′1. Then we have the following:

Lemma 12. We have ZPA(Π′
0)→ ZPA(Γ(Λ0,Λ1)) and ZPA(Π′

1)→ ZPA(Γ(Λ0,Λ1)).

Proof. Given a PPT adversary A for the ZPA game for Γ(Λ0,Λ1), we construct a PPT
adversary A† for the ZPA game for Π′

0 in the following manner. Given a public key pkΠ′
0

for Π′
0 and a challenge ciphertext c∗ corresponding to the challenge bit b∗ in the ZPA game

for Π′
0, the algorithm A† first generates a public key pkΠ′

1
for Π′

1 by using the algorithm
ExpandKey in Definition 5 (associated to the combinable set {Π′

0,Π
′
1} of RMHE schemes),

and generates the other two components PK0 and PK1 of a public key pk for Γ(Λ0,Λ1) by

PK0 = (PK0,0,PK0,1)←
(
RerandΠ′

0
(MultΠ′

0
(U(M×), c∗)),EncΠ′

1
(U(M×))

)
,

PK1 = (PK1,0,PK1,1)←
(
EncΠ′

1
(U(M×)),RerandΠ′

0
(MultΠ′

0
(U(M×), c∗))

)
.

35

Then the algorithm chooses b† ←R {0, 1}, and sets (m0,m1) := (0, 0) ∈ M2 if b† = 0 and
(m0,m1)←RM2 if b† = 1. Moreover, the algorithm generates c† ← EncΓ(Λ0,Λ1)((m0,m1)),

executes A with challenge input c† and obtains its output bit b′. Finally, the algorithm
outputs the bit b := b† XOR b′ XOR 1.

We investigate the behavior of the algorithm A† above. In the case b∗ = 1, since
|M×|/|M| is overwhelming (see Assumption 1 in Section 7), the distribution of c∗ is
statistically close to c∗∗ ← EncΠ′

0
(U(M×)). On the other hand, the plaintext for the

ciphertext MultΠ′
0
(U(M×), c∗∗) is uniformly random overM× and is independent of c∗∗.

This implies that the distributions of PK0 and PK1 in the algorithm are statistically close
to those in a correctly generated public key for Γ(Λ0,Λ1). Moreover, since b∗ = 1, we have
b = b∗ if and only if b′ = b†. Therefore, the difference between |Pr[b = b∗ | b∗ = 1]− 1/2|
and AdvA(k) is negligible.

In the other case b∗ = 0, both of PK0,0 and PK1,1 are ciphertexts of plaintext 0 ∈ M.
Then, by choosing s0, s1, s

′
0 and s′1 as in the definition of the encryption for Γ(Λ0,Λ1)

described above, the distributions of the two components of c† are identical to(
EncΠ′

0
(0),RerandΠ′

1
(MultΠ′

1
(s1,PK0,1))

)
,(

RerandΠ′
1
(MultΠ′

1
(s′0,PK1,0)),EncΠ′

0
(0)
)
.

Now the distributions of s1 alone (not concerning s0) and s′0 alone (not concerning s′1) are
uniform on M, which are independent of the choice of (m0,m1). This implies that the
distribution of c† is independent of b†, therefore we have

Pr[b = b∗ | b∗ = 0] = Pr[b′ ̸= b† | b∗ = 0] = 1/2 .

By the results above, the advantage AdvA†(k) of A† is equal to

AdvA†(k) =

∣∣∣∣Pr[b = b∗]− 1

2

∣∣∣∣ = ∣∣∣∣12 (Pr[b = b∗ | b∗ = 0] + Pr[b = b∗ | b∗ = 1])− 1

2

∣∣∣∣
=

1

2

∣∣∣∣Pr[b = b∗ | b∗ = 1]− 1

2

∣∣∣∣ ,

which has a negligible difference from AdvA(k). Therefore, AdvA(k) is negligible whenever
AdvA†(k) is negligible. Hence we have ZPA(Π′

0) → ZPA(Γ(Λ0,Λ1)), and the other claim
ZPA(Π′

1) → ZPA(Γ(Λ0,Λ1)) follows from the same argument. This completes the proof
of Lemma 12.

Now, starting from any RMHE scheme Π satisfying Assumptions 1 and 2 in Section 7
(e.g., the Paillier cryptosystem), we set

Π′
0 := Π , Π′

1 := Γ(T3; Γ(T2; Π)) ,

and we define the four RMHE schemes Π1, . . . ,Π4 by

Π1 = Π2 := Γ(T2; Π) , Π3 := Λ0 , Π4 := Λ1 .

Then we have
ZPA(Π3)→ ZPA(Π)→ ZPA(Π1)

(where we used Lemma 11 with i = 0 and j = 0 for the first step, and Theorem 1 for the
second step), while we have ZPA(Π1) ̸→ ZPA(Π) by Theorem 4, therefore

ZPA(Π1) ̸→ ZPA(Π3) .

36

Similarly, we have
ZPA(Π4)→ ZPA(Π)→ ZPA(Π2)

(where we used Lemma 11 with i = 1 and j = 0 for the first step), while we have
ZPA(Π2) ̸→ ZPA(Π) as above, therefore

ZPA(Π2) ̸→ ZPA(Π4) .

Hence, these schemes satisfy the first condition for our example. On the other hand, we
have

ZPA(Γ(Π1,Π2))→ ZPA(Π′
1)→ ZPA(Γ(Π3,Π4))

(where we used Theorem 1 for the first step, and Lemma 12 for the second step), while
we have ZPA(Π′

1) ̸→ ZPA(Γ(Π1,Π2)) by Theorem 4, therefore

ZPA(Γ(Π1,Π2)) ̸← ZPA(Γ(Π3,Π4)) .

Hence, these schemes satisfy the second condition for our example. This gives an example
for the non-monotonicity in generic constructions as mentioned above.

Moreover, when we set Π′
0 to be a nonsense RMHE scheme whose encryption algorithm

outputs the plaintext itself as the (obviously insecure) ciphertext, we can construct another
example by setting

Π′
1 := Γ(T3; Π) , Π1 = Π2 := Π , Π3 := Λ0 , Π4 := Λ1 .

In this case, Π3 and Π4 are not ZPA secure by the definition directly (or by Lemma 11),
therefore the first condition for our example is automatically satisfied. On the other hand,
the relations ZPA(Γ(Π1,Π2)) → ZPA(Π′

1) → ZPA(Γ(Π3,Π4)) and ZPA(Γ(Π1,Π2)) ̸←
ZPA(Γ(Π3,Π4)) are derived by the same argument as above, therefore the second condition
for our example is also satisfied. Hence, as mentioned above, we can also construct a
desired example in such a way that Π3 and Π4 are never ZPA secure.

Acknowledgments. The authors thank the members of Shin-Akarui-Angou-Benkyo-
Kai for a fruitful discussion on the work, especially Shota Yamada for his idea inspiring a
part of our results, Jacob C. N. Schuldt for his many discussions on the work and valu-
able comments on this paper, and Nuttapong Attrapadung, Keita Emura and Takashi
Yamakawa for their precious comments on this paper. The authors also thank the anony-
mous referees for previous submissions of this paper for their detailed comments.

References

[1] F. Armknecht, S. Katzenbeisser and A. Peter, Group homomorphic encryption: Char-
acterizations, impossibility results, and applications, Des. Codes Cryptography, vol.67,
no.2, 2013, pp.209–232.

[2] C. A. Asmuth and G. R. Blakley, An efficient algorithm for constructing a cryptosys-
tem which is harder to break than two other cryptosystems, Comput. Math. Appl.,
vol.7, no.6, 1981, pp.447–450.

[3] J. Benaloh, Dense probabilistic encryption, in: Proceedings of SAC 1994, 1994,
pp.120–128.

37

[4] D. Boneh and X. Boyen, On the impossibility of efficiently combining collision resis-
tant hash functions, in: Proceedings of CRYPTO 2006, LNCS 4117, 2006, pp.570–583.

[5] P. M. Cohn, An Introduction to Ring Theory, Springer-Verlag, London (2000).

[6] I. Damg̊ard, Towards practical public key systems secure against chosen ciphertext
attacks, in: Proceedings of CRYPTO 1991, LNCS 576, 1992, pp.445–456.

[7] I. Damg̊ard and M. Jurik, A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system, in: Proceedings of PKC 2001, LNCS 1992,
2001, pp.119–136.

[8] I. Damg̊ard, M. Jurik and J. B. Nielsen, A generalization of Paillier’s public-key
system with applications to electronic voting, Int. J. Inform. Security, vol.9, no.6,
2010, pp.371–385.

[9] Y. Dodis and J. Katz, Chosen-ciphertext security of multiple encryption, in: Proceed-
ings of TCC 2005, LNCS 3378, 2005, pp.188–209.

[10] Y. Dodis, J. Katz, S. Xu and M. Yung, Key-insulated public key cryptosystems, in:
Proceedings of EUROCRYPT 2002, LNCS 2332, 2002, pp.65–82.

[11] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Trans. Inform. Theory, vol.31, no.4, 1985, pp.469–472.

[12] A. Escala, G. Herold, E. Kiltz, C. Ràfols and J. Villar, An algebraic framework for
Diffie–Hellman assumptions, in: Proceedings of CRYPTO 2013

[13] L. Fousse, P. Lafourcade and M. Alnuaimi, Benaloh’s dense probabilistic encryption
revisited, in: Proceedings of AFRICACRYPT 2011, LNCS 6737, 2011, pp.348–362.

[14] O. Goldreich, Computational Complexity: A Conceptual Perspective, Cambridge Uni-
versity Press, New York (2008).

[15] O. Goldreich, N. Nisan and A. Wigderson, On Yao’s XOR-lemma, Electronic Collo-
quium on Computational Complexity, TR95-050, 1995, http://eccc.hpi-web.de/
report/1995/050/

[16] S. Goldwasser and S. Micali, Probabilistic encryption and how to play mental poker
keeping secret all partial information, in: Proceedings of STOC 1982, 1982, pp.365–
377.

[17] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. Syst. Sci., vol.28,
no.2, 1984, pp.270–299.

[18] D. Harnik, J. Kilian, M. Naor, O. Reingold and A. Rosen, On robust combiners for
oblivious transfer and other primitives, in: Proceedings of EUROCRYPT 2005, LNCS
3494, 2005, pp.96–113.

[19] A. Herzberg, On tolerant cryptographic constructions, in: Proceedings of CT-RSA
2005, LNCS 3376, 2005, pp.172–190.

[20] D. Hofheinz and E. Kiltz, Secure hybrid encryption from weakened key encapsulation,
in: Proceedings of CRYPTO 2007, LNCS 4622, 2007, pp.553–571.

38

[21] R. Impagliazzo, Hard-core distributions for somewhat hard problems, in: Proceedings
of FOCS 1995, 1995, pp.538–545.

[22] R. Impagliazzo, R. Jaiswal, V. Kabanets and A. Wigderson, Uniform direct product
theorems: Simplified, optimized, and derandomized, SIAM J. Comput., vol.39, no.4,
2010, pp.1637–1665.

[23] R. Impagliazzo and A. Wigderson, P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma, in: Proceedings of STOC 1997, 1997, pp.220–229.

[24] L. A. Levin, One-way functions and pseudorandom generators, Combinatorica, vol.7,
no.4, 1987, pp.357–363.

[25] U. M. Maurer and Y. Yacobi, Non-interactive public-key cryptography, in: Proceed-
ings of EUROCRYPT 1991, LNCS 547, 1991, pp.498–507.

[26] R. Meier and B. Przydatek, On robust combiners for private information retrieval and
other primitives, in: Proceedings of CRYPTO 2006, LNCS 4117, 2006, pp.555–569.

[27] D. Naccache and J. Stern, A new public key cryptosystem based on higher residues,
in: Proceedings of ACM CCS 1998, 1998, pp.59–66.

[28] T. Okamoto and S. Uchiyama, A new public-key cryptosystem as secure as factoring,
in: Proceedings of EUROCRYPT 1998, LNCS 1403, 1998, pp.308–318.

[29] T. Okamoto and S. Uchiyama, Security of an identity-based cryptosystem and the
related reductions, in: Proceedings of EUROCRYPT 1998, LNCS 1403, 1998, pp.546–
560.

[30] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes,
in: Proceedings of EUROCRYPT 1999, LNCS 1592, 1999, pp.223–238.

[31] P. Paillier, Trapdooring discrete logarithms on elliptic curves over rings, in: Proceed-
ings of ASIACRYPT 2000, LNCS 1976, 2000, pp.573–584.

[32] H. Shacham, A Cramer–Shoup encryption scheme from the linear assumption and
from progressively weaker linear variants, IACR ePrint Archive 2007/074, http://
eprint.iacr.org/2007/074

[33] V. Shoup, Lower bounds for discrete logarithms and related problems, in: Proceedings
of EUROCRYPT 1997, LNCS 1233, 1997, pp.256–266.

39

Contents

1 Introduction 2
1.1 Our Contributions . 2
1.2 Related Work . 4
1.3 Organization of This Paper . 4

2 Preliminaries 4

3 Our Class of Homomorphic Encryption 5

4 Examples of RMHE Schemes 7
4.1 Paillier Cryptosystem and Its Variants . 7
4.2 Okamoto–Uchiyama Cryptosystem . 8
4.3 Goldwasser–Micali Cryptosystem and Its Variants 8
4.4 “Lifted” ElGamal Cryptosystem and Its Variant 8

5 Our Construction of Homomorphic Encryption 9
5.1 Construction . 9
5.2 Security Implications for Different Trees . 13

6 Computational Model for Non-Implication Results 15

7 Main Result: Security Non-Implications 16
7.1 Restriction of Possibilities of the Outer Scheme 16
7.2 Construction of the Oracles . 17
7.3 Overall Strategy: Hybrid Argument . 18
7.4 Expressions of Plaintexts for the Ciphertexts 18
7.5 Definition of the Auxiliary Oracles . 20
7.6 Evaluation of Statistical Distances: Preliminaries 21
7.7 Properties of Polynomials for Plaintexts . 23
7.8 Evaluation of the Probability: Overall Strategy 26
7.9 Analysis of the Subroutine . 28

8 On Non-Monotonicity of Combined Security 34

40

