
Fully Secure Self-Updatable Encryption in Prime Order
Bilinear Groups∗

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur

Kharagpur-721302, India
{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. In CRYPTO 2012, Sahai et al. raised the concern that in a cloud control system revo-
cation of past keys should also be accompanied by updation of previously generated ciphertexts in
order to prevent unread ciphertexts from being read by revoked users. Self-updatable encryption
(SUE), introduced by Lee et al. in ASIACRYPT 2013, is a newly developed cryptographic primitive
that realizes ciphertext update as an inbuilt functionality and thus improves the efficiency of key
revocation and time evolution in cloud management. In SUE, a user can decrypt a ciphertext asso-
ciated with a specific time if and only if the user possesses a private key corresponding to either the
same time as that of the ciphertext or some future time. Furthermore, a ciphertext attached to a
certain time can be updated to a new one attached to a future time using only public information.
The SUE schemes available in the literature are either (a) fully secure but developed in a composite
order bilinear group setting under highly non-standard assumptions or (b) designed in prime order
bilinear groups but only selectively secure. This paper presents the first fully secure SUE scheme
in prime order bilinear groups under standard assumptions, namely, the Decisional Linear and the
Decisional Bilinear Diffie-Hellman assumptions. As pointed out by Freeman (EUROCRYPT 2010)
and Lewko (EUROCRYPT 2012), the communication and storage, as well as, computational effi-
ciency of prime order bilinear groups are much higher compared to that of composite order bilinear
groups with an equivalent level of security. Consequently, our SUE scheme is highly cost-effective
than the existing fully secure SUE.

Keywords: public-key encryption, self-updatable encryption, ciphertext update, prime order bi-
linear groups, cloud storage.

1 Introduction

Cloud storage is gaining popularity very rapidly in recent years due to its lower cost of service,
easier data management facility and, most importantly, the accessibility of stored data through
Internet from any geographic location. However, since these databases are often filled with
oversensitive information, these are prime targets of attackers and security breaches in such
systems are not uncommon, especially by insiders of the organizations maintaining the cloud
servers. In particular, access control is one of the greatest concerns, i.e., the sensitive data items
have to be protected from any illegal access, whether it comes from outsiders or even from insiders
without proper access rights. Additionally, organizations storing extremely sensitive data to an
external cloud server might not want to give the server any access to their information at all.
Similar problems can easily arise when dealing with centralized storage within an organization,
where different users in different departments have access to varying levels of sensitive data.

One possible approach for this problem is to use attribute-based encryption (ABE) that pro-
vides cryptographically enhanced access control functionality in encrypted data [12]. However,
in a cloud storage data access is not static. To deal with the change of users’ credentials that
takes place over time, revocable ABE (R-ABE) [1] has been suggested in which a user’s private
key can be revoked. In R-ABE, a revoked user is restricted from learning any partial information
about the messages encrypted when the ciphertext is created after the time of revocation. Sahai

∗ This is the full version of the paper that appeared in Proceedings of the 17th Information Security Conference
(ISC 2014), LNCS 8783, pp. 1–18, Springer.

2 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

et al. [15] highlighted the fact that R-ABE alone does not suffice in managing dynamic creden-
tials for cloud storage. In fact, R-ABE cannot prevent a revoked user from accessing ciphertexts
that were created before the revocation, since the old private key of the revoked user is enough
to decrypt those ciphertexts. Thus a complete solution has to support not only the revocation
functionality but also the ciphertext update functionality such that a ciphertext at any arbitrary
time can be updated to a new ciphertext at a future time by the cloud server just using publicly
available information and thereby making previously stored data inaccessible to revoked users.

Self-updatable encryption (SUE), introduced by Lee et al. [10], is a newly developed crypto-
graphic primitive that realizes ciphertext update as an inbuilt functionality and thus improves
the efficiency of key revocation and time evolution in cloud management. In SUE, a ciphertext
and a private key are associated with specific times. A user who has a private key with time T ′

can decrypt a ciphertext with time T if and only if T ≤ T ′. Additionally, a ciphertext attached
to a particular time can be updated to a new ciphertext attached to a future time just using
public values.

SUE is related to the notion of forward secure encryption (FSE) [5]. In FSE, a private key
associated with a time is evolved to another private key with the immediate subsequent time, and
then the past private key is erased. Forward security ensures that an exposed private key with a
time cannot be used to decrypt a past ciphertext. In addition to satisfying a similar objective,
SUE offers more flexibility in the sense that SUE supports one-to-many communication and thus
is suitable for constructing more complex cryptographic primitives by combining with ABE or
predicate encryption (PE) [10]. We may view SUE as the dual concept of FSE since the role of
private keys and that of the ciphertexts are reversed.

Being an encryption scheme with enhanced time control mechanism, SUE can be applied
in various other cryptographic primitives such as time-release encryption [14] and key-insulated
encryption [6] to provide better security guarantees.

It is worth observing that there are simple inefficient ways (without the independence guaran-
tee) to realize SUE assuming a vanilla identity based encryption (IBE) scheme [16]. For instance,
we can view time periods as identities. An SUE ciphertext for a particular time T is constructed
as the collection of IBE ciphertexts for the message corresponding to all times T ′ in the range
[T, Tmax], where Tmax is the maximum time bound in the system. An SUE private key attached
to a specific time T ′′ consists of IBE private keys for all time periods upto T ′′. The ciphertext
update procedure simply deletes the IBE ciphertext for the least time period contained in an
SUE ciphertext. However, in this approach the ciphertext and key sizes depend polynomially on
Tmax. Constructing an SUE scheme in which the ciphertext and private key sizes are polyloga-
rithmic in terms of the maximum time period in the system is not straightforward. In particular,
this requires managing the time structure in some suitable manner and design the decryption
policy, as well as, the ciphertext update functionality accordingly.

Related Works: Lee et al. [10] constructed a fully secure SUE scheme in composite order
bilinear group under non-standard assumptions. To the best of our knowledge, this scheme is so
far the only SUE scheme in the literature that achieves full security. However, as pointed out by
Freeman [7] and Lewko [11], group operations and pairing computations are prohibitively slow in
composite order bilinear groups as compared to prime order bilinear groups with an equivalent
level of security. Although, SUE in prime order bilinear groups are proposed in [10], [9] under
standard assumptions those are only selectively secure. We note that the work of Sahai et al.
[15] can be viewed as a restricted form of SUE but their constructions are highly customized for
ABE. In particular, they first added ciphertext delegation to ABE, and then, represented time
as a set of attributes, and by doing so reduced ciphertext update to ciphertext delegation. Also
in their system all legitimate users are given keys corresponding to the same time and they can
decrypt ciphertexts attached to the same time period as their keys. Further, their systems have
composite order bilinear group setting.

Fully Secure SUE in Prime Order Bilinear Groups 3

Our Contribution: We present the first fully secure cost effective SUE scheme in prime order
bilinear groups under standard assumptions. As in [10], [9], in order to make the ciphertext
and private key sizes of our SUE scheme polylogarithmic in terms of the maximum time period
supported by the system, we employ a full binary tree to efficiently manage the time structure
in the system. We assign a time value to each node of the full binary tree. The ciphertext as-
sociated with a particular time consists of a set of components corresponding to some specific
nodes in the tree. When a user with a private key associated with a particular time T ′ attempts
to decrypt a ciphertext attached to a certain time T , it can encounter a node associated with a
component in the target ciphertext on the path from the root node to the node corresponding to
the time T ′ if and only if T ≤ T ′ and hence the decryption is successful if and only if T ≤ T ′. To
design our SUE scheme, we start from the hierarchical identity based encryption (HIBE) scheme
of Waters [16] and exchange the private key structure with the ciphertext structure of this HIBE
scheme. This is not a trivial task. Unlike [10], [9], the decryption algorithm of our SUE scheme
does not involve repeated application of the ciphertext update algorithm to convert a ciphertext
associated with a previous time to a ciphertext corresponding to the time associated with the
private key used for decryption, resulting in a much faster decryption.

Specifically, the salient features of our SUE scheme lie in the following two aspects:

– Firstly, our scheme is proven fully secure under two well-studied assumptions in prime or-
der bilinear groups, namely, the Decisional Linear assumption and the Decisional Bilinear
Diffie-Hellman assumption. We employ the dual system encryption methodology introduced
by Lewko and Waters [13], [16] for proving security of our SUE scheme. In a dual system,
there are two kinds of keys and ciphertexts: normal and semi-functional. Normal keys and
ciphertexts are used in the real system, while their semi-functional counter parts are only
invoked in the proof. These objects must be constructed satisfying certain relationships. Two
crucial properties of the underlying bilinear group that are exploited in proofs employing the
dual system encryption technique are canceling [7] and parameter hiding [11]. These fea-
tures are achieved naturally when the underlying bilinear group is of composite order by the
orthogonality property of the subgroups and the Chinese Remainder theorem. Replicating
these properties in prime order groups is quite challenging [7], [11], which makes the con-
struction of SUE in prime order bilinear groups rather difficult. To overcome the difficulty,
we construct the SUE ciphertexts and private keys in such a way that we can associate ad-
ditional random spaces to the semi-functional form of one that is orthogonal to the normal
form of the other and vice versa. This approach of achieving the required relations between
the normal ciphertexts and private keys with their semi-functional counter parts is quite
different from the generic tools developed in [7], [11] and is one of the major contribution of
this work.

– Secondly, our SUE scheme outperforms the existing fully secure SUE scheme [10] in terms of
both communication and computation. In our SUE construction, a ciphertext consists of at
most 5 log Tmax+7 group elements together with 2 log Tmax elements of Zp and a private key
involves at most log Tmax + 7 group elements together with log Tmax elements of Zp, where
Tmax is the maximum time period in the system and p is the order of the bilinear group. At
a first glance, these values seem worse than the corresponding values of 3 log Tmax + 2 and
log Tmax + 2 group elements respectively for [10]. However, the important point to observe
here is that the order of a composite order bilinear group used in [10] must be at least 1024
bits in order to prevent factorization of the group order, whereas, the size of a prime order
bilinear group used in our design that provides an equivalent level of security is only 160 bits
[7] which is more than six times smaller. Thus, when compared in terms of bit length, both
the ciphertext and key sizes of our SUE scheme are roughly one-third of the corresponding
sizes for [10]. The prime order bilinear group has a similar advantage over composite order
group in terms of computation as well [7], [11]. For this reason, all the algorithms in our

4 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

scheme are much faster than [10]. For instance, the decryption algorithm of our SUE scheme
is roughly 25 times faster than that of [10] and the ciphertext update algorithm is more than
3 times faster than that of [10].

2 Preliminaries

A function ε is negligible if, for every integer c, there exists an integer K such that for all k > K,
|ε(k)| < 1/kc. A problem is said to be computationally hard (or intractable) if there exists no
probabilistic polynomial time (PPT) algorithm that solves it with non-negligible probability (in
the size of the input or the security parameter).

2.1 Self-Updatable Encryption

As introduced in [10], self-updatable encryption (SUE) is a variant of public key encryption
(PKE) with the ciphertext updating property such that a time is associated with private keys
and ciphertexts, and a ciphertext with a time can be easily updated to a new ciphertext with
a future time. In SUE, the private key of a user is associated with a time T ′ and a ciphertext
is also associated with a time T . If T ≤ T ′, then a user who has a private key with a time
T ′ can decrypt a ciphertext with a time T , i.e., a user who has a private key for a time T ′

can decrypt any ciphertext attached a past time T such that T ≤ T ′, but it cannot decrypt
a ciphertext attached a future time T such that T ′ < T . Additionally, the SUE scheme has
the ciphertext update algorithm through which an semi-trusted third party, employed for man-
aging users’ access on ciphertexts by incrementing the time component, updates a ciphertext
attached the time T to a new ciphertext attached the time T+1 by using only public parameters.

Syntax of Self-Updatable Encryption: A self-updatable encryption (SUE) scheme consists
of the following PPT algorithms:

SUE.Setup(1λ, Tmax): The key generation center takes as input a security parameter 1λ and
the maximum time Tmax. It publishes public parameters PP and generates a master secret
key MK for itself.

SUE.GenKey(T ′,MK,PP): On input a time T ′, the master secret key MK together with the
public parameters PP, the key generation center outputs a private key SKT ′ for a user.

SUE.Encrypt(T,PP): Taking as input a time T and the public parameters PP, the encryptor
creates a ciphertext header CHT and a session key EK. It sends CHT to the ciphertext storage
and keeps EK secret to itself.

SUE.ReEncrypt(CHT , T + 1,PP): On input a ciphertext header CHT for a time T , the next
time T + 1 and the public parameters PP, the semi-trusted third party, employed for man-
aging users’ access on ciphertext by updating the time component, publishes a ciphertext
header for time T + 1 and a partial session key that will be combined with the session key of
CHT to produce a new session key. The re-encryption procedure may be realized by sequen-
tially executing the following two algorithms although it is not mandatary.

SUE.UpdateCT(CHT , T + 1,PP): The semi-trusted third party managing users’ access
on ciphertexts takes as input a ciphertext header CHT for a time T , a next time T + 1
together with the public parameters PP, and it outputs an updated ciphertext header
CHT+1.

Fully Secure SUE in Prime Order Bilinear Groups 5

SUE.RandCT(CHT ,PP): Taking input a ciphertext header CHT for a time T and the
public parameters PP, the semi-trusted ciphertext access managing third party outputs
a re-randomized ciphertext header C̃HT and a partial session key ẼK that will be com-
bined with the session key EK of CHT to produce a re-randomized session key.

SUE.Decrypt(CHT ,SKT ′ ,PP): A user takes as input a ciphertext header CHT , its private key
SKT ′ together with the public parameters PP, and computes either a session key EK or the
distinguished symbol ⊥.

Correctness: The correctness property of SUE is defined as follows: For all PP,MK generated
by SUE.Setup, all T, T ′, any SKT ′ output by SUE.GenKey, and any CHT ,EK returned by
SUE.Encrypt or SUE.ReEncrypt, it is required that:

– If T ≤ T ′, then SUE.Decrypt(CHT ,SKT ′ ,PP) = EK.
– If T > T ′, then SUE.Decrypt(CHT ,SKT ′ ,PP) = ⊥ with all but negligible probability.

Security: The security property for SUE schemes is defined in terms of the indistinguishability
under a chosen plaintext attack (IND-CPA) by means of the the following game between a
challenger B and a PPT adversary A:

Setup: B runs SUE.Setup(1λ, Tmax) to generate the public parameters PP and the master
secret key MK, and it gives PP to A.

Query 1: Amay adaptively request a polynomial number of private keys for times T ′1, . . . , T
′
q′ ∈

[0, Tmax], and B gives the corresponding private keys SKT ′1 , . . . ,SKT ′q′
to A by executing

SUE.GenKey(T ′i ,MK,PP).

Challenge: A outputs a challenge time T ∗ ∈ [0, Tmax] subject to the following restriction:
For all times {T ′i} of private key queries, it is required that T ′i < T ∗. B chooses a random
bit β ∈ {0, 1} and computes a ciphertext header CHT ∗ and a session key EK∗ by performing
SUE.Encrypt(T ∗,PP). If β = 0, then it gives CHT ∗ and EK∗ to A. Otherwise, it gives CHT ∗

and a random session key to A.

Query 2: A may continue to request private keys for additional times T ′q′+1, . . . , T
′
q ∈ [0, Tmax]

subject to the same restriction as before, and B gives the corresponding private keys to A.

Guess: Finally A outputs a bit β′.

The advantage of A is defined as AdvSUE
A (λ) = |Pr[β = β′]− 1/2| where the probability is taken

over all the randomness of the game.

Definition 1 (Security of SUE). An SUE scheme is fully secure under a chosen plaintext
attack (CPA) if for all PPT adversaries A, the advantage of A in the above game, i.e., AdvSUE

A (λ)
is negligible in the security parameter λ.

Remark 1. In the above security game, it is not needed to explicitly describe SUE.ReEncrypt
since the adversary can run SUE.UpdateCT to the challenge ciphertext header by just using
PP. Note that the use of SUE.UpdateCT does not violate the security game since the adversary
only can request a private key query for T ′i such that T ′i < T ∗.

Remark 2. Note that, like [10], we consider only CPA security in this paper. The re-randomizability
guarantee of the SUE ciphertexts makes the security against adaptive chosen ciphertext attack
(CCA2) unattainable as the challenge ciphertext can simply be re-randomized and sent to the
decryption oracle. An analysis for the possible relaxations of CCA2 security in the above security
model is an interesting future direction of research.

6 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

2.2 Bilinear Groups of Prime Order and Complexity Assumptions

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a generator of G
and e : G×G→ GT be a bilinear map. The bilinear map e has the following properties:

(a) Bilinearity: For all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.

(b) Non-degeneracy: e(g, g) 6= 1.

We say that G = (p,G,GT , e) is a bilinear group if the group operation in G and the bilinear
map e : G×G→ GT are both efficiently computable.

Definition 2. [Decisional Bilinear Diffie-Hellman (DBDH)]: Given (D1 = (g, gc1 , gc2 , gc3),
z) ∈ G4 × GT as input for random generator g ∈ G and random exponents c1, c2, c3 ∈ Zp, the
DBDH assumption holds if it is computationally hard to decide whether z = e(g, g)c1c2c3. For-
mally, we define the advantage of an algorithm B in solving the DBDH problem as follows:

AdvDBDH
B (λ) = |Pr[B(D1, z = e(g, g)c1c2c3) = 1]− Pr[B(D1, z random in GT) = 1]|

The DBDH assumption holds if AdvDBDH
B (λ) is negligible for any PPT B.

Definition 3. [Decisional Linear (DLIN)]: Given (D2 = (g, f, ν, gc1 , f c2), z) ∈ G6 as input
for random generators g, f, ν ∈ G and random exponents c1, c2 ∈ Zp, the DLIN assumption
holds if it is computationally hard to decide whether z = νc1+c2. Formally, the advantage of an
algorithm B in solving the DLIN problem is defined as follows:

AdvDLIN
B (λ) = |Pr[B(D2, z = νc1+c2) = 1]− Pr[B(D2, z random in G) = 1]|

The DLIN assumption holds if AdvDLIN
B (λ) is negligible for any PPT B.

Both of the above assumptions are well-studied. The DBDH assumption has been introduced
by Boneh and Franklin [3]. On the other hand, the validity of DLIN assumption in the generic
group model has been established by Boneh et al. [2].

3 Our Self-Updatable Encryption

In this section we present our fully secure SUE scheme in prime order bilinear group.

3.1 Managing the Time Structure

As in [10], [9], we use a full binary tree T to represent time in our SUE scheme by assigning
time periods to all tree nodes. In the full binary tree T , each node (internal node or leaf node)
is assigned a unique time value by using pre-order tree traversal that recursively visits the root
node, the left subtree, and the right subtree; i.e., the root node of T is associated with 0 time
value and the right most leaf node of T is associated with 2dmax+1− 2 time value where dmax is
the maximum depth of the tree. We fix some notation at this point.

– νT = The node associated with time T .

– Parent(νT) = The parent node of νT in the tree.

– Path(νT) = The set of path nodes from the root node to the node νT .

– RightSibling(Path(νT)) = The set of right sibling nodes of Path(νT).

– TimeNodes(νT) = {νT } ∪ RightSibling(Path(νT))\ Path(Parent(νT)).

Fully Secure SUE in Prime Order Bilinear Groups 7

ν0

ν1

ν2

ν3 ν4

ν5

ν6 ν7

ν8

ν9

ν10 ν11

ν12

ν13 ν14

Ψ(0) = null

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Ψ(8) = 1

Ψ(12) = 11

Ψ(13) = 110

Ψ(14) = 111

TimeNodes(ν13)

Fig. 1: The tree-based time structure for SUE

We mention that, if a node on Path(νT) is itself a right sibling of some node in the tree T , then
we include it in RightSibling(Path(νT)).

We instantiate the above notations using Figure 1. Let us consider the node ν13, the node
associated with the time T = 13 according to pre-order traversal. Here, Parent(ν13) = ν12,
Path(ν13) = {ν0, ν8, ν12, ν13}, RightSibling(Path(ν13)) = {ν8, ν12, ν14}, and TimeNodes(ν13)
= {ν13, ν14} (marked with doted rectangle).

Intuitively, if we consider all subtrees corresponding to all the times that are greater than
and equal to the time T by pre-order traversal, then TimeNodes(νT) contains the root of each
such subtree. More precisely, we have the following lemma, the proof of which is straightforward.

Lemma 1. TimeNodes(νT) ∩ Path(νT ′) 6= ∅ if and only if T ≤ T ′.

To construct our SUE scheme in prime order bilinear group, we start from the hierarchical
identity based encryption (HIBE) scheme of Waters [16] and exchange the private key structure
with the ciphertext structure of this HIBE scheme. To use the structure of HIBE, we associate
each node with a unique label string L ∈ {0, 1}∗. The label of each node in the tree is assigned
as follows: Each edge in the tree is assigned with label 0 or 1 depending on whether the edge
connects a node to its left or right child node respectively. The label L of a node νT is defined
as the bit string obtained by reading all the labels of edges in Path(νT). We assign a special
empty string ‘null’ to the root node as a label. Note that the length of the label string associated
with a node increases with the depth of the node. For example, in Figure 1, the label of ν8 is 1,
that of ν12 is 11, ν13 is 110 etc. For a label string L ∈ {0, 1}∗ of length d, we define the following
notations:

– L[i] = the ith bit of L.
– L|i = the prefix of L with i-bit length, where i = 0 means that L|i is the empty string.
– L‖L′ = concatenation of the string L and another string L′ ∈ {0, 1}∗.
– L(j) = L|d−j‖1, 1 ≤ j ≤ d. L(0) is defined to be the label string L itself.
– d(j) = the length of L(j), 0 ≤ j ≤ d. Note that d(0) = d.

A simple observation would guarantee the validity of the following lemma.

Lemma 2. If a node νT has label string L of length d, then {L(j)|1 ≤ j ≤ d} contains the label
strings of all the nodes in RightSibling(Path(νT)). Further, if L(j) = L|d−j+1, for 1 < j ≤ d,
then L(j) falls in Path(Parent(νT)) and hence they are excluded from TimeNodes(νT).On
the other hand, if L(j) 6= L|d−j+1, 1 ≤ j ≤ d, then L(j) does not correspond to a node in
Path(Parent(νT)), rather, it is contained in TimeNodes(νT).

For example, if L = 110, then L[1] = 1, L[2] = 1, L[3] = 0, and L|1 = 1, L|2 = 11, L|3 = 110.
In Figure 1, ν13 has label string L = 110 and the set {L(1), L(2), L(3)} = {111, 11, 1} consists of the
label strings of {ν14, ν12, ν8} = RightSibling(Path(ν13)). Also note that L(2) = 11 = L|3−2+1

8 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

corresponds to the node ν12 which is in Path(Parent(ν13)) and similarly for L(3), whereas
L(1) = 111 6= 110 = L|3−1+1 and the node with label string L(1), i.e., ν14 is not contained in
Path(Parent(ν13)), rather, it is included in TimeNodes(ν13).

We define a mapping Ψ that maps time T corresponding to a tree node νT to a unique label
L associated with νT . Specifically, we define Ψ(T) = L where the node νT , according to pre-
order traversal, has label L assigned using the method discussed above. For instance, in Figure
1, Ψ(8) = 1, Ψ(12) = 11, Ψ(13) = 110 etc. The SUE ciphertext header for time T consists of a
ciphertext component for each node in TimeNodes(νT).

3.2 Construction

SUE.Setup(1λ, Tmax): The key generation center takes as input a security parameter 1λ and
a maximum time Tmax where Tmax = 2dmax+1 − 2. It proceeds as follows:

– It considers a full binary tree of depth dmax so that dmax is the maximum length of label
strings associated with the nodes in the tree.

– It generates a bilinear group G = (p,G,GT , e) of prime order p where e : G×G→ GT is
the bilinear map.

– It chooses random generators g, v, v1, v2, w, u1, . . . , udmax , h1, . . . , hdmax ∈ G and expo-
nents a1, a2, b, α ∈ Zp. Let τ1 = vva11 , τ2 = vva22 .

– It publishes the public parameters

PP = (G,GT , e, g
b, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ

b
1 , τ

b
2 , w

a1 , {ua1i , h
a1
i }

dmax
i=1 , e(g, g)αa1b)

and sets the master secret key

MK = (g, gα, gαa1 , v, v1, v2, w, {ui, hi}dmax
i=1)

for itself.

SUE.GenKey(T ′,MK,PP): Taking as input a time T ′, the master secret key MK and the
public parameters PP, the key generation center generates a secret key SKT ′ for a user as
follows:

– It computes the label string L′ = Ψ(T ′) ∈ {0, 1}n (say).

– It selects random s1, s2, z1, z2, ktag1, . . . , ktagn ∈ Zp and sets s = s1 + s2.

– It outputs the private key SKT ′ that implicitly includes T ′ as

SKT ′ =

D1 = gαa1vs, D2 = g−αvs1g
z1 , D3 = (gb)−z1 , D4 = vs2g

z2 ,
D5 = (gb)−z2 , D6 = (gb)s2 , D7 = gs1 ,

{Ki = (u
L′|i
i wktagihi)

s1}ni=1, {ktagi}ni=1

 (1)

where for any z ∈ G and any label string L ∈ {0, 1}∗, zL = y ∈ G such that logz y =
|L|∑
i=1

L[i]2i−1 (mod p), |L| being the length of L.

SUE.Encrypt(T,PP): Taking as input a time T and the public parameters PP, the encryptor
prepares a ciphertext header consisting of components corresponding to all the nodes in
TimeNodes(νT) and a session key by performing the following operations:

1. It first computes L(0) = ψ(T) ∈ {0, 1}d (say). It generates the ciphertext component
CH(0) corresponding to the node νT as follows:

– It selects random µ1, . . . , µd, r1, r2, ctag1, . . . , ctagd ∈ Zp and sets t =

d∑
i=1

µi.

Fully Secure SUE in Prime Order Bilinear Groups 9

– It sets

CH(0) =

C1 = (gb)r1+r2 , C2 = (gba1)r1 , C3 = (ga1)r1 , C4 = (gba2)r2 ,
C5 = (ga2)r2 , C6 = τ r11 τ r22 , C7 = (τ b1)r1(τ b2)r2(wa1)−t,

{Ei,1 = [(ua1i)L
(0)|i(wa1)ctagiha1i]µi , Ei,2 = (ga1)µi}di=1, {ctagi}di=1

 (2)

2. For 1 ≤ j ≤ d, it sets L(j) = L(0)|d−j‖1, i.e., it sets L(j) to be the label of the nodes
belonging to RightSibling(Path(νT)), and proceeds the following steps:

Case(a): (L(j) = L(0)|d−j+1) In this case, L(j) is the label of a node in Path(νT).

The encryptor sets CH(j) as an empty one since it either corresponds to the node νT
(j = 1), for which the ciphertext component has already been computed, or it corre-
sponds to a node belonging to Path(Parent (νT)) which is not in TimeNodes(νT)
(as explained in Figure 1) and hence for which the ciphertext component is not needed.

Case(b): (L(j) 6= L(0)|d−j+1) In this case, L(j) is the label of a node in TimeNodes(νT).

The encryptor obtains CH(j) as follows:

– It chooses fresh random µ′d−j+1, ctag
′
d−j+1 ∈ Zp, sets µ′i = µi, ctag

′
i = ctagi for

1 ≤ i ≤ d− j and defines t′ =

d−j+1∑
i=1

µ′i.

– It computes

CH(j) =


C ′1 = (gb)r1+r2 , C ′2 = (gba1)r1 , C ′3 = (ga1)r1 , C ′4 = (gba2)r2 ,

C ′5 = (ga2)r2 , C ′6 = τ r11 τ r22 , C ′7 = (τ b1)r1(τ b2)r2(wa1)−t
′
,

{E′i,1 = [(ua1i)L
(j)|i(wa1)ctag

′
iha1i]µ

′
i , E′i,2 = (ga1)µ

′
i}d−j+1
i=1 ,

{ctag′i}
d−j+1
i=1

 (3)

Note that L(j) and L(0) have the same prefix string of length d− j.
– It also prunes redundant elements, namely, C ′1, . . . , C

′
6, {E′i,1, E′i,2}

d−j
i=1 , {ctag′i}

d−j
i=1

from CH(j) which are already contained in CH(0).

3. It removes all empty CH(j)’s and sets CHT = (CH(0), . . . ,CH(d′)) for some d′ < d that
consists of nonempty CH(j)’s.

4. It sends the ciphertext header CHT that implicitly includes T to the ciphertext storage
and keeps a session key as EK = (e(g, g)αa1b)r2 private to itself. Note that CH(j)’s are
ordered according to pre-order traversal.

SUE.UpdateCT(CHT , T + 1,PP): On input a ciphertext header CHT = (CH(0), . . . ,CH(d′))
for a time T , a next time T + 1 and the public parameters PP, the semi-trusted third party,
employed for managing users’ access on ciphertexts by updating a ciphertext header asso-
ciated with some time to a ciphertext header corresponding to a future time, performs the
following steps, where L(j) is the label of CH(j).

Case(a): (L(0) = Ψ(T) is the label of an internal node in the tree)

– It first obtains CHL
(0)‖0 and CHL

(0)‖1 as follows:

• Let CH(0) = (C1, . . . , C7, {Ei,1, Ei,2}di=1, {ctagi}di=1).
It selects a random µd+1, ctagd+1 ∈ Zp.

10 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

• It computes

CHL
(0)‖0 =


C†1 = C1, C

†
2 = C2, C

†
3 = C3, C

†
4 = C4,

C†5 = C5, C
†
6 = C6, C

†
7 = C7(wa1)−µd+1 ,

{E†i,1 = Ei,1, E
†
i,2 = Ei,2}di=1,

E†d+1,1 = [(ua1d+1)L
(0)‖0(wa1)ctagd+1ha1d+1]µd+1 ,

E†d+1,2 = (ga1)µd+1 , {ctag†i = ctagi}d+1
i=1


• In a similar fashion, CHL

(0)‖1 is computed from CH(0) by selecting fresh random
µ′d+1, ctag

′
d+1 ∈ Zp.

Note that in this case, L(0)‖0 corresponds to the node νT+1 and L(0)‖1 corresponds
to a node in TimeNodes(νT+1) according to pre-order traversal. See Figure 1 for a
pictorial understanding.

– It also prunes redundant elements in CHL
(0)‖1 which are contained in CHL

(0)‖0 in the
same way as in SUE.Encrypt.

– It outputs an updated ciphertext header as CHT+1 = (CH†(0) = CHL
(0)‖0,CH†(1) =

CHL
(0)‖1, . . . ,CH†(d

′+1) = CH(d′)). Note that all the nodes in TimeNodes(νT) except
the node νT itself are also included in TimeNodes(νT+1) due to pre-order traversal
as can be seen from Figure 1.

Case(b): (L(0) = Ψ(T) is the label of a leaf node) It copies common elements in CH(0) to
CH(1) and simply removes CH(0), since CH(1) is the ciphertext component corresponding
to νT+1 in this case and the node νT corresponding to the ciphertext component CH(0)

is excluded from TimeNodes(νT+1) by pre-order traversal. It outputs an updated ci-
phertext header as CHT+1 = (CH†(0) = CH(1), . . . ,CH†(d

′−1) = CH(d′)). Observe that in
this case also, the nodes included in TimeNodes(νT) except νT itself are also included
in TimeNodes(νT+1). See Figure 1 for an instantiation.

SUE.RandCT(CHT ,PP): The semi-trusted third party managing the users’ access on cipher-
texts takes as input a ciphertext header CHT = (CH(0), . . . ,CH(d′)) for a time T , and public
parameters PP. Let L(j) be the label of CH(j) and d(j) be the length of the label L(j). It
proceeds as follows:

1. It first obtains a re-randomized ciphertext component C̃H
(0)

from CH(0) = (C1, . . . , C7,

{Ei,1, Ei,2}d
(0)

i=1 , {ctagi}d
(0)

i=1) as follows:

– It chooses random exponents µ′1, . . . , µ
′
d(0)

, r′1, r
′
2 ∈ Zp and sets t′ =

d(0)∑
i=1

µ′i.

– It obtains

C̃H
(0)

=


C̃1 = C1(gb)r

′
1+r′2 , C̃2 = C2(gba1)r

′
1 , C̃3 = C3(ga1)r

′
1 , C̃4 = C4(gba2)r

′
2 ,

C̃5 = C5(ga2)r
′
2 , C̃6 = C6(τ

r′1
1 τ

r′2
2), C̃7 = C7(τ b1)r

′
1(τ b2)r

′
2(wa1)−t

′
,

{Ẽi,1 = Ei,1[(ua1i)L
(0)|i(wa1)ctagiha1i]µ

′
i , Ẽi,2 = Ei,2(ga1)µ

′
i}d(0)i=1 ,

{c̃tagi = ctagi}d
(0)

i=1


2. For 1 ≤ j ≤ d′, it computes C̃H

(j)
from pruned CH(j) = (C ′7, {E′d(j),1, E

′
d(j),2
}, {ctag′

d(j)
})

as follows:

– It selects random µ′′
d(j)
∈ Zp and defines t′′ =

d(j)−1∑
i=1

µ′i + µ′′
d(j)

. Note that L(j) has the

same prefix string of length d(j) − 1 as L(0).

Fully Secure SUE in Prime Order Bilinear Groups 11

– It computes

C̃H
(j)

=


C̃ ′7 = C ′7(τ b1)r

′
1(τ b2)r

′
2(wa1)−t

′′
,

{Ẽ′
d(j),1

= E′
d(j),1

[(ua1
d(j)

)L
(j)

(wa1)
ctag′

d(j)ha1
d(j)

]
µ′′
d(j) ,

Ẽ′
d(j),2

= E′
d(j),2

(ga1)
µ′′
d(j)}, {c̃tag′d(j) = ctag′

d(j)
}


Note that the other components of C̃H

(j)
have been pruned.

3. It publishes a re-randomized ciphertext header as C̃HT = (C̃H
(0)
, . . . , C̃H

(d′)
) and a par-

tial session key as ẼK = (e(g, g)αa1b)r
′
2 that will be multiplied with the session key EK of

CHT to produce a re-randomized session key.

SUE.Decrypt(CHT ,SKT ′ ,PP): A user takes as input a ciphertext header CHT = (CH(0), . . . ,
CH(d′)), its own private key SKT ′ = (D1, . . . , D7, {Ki}ni=1, {ktagi}ni=1) such that L′ = Ψ(T ′) ∈
{0, 1}n together with the public parameters PP.

1. If the user can find CH(j) = (C1, . . . , C7, {Ei,1, Ei,2}d
(j)

i=1, {ctagi}d
(j)

i=1) from CHT such that

its corresponding label string L(j) ∈ {0, 1}d(j) is a prefix of L′ and for 1 ≤ i ≤ d(j), it
holds that ctagi 6= ktagi, then the user retrieves EK by the following computation:

A1 =
5∏
i=1

e(Ci, Di),A2 = e(C6, D6)e(C7, D7),A3 = A1/A2,A4 =
d(j)∏
i=1

[
e(Ei,1, D7)

e(Ei,2,Ki)

] 1
ctagi−ktagi

and finally, EK = A3/A4.
2. Otherwise, the user obtains ⊥.

3.3 Correctness

The SUE ciphertext header CHT of a time T consists of the ciphertext components CH(0), . . . ,
CH(d′) each of which is associated with a node in TimeNodes(νT). If the SUE private key SKT ′

for a time T ′ satisfies T ≤ T ′, then TimeNodes(νT) ∩ Path(νT ′) = {ν
T̂
}, where T ≤ T̂ ≤ T ′,

for a unique node ν
T̂

, by the property of pre-order tree traversal as stated in Lemma 1. Let CH(j)

be the ciphertext component that is associated with the node ν
T̂

. Now as ν
T̂
∈ Path(νT ′), the

label string L(j) of ν
T̂

is a prefix of the label string L′ = Ψ(T ′). Assume that L(j) and L′ are

of length d(j) and n respectively. According to the scheme description, we have SKT ′ and CH(j)

are of the forms as defined in equations (1) and (2) or (3) respectively. Thus we obtain

A1 =
5∏
i=1

e(Ci, Di) = e(g, g)αa1br2e(v, g)b(r1+r2)se(v1, g)ba1r1se(v2, g)ba2r2s

A2 = e(C6, D6)e(C7, D7) = e(v, g)b(r1+r2)se(v1, g)ba1r1se(v2g)ba2r2se(g, w)−a1ts1

A3 = A1/A2 = e(g, g)αa1br2e(g, w)a1ts1

A4 =

d(j)∏
i=1

[
e(Ei,1, D7)

e(Ei,2,Ki)

] 1
ctagi−ktagi

= e(g, w)

a1s1

d(j)∑
i=1

µi

, provided ctagi 6= ktagi, 1 ≤ i ≤ d(j)

EK = A3/A4 = e(g, g)αa1br2 , since t =

d(j)∑
i=1

µi



(4)

Further, one can easily verify that SUE.UpdateCT outputs a valid ciphertext header and
SUE.RandCT re-randomizes the input ciphertext header. These procedures are sequentially
executed to implement the procedure SUE.ReEncrypt, whereby any untrusted third party,
managing users’ access on ciphertexts, can update a ciphertext header attached a certain time
to a new ciphertext header attached a future time using only public information.

12 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

4 Security Analysis

Theorem 1. For any PPT CPA adversary A for the SUE scheme, introduced in Section 3, we
have AdvSUE

A (λ) ≤ AdvDLIN
B1 (λ) + qAdvDLIN

B2 (λ) + AdvDBDH
B3 (λ), where AdvDLIN

Bi (λ), for i ∈ {1, 2},
denotes the advantage of an algorithm Bi in solving the DLIN problem; AdvDBDH

B3 (λ) denotes
that of an algorithm B3 in solving the DBDH problem; and q is the maximum number of private
key queries made by A. Thus, the SUE scheme of Section 3 is fully secure under CPA if the
DBDH and DLIN assumptions hold.

Proof. To prove the security of our SUE scheme, we use the dual system encryption technique
of Lewko and Waters [13], [16]. In dual system encryption, ciphertexts and private keys can be
normal or semi-functional type. The normal type and the semi-functional type are indistinguish-
able and a semi-functional ciphertext cannot be decrypted by a semi-functional private key. The
whole security proof consists of hybrid games that change the normal challenge ciphertext and
the normal private keys to the semi-functional challenge ciphertext and semi-functional private
keys respectively. In the final game, the adversary given the semi-functional private keys and
the semi-functional challenge ciphertext cannot distinguish a proper session key from a random
session key.

We first define the semi-functional type of ciphertexts and private keys.

SUE.GenKeySF: This algorithm generates a semi-functional private key ŜKT ′ for a time T ′

as follows:
– It first computes the label string L′ = Ψ(T ′) ∈ {0, 1}n (say).
– Next, it creates a normal private key

SKT ′ =

D1 = gαa1vs, D2 = g−αvs1g
z1 , D3 = (gb)−z1 , D4 = vs2g

z2 ,
D5 = (gb)−z2 , D6 = (gb)s2 , D7 = gs1 ,

{Ki = (u
L′|i
i wktagihi)

s1}ni=1, {ktagi}ni=1


for the time T ′ under random exponents s1, s2, z1, z2 ∈ Zp using the master key MK along
with the public parameters PP by running the algorithm SUE.GenKey(T ′,MK,PP).

– Then, it chooses a random γ ∈ Zp.
– It sets

ŜKT ′ =

 D̂1 = D1g
−a1a2γ , D̂2 = D2g

a2γ , D̂3 = D3, D̂4 = D4g
a1γ ,

D̂5 = D5, D̂6 = D6, D̂7 = D7,

{K̂i = Ki}ni=1, {k̂tagi = ktagi}ni=1

 (5)

– It outputs
ŜKT ′ = (D̂1, . . . , D̂7, {K̂i}ni=1, {k̂tagi}ni=1).

SUE.EncryptSF: This algorithm computes a semi-functional ciphertext header ĈHT for a
time T as follows:
– It first computes the label string L(0) = Ψ(T) ∈ {0, 1}d (say).
– Next, it obtains a normal ciphertext header CHT = (CH(0), . . . ,CH(d′)) for some d′ < d

that consists of nonempty CH(j), 1 ≤ j ≤ d, and a session key EK for the time T by
running SUE.Encrypt(T,PP), where L(j) is the label string of CH(j) and d(j) is the
length of L(j). Note that d(0) = d.

– Then, it modifies the components of CHT as follows:
1. Let

CH(0) =

C1 = (gb)r1+r2 , C2 = (gba1)r1 , C3 = (ga1)r1 , C4 = (gba2)r2 ,
C5 = (ga2)r2 , C6 = τ r11 τ r22 , C7 = (τ b1)r1(τ b2)r2(wa1)−t,

{Ei,1 = [(ua1i)L
(0)|i(wa1)ctagiha1i]µi , Ei,2 = (ga1)µi}d(0)i=1 , {ctagi}d

(0)

i=1



Fully Secure SUE in Prime Order Bilinear Groups 13

• It chooses a random x ∈ Zp.
• It sets

ĈH
(0)

=

 Ĉ1 = C1, Ĉ2 = C2, Ĉ3 = C3, Ĉ4 = C4g
ba2x,

Ĉ5 = C5g
a2x, Ĉ6 = C6v

a2x
2 , Ĉ7 = C7v

a2bx
2 ,

{Êi,1 = Ei,1, Êi,2 = Ei,2}d
(0)

i=1 , {ĉtagi = ctagi}d
(0)

i=1

 (6)

2. For 1 ≤ j ≤ d(0), it proceeds as follows: If CH(j) is not present in CHT , then it sets

ĈH
(j)

as an empty one. Otherwise, let

CH(j) =

C ′7 = (τ b1)r1(τ b2)r2(wa1)−t
′
, {E′

d(j),1
= [(ua1

d(j)
)L

(j)
(wa1)

ctag′
d(j)ha1

d(j)
]
µ′
d(j) ,

E′
d(j),2

= (ga1)
µ′
d(j)}, {ctag′

d(j)
}


It creates the semi-functional ciphertext component ĈH

(j)
as

ĈH
(j)

=

(
Ĉ ′7 = C ′7v

a2bx
2 , {Ê′

d(j),1
= E′

d(j),1
, Ê′

d(j),2
= E′

d(j),2
},

{ĉtag′d(j) = ctag′
d(j)
}

)
(7)

Note that the elements C ′1, C
′
2, C

′
3, C

′
4, C

′
5, C

′
6, {E′i,1, E′i,2}

d(j)−1
i=1 , {ctag′i}

d(j)−1
i=1 have been

pruned in the normal ciphertext component CH(j) and so are in ĈH
(j)

.

3. It removes all empty ĈH
(j)

and sets ĈHT = (ĈH
(0)
, . . . , ĈH

(d′)
).

4. It outputs a semi-functional ciphertext header as ĈHT and a session key as ÊK =
EK = (e(g, g)αa1b)r2 .

We make a few remarks about the nature of the semi-functional keys and ciphertexts.

• First, note that if one attempts to decrypt a semi-functional ciphertext ĈHT with a normal
key SKT ′ satisfying T ≤ T ′, then the decryption would succeed. This follows from the fact
that the semi-functional ciphertext header ĈHT differs from the normal ciphertext header
CHT in the components Ĉ4, Ĉ5, Ĉ6, Ĉ7. Since,

e(gba2x, D4)e(ga2x, D5)

e(va2x2 , D6)e(va2bx2 , D7)
= 1

when D4, D5, D6, D7 come from SKT ′ , from equation (4), we see that A3 remains invariant
and so does EK.

• Similarly, a semi-functional private key ŜKT ′ is different from a normal private key SKT ′ in
the components D̂1, D̂2, D̂4 and since

e(C1, g
−a1a2γ)e(C2, g

a2γ)e(C4, g
a1γ) = 1

when C1, C2, C4 come from a normally generated ciphertext header CHT , from equation (4)

we see that A1 remains unchanged. As a result, the semi-functional components of ŜKT ′

(with T ≤ T ′) will not impede decryption when applied on CHT .

• However, when a semi-functional private key ŜKT ′ is used to decrypt a semi-functional ci-
phertext header ĈHT with T ≤ T ′, then additionally random element e(g, g)ba1a2xγ will
be generated in the computation of A1 in equation (4) and will carry over through the
subsequent computations to finally get multiplied by the intended session key. Hence, the
decryption process does not succeed.

14 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

We highlight that in order to generate semi-functional ciphertext and private keys (according to
the defined procedures) one respectively needs va2b2 and ga1a2 – neither of which is available from
the public parameters or the master key, as well as, none of which can be computed because
none of a1, a2, b is explicitly available.

The security proof consists of the sequence of hybrid games. The first game will be the original
security game and the last one will be a game such that the adversary has no advantage. We
define the games as follows:

Game G0: This game is the original security game. In this game all private keys and the
challenge ciphertext header are normal.

Game G1: In the next game, all private keys are normal, but the challenge ciphertext header
is semi-functional.

Game G2: Next, we define a new game G2. In this game all private keys are semi-functional
and the challenge ciphertext header is semi-functional. Suppose that an adversary makes at
most q private key queries. For the security proof, we additionally define a sequence of games
G1,1, . . . ,G1,k, . . . ,G1,q where G1 = G1,0. In the game G1,k, for 1 ≤ k ≤ q, the challenge
ciphertext header is semi-functional, the first k private keys are semi-functional, and the
remaining private keys are normal.

Game G3: In the final game G3, all private keys are semi-functional and the ciphertext header
is semi-functional, but the session key is random.

Let Adv
Gj

A be the advantage of the adversary A in the game Gj . We easily obtain that

AdvSUE
A (λ) = AdvG0

A , AdvG1
A = Adv

G1,0

A , AdvG2
A = Adv

G1,q

A , and AdvG3
A = 0.

From the subsequent Lemmas we can obtain the following result

AdvSUE
A (λ) = AdvG0

A + (AdvG1
A − AdvG1

A) +

q∑
k=1

(Adv
G1,k

A − Adv
G1,k

A)− AdvG3
A

≤ |AdvG0
A − AdvG1

A |+
q∑

k=1

|AdvG1,k−1

A − Adv
G1,k

A |+ |AdvG2
A − AdvG3

A |

≤ AdvDLIN
B1 (λ) + qAdvDLIN

B2 (λ) + AdvDBDH
B3 (λ)

This completes the proof. ut

Lemma 3. If there exists an adversary A such that |AdvG0
A − AdvG1

A | = ε(λ), then there would
exist an algorithm B1 such that AdvDLIN

B1 (λ) = ε(λ). Thus, if the DLIN assumption holds, then no
PPT adversary A can distinguish between the games G0 and G1 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes between the games G0 and G1

with a non-negligible advantage. We construct a simulator B1 that attempts to solve the DLIN
problem using A. B1 is given a challenge tuple (g, f, ν, gc1 , f c2 , z) ∈ G6 where z is either νc1+c2

or random. Then B1 that interacts with A is described as follows:

Setup:
– B1 chooses random exponents b, α, yv, yv1 , yv2 , yw, yu1 , . . . , yudmax

, yh1 , . . . , yhdmax
∈ Zp.

– It then sets the public parameters

PP =

(
gb, ga1 = f, ga2 = ν, gba1 = f b, gba2 = νb, τ1 = gyvfyv1 , τ2 = gyvνyv2 ,

τ b1 , τ
b
2 , w

a1 = fyw , {ua1i = fyui , ha1i = fyhi}dmax
i=1 , e(g, g)αa1b = e(g, f)αb

)
and the master key

MK = (g, gα, gαa1 = fα, v = gyv , v1 = gyv1 , v2 = gyv2 , w = gyw , {ui = gyui , hi = gyhi}dmax
i=1).

Fully Secure SUE in Prime Order Bilinear Groups 15

– B1 publishes PP and keeps MK to itself.

Query 1: A adaptively requests a private key for time T ′. B1 creates a normal private key by
running SUE.GenKey by virtue of knowing the master secret key. B1 returns the created
private key to A. Note that B1 cannot generate a semi-functional private key since it can
not compute ga1a2 .

Challenge: In the challenge step, A submits a challenge time T ∗ subject to the condition that
for all of its private key queries for times T ′ in Query 1 it holds that T ′ < T ∗. B1 proceeds
as follows:
1. It first obtains the label string L∗ ∈ {0, 1}d (say) by computing Ψ(T ∗). It creates the

ciphertext component CH
(0)

in two steps.
– It starts by computing a normal ciphertext component

CH(0) =

C1 = (gb)r1+r2 , C2 = (f b)r1 , C3 = f r1 , C4 = (νb)r2 ,
C5 = νr2 , C6 = τ r11 τ r22 , C7 = (τ b1)r1(τ b2)r2(fyw)−t,

{Ei,1 = [(fyui)L
∗|i(fyw)ctagifyhi]µi , Ei,2 = fµi}di=1, {ctagi}di=1


where µ1, . . . , µd, r1, r2, ctag1, . . . , ctagd are random elements of Zp and t =

d∑
i=1

µi.

– Then it modifies components of CH(0) to obtain CH
(0)

as follows:

CH
(0)

=


C1 = C1(gc1)b, C2 = C2(f c2)−b, C3 = C3f

−c2 , C4 = C4z
b, C5 = C5z,

C6 = C6(gc1)yv(f c2)−yv1zyv2 , C7 = C7[(gc1)yv(f c2)−yv1zyv2]b(f c2)yw ,

{Ei,1 = Ei,1, Ei,2 = Ei,2}d−1
i=1 , {Ed,1 = Ed,1(f c2)−(yudL

∗+ywctagd+yhd),

Ed,2 = Ed,2(f c2)−1}, {ctagi = ctagi}di=1


Intuitively, B1 implicitly replaces r1, r2, t in CH(0) by r1, r2, t respectively CH

(0)
, where

r1 = −c2 + r1, r2 = r2 + c1 + c2 and t = −c2 + t.
2. For 1 ≤ j ≤ d, B1 first sets L(j) = L∗|d−j‖1 and proceeds as follows: If L(j) = L∗|d−j+1,

it sets CH
(j)

as an empty one. Otherwise, it obtains CH
(j)

as follows:
– It first computes

CH(j) =

C ′1 = (gb)r1+r2 , C ′2 = (f b)r1 , C ′3 = f r1 , C ′4 = (νb)r2 ,

C ′5 = νr2 , C ′6 = τ r11 τ r22 , C ′7 = (τ b1)r1(τ b2)r2(fyw)−t
′
,

{E′i,1 = [(fyui)L
(j)|i(fyw)ctag

′
ifyhi]µ

′
i , E′i,2 = fµ

′
i}d−j+1
i=1 , {ctag′i}

d−j+1
i=1


where it uses µ′i = µi, ctag′i = ctagi for 1 ≤ i ≤ d − j, r1, r2 that were used
for computing CH(0) together with fresh random µ′d−j+1, ctag

′
d−j+1 ∈ Zp and sets

t′ =

d−j+1∑
r=1

µ′i.

– Next it modifies the components of CH(j) the same way as for CH
(0)

obtaining

CH
(j)

=


C
′
1 = C ′1(gc1)b, C

′
2 = C ′2(f c2)−b, C

′
3 = C ′3f

−c2 , C
′
4 = C ′4z

b, C
′
5 = C ′5z,

C
′
6 = C ′6(gc1)yv(f c2)−yv1zyv2 , C

′
7 = C ′7[(gc1)yv(f c2)−yv1zyv2]b(f c2)yw ,

{E′i,1 = E′i,1, E
′
i,2 = E′i,2}

d−j
i=1 ,

{E′d−j+1,1 = E′d−j+1,1(f c2)
−(yud−j+1

L(j)+ywctag′d−j+1+yhd−j+1
)
,

E
′
d−j+1,2 = E′d−j+1,2(f c2)−1}, {ctag′i = ctag′i}

d−j+1
i=1


by implicitly replacing r1, r2, t

′ in CH(j) by r1 = −c2+r1, r2 = r2+c1+c2, t
′
= −c2+t′

respectively.

16 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

– It also prunes redundant elements from CH
(j)

.

3. It removes all empty CH
(j)

and sets CHT ∗ = (CH
(0)
, . . . ,CH

(d′)
) for some d′ < d that

consists of nonempty CH
(j)

.
4. B1 sets the challenge ciphertext header as CHT ∗ = CHT ∗ and the session key EK∗ =
e(g, f)αbr2 [e(gc1 , f)e(g, f c2)]αb.

5. It flips a random coin β ∈ {0, 1} and gives CHT ∗ and EK∗ to A if β = 0. Otherwise, it
gives CHT ∗ and a random session key to A.

Query 2: Same as Query 1 subject to the same condition that for all the private key queries
of A for times T ′, it hold that T ′ < T ∗.

Guess: A outputs a guess β′. If β = β′ then B1 outputs 1. Otherwise, it outputs 0.

If z = νc1+c2 , then the simulation is the same as the game G0 since the challenge ciphertext

header is generated as normal as in equations (2) and (3) by implicitly setting t = −c2 +

d∑
i=1

µi

for CH
(0)

and t
′

= −c2 +

d−j+1∑
i=1

µ′i for all other nonempty CH
(j)

’s together with r1 = −c2 + r1,

r2 = r2 + c1 + c2. On the other hand, if z = νr for some random r ∈ Zp, then the simulation is
same as the game G1 since the ciphertext header is generated as semi-functional as in equations
(6) and (7) by implicitly setting x ≡ r − c1 − c2 mod p. This completes the proof. ut

Lemma 4. If there exists an adversary A such that |AdvG1,k−1

A − Adv
G1,k

A | = ε(λ), then there
would exist an algorithm B2 such that AdvDLIN

B2 (λ) = ε(λ). Thus, if the DLIN assumption holds,
then no PPT adversary A can distinguish between the games G1,k−1 and G1,k with a non-
negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes between the games G1,k−1 and
G1,k with a non-negligible advantage. We build a simulator B2 that uses A as a subroutine to
solve the DLIN problem. B2 is given a challenge tuple (g, f, ν, gc1 , f c2 , z) ∈ G6 where z is either
νc1+c2 or random. Then B2 interacts with A as follows.

Setup:
– B2 first chooses random exponents α, a1, a2, yv1 , yv2 , yw, yu1 , . . . , yudmax

, yh1 , . . . , yhdmax
,

(A1, B1), . . . , (Admax , Bdmax) ∈ Zp.
– It then sets the public parameters

PP =

gb = f, ga1 , ga2 , gba1 = fa1 , gba2 = fa2 , τ1 = vva11 = gyv1a1 , τ2 = vva22 = gyv2a2 ,
τ b1 = fyv1a1 , τ b2 = fyv2a2 , wa1 = (fgyw)a1 ,

{ua1i = (f−Aigyui)a1 , ha1i = (f−Bigyhi)a1}dmax
i=1 , e(g, g)αa1b = e(f, g)αa1


and the master key

MK =

(
g, gα, gαa1 , v = ν−a1a2 , v1 = νa2gyv1 , v2 = νa1gyv2 , w = fgyw ,

{ui = f−Aigyui , hi = f−Bigyhi}dmax
i=1

)
– B2 gives PP to A and keeps MK to itself.

Query 1: A adaptively requests a private key for a time T ′. If this is a jth query, then B2

handles this query as follows:
– If j > k, B2 will generate a normal private key by running SUE.GenKey. Note that B2

can do that since it knows the master secret key MK.

Fully Secure SUE in Prime Order Bilinear Groups 17

– If j < k, B2 will prepare a semi-functional private key by calling SUE.GenKeySF. It
can run this procedure since it can compute ga1a2 .

– If j = k, B2 generates the private key as follows:
• It first obtains a normal private key

SKT ′ =

D1 = gαa1vs, D2 = g−αvs1g
z1 , D3 = f−z1 , D4 = vs2g

z2 ,
D5 = f−z2 , D6 = fs2 , D7 = gs1 ,

{Ki = (u
L′|i
i wktagihi)

s1}ni=1, {ktagi}ni=1


such that Ψ(T ′) = L′ ∈ {0, 1}n, where it uses ktagi = AiL

′|i + Bi, i = 1, . . . , n and
the random exponents s1, s2, z1, z2 ∈ Zp.
• It then sets

SKT ′ =

D1 = D1z
−a1a2 , D2 = D2z

a2(gc1)yv1 , D3 = D3(f c2)yv1 ,

D4 = D4z
a1(gc1)yv2 , D5 = D5(f c2)yv2 , D6 = D6f

c2 , D7 = D7g
c1 ,

{Ki = Ki(g
c1)yuiL

′|i+yhi+ktagiyw}ni=1, {ktagi = ktagi}ni=1


We emphasize that, the fact that ktagi = AiL

′|i +Bi allows B2 to create the compo-
nents Ki. In addition, we note that B2 implicitly changes s1, s2, z1, z2 used in SKT ′ by
s1, s2, z1, z2 to compute SKT ′ by setting s1 = s1+c1, s2 = s2+c2, z1 = z1−yv1c2, z2 =
z2 − yv2c2.
• B2 returns SKT ′ to A as the query response.

Challenge: A submits a challenge time T ∗ such that for all of its private key queries for times
T ′ in Query 1, it holds that T ′ < T ∗. B2 proceeds as follows:
1. It first computes the label string L∗ = Ψ(T ∗) ∈ {0, 1}d (say). Then it prepares the

semi-functional ciphertext component ĈH
(0)

as follows:
– B2 computes a normal ciphertext component

CH(0) =


C1 = f r1+r2 , C2 = (fa1)r1 , C3 = (ga1)r1 , C4 = (fa2)r2 ,

C5 = (ga2)r2 , C6 = τ r11 τ r22 , C7 = (τ b1)r1(τ b2)r2(wa1)−t
′
,

{Ei,1 = [(ua1i)L
∗|i(wa1)ctagiha1i]µi , Ei,2 = (ga1)µi}d−1

i=1 ,

{Ed,1 = [(ua1d)L
∗
(wa1)ctagdha1d]µ

′
d , Ed,2 = (ga1)µ

′
d}, {ctagi}di=1


under random exponents µ1, . . . , µd−1, µ

′
d, r1, r2, t

′ =
d−1∑
i=1

µi + µ′d ∈ Zp. During this

run it uses ctagd = AdL
∗ +Bd and other ctagi’s as random elements in Zp.

– To make the components of CH(0) semi-functional, B2 selects a random x ∈ Zp,
implicitly sets gµd = gµ

′
dνa2x which in turn implies gt = gt

′
νa2x, and sets

ĈH
(0)

=


Ĉ1 = C1, Ĉ2 = C2, Ĉ3 = C3, Ĉ4 = C4f

a2x, Ĉ5 = C5g
a2x,

Ĉ6 = C6v
a2x
2 , Ĉ7 = C7f

yv2a2xν−a1a2ywx, {Êi,1 = Ei,1, Êi,2 = Ei,2}d−1
i=1 ,

{Êd,1 = Ed,1ν
(yudL

∗+yhd+ctagdyw)a1a2x, Êd,2 = Ed,2ν
a1a2x},

{ĉtagi = ctagi}di=1


2. For 1 ≤ j ≤ d, B2 first sets L(j) = L∗|d−j‖1 and proceeds as follows: If L(j) = L∗|d−j+1,

it sets ĈH
(j)

as an empty one. Otherwise, it constructs ĈH
(j)

as discussed below.
– B2 first obtains

CH(j) =


C ′1 = f r1+r2 , C ′2 = (fa1)r1 , C ′3 = (ga1)r1 , C ′4 = (fa2)r2 ,

C ′5 = (ga2)r2 , C ′6 = τ r11 τ r22 , C ′7 = (τ b1)r1(τ b2)r2(wa1)−t
′′′
,

{E′i,1 = [(ua1i)L
(j)|i(wa1)ctag

′
iha1i]µ

′
i , E′i,2 = (ga1)µ

′
i}d−ji=1 ,

{E′d−j+1,1 = [(ua1d−j+1)L
(j)

(wa1)ctag
′
d−j+1ha1d−j+1]µ

′′
d−j+1 ,

E′d−j+1,2 = (ga1)µ
′′
d−j+1}, {ctag′i}

d−j+1
i=1



18 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

where it uses µ′1 = µ1, . . . , µ
′
d−j = µd−j , r1, r2, ctag

′
1 = ctag1, . . . , ctag

′
d−j = ctagd−j

together with fresh random µ′′d−j+1 ∈ Zp, ctag′d−j+1 = Ad−j+1L
(j) + Bd−j+1 and

defines t′′′ =

d−j∑
i=1

µ′i + µ′′d−j+1.

– Next, B2 modifies CH(j) in the same way as in the case of ĈH
(0)

using the same
x ∈ Zp and implicitly setting gµ

′
d−j+1 = gµ

′′
d−j+1νa2x, which in turn sets gt

′′
= gt

′′′
νa2x,

obtaining

ĈH
(j)

=


Ĉ ′1 = C ′1, Ĉ

′
2 = C ′2, Ĉ

′
3 = C ′3, Ĉ

′
4 = C ′4f

a2x, Ĉ ′5 = C ′5g
a2x,

Ĉ ′6 = C ′6v
a2x
2 , Ĉ ′7 = C ′7f

yv2a2xν−a1a2ywx, {Ê′i,1 = E′i,1, Ê
′
i,2 = E′i,2}

d−j
i=1 ,

{Ê′d−j+1,1 = E′d−j+1,1ν
(yud−j+1

L(j)+yhd−j+1
+ctag′d−j+1yw)a1a2x,

Ê′d−j+1,2 = E′d−j+1,2ν
a1a2x}, {ĉtag′i = ctag′i}

d−j+1
i=1


– It also prunes redundant elements in ĈH

(j)
.

3. B2 removes all empty ĈH
(j)

and sets ĈHT ∗ = (ĈH
(0)
, . . . , ĈH

(d′)
) for some d′ < d that

consists of nonempty ĈH
(j)

.
4. It sets the challenge ciphertext header as CHT ∗ = ĈHT ∗ and the session key EK∗ =
e(f, g)αa1r2 .

5. B2 flips a random coin β ∈ {0, 1} and gives CHT ∗ and EK∗ to A if β = 0. Otherwise, it
gives CHT ∗ and a random session key to A.

Query 2: Same as Query 1 with the same restriction that T ′ < T ∗ for all of A’s private key
queries for times T ′.

Guess: A outputs a guess β′. If β = β′, then B2 outputs 1. Otherwise, it outputs 0.

If z = νc1+c2 , we are in game G1,k−1 since in this case the kth query results in a normal
private key as in equation (1) under randomness s1 = s1 + c1, s2 = s2 + c2. Otherwise, if z is
a random group element, then we can write z = νc1+c2gγ for random γ ∈ Zp. This makes the
kth queried key semi-functional as in equation (5), where γ is the added randomness to make it
semi-functional and thus we are in game G1,k. This completes the proof. ut

Lemma 5. If there exists an adversary A such that |AdvG2
A − AdvG3

A | = ε(λ), then there would
exist an algorithm B3 such that AdvDBDH

B3 (λ) = ε(λ). Thus, if the DBDH assumption hold, then
no PPT adversary can distinguish between the games G2 and G3 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes the game G2 from the game G3

with a non-negligible advantage. A simulator B3 that attempts to solve the DBDH problem using
A as a subroutine is constructed below. B3 is given a challenge tuple (g, gc1 , gc2 , gc3 , z) ∈ G4×GT

where z is either e(g, g)c1c2c3 or random. B3 interacts with A as follows:

Setup:
– B3 begins by selecting random exponents a1, b, yv, yv1 , yv2 , yw, yu1 , . . . , yudmax

, yh1 , . . . ,
yhdmax

∈ Zp.
– It then sets

PP =

(
gb, ga1 , ga2 = gc2 , gba1 , gba2 = (gc2)b, τ1 = gyv+yv1a1 , τ2 = gyv(gc2)yv2 ,

τ b1 , τ
b
2 , w

a1 = gywa1 , {ua1i = gyuia1 , ha1i = gyhia1}dmax
i=1 , e(g, g)αa1b = e(gc1 , gc2)a1b

)
We point out that B3 implicitly sets α = c1c2 and a2 = c2. Due to this setting, the
master key components gα and gαa1 will not be directly available to B3. However, it sets
the other components of the master secret key MK as

g, v = gyv , v1 = gyv1 , v2 = gyv2 , w = gyw , {ui = gyui , hi = gyhi}dmax
i=1 .

Fully Secure SUE in Prime Order Bilinear Groups 19

– It publishes the public parameters PP.

Query 1: A adaptively requests a private key for a time T ′. To answer, B3 computes L′ =
Ψ(T ′) ∈ {0, 1}n (say) and proceeds as follows to generate a semi-functional private key.
– It chooses random s1, s2, z1, z2, γ

′, ktag1, . . . , ktagn ∈ Zp and defines s = s1 + s2. It aims
to implicitly set the variable γ = c1 + γ′.

– It creates the semi-functional private key

ŜKT ′ =

 D̂1 = (gc2)−γ
′a1vs, D̂2 = (gc2)γ

′
vs1g

z1 , D̂3 = (gb)−z1 , D̂4 = (gc1)a1ga1γ
′
vs2g

z2 ,

D̂5 = (gb)−z2 , D̂6 = gbs2 , D̂7 = gs1 ,

{K̂i = [u
L′|i
i wktagihi]

s1}ni=1, {k̂tagi = ktagi}ni=1


Challenge: In the challenge step A submits a challenge time T ∗ such that for all of its private

key queries for times T ′ in Query 1, it holds that T ′ < T ∗. B3 proceeds as follows:
1. At first, B3 computes the label string L∗ = Ψ(T ∗) ∈ {0, 1}d (say) and generates semi-

functional ciphertext component ĈH
(0)

as follows:

– It selects random µ1, . . . , µd, r1, ctag1, . . . , ctagd, x
′ ∈ Zp and sets t =

d∑
i=1

µi. It will

implicitly let r2 = c3 and x = −c3 + x′.
– Next it computes

ĈH
(0)

=

 Ĉ1 = gbr1(gc3)b, Ĉ2 = gba1r1 , Ĉ3 = ga1r1 , Ĉ4 = (gc2)bx
′
, Ĉ5 = (gc2)x

′
,

Ĉ6 = τ r11 (gc3)yv(gc2)yv2x
′
, Ĉ7 = (τ b1)r1(gc3)yvb(gc2)yv2bx

′
w−a1t,

{Êi,1 = [u
L∗|i
i wctagihi]

a1µi , Êi,2 = ga1µi}di=1, {ĉtagi = ctagi}di=1


2. For 1 ≤ j ≤ d, B3 first sets L(j) = L∗|d−j‖1 and proceeds as follows: If L(j) = L∗|d−j+1,

it sets ĈH
(j)

as an empty one. Otherwise, it computes ĈH
(j)

in the same way as ĈH
(0)

by
performing the following steps.
– It selects fresh random µ′d−j+1, ctag

′
d−j+1 ∈ Zp.

– It computes the semi-functional ciphertext component

ĈH
(j)

=

 Ĉ
′
1 = gbr1(gc3)b, Ĉ ′2 = gba1r1 , Ĉ ′3 = ga1r1 , Ĉ ′4 = (gc2)bx

′
, Ĉ ′5 = (gc2)x

′
,

Ĉ ′6 = τ r11 (gc3)yv(gc2)yv2x
′
, Ĉ ′7 = (τ b1)r1(gc3)yvb(gc2)yv2bx

′
w−a1t

′
,

{Ê′i,1 = [u
L(j)|i
i wctag′ihi]

a1µ′i , Ê′i,2 = ga1µ
′
i}d−j+1
i=1 , {ĉtag′i = ctag′i}

d−j+1
i=1


where it uses µ′1 = µ1, . . . , µ

′
d−j = µd−j , ctag

′
1 = ctag1, . . . , ctag

′
d−j = ctagd−j together

with the same x′ that were used for computing ĈH
(0)

, defines t′ =

d−j+1∑
i=1

µ′i, and

implicitly sets r2 = c3, x = −c3 + x′.

– It also prunes redundant components from ĈH
(j)

.

3. B3 removes all empty ĈH
(j)

and sets ĈHT ∗ = (ĈH
(0)
, . . . , ĈH

(d′)
) for some d′ < d that

consists of nonempty ĈH
(j)

.
4. B3 sets the challenge ciphertext header as CHT ∗ = ĈHT ∗ and the challenge session key

EK∗ = za1b.
5. Finally B3 gives CHT ∗ and EK∗ to A.

Query 2: Same as Query 1 with the same restriction that for all the private key queries for
times T ′ in this phase also T ′ < T ∗.

20 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Guess: A outputs a guess β′ ∈ {0, 1}. B3 also outputs β′.

One can verify that the semi-functional private keys and the semi-functional ciphertext header
are correctly distributed as in equations (5), (6) and (7). If z = e(g, g)c1c2c3 , then the session
key is properly distributed as in the game G2. Otherwise, the session key is random element as
in the game G3. This completes the proof. ut

5 Efficiency

Table 1 and 2 present the comparison between our fully secure SUE scheme and that of [10],
the only SUE scheme with full security available in the literature, in terms of communication
together with storage and computation respectively. The other previously known SUE schemes,
viz., the prime order constructions of [10], [9] are only selectively secure and hence we do not
consider them for efficiency comparison. Let us first concentrate on the communication and

Table 1: Communication and Storage Comparison

SUE |G| Complexity
Assumptions

|PP| |MK| |SKT | |CHT |

[10] n (composite)
Variants of SD,
Composite DH

4k + 2 in G,
1 in GT

1 in G,
1 in Zn

k + 2 in G 3k + 2 in G

Ours p (prime) DLIN, DBDH
2k + 10 in G,
1 in GT

2k + 7 in G k + 7 in G,
k in Zp

5k + 7 in G,
2k in Zp

Here, k = log Tmax where Tmax is the maximum time in the system.

Table 2: Computation Comparison

SUE |G| SUE.Setup SUE.GenKey SUE.Encrypt SUE.ReEncrypt SUE.Decrypt

[10]
n

(composite) 1 in GT ; 1 2k + 3 in G 4k + 2 in G,
1 in GT

4k + 6 in G,
1 in GT

2k − 2 in G;
k + 2

Ours p (prime)
2k + 12 in G,
1 in GT ; 1

3k + 9 in G 9k + 10 in G,
1 in GT

9k + 20 in G,
1 in GT

k in G;
2k + 7

Here, k = log Tmax where Tmax is the maximum time in the system.
In this table, ‘x; y’ signifies ‘x many exponentiations and y many pairings’.

storage efficiency. Just by looking at Table 1, it may appear that the communication efficiency
of our scheme is worse than that of [10]. However, our scheme is built on prime order bilinear
group as opposed to [10] which is built on composite order bilinear group and this difference
in the group order results in a complete turn-around of the situation. As noted in [7], the only
known instantiations of composite order bilinear group use elliptic curves (or more generally,
abelian varieties) over finite fields. Since the elliptic curve group order must be infeasible to
factor, it must be at least 1024 bits. On the other hand, the size of a prime order elliptic curve
group that provides an equivalent level of security is only 160 bits which is more than six times
smaller. Thus, when compared in terms of bit length, we can readily infer from Table 1 that both
the ciphertext and key sizes in our SUE scheme are roughly one-third of the corresponding sizes
in [10]. Our public parameters contain almost half the number of group elements in the public
parameters of [10]. Regarding the master key size of our SUE scheme, note that, although it is
not constant, it grows moderately with the maximum time bound in the system. For instance,
if the time periods are taken to be months, then the maximum time bound Tmax = 217 is more
than 850 years, and in this case our master key would involve only 41 group elements.

Table 2 displays the computational cost of our SUE scheme in comparison with that of [10].
Here also our scheme is benefited from the use of prime order bilinear group. Due to the excessive
bit length of the group order, group operations and pairing computations are prohibitively slow
on composite order elliptic curves [7], [11]. In particular, an exponentiation is at least six times
slower and a pairing computation is roughly 50 times slower on a 1024 bit composite order elliptic
curve than the corresponding operations on a comparable prime order curve [7]. In this light, we
can rapidly obtain from Table 2 that the SUE.GenKey algorithm of our SUE scheme is almost

Fully Secure SUE in Prime Order Bilinear Groups 21

4 times faster, the SUE.Encrypt and the SUE.ReEncrypt algorithms are almost 3 times
faster, as well as, the SUE.Decrypt algorithm is roughly 25 times faster than the respective
algorithms in [10]. Finally, following [8], if we assume that in prime order elliptic curve groups,
a pairing is equivalent to six exponentiations, then our SUE.Setup algorithm would have lower
computational complexity compared to that of [10] even for Tmax = 2200. However, we note that
in last few years there has been significant improvement in the efficiency of pairing computation.
Despite this we may conclude that our SUE.Setup algorithm would still have lower complexity
than [10] for sufficiently large value of Tmax.

Remark 3. Note that, Freeman [7] and Lewko [11] have developed abstract frameworks to sim-
ulate the key properties of bilinear groups of composite order that are required to construct
secure pairing based cryptosystems in prime order groups. Their tools are not generic scheme
conversions in the sense that they do not transform any composite order cryptographic protocol
to a prime order protocol. On the contrary, their techniques serve in replicating certain tricks
in the security proofs of independent prime order protocol designs in a manner analogous to
that of their composite order variants. In the security proof of our SUE scheme, we have in-
corporated the required features from the underlying prime order bilinear groups in a different
fashion. Further, we have developed a tag based approach to overcome certain subtility which
they addressed using nominal semi-functionality [11].

Remark 4. As mentioned earlier in the paper, the work of Sahai et al. [15] can be viewed as
a restricted SUE. However, Lee et al. [10] have already shown that their SUE scheme is more
efficient than [15] in terms of both communication and storage, as well as, computation. Thus,
our scheme having better performance guarantee compared to [10], naturally outperforms [15].
On the other hand, although achieving a similar goal, SUE should not be confused with the
notion of updatable encryption introduced by Boneh et al. [4]. An updatable encryption scheme
supports the functionality of re-encrypting a certain data encrypted under some symmetric key
to a fresh encryption of the same data under another key. On the contrary, SUE associates
ciphertexts with time and not with keys and thus it has more flexibility. Furthermore, in case of
updatable encryption re-encrypting a ciphertext requires a re-encryption key derived from the
current encryption key and the target one, whereas, in SUE ciphertexts are publicly updatable
without requiring any re-encryption key.

6 Conclusion

In this paper, we have designed an SUE scheme in prime order bilinear groups and proved its
full CPA security under standard assumptions, namely, the DLIN and the DBDH assumptions.
To the best of our knowledge, our SUE scheme is the first to achieve full security in prime order
bilinear group setting. We have employed the dual system encryption technique of Lewko and
Waters [13], [16]. In our SUE scheme, the master key size is not constant. Also the ciphertext and
key sizes are not very short because the tag values could not be compressed. Developing an SUE
scheme that overcomes these difficulties could be an interesting future work. As noted earlier,
an SUE scheme cannot be CCA2 secure. However, one may attempt to analyse the possible
relaxations of CCA2 security for SUE and design an SUE scheme, secure in that relaxed CCA2
security model, in prime order bilinear groups under standard assumptions.

References

1. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: Proceedings of
the 15th ACM conference on Computer and communications security. pp. 417–426. ACM (2008)

2. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Advances in Cryptology–CRYPTO 2004. pp.
41–55. Springer (2004)

22 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

3. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Advances in CryptologyCRYPTO
2001. pp. 213–229. Springer (2001)

4. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic prfs and their applications. In:
Advances in Cryptology–CRYPTO 2013, pp. 410–428. Springer (2013)

5. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Advances in Cryptolo-
gyEurocrypt 2003, pp. 255–271. Springer (2003)

6. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Advances in Cryptolo-
gyEUROCRYPT 2002. pp. 65–82. Springer (2002)

7. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups.
In: Advances in Cryptology–EUROCRYPT 2010, pp. 44–61. Springer (2010)

8. Hohenberger, S.: Advances in signatures, encryption, and e-cash from bilinear groups. Ph.D. thesis, Citeseer
(2006)

9. Lee, K.: Self-updatable encryption with short public parameters and its extensions Available at http://

eprint.iacr.org/2014/231.pdf

10. Lee, K., Choi, S.G., Lee, D.H., Park, J.H., Yung, M.: Self-updatable encryption: Time constrained access
control with hidden attributes and better efficiency. In: Advances in Cryptology-ASIACRYPT 2013, pp.
235–254. Springer (2013)

11. Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In:
Advances in Cryptology–EUROCRYPT 2012, pp. 318–335. Springer (2012)

12. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: Attribute-
based encryption and (hierarchical) inner product encryption. In: Advances in Cryptology–EUROCRYPT
2010, pp. 62–91. Springer (2010)

13. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure hibe with short ciphertexts.
In: Theory of Cryptography, pp. 455–479. Springer (2010)

14. Paterson, K.G., Quaglia, E.A.: Time-specific encryption. In: Security and Cryptography for Networks, pp.
1–16. Springer (2010)

15. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delegation for attribute-based
encryption. In: Advances in Cryptology–CRYPTO 2012, pp. 199–217. Springer (2012)

16. Waters, B.: Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In: Ad-
vances in Cryptology-CRYPTO 2009, pp. 619–636. Springer (2009)

http://eprint.iacr.org/2014/231.pdf
http://eprint.iacr.org/2014/231.pdf

	Fully Secure Self-Updatable Encryption in Prime Order Bilinear Groups
	Introduction
	Preliminaries
	Self-Updatable Encryption
	Bilinear Groups of Prime Order and Complexity Assumptions

	Our Self-Updatable Encryption
	Managing the Time Structure
	Construction
	Correctness

	Security Analysis
	Efficiency
	Conclusion

