We also describe a rate-optimal 1-out-of-$n$ CPIR based on rate-optimal homomorphic encryption. In concrete terms, when applied to say, a movie database with $n = 2^{16}$ elements of $\ell = 3.8 \cdot 10^{9}$-bits, the client can privately download a movie with a communication rate of almost $0.99$, hence sacrificing only about $1\%$ of bandwidth for privacy.
We also analyze the optimality of the rate efficiency of our scheme in a novel model that may be of independent interest. Our $1$-out-of-$n$ CPIR has rate $ 1- 1.72 \sqrt{k / \ell} \cdot \log_{2} n + O_\ell(\ell^{-1})$, while we show that no black-box construction surpasses $1 - \sqrt{k / \ell} (\log n/ \log \log n) + O_\ell(\ell^{-1})$ in terms of rate, where $\ell$ is the length of the database elements and $k$ the security parameter.
Category / Keywords: cryptographic protocols / branching programs, CPIR, homomorphic encryption, lower bounds, Puiseux series Date: received 17 Oct 2014 Contact author: helger lipmaa at gmail com Available format(s): PDF | BibTeX Citation Version: 20141022:163345 (All versions of this report) Short URL: ia.cr/2014/851 Discussion forum: Show discussion | Start new discussion