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Abstract

Noisy channels are a powerful resource for cryptography as they can be
used to obtain information-theoretically secure key agreement, commit-
ment and oblivious transfer protocols, among others. Oblivious transfer
(OT) is a fundamental primitive since it is complete for secure multi-
party computation, and the OT capacity characterizes how efficiently a
channel can be used for obtaining string oblivious transfer. Ahlswede and
Csiszár (ISIT’07 ) presented upper and lower bounds on the OT capacity
of generalized erasure channels (GEC) against passive adversaries. In the
case of GEC with erasure probability at least 1/2, the upper and lower
bounds match and therefore the OT capacity was determined. It was
later proved by Pinto et al. (IEEE Trans. Inf. Theory 57(8)) that in
this case there is also a protocol against malicious adversaries achieving
the same lower bound, and hence the OT capacity is identical for passive
and malicious adversaries. In the case of GEC with erasure probabil-
ity smaller than 1/2, the known lower bound against passive adversaries
that was established by Ahlswede and Csiszár does not match their up-
per bound and it was unknown whether this OT rate could be achieved
against malicious adversaries as well. In this work we show that there is
a protocol against malicious adversaries achieving the same OT rate that
was obtained against passive adversaries.

In order to obtain our results we introduce a novel use of interactive
hashing that is suitable for dealing with the case of low erasure probability
(p∗ < 1/2).

Keywords: Oblivious transfer, generalized erasure channel, oblivious trans-
fer capacity, malicious adversaries, information-theoretic security.
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1 Introduction

The usefulness of noisy channels for cryptographic purposes was first realized by
Wyner [38], who proposed a secret key agreement protocol based on noisy chan-
nels. Later on it was showed by Crépeau and Kilian that such channels can also
be used to obtain information-theoretically secure implementations of crypto-
graphic primitives such as oblivious transfer and commitment protocols [12, 11].

Oblivious transfer (OT) is one of the fundamental cryptographic primitives
since it is complete for two-party and multi-party computation [23, 27, 15], i.e.,
given an implementation of OT it is possible to securely evaluate any polynomial
time computable function without any additional assumptions. In the early
years of research on OT, different variants of OT were proposed [37, 33], but it
was later showed that they are equivalent [10]. Thereafter the community has
focused mainly on the one-out-of-two string oblivious transfer variant, which is
the one considered in this work. It is a primitive involving two parts, Alice and
Bob. Alice inputs two strings S0, S1 ∈ {0, 1}k and Bob inputs a choice bit c.
Bob receives as output Sc. The security of the OT protocol guarantees that
(a dishonest) Alice cannot learn c, while (a dishonest) Bob cannot learn both
strings. The results of Crépeau and Kilian [12, 11] regarding OT based on noisy
channels were later improved in [28, 36, 13, 29].

OT Capacity After the initial success in obtaining OT protocols from noisy
channels, researchers started to investigate the question of which channels can
be used to implement OT and how efficiently this can be done. Nascimento and
Winter [29] proposed the notion of OT capacity, which is the optimal rate at
which noisy channels can employed to realize OT, and also determined which
noise resources have strictly positive OT capacity. Imai et al. [25] obtained
the OT capacity of erasures channels against passive adversaries (i.e., adver-
saries which always follow the protocol) and a lower bound on its OT capacity
against malicious adversaries (which can arbitrarily deviate from the protocol).
Ahlswede and Csiszár [1, 2] showed new bounds for the OT capacity of erasure
channels.

Generalized Erasure Channel A generalized erasure channel (GEC) is a
combination of a discrete memoryless channel and an erasure channel. The
output of each transmission is an erasure with probability p∗ > 0, independently
from the input symbol. GECs represent a very special case for the study of OT
based on noisy channels. In fact, the known techniques to implement OT from
noisy channels first use the noisy channel to emulate a GEC (in case that it is
not already one) and then use the (emulated) GEC in the rest of the protocol.
Thus, clarifying the OT capacity of the generalized erasure channels is a central
question.

Ahlswede and Csiszár [1, 2] investigated the OT capacity of GECs against
passive adversaries. For a GEC with p∗ ≥ 1/2, they determined the OT capacity.
For a GEC with p∗ < 1/2, they obtained upper and lower bounds for the
OT capacity. Of course, the upper bounds also hold for the case of malicious
adversaries. Pinto et al. [32] proved that for a GEC with p∗ ≥ 1/2, the OT
rate achieved by Ahlswede and Csiszár’s protocol against passive adversaries
can also be achieved against malicious adversaries, and so the OT capacity is
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the same. The techniques used in [32] clearly do not apply in the case p∗ < 1/2
as they explicitly use the fact that the majority of the symbols received by Alice
are erasures.

Our contribution In this work we prove that for a GEC with p∗ < 1/2, the
same OT rate achieved by Ahlswede and Csiszár’s protocol [1, 2] in the case of
passive adversaries can also be achieved in the case of malicious adversaries, thus
establishing a lower bound on the OT capacity of these GECs against malicious
participants that is equal to one obtained against passive ones. We introduce a
novel use of the interactive hashing techniques used by Crépeau and Savvides
in [14].

2 Preliminaries

2.1 Notation

Domains of random variables and other sets will be denoted by calligraphic let-
ters, the cardinality of a set X by |X |, random variables by upper case letters,
and realizations of the random variables by lower case letters. For a random
variable X over X , PX : X → [0, 1] with

∑
x∈X PX(x) = 1 denotes its proba-

bility distribution. For a joint probability distribution PXY : X × Y → [0, 1],
PX(x) :=

∑
y∈Y PXY (x, y) denotes the marginal probability distribution and

PX|Y (x|y) := PXY (x,y)
PY (y) the conditional probability distribution if PY (y) 6= 0.

X ∈R X denotes a random variable uniformly distributed over X and Ur a vec-
tor uniformly chosen from {0, 1}r. [n] denotes the set {1, ..., n} and

(
[n]
`

)
the set

of all subsets S ⊆ [n], where |S| = `. For Xn = (X1, X2, . . . , Xn) and S ⊂ [n],
XS is the restriction of Xn to the positions in the subset S. Similarly for a set
R, RS is the subset of R consisting of the elements determined by S. If a and
b are two bit strings of the same dimension, a ⊕ b denotes their bitwise XOR.
The logarithms used in this paper are in base 2. The entropy of X is denoted
by H(X) and the mutual information between X and Y by I(X;Y ).

2.2 Entropy and Extractors

The main entropy measure used in this work is the min-entropy since its con-
ditional version captures the notion of unpredictability of a random variable,
i.e., the private randomness that can be extracted from variable X given the
correlated random variable Y possessed by an adversary. For a finite alphabet
X , the min-entropy of a random variable X ∈ X is defined as

H∞(X) = min
x

log(1/PX(x)).

Its conditional version, for a finite alphabet Y and a random variable Y ∈ Y, is
defined as

H∞(X|Y ) = min
y
H∞(X|Y = y).

For two probability distributions PX and PY over the same domain V, the
statistical distance between them is

SD(PX , PY ) :=
1

2

∑
v∈V
|PX(v)− PY (v)|.
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In order to extract secure one-time pads from random variables we use strong
extractors [30, 21, 20].

Definition 1 (Strong Extractors). A probabilistic polynomial time function
Ext : {0, 1}n×{0, 1}r → {0, 1}` using r bits of randomness is a (n,m, `, ε)−strong
extractor if for all probability distributions PX with X = {0, 1}n and such that
H∞(X) ≥ m, we have that SD(PExt(X;Ur),Ur

, PU`,Ur
) ≤ ε.

In particular we will use Universal Hash Functions [7] as strong extractors
since they can extract the optimal number of nearly random bits [34] according
to the Leftover-Hash Lemma (similarly the Privacy-Amplification Lemma) [26,
24, 5, 4].

Definition 2 (Universal Hash Function). A class G of functions g : X → Y is
2-universal if, for any distinct x1, x2 ∈ X , the probability that g(x1) = g(x2) is
at most |Y|−1 when g is chosen uniformly at random from G.

Lemma 1. Let G be a 2-universal class of functions g : {0, 1}n → {0, 1}`. Then
for G chosen uniformly at random from G we have that

SD(PG(X),G, PU`,G) ≤ 1

2

√
2−H∞(X)2`.

In particular, it is a (n,m, `, ε)−strong extractor when ` ≤ m− 2 log(ε−1) + 2.

2.3 Interactive Hashing and Encoding of Subsets

The oblivious transfer protocol introduced in this paper uses interactive hashing
as an important building block. Interactive hashing is a cryptographic primitive
between two players, the sender (Bob) and the receiver (Alice) which was ini-
tially introduced in the context of computationally secure cryptography [31] but
was later on generalized for the context of information-theoretical cryptography.
It is particularly useful in the design of unconditionally secure oblivious transfer
protocols [6, 18, 19, 14, 32, 22]. In this primitive Bob inputs a stringW ∈ {0, 1}m
and both Alice and Bob receive as output two strings W0,W1 ∈ {0, 1}m such
that W0 6= W1. The first requirement is that one of the two output strings, Wd,
should be equal to W . The second requirement is that one of the strings should
be effectively beyond the control of (a malicious) Bob. On the other hand, the
third requirement states that (a malicious) Alice should not be able to learn d
(as long as W0 and W1 are a priori equally likely to be the input).

Definition 3 (Security of Interactive Hashing [18, 19]). An interactive hashing
protocol is secure for Bob if for every unbounded strategy of Alice (A′), and
every W , if W0, W1 are the outputs of the protocol between an honest Bob (B)
with input W and A′, then

{V iew〈A
′,B〉

A′ (W )|W = W0} = {V iew〈A
′,B〉

A′ (W )|W = W1},

where V iew
〈A′,B〉
A′ (W ) is Alice’s view of the protocol when Bob’s input is W . An

interactive hashing protocol is (s, ρ)-secure for Alice if for every S ⊆ {0, 1}m of
size at most 2s and every unbounded strategy of Bob (B′), if W0, W1 are the
outputs of the protocol, then

Pr[W0,W1 ∈ S] < ρ,
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where the probability is taken over the coin tosses of Alice and Bob. An inter-
active hashing protocol is (s, ρ)-secure if it is secure for Bob and (s, ρ)-secure
for Alice.

If the distribution of the string Wd̄ over the randomness of the two parties
is η-close to uniform on all strings not equal to Wd, then the protocol is called
η-uniform interactive hashing.

Lemma 2 ([18, 19]). Let t,m be positive integers such that t ≥ logm+2. Then
there exists a four-message (2−m)-uniform (t, 2−(m−t)+O(logm))-secure interac-
tive hashing protocol.

The interactive hashing scheme ensures that one of the outputs is almost
uniformly random; however, in the oblivious transfer protocol, the two strings
are not used directly, but as encodings of subsets. For the protocol to succeed,
both output strings should be valid encodings of subsets. Cover showed [9] the

existence of an efficiently computable one to one mapping F :
(

[n]
`

)
→ [

(
n
`

)
] for

every integer ` ≤ n (thus making it possible to encode the set
(

[n]
`

)
in binary

strings of length m = dlog
(
n
`

)
e). But using such mapping in a straight way

may result in only slightly more than half of the strings being valid encodings.
Therefore we use the modified encoding of Savvides [35], in which each string
W ∈ {0, 1}m encodes the same subset as W mod

(
n
`

)
, thus implying that all

strings always encode valid subsets. In this encoding, each subset corresponds
to either 1 or 2 strings in {0, 1}m, so this scheme can at most double the fraction
of the strings that maps to Bob’s subset of interest.

3 Security Model

In this section we specify the model used for proving the security of the oblivious
transfer protocol and also the resources available to the parties. In the one-
out-of-two string oblivious transfer, Alice gives two strings S0, S1 ∈ {0, 1}k as
input and Bob inputs a choice bit c. Bob receives Sc as output and remains
ignorant about Sc, while Alice should not learn Bob’s choice bit. As showed by
Beaver [3], there exists a very efficient reduction from randomized OT to OT,
therefore in this paper we consider for simplicity OT with random inputs. We
consider malicious adversaries that can act arbitrarily. The protocol participants
are connected by both a noiseless channel and a generalized erasure channel.
The security parameter n determines the number of times that the generalized
erasure channel can be used.

Definition 4 (Generalized Erasure Channel [1, 2]). A discrete memoryless
channel {W : X → Y} is called a generalized erasure channel (GEC) if the
output alphabet Y can be decomposed as Y0 ∪ Y∗ such that W (y|x) does not
depend on x ∈ X , if y ∈ Y∗. For a GEC, we denote W0(y|x) = 1

1−p∗W (y|x),

x ∈ X , y ∈ Y0, where p∗ is the sum of W (y|x) for y ∈ Y∗ (not depending on
x).

We use the OT security definition from Crépeau and Wullschleger [16] be-
cause it implies the sequential composability of the protocols that meet it. Their
definition is described below. The statistical information of X and Y given Z
is defined as

IStat(X;Y |Z) = SD(PXY Z , PZPX|ZPY |Z).
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A F-hybrid protocol consists of a pair of algorithms P = (A,B) that can

interact and have access to some functionality F . A pair of algorithms P̃ =
(Ã, B̃) is admissible for protocol P if at least one of the parties is honest, that

is, if at least one of the equalities Ã = A and B̃ = B holds. Let S denote
(S0, S1).

Theorem 1 ([16]). A protocol P securely realizes string OT (for k-bit strings)

with an error of at most 6ε if for every admissible pair of algorithms P̃ = (Ã, B̃)

for protocol P and for all inputs (S,C), P̃ produces outputs (U, V ) such that the
following conditions are satisfied:

• (Correctness) If both parties are honest, then U = ⊥ and Pr[V = SC ] ≥
1− ε.

• (Security for Alice) If Alice is honest, then we have U =⊥ and there
exists a random variable C ′ distributed according to PC′|S,C,V , such that
IStat(S;C ′|C) ≤ ε and IStat(S;V |C,C ′, SC′) ≤ ε.

• (Security for Bob) If Bob is honest, we have V ∈ {0, 1}k and IStat(C;U |S) ≤
ε.

The protocol is secure if ε is negligible in the security parameter n.

If the protocol uses the generalized erasure channel n times, its oblivious
transfer rate is given by ROT = k

n . The oblivious transfer capacity [29] COT is
the supremum of the achievable rates with secure protocols.

4 OT Capacity of GEC

For a generalized erasure channel {W : X → Y}, let C(W0) denote the Shannon
capacity of the discrete memoryless channel {W0 : X → Y0}. For the case of
generalized erasure channels with p∗ ≥ 1

2 , the oblivious transfer capacity was
determined by Ahlswede and Csiszár [1, 2] against passive adversaries (i.e., ad-
versaries that always follow the protocol) and Pinto et al. [32] against malicious
adversaries.

Theorem 2 ([1, 32, 2]). For a generalized erasure channel with p∗ ≥ 1
2 , the

oblivious transfer capacity both in the case of passive adversaries as in the case
of malicious adversaries is COT = (1− p∗)C(W0).

For the case of generalized erasure channels with p∗ < 1
2 , a lower bound

on the OT capacity against passive adversaries was obtained by Ahlswede and
Csiszár [1, 2].

Theorem 3 ([1, 2]). For a generalized erasure channel with p∗ < 1
2 , a lower

bound on the oblivious transfer capacity in the case of passive adversaries is
COT ≥ p∗C(W0).

In the current work we prove that the same OT rate that was achieved
against passive adversaries can also be achieved against malicious ones.

Theorem 4. For a generalized erasure channel with p∗ < 1
2 , a lower bound on

the oblivious transfer capacity in the case of malicious adversaries is COT ≥
p∗C(W0).
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We present next a protocol that achieves such OT rate and its security proof.
This protocol belongs to the lineage of OT protocols initiated by Crépeau and
Savvides [14, 35], which use interactive hashing as a central, efficient mechanism
to ensure that (a malicious) Bob is following the protocol rules without revealing
to Alice his choice bit. Due to the fact that in our case the non-erasure positions
are the majority, our usage of the interactive hashing protocol is different from
the previous protocols.

Protocol 1.

1. (Parameter Setting) Alice and Bob select a positive constant α such that
3α < 1/2− p∗ and set β = 1/2− p∗ − α. Note that β > 2α.

2. (GEC Usage) Alice chooses xn randomly according to the probability dis-
tribution that achieves the Shannon capacity of W0. She sends xn to Bob
using the GEC, who receives the string yn.

3. (Good/Bad Sets) Bob divides the string yn into a set G of good positions
(those with y ∈ Y0) and a set B of bad positions (those corresponding to
erasures). The protocol is aborted if |G| < (1− p∗ − α)n.

4. (Partitioning) Bob chooses uniformly randomly a bit c and a m-bit string

w, where m = dlog
(
n/2
βn

)
e. He decodes w into a subset T of cardinality

βn out of n/2 (using the encoding scheme described in Section 2). Then
he partitions the n positions into two sets of same cardinality. For Rc he
picks randomly, and without repetition, n/2 positions from G. For Rc,
he first picks the subset RTc randomly from the remaining positions from
G and then fills the rest of Rc randomly with the n/2 − βn still unused
positions. Bob sends the descriptions of R0 and R1 to Alice, who aborts
if there is some repeated position.

5. (Interactive Hashing) Bob sends w to Alice using the interactive hashing
protocol. Let w0, w1 be the output strings, T0, T1 the decoded subsets and
d be such that wd = w.

6. (Checking the Partitioning) Bob announces a = d ⊕ c, yR
Ta
0 and yR

Ta
1 .

Alice verifies if yR
Ta
0 and yR

Ta
1 are 2ε-jointly typical with her input on

these positions for the channel {W0 : X → Y0} (see Appendix for the
considered definitions of typicality); aborting if this is not the case.

7. (Strings Transmission) Let Q0 = R0 \ Ta, Q1 = R1 \ Ta and µ = p∗ +
α. Alice randomly chooses 2-universal hash functions g0, g1 : X µn →
{0, 1}µn[H(X|Y ∈Y0)+ε] (with ε > 0 such that the output length is in-
teger) and computes g0(xQ0) and g1(xQ1). In addition she also ran-
domly chooses 2-universal hash functions h0, h1 : X µn → {0, 1}δn, where
δ = (µ− 5α)H(X)− µ(H(X|Y ∈ Y0) + ε)− γ and γ > 0 is such that the
output length is integer. Alice sends Bob g0(xQ0), g1(xQ1) and the de-
scriptions of g0, g1, h0, h1. She outputs S0 = h0(xQ0) and S1 = h1(xQ1).

8. (Output) Bob computes all possible x̃Qc that are jointly typical with yQc

and satisfy gc(x̃
Qc) = gc(x

Qc). If there exists exactly one such x̃Qc , then
Bob outputs Sc = hc(x̃

Qc); otherwise Sc = 0δn.

Theorem 5. This string oblivious transfer protocol is secure.
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Correctness If both Alice and Bob are honest, Bob will get the correct output
value unless he aborts in the Good/Bad Sets step or if the he does not recover
exactly x̃Qc = xQc in the Output step. But the probability that Bob has
to abort in the Good/Bad Sets step is a negligible function of the security
parameter n due to the the Chernoff bound [8]. Bob does not recover the
correct x̃Qc = xQc if either xQc is not jointly typical with yQc or if there exists
another xQc that has gc(x

Qc) = gc(x
Qc) and is jointly typical with yQc . The

former case only occurs with negligible probability due to the definition of joint
typicality. For the latter case, an upper bound on the number of xQc that are
jointly typical with yQc is 2µn[H(X|Y ∈Y0)+ε′], for 0 < ε′ < ε and n sufficiently
large. Therefore according to the Leftover-Hash Lemma, for n sufficiently large,
with overwhelming probability gc(x

Qc) 6= gc(x
Qc) for all these other xQc that

are jointly typical with yQc . As all events that can result in Bob not obtaining
the correct output only occur with negligible probability in n, the protocol is
correct.

Security for Bob In a generalized erasure channel, each input symbol x is
erased with the same probability p∗. Hence Alice has no knowledge about the
erasures and thus from Alice’s point of view the sets (R0,R1) are independent
from the choice bit c. The only other point where the bit c is used is to compute
a = d⊕c in the Checking the Partitioning step. The interactive hashing protocol
is η′ < 2−m uniform, which is negligible since m = dlog

(
n/2
βn

)
e = O(n) by

applying Stirling’s approximation. Thus with overwhelming probability wd̄ is
uniform in {0, 1}m \ w, and so Alice’s views are identical for d = 0 and d = 1.
Hence she gains no information about d and therefore about c. Note that in the
Output step Bob does not abort, so Alice cannot use reaction attacks. Therefore
with overwhelming probability Alice’s view of the protocol is independent from
c.

Security for Alice The proof of security for Alice follows the lines of Sav-
vides’ proof [35, Section 5.1], but we use new variants of the supporting defini-
tions and lemmas due to the fact that we use the interactive hashing protocol
in a different way.

Definition 5. Let u(R) be the number of positions contained in R such that
the corresponding output at this position was an erasure.

Definition 6. T is called good for R if u(RT ) < αn, otherwise it is called bad
for R.

The proof is divided in two cases as follows: (i) both u(R0), u(R1) ≥ 2αn,
(ii) either u(R0) or u(R1) is less than 2αn.

Case 1 For proving Alice’s security in the first case we will need the following
lemmas.

Lemma 3. Let R be a set of cardinality n/2 such that u(R) ≥ 2αn. The
fraction f of subsets T ⊂ R of cardinality βn that are good for R satisfies
f < (1− 2α)αn.
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Proof. We prove that a subset T chosen uniformly at random will be good for
R with probability smaller than (1 − 2α)αn using the probabilistic method.
One way of choosing T is by picking sequentially at random, and without re-
placement, βn positions out of the n/2 positions in R. For 1 < i < βn, the
probability pi that the i-th chosen position is a non-erasure given that the sub-
set T does not have enough erasure positions so far to be considered bad for R
(i.e., less than αn erasures) is upper bounded by

pi < 1− 2αn− αn
n/2

= 1− 2α

Since for a subset T to be considered good forR it needs to have at least βn−αn
non-erasure positions, we have that

Pr [ T is good for R ] < (1− 2α)βn−αn < (1− 2α)αn.

Lemma 4. Let R0,R1 be sets of cardinality n/2 such that u(R0) ≥ 2αn and
u(R1) ≥ 2αn. The fraction of strings w that decode to subsets T that are good
for either R0 or R1 is no larger than 4(1− 2α)αn.

Proof. It follows from the previous lemma and the union bound that the fraction
f of subsets T that are good for either R0 or R1 is smaller than 2(1 − 2α)αn.
Then the lemma follows straightforwardly from the fact that in the encoding
scheme there are either one or two strings mapping to each set.

Since the fraction of the strings w ∈ {0, 1}m that are good for either R0 or
R1 is no larger than 4(1 − 2α)αn, we can set the security parameter s of the
interactive hashing protocol to log(4(1−2α)αn2m) = m+αn log(1−2α)+2 and
thus have ρ = 2−(m−s)+O(logm) = 2αn log(1−2α)+O(logn). Hence, by the security
of the interactive hashing protocol, the probability that both w0 and w1 are
good for either R0 or R1 is a negligible function of n, and so with overwhelming
probability one of the sets (w.l.o.g. R0) will have u(RTa0 ) ≥ αn.

By lemma 5 (in the appendix), if two n long strings are not jointly typical
at a uniformly randomly chosen linear fraction of positions, then these n long
strings are not jointly typical. Hence Bob can only successfully pass the test
performed by Alice in the Checking the Partitioning step (i.e., he can only find

yR
Ta
0 that is jointly typical with Alice’s input) if he can correctly guess y’s

values for the erasure positions that are jointly typical with Alice’s input on
these positions. For ε > 0 and n sufficiently large, there are for these positions
at most 2αn[H(Y ∈Y0|X)+ε] sequences of y’s values that are jointly typical with
Alice’s input, and there are at least 2αn[H(Y ∈Y0)−ε] typical sequences for the y’s
values, thus Bob’s success probability is less than 2αn[H(Y ∈Y0|X)−H(Y ∈Y0)+2ε] =
2−αn[C(W0)−2ε], which is a negligible function of n. Since Bob can only cheat with
negligible probability in the case that both u(R0), u(R1) ≥ 2αn, the protocol is
secure for Alice in this case.

Case 2 We assume w.l.o.g. that R0 is the one with u(R0) < 2αn. The
Chernoff bound guarantees that |B| > (p∗ − α)n with overwhelming prob-
ability. If Ta is bad for R1, then, by the same reasons as above, we have
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that Bob can only successfully pass the test performed by Alice in the Check-

ing the Partitioning step (i.e., finding yR
Ta
1 that is jointly typical with Alice’s

input) with negligible probability. But if u(R0) < 2αn, u(RTa1 ) < αn and
|B| > (p∗ − α)n, then u(Q1) ≥ (p∗ − 4α)n. Then from Bob’s point of view,
at least (p∗ − 4α)n = (µ − 5α)n of the positions in Q1 are erasures and Alice
only sends him µn[H(X|Y ∈ Y0) + ε] bits of information about xQ1 . Hence
H∞(XQ1 |ViewBob) > n[(µ− 5α)H(X)−µH(X|Y ∈ Y0)−µε] and so the use of
the 2-universal hash function h1 for extracting n[(µ − 5α)H(X) − µH(X|Y ∈
Y0) − µε − γ] bits is secure according to the Leftover-Hash Lemma. Therefore
the protocol is secure for Alice in this case as well.

Maximizing the oblivious transfer rate For n sufficiently large, α, ε and
γ can be made arbitrarily small without compromising the security, thus in the
limit the strings’ length can be up to np∗[H(X) − H(X|Y ∈ Y0)]. Since the
probability distribution used for X is the one achieving the Shannon capacity
of W0, this is equal to np∗C(W0), thus proving Theorem 4.

5 Conclusions

In this work it was proven that the known lower bound in case of passive ad-
versaries for the oblivious transfer capacity of the generalized erasure channels
with error probability p∗ < 1/2 also holds in the case of malicious adversaries,
which can deviate arbitrarily from the protocol. In order to prove this result, a
novel usage of the interactive hashing technique suitable for channels with low
erasure probability was established, which can be of interest in other scenarios.
The question of determining the exact oblivious transfer capacity of the gen-
eralized erasure channels with low erasure probability remains open, even for
passive adversaries, and would be an interesting direction for future research
given the pivotal role of these channels in the known constructions of oblivious
transfer from noisy channels. Another interesting line of research would be de-
veloping new methodologies for obtaining oblivious transfer from noisy channels
which circumvent the need of emulating a generalized erasure channel as a first
step.
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[15] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed obliv-
ious transfer and private multi-party computation. In Don Coppersmith,
editor, Advances in Cryptology – CRYPTO’95, volume 963 of Lecture Notes
in Computer Science, pages 110–123, Santa Barbara, CA, USA, August 27–
31, 1995. Springer, Berlin, Germany.
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A Typical Sequences

The following definitions follow largely the book of Csiszár and Körner [17].

Definition 7. For a probability distribution P on X and ε > 0 the ε-typical
sequences form the set

T nP,ε = {xn ∈ Xn : ∀x ∈ X |N(x|xn)− nP (x)| ≤ εn &

P (x) = 0⇒ N(x|xn) = 0},

with the number N(x|xn) denoting the number of symbols x in the string xn.

The type of xn is the probability distribution Pxn(x) = 1
nN(x|xn). Then,

xn ∈ T nP,ε ⇒ |Pxn(x)− P (x)| ≤ ε,∀x ∈ X .

Properties 1.

1. P⊗n(T nP,ε) ≥ 1− 2|X | exp(−nε2/2).

2. |T nP,ε| ≤ exp(nH(P ) + nεD).

3. |T nP,ε| ≥ (1− 2|X | exp(−nε2/2)) exp(nH(P )− nεD),

with the constant D =
∑
x:P (x)6=0− logP (x). See [17] for more details.

Extending this concept to the conditional ε-typical sequences, we have:

Definition 8. Consider a channel W : X → Y and an input string x ∈ Xn.
For ε > 0, the conditional ε-typical sequences form the set

T nW,ε(xn) = {yn : ∀x ∈ X , y ∈ Y |N(xy|xnyn)

−nW (y|x)Pxn(x)| ≤ εn
&W (y|x) = 0⇒ N(xy|xnyn) = 0}

=
∏
x

T IxWx,εPxn (x)−1,

where Ix are the sets of positions in the string xn where xk = x.

Properties 2.

1. Wn
xn(T nW,ε) ≥ 1− 2|X ||Y| exp(−nε2/2).

2. |T nW,ε| ≤ exp(nH(W |Pxn) + nεE).

3. |T nW,ε| ≥
(
1− 2|X ||Y| exp(−nε2/2)

)
· exp(−nH(W |Pxn)− nεE),

with the constant E = maxx
∑
y:W (y)6=0− logWx(y) and the conditional entropy

H(W |P ) =
∑
x P (x)H(Wx). See [17] for more details.

It is a well know fact that if xn and yn are conditional ε-typical according
the definition 8, then

|T nW,ε| ≤ 2n(H(Y |X)+ε).

We now prove the following lemma:
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Lemma 5. Let W : X → Y be a discrete memoryless channel and xn ∈ Xn,
yn ∈ Yn be the input and output strings of this channel. Let A be a random
subset of [n] such that |A| = δn, 0 < δ ≤ 1. Let xA and yA be the restrictions of
xn and yn to the positions in the set A. If xn and yn are conditional ε-typical,
then xA and yA are conditional 2ε-typical for any ε > 0 and n large enough.

Proof. By hypothesis xn and yn are conditional ε-typical, so for every symbols
x and y we have that

|N(xy|xnyn)− nPxn(x)W (y|x)| ≤ εn,

for a large enough n.
Given the conditional ε-typical strings xn and yn, the probability of select-

ing one pair with the specific values x and y for the substrings xA and yA is
N(xy|xnyn)

n . We have that

Pxn(x)W (y|x)− ε ≤ N(xy|xnyn)

n
≤ Pxn(x)W (y|x) + ε.

Therefore, by the Chernoff bound [8], for n large enough with overwhelm-
ing probability the number of pairs of x and y in the substrings xA and yA,
N(xy|xAyA), is limited by

δn (Pxn(x)W (y|x)− ε− ε′) ≤ N(xy|xAyA)

≤ δn (Pxn(x)W (y|x) + ε+ ε′) ,

for any ε′ > 0. Making ε′ = ε we have that the substrings xA and yA are
conditional 2ε-typical.
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