Cryptology ePrint Archive: Report 2014/802

Physical Characterization of Arbiter PUFs

Shahin Tajik, Enrico Dietz, Sven Frohmann, Jean-Pierre Seifert, Dmitry Nedospasov, Clemens Helfmeier, Christian Boit, Helmar Dittrich

Abstract: As intended by its name, Physically Unclonable Functions (PUFs) are considered as an ultimate solution to deal with insecure stor- age, hardware counterfeiting, and many other security problems. How- ever, many different successful attacks have already revealed vulnera- bilities of certain digital intrinsic PUFs. Although settling-state-based PUFs, such as SRAM PUFs, can be physically cloned by semi-invasive and fully-invasive attacks, successful attacks on timing-based PUFs were so far limited to modeling attacks. Such modeling requires a large sub- set of challenge-response-pairs (CRP) to successfully model the targeted PUF. In order to provide a final security answer, this paper proves that all arbiter-based (i.e. controlled and XOR-enhanced) PUFs can be com- pletely and linearly characterized by means of photonic emission analy- sis. Our experimental setup is capable of measuring every PUF-internal delay with a resolution of 6 picoseconds. Due to this resolution we in- deed require only the theoretical minimum number of linear independent equations (i.e. physical measurements) to directly solve the underlying inhomogeneous linear system. Moreover, we neither require to know the actual PUF challenges nor the corresponding PUF responses for our physical delay extraction. On top of that devastating result, we are also able to further simplify our setup for easier physical measurement han- dling. We present our practical results for a real arbiter PUF implemen- tation on a Complex Programmable Logic Device (CPLD) from Altera manufactured in a 180 nanometer process.

Category / Keywords:

Original Publication (in the same form): IACR-CHES-2014

Date: received 6 Oct 2014

Contact author: shahin at sec t-labs tu-berlin de

Available format(s): PDF | BibTeX Citation

Version: 20141010:142847 (All versions of this report)

Short URL: ia.cr/2014/802

Discussion forum: Show discussion | Start new discussion


[ Cryptology ePrint archive ]