Fault Attack revealing Secret Keys of Exponentiation Algorithms from Branch Prediction Misses

Sarani Bhattacharya and Debdeep Mukhopadhyay

Abstract—Performance monitors are provided in modern day computers for observing various features of the underlying micro-architectures. However the combination of underlying micro-architectural features and performance counters lead to side-channels which can be exploited for attacking cipher implementations. In this paper, to the best of our knowledge we study for the first time, the combination of branch-predictor algorithms and performance counters to demonstrate a fault attack on the popular square-and-multiply based exponentiation algorithm, used in RSA. The attacks exploiting branching event like branch taken can be foiled by Montgomery Ladder based implementation of the exponentiation algorithm, while attacks based on branch miss are more devastating. We demonstrate the power of the attack exploiting branch misses from performance monitors by formalizing a fault attack model, where the adversary is capable of performing a bit flip at a desired bit position of the secret exponent. The paper characterizes the branch predictors using the popular two-bit predictor and formulates the dependence on the number of branch misses on the fault induced. This characterization is exploited to develop an iterative attack algorithm where knowledge of the previously determined key-bits and the difference of branch misses (as gathered from the performance counters) are utilized to determine the next bit. The attack has been validated on several standard Intel platforms, and puts to threat several implementations of exponentiation algorithms ranging from standard square-and-multiply, Montgomery Ladder to RSA-CRT and which are often used as side-channel counter measures. The attacks show that using the fault attack targeting branch predictors one can attack implementations of exponentiation: both square and multiply, and Montgomery ladder, which forms the central algorithm for several standard public key ciphers.

Keywords—Fault attacks, branch misses, performance counters, Branch Prediction Unit, Square and Multiply Algorithm, Montgomery Ladder Algorithm, RSA-CRT.

I. INTRODUCTION

Micro-architectural features leave footprints in the processor which is often captured by side channels. Side-channel attacks have emerged as a powerful threat to modern cryptographic systems. These attacks allow malicious users to gain access to sensitive data by monitoring power consumption, timing, or electro-magnetic radiation of the microprocessor. In modern microprocessors there are several new sources of side channels. The performance improvement measures which are being introduced in recent microprocessors do leak a significant amount of information. For example hardware prefetchers for cache memories are shown to increase leakage in cache-timing attacks [2]. Cache-timing attacks monitor the time taken to perform the entire encryption, and relies on statistical means to determine the secret key.

In the pioneering work in [10] it was first shown that the time to process different inputs can be used as a side channel information to find the exponent bits of the secret keys for RSA, Diffie-Hellman, DSS etc. In [1] the penalty for mispredicted branches in number of clock cycles is observed as side channel to identify the data dependent operations of the public key cryptosystem. On a standard RSA implementation, four different types of attacks were performed exploiting the Branch Prediction Unit (BPU) by using both synchronous and asynchronous techniques. Using timing as the side channel in [1], the misprediction information is modeled to identify the secret key, while in the synchronous and asynchronous attacks the Branch Target Buffer (BTB) is modified by the attacker to surface the attack.

Hardware performance counters (HPCs) are a set of special-purpose registers to store the counts of hardware-related activities within the microprocessor. These counters contain rich source of information of the internal activities of the processor and hence can find usage for both attacks and their countermeasures. In [13], these HPCs are exploited as side channels for time based cache attacks. The paper shows that amount of samples required for the attack have a great impact on the different cache eviction strategies. On the other hand, in [5] data from performance counters are used to develop a malware detector in hardware using machine learning techniques. While in [14], a new Virtual Machine Monitor (VMM) named NumChecker is proposed, which exploits HPCs to detect kernel root-kits in a guest Virtual Machine.

In this paper we evaluate the security of cryptographic operations due to the branch events such as branch misses observed from the performance counters. The branch information is obtained using Perf profiling tool for the modular exponentiation operation performed using both square and multiply and Montgomery ladder algorithms. Perf is statistical monitoring tool capable of profiling various events such as branch prediction, branch misses, instruction and data cache hits and misses, cpu cycles etc.

The motivation of this paper is to identify the threats behind the benign information getting revealed while profiling the performance counters. Performance counters can be used to monitor the event branch-misses which arise due to branch predictors present in the architecture. We show that if the
attacker is able to model the underlying predictor, one can exploit it to determine the secret keys. In this work, we have studied the behavior of the dynamic 2-bit branch predictor as appears in [7] and assumed that the branch mispredictions of a system can be modeled using this 2-bit predictor. From the 2-bit predictor, we can observe the mispredictions for a secret key, but this single piece of information is not enough to identify the individual key bits for a secret key.

In order to have a unique classification of the key-space, we introduce one bit fault at the target bit position of secret exponent and observe the mispredictions for this faulty key using the 2-bit predictor algorithm. This time on the basis of two observations of the branch misses for the secret key and its faulty counterpart, we provide a detailed analysis how the difference of branch misses can be characterized and classified to identify the subsequent key sequence patterns. On the basis of this classification of difference of branch misses from 2-bit predictor, we devise an iterative algorithm which identifies the correct exponent key subsequently one bit after another. Finally, we perform the proposed classification by statistically analyzing the branch-misses from the hardware performance counters and successfully modeled a distinguisher which is capable of revealing secret exponent bits. This one bit fault attack model demonstrates that by using branch misprediction information, and with an assumption of underlying dynamic 2-bit predictor, we can correctly identify the secret key bits. The results demonstrate theoretically, along with validations on several Intel platforms, that by using the information of difference of branch misses from hardware performance counters we are able to retrieve the secret bits uniquely. Thus this paper shows that the performance counter values which are easily accessible to the users at the user privilege can be a potent threat.

The organization of the paper is as follows: The following Section II provides preliminaries on modular exponentiation algorithms, 2-bit predictor algorithm, fault attack and their countermeasures. In Section III we demonstrate the vulnerability due to the event “branch-misses” as side channels and the adversary fault model. The attack algorithm is described in Section IV with the detailed analysis on the retrieval of secret key bits and the reduction in key space. Classification of the data from hardware performance counters is detailed in Section V. Section VII provides the experimental validations for the attack strategy and the final section contains conclusion of the work we present here.

II. PRELIMINARIES

In this section we provide a brief introduction to the modular exponentiation algorithms and 2-bit dynamic branch predictor algorithm, timing attacks exploiting branch prediction, fault attacks on RSA-CRT and their countermeasures.

A. MODULAR EXPONENTIATION

In public key cryptography, messages \(m \) that are encrypted with the public key \(e \) perform modular exponentiation as \(c = m^e (mod n) \) and can only be decrypted as \(m = c^d (mod n) \) using the private key \(d \) in reasonable time. The public key algorithms like RSA and ECC use modular exponentiation during encryption or decryption. The commonly used exponentiation algorithms to implement encryption and decryption for the public key cryptographic algorithms is the square and multiply algorithm. The square and multiply algorithm is described in Algorithm 1. The algorithm performs squaring at each step, while multiplication operation is performed only if the exponent bits are set.

Algorithm 1: Square and Multiply Algorithm

| Input: \(y, x = (x_{w-1}, x_{w-2}, \ldots, x_0), n \) |
| Output: \(s = y^x (mod n) \) |

```
begin
Let \( s = 1 \)
for \( i = w − 1 \) down to \( 0 \) do
Let \( s = s^2 (mod n) \)
if \( (x_i = 1) \) then
Let \( s = (s * y) (mod n) \)
end
end
Return \( s \).
```

But this algorithm performs unbalanced instruction execution because multiplication statements are conditioned on the exponent bit. Common side channels such as power, timing are capable of identifying this conditional executions. Simple power attacks (SPA) and timing attacks exploit this conditional instruction execution retrieving the secret exponent.

This paper evaluates the security of implementations of RSA-like ciphers on standard processors. This paper considers a combination of fault attacks and uses the side channels of branch misses leaked from the Performance counters. The branch misses are caused due to branch predictors present in the modern machines. One of the very popular branch predictor algorithm is explained in the next subsection.

B. 2-BIT BRANCH PREDICTOR

This is one of the various predictor algorithms that is most often used in practice. The 2-bit dynamic branch predictor state machine is a deterministic algorithm which predicts next branch to be taken or not taken depending on the history of the branches being taken. Based on the history, if the event predicted by the predictor is not same as the event actually occurring, then it results in a \textit{branch miss}. In a 2-bit prediction scheme the predictor must miss twice before the predicted output changes. The state machine of the dynamic predictor is shown in Figure 1. The state machine has four states, the states either predict the branches to be \textit{taken} or \textit{not taken} depending on the \textit{history of taken branches}. The 2-bit dynamic branch predictor as in Figure 1 has four states \(S_0, S_1, S_2, S_3 \), each having a predicted output. On a input, the state transitions are denoted with the arrows, and the labels denote the input bit. The predicted output corresponding to each state is noted in the diagram as state \(S_0, S_1 \) predicts 0 and state \(S_2, S_3 \) predicts 1.

The branch mispredictions due to the underlying predictor algorithm can be observed by using timing as side channel. The attacks exploiting this side channel leakages are explained in the next subsection.
the attack can be represented by the following steps:

1. Compute the square and multiply operation, denoted as $S = CRT(S_p, S_q)$
2. A fault is introduced while computing S_p or S_q but not both.
3. If \tilde{S}_p is the faulty exponentiation, $\tilde{S} = CRT(\tilde{S}_p, S_q) = S_q + q \cdot ((S_p - \tilde{S}_p) \cdot q^{-1} \mod p)$.
4. Thus if we take the difference of the correct and the faulty computation, we get $S - \tilde{S} = q \cdot ((S_p - \tilde{S}_p) \cdot q^{-1} \mod p)$.
5. Secret prime $q = GCD(S - \tilde{S}, N)$ is thus revealed.

The countermeasures for timing and the fault attacks are provided in the next subsection.

E. Countermeasures

1) Countermeasures for Timing Attacks on Exponentiation Algorithm: A naïve modification to protect the side channel leakages of square and multiply exponentiation algorithm is proposed in the Montgomery ladder algorithm [8] as explained in Algorithm 2. This is a well known strategy for protection against simple side channels like timing attacks.

Algorithm 2: Montgomery Ladder Algorithm

Input:	$y, x = (x_{w-1}, x_{w-2}, \cdots, x_0), n$
Output:	$s = y^t \mod n$
begin	Let $s_0 = 1, s_1 = y$, for $i = w - 1$ down to 0 do
if ($x_i = 0$) then	Let $s_1 = s_0 \ast s_1, s_0 = (s_0)^2$.
else	Let $s_0 = s_0 \ast s_1, s_1 = (s_1)^2$.
end	Return s_0.

This algorithm performs the entire exponentiation by alternatively modifying the values of two dummy variables depending on the exponent bits. Algorithm 2 has both “if” and “else” statements, and everytime one of the two possible branches are getting executed. Unlike the square and multiply algorithm, here number of branches taken will always be constant and equal to the length of the key. The algorithm executes same number of instructions independent of the exponent, which inhibits simple power attacks and timing attacks.

2) Fault Attack Countermeasures: There are several possible countermeasures to prevent the fault attacks on RSA-CRT implementations proposed by Shamir, Ciet and Joye and Giraud [9]. All of these countermeasures have similar algorithms to prevent the fault attacks. The algorithms have a fault detection logic which check that whether by applying reverse mapping on the observed encrypted output we get back the correct output. The steps to prevent fault attack are:

- Step 1: Computation of two exponentiation
 - Compute S_p and S_q
- Step 2: CRT combination
 - Compute $\tilde{S} \leftarrow CRT(\tilde{S}_p, \tilde{S}_q)$
- Fault detection
\[S \leftarrow f(\tilde{S}) \]

\(-\)

\[\text{Return} \left\{ \begin{array}{ll}
\text{if there is no error} \\
\perp \\
\text{otherwise}
\end{array} \right. \]

In these countermeasures whenever a fault is detected, the algorithm outputs a random value instead of the correct exponentiation result. Thus these countermeasures against standard fault attacks are able to protect the vulnerability of systems featuring the difference of a correct and its faulty computation.

III. PERFORMANCE COUNTERS AS SIDE CHANNEL SOURCES

A. Using Branch-misses as Side-channel

In this work, hardware performance counters are exploited to provide side channel information by the number of branch misses on the square and multiply algorithm, using performance monitoring tools which provide a simple user interface to different event counts. As observed in Algorithm 1, the code execution has two branch paths. Thus, there exists a side channel information via the event “branch-misses”. This side channel leakage is caused due to the presence of underlying branch predictors in architecture. Branch misses rely on the ability of the branch predictor to correctly predict future branches to be taken. The branch predictors follow a deterministic algorithm to speculate whether the next branch instruction is to be fetched. If the prediction is false, the instruction pipeline is flushed leading to a branch-miss. Thus the branch predictors play a major role in correctly predicting the next target instruction and reducing mispenalty.

On an event of branch miss, the instruction pipeline flushes and a new target instruction is fetched. So in both square and multiply and Montgomery ladder algorithms, the instruction pipeline undergoes a mispenalty on the event branch miss whenever there is a mismatch in the predicted and observed key bit. This is because the instruction that is going to be executed depends on the key bits. Thus the event branch miss is a strong side channel information which exploits the secret key dependence of the conditional instructions in both the square and multiply and Montgomery ladder exponentiation algorithms.

On the other hand, the fault attack countermeasures also rely on the detection of the fault by a comparison of the correct and incorrect signature. The countermeasure checks for the correctness of the output and produces a random value if it detects a fault. In the meanwhile, number of branch misses for the faulty key sequence can be exploited by an adversary. The performance counters leak benign information of branch misses while exponentiation operation of the faulty computation is performed. The vulnerability of information from the performance counters in presence of a bit flip fault model is modeled in the later section to reveal secret key bits using the properties of the predictor algorithm.

State machine of the 2-bit dynamic predictor as explained in Section II has been extensively used as an underlying predictor in Intel family of microprocessors [6]. In order to validate the behavior, we first installed Perf tool on Linux OS Ubuntu 12.04.1 LTS to monitor the event “branch-misses”, which indicates number of branch mispredictions suffered by an executable. The following command can be executed at the user privilege.

\$ \text{perf stat -e branch-misses executable-name}

We first performed a simple experiment by simulating the 2-bit predictor algorithm on a keystream 11 bit exponent in software on Intel i5 platform for performing exponentiation.

An observation on the number of branch misses from the predictor and their corresponding performance counter values is illustrated in Figure 2. The number of branch misses obtained from performance counters is found to be increasing as the total number of predicted branch misses on a key-stream increases. Thus, a direct correlation is observed on branch misses from performance counters and branch misses from 2-bit predictor. This confirms our assumption of an underlying 2-bit dynamic predictor having a strong effect on the observed branch misses from the performance counters.

In the next subsection we introduce the concept of transient faults on secret exponent, so that this leads to a exponentiation operation on a transient faulty exponent. The next subsection provides a brief description of the used fault attack model.

B. Adversary Fault Model

In our fault model, we assume that the adversary is capable of introducing a fault in the key bits. This transient fault, flips the target bit of the key only for the current computation in the system but, when the execution is repeated the fault vanishes, and the execution proceeds with the original secret key. If the adversary is capable of introducing a fault at the \(i^{th}\) bit position of the key, then the \(i^{th}\) bit of the key gets complemented. The adversary is assumed to follow the “bit flip model”. This means that if a key bit at \(i^{th}\) position is 1 then it gets flipped to 0 and likewise if 0 then it becomes 1.

1) Fault Algorithm: The adversary is assumed to observe the differences of branch miss between the secret key and its faulty counterpart to efficiently identify the key bits in the following manner:

- Initially the adversary observes the number of branch misses for exponentiation operation using the secret exponent.
- Secondly, he injects the fault at the target bit of secret key, simultaneously observing the number of branch misses for exponentiation using the faulty exponent.
The information of differences of branch misses of exponentiation operation using exponentiation algorithms is vulnerable to reveal the target bit of secret key. This information leads to a classification of the key space into several classes based on the observed difference and eventually reveals the key sequence patterns for the respective differences. The key sequences are combinatorially derived with a detailed analysis provided in the next section.

IV. Effect on Branch Misses due to Faulty Computation

In this section we show the classification of the key space of key length \(n \) bits on the basis of the following assumptions:

1. The length of the key \(n \) bit is known to the Adversary.
2. The adversary starts from the Most Significant Bit (always 1), recovering the subsequent bits one bit at a time.
3. The Adversary introduces a fault at the \(i \)th position of the key sequence which eventually flips the \(i \)th bit of the key.
4. The Adversary computes the difference in branch misses(\(\Delta_i \)) for the secret key(\(K \)) and the faulty key(\(F_i \)).

In the following analysis we will provide a detailed key sequence characterization using the difference of branch misses from the secret and the faulty key. Various parameters used during the analysis are defined as follows:

The secret key is denoted by \(K \) and the faulty key as \(F_1 \) each having \(n \) bits such that there is one bit fault at the \(i \)th position of faulty key. The state of the 2-bit predictor after recovery of \(j \) bits for the secret key is \(S^K_j \) and for the faulty key is \(S^F_j \). The 2-bit predictor predicts for the \((j+1) \)th bit on the basis of the \(j \) recovered bits for the secret key as \(P^K_{j+1} \) and for the faulty key as \(P^F_{j+1} \).

The number of branch misses for the secret key and the faulty key may or may not be the same. The difference in branch misses(\(\Delta_i \)) between the correct key \(K \) and faulty key \(F_1 \) using a 2-bit predictor algorithm can be at least \(-3\) and at most 3. The difference for any key sequence will take any value in the range \([-3, 3]\) and this leads to a partitioning of the key space. We elaborate the above statement with an analysis on maximum difference in branch misses between secret and the faulty key. But before that we state some properties of the predictor states and their relation with the misprediction.

It may be emphasized that the secret key \((b_0, b_1, \cdots, b_{n-1})\) and the faulty key differs only in the \(i \)th bit. We state 4 properties using the state transition of the 2-bit dynamic predictor.

Property 1: If \(S^K_{t-1} = S_0 \) or \(S^K_{t-1} = S_2 \), then \(P^K_i = P^F_i = b_{i-1} \).

- This follows from the fact that the fault is only in the \(i \)th bit. Also from Figure 1, in states \(S_0 \) & \(S_2 \), the last input bit is the \((i-1) \)th bit is same as the \(i \)th predicted bit.

Property 2: If \(S^K_{t-1} = S_0 \) or \(S^K_{t-1} = S_2 \), then there is guaranteed mispredictions at the \(i \)th bit for either \(K \) or \(F_1 \). If the \((i+1) \)th bit is not same as the predicted \(P^K_i \), then there is a mismatch in the predictor’s output for the \((i+2)\)th position \(P^K_{i+2} \neq P^F_{i+2} \).

- Either \(b_i \) or \(\overline{b_i} \) results in a misprediction for the \(i \)th bit of the secret or the faulty key. Since \(b_{t-1} = P^K_i \), atleast two misprediction are required at \(i \), \((i+1)\)th position to make \(P^K_{i+2} \neq P^F_{i+2} \). Thus if \(b_{i+1} \neq P^K_{i+1} \), then there will be two consecutive mispredictions at \(i \), \((i+1)\)th position either for the secret or the faulty key resulting in \(P^K_{i+2} \neq P^F_{i+2} \).

Property 3: If \(S^K_{t-1} = S_1 \) or \(S^K_{t-1} = S_3 \) then \(b_{i-1} \neq P^K_i = P^F_i \).

- Since \((i-1)\) bits are identical, \(P^K_i = P^F_i \) and from Figure 1 it clearly follows that the last input bit to the predictor algorithm does not match the predicted output if the state is \(S_1 \) or \(S_3 \).

Property 4: If \(S^K_{t-1} = S_1 \) or \(S^K_{t-1} = S_3 \), a single misprediction at \(i \)th bit is sufficient to make \(P^K_{i+1} \neq P^F_{i+1} \).

- Since \(b_{i-1} \neq P^K_i = P^F_i \), both the secret and faulty key suffers from a misprediction at \(b_{i-1} \). At the \(i \)th position, either \(b_i \) or \(\overline{b_i} \) results in a misprediction. So either for the secret key or the faulty key, there are two consecutive mispredictions at the \((i-1)\), \(i \)th bits. Thus the predicted output for the \((i+1)\)th bit changes. So a single guaranteed misprediction at the \((i)\)th bit changes results in \(P^K_{i+1} \neq P^F_{i+1} \).

Without loss of generality, we aim to prove the bounds for the difference in branch misses by maximizing the branch misses from the faulty key and minimizing the branch miss from the secret key.

In order to maximize the difference of branch misses, effectively we minimize the branch misses for the secret key as well as maximize the branch misses for the faulty key. In the following discussion we are going to analyse the difference of branch misses for two different scenarios.

a) Case 1: If \(S^K_{t-1} = S_1 \) or \(S^K_{t-1} = S_3 \)

Before going into the formal analysis, we explain this with a simple example. Let us assume a small secret key as \(1001000100 \) and a fault is introduced at \(5 \)th position from the MSB, thus the faulty key is \(1001100100 \). The \(5 \)th position of faulty key (from the left) differs from the secret key and lets assume that we already know 4 bits as 1001. After the initial 4 bits the predictor state is at \(S_1 \), and predicts a 0.

- As the immediate next bit i.e., the \(5 \)th is 0 for the secret key there is no change in branch miss, but for the faulty key there is a bit flip at the \(5 \)th position. So the faulty key suffers from a branch miss increasing the difference by 1.

At this stage, the predicted value for secret key is 0 but for the faulty key it is 1 as it suffered from two mispredictions from two consecutive 1’s.

- So if the next two bits are again zero then for secret key there is no increase in branch miss.
• But for faulty key, there are two mispredictions due to the mismatch of the predicted value as 1 and the bit value at 6, 7th position as 0.
• Thus the difference of branch misses between the secret and the faulty key is 3.
• This is the maximum difference because, after getting two consecutive zeros at the 6, 7th position the predictor’s output for the secret and the faulty key becomes same. Thus further increase in branch misses gets canceled as they occur in both secret and its faulty counterpart and do not add up to the difference.

Now, we formalize the above example with a generalized structure using the Figure 3.

![Figure 3](image)

Fig. 3. Maximum difference in branch misses between the secret and i-th faulty key

- \(P^K = P^F \). Every predicted bits from 2-bit branch predictor for 0th to i-th bit are same for both keys.
- By Property 3, \(b_{i-1} \neq P^K \) the last input bit is not same as the predicted value.
- **Case 1(a):** Minimum number of branch misses for the secret key,
 - This occurs when \(b_i = P^K_i \), current bit matches with the predicted bit of the secret key.
 - Further, as in Figure 1, after the state transition of i bits the states move to \(S_0/S_2 \), having the same predicted output bit \(P^K_{i+1} = P^K_i \).
- **Case 1(b):** On the contrary for the faulty key
 - \(\overline{b_i} \neq P^K = P^F \Rightarrow \overline{b_i} \neq P^F_i \), thus branch miss increases by 1.
 - and by property 4 due to two mispredictions at \((i-1), i-th \) positions of the faulty key, the output of the predictor for the secret and faulty key differs as \(P^K_{i+1} \neq P^F_i = P^K_i \). This is due to \(b_{i-1} = \overline{b_i} \neq P^F_i \) and predicted bit of \((i+1)th \) position differs.

Thus after i bits the differences in branch miss is 1 and predicted output \(P^K_{i+1} \neq P^F_{i+1} \) resulting in mismatch.

- **Case 1(c):** To minimize the number of misses of secret key, if \(b_{i+1}, b_{i+2} \) is chosen such that, \(b_{i+1} = b_{i+2} = P^K_i \), there will be no increase in branch miss of secret key. The predicted outputs also remain the same as \(P^K_{i+1} = P^K_i, P^K_{i+2} = P^K_{i+1} \) and \(P^K_{i+3} = P^K_{i+2} \).

Case 1(d): While for the faulty key, \(b_{i+1} = b_{i+2} \neq P^K_{i+1} \) as we already stated that \(P^F_{i+1} \neq P^K_{i+1} \), this results in two mispredictions adding up the difference in branch misses to 3.

Case 1(e): For the \((i + 3)rd\) bit,
 - in the faulty key, due to two consecutive mispredictions at \((i + 1), (i + 2)th \) position the predicted bit for faulty key flips as \(P^F_{i+3} \neq P^K_{i+1} \). Thus \(P^F_{i+3} = P^F_i = P^K_{i+3} \).
 - Both for the secret key and the faulty key, \(P^K_{i+3} = P^F_{i+3} \), and the next bits are identical for both the keys.

So the further increase in branch misses being same in both keys does not add up to the difference.

Thus the maximum difference of branch misses between the secret key and i-th bit faulty key sequence can be atmost 3 when \((i - 1)th \) bit is either at \(S_1 \) or \(S_3 \).

Next we analyze the maximum difference in branch misses in the scenario where \(St^K_{i-1} = S_0 \) or \(S_2 \).

![Figure 4](image)

Fig. 4. Maximum difference in branch misses between the secret and j-th bit faulty key

b) Case 2: If \(St^K_{i-1} = S_0 \) or \(St^K_{i-1} = S_2 \)
When the predictor state \(St^K_{i-1} \) is at \(S_0 \) or \(S_2 \) the analysis is similar to the previous one, but here the mismatch of predicted output of the faulty and the secret key is observed at the \((i + 2)th \) bit instead of \((i + 1)th \) bit. The mismatch of predicted bit of the partial secret and the faulty key is essential to maximize the difference, because otherwise the difference would not be exceeding 1. Thus to maximize the difference, by Property 2 there must be two subsequent mispredictions to change the predicted output if \(St^K_{i-1} = S_0 \) or \(S_2 \). The formal analysis is provided as follows along with the Figure 4:

- \(P^K = P^F \), since every predicted bits from 2-bit branch predictor for 0th to i-th bit are same for both keys.
- By Property 1, since the state is either \(S_0/S_2 \) the \((i - 1)th \) input bit is same as the predicted value for the i-th bit, \(b_{i-1} = P^K_i = P^F_i \).

Case 2(a): Choosing the i-th bit such that there is minimum number of branch misses for the secret key,
 - To minimize the number of misses for the secret key, i-th bit is chosen same as the predicted bit \(b_i = P^K_i \),
and branch miss does not increase.
- Again for the secret key, predictor on getting bit \(b_i = P^K \), predicts \(P^K_{i+1} = P^K = b_i \) same as the previous predicted value.

 - **Case 2(b):** On the contrary, for \(i^{th} \) bit of the faulty key
 - \(\overline{b_i} \neq P^F_i \), and branch miss increases by 1.
 - Again since \(b_{i-1} \neq \overline{b_i} \) and \(\overline{b_i} \neq P^F_i \), there is a single misprediction for the \(i^{th} \) bit. A single misprediction is not enough to cause the mismatch in the predicted output of the secret and the faulty key bits. Thus the predicted output for the \(i+1^{th} \) bit for the faulty key does not change as \(P^F_{i+1} = P^F_i = b_i \).

 - **Case 2(c):** In order to maximize the difference in branch misses, \((i+1)^{th} \) bit for secret and faulty key is chosen to be \(\overline{b_i} \) because,
 - if \(b_{i+1} = \overline{b_i} \), then branch miss for both keys increases by 1, and does not add up to the difference.

 - but by Property 2, for the two consecutive mispredictions of faulty key at the \(i, i+1^{th} \) position, \((\overline{b_i} = b_{i+1} \neq P^F_{i+1} = P^K_{i+1}) \) prediction bit for the secret and the faulty key for the \((i+2)^{th} \) bit differs as \(P^F_{i+2} \neq P^F_{i+1} = P^K_{i+2} \).

 - **Case 2(d):** Again, to minimize the number of misses of secret key, we assume \(b_{i+2} = b_{i+3} = P^K_{i+1} = P^K_{i} \), so there is no increase in branch misses for secret key.

 - **Case 2(e):** While \(P^F_{i+2} \neq b_{i+2} = b_{i+3}, \) increasing the branch miss of faulty key by 2.

 - **Case 2(f):** For the \((i+4)^{th} \) bit for secret and faulty key,
 - Finally, for the \((i+4)^{th} \) bit the predicted value for faulty key flips, \(P^F_{i+4} \neq P^F_{i+2} \)
 - Thus for both for the secret key and the faulty key, after \(i+4 \) bits the predicted value becomes equal as \(P^K_{i+4} = P^F_{i+4} \), the next bits being identical for both the keys, has no effect in changing the difference value.

Thus maximum difference of branch misses between the secret key and \(i^{th} \) bit faulty key sequence can be atmost 3 when \((i-1)^{th} \) bit is either at \(S_0 \) or \(S_2 \). A similar analysis can be equivalently adapted for all specific states \((S_0, S_1, S_2, S_3) \) and difference values in the range \([-3,3]\).

The extent of correctly retrieving the key bits may vary with the states of the previous key bits as well as the observed \(\Delta_i \)’s. In the next subsection we use the similar analysis in specific scenario like \(S^K_{i-1} = S_0 \) to retrieve the subsequent key sequence patterns for different values of \(\Delta_i \).

A. Reduction in Key Space

As explained in the previous subsection, the difference of branch misses simulated through 2-bit predictor algorithm can belong to any class from \([-3,3]\) for any key sequence of arbitrary length. Similar analysis of differences in branch miss leads to a classification for each value in the range \([-3,3]\). Using this classification, we devise an adversary algorithm, which retrieves consecutive key bits one after another starting from the Most Significant Bit (always 1). Thus at any point of time, while determining any intermediate \(i^{th} \) secret bit, assumption follows that

- Previous \((i-1)^{th}\) bits are known. This enables the adversary to precalculate the state of the predictor for \((i-1)^{th}\) bits.
- Given the state \(S_{i-1} \) after \((i-1)^{th}\) bits, the differenc(\(\Delta_i \)) of branch misses from secret and \(i^{th} \) bit faulty key for exponentiation operation, leads to a unique identification of the \(i^{th} \) bit as well as the subsequent bits as shown in Tables I.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>KEY SEQUENCE PATTERN OF (b_1, b_2, \ldots, b_{n-1}) FOR ONE BIT FAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S^i_{i-1})</td>
<td>(\Delta_i)</td>
</tr>
<tr>
<td>(S_0)</td>
<td>3</td>
</tr>
<tr>
<td>(S_1)</td>
<td>1</td>
</tr>
<tr>
<td>(S_2)</td>
<td>001</td>
</tr>
<tr>
<td>(S_3)</td>
<td>0</td>
</tr>
</tbody>
</table>

In the following subsection we describe the characterization of key sequence patterns by observing the differences of branch misses, when the previous key bits are already known to the adversary.

1) **When \(S^i_{i-1} = S_0 \):** The key sequence characterization for \(S^i_{i-1} = S_0 \) is explained for differences observed as \(\Delta_i = 0, 1, 2, 3 \). In the following 4 cases we show the analysis behind the unique classification and identification of subsequent key bits as in Table I.

a) Case 1: When \(\Delta_i = 0 \)

By introducing a single bit fault at the \(i^{th} \) position, the difference cannot characterize the \(i^{th} \) bit but can successfully do for the \((i+1)^{th}\) bit. The initial analysis is provided for the correct identification of the \((i+1)^{th}\) bit.

- The predictor state machine on encountering \((i-1)^{th}\) bits is at state \(S_0 \).
- Thus, from Property 1, \(b_{i-1} = -1 = P^K_i = P^F_i \).
- The \(i^{th} \) bit \(b_i \) can either be 0 or 1.
 - If \(b_i = 0 \), then \(b_i = P^K_i \) but \(\overline{b_i} \neq P^F_i \) and \(\Delta_i = 1 \).
 - On the other hand, if \(b_i = 1 \), then \(b_i \neq P^K_i \) but \(\overline{b_i} = P^F_i \) and \(\Delta_i = -1 \).

Difference of branch misses from one bit fault cannot determine the \(i^{th} \) bit uniquely.

- To ensure \(\Delta_i = 0 \), \(b_{i+1} \) is uniquely identified as 1.
 - For the \((i+1)^{th}\) bit \(P^K_{i+1} = P^F_{i+1} = P^K_i \).
 - Now, if \(b_{i+1} = 0 \), \(\Rightarrow b_{i+1} = P^K_{i+1} = P^F_{i+1} \), this implies that \(P^K_{i+2} = P^F_{i+2} \) and subsequent bits for secret and faulty key being identical, no change in \(\Delta_i \). Thus \(\Delta_i \) for the entire key either becomes 1(when \(b_i = 0 \)), or -1(when \(b_i = 1 \)) and can never be 0. So \(b_{i+1} = 0 \) is impossible when \(\Delta_i = 0 \).
 - So if and only if \(b_{i+1} \) is certainly 1, state after \((i+1)^{th}\) bit for the secret and the faulty key will change, so as to observe the mismatch in predicted value for
the \(i + 2^{th}\) bit, \(P^K_{i+2} \neq P_F^{i+2}\). This is essential to make the difference \(\Delta_i = 0\).

Thus from this analysis, we say if \(S_{t_i-1} = S_0\) and observed difference \(\Delta_i = 0\), then the \(i^{th}\) bit \(b_i\) can either be 0 or 1, but \(b_{i+1}\) is uniquely identified as 1.

b) Case 2: \(\Delta_i = 1\)

The key sequence for this case can be identified uniquely with a single bit fault model as,

- The predictor state machine on encountering \((i - 1)\) bits is at state \(S_0\).
- Again from Property 1, \(b_{i-1} = 0 = P^K_i = P^F_i\).
- If \(b_i = 0\), then \(b_i = P^K_i\). Thus there is no branch miss for the secret key, but the faulty key observes \(\overline{b_i}\) and experiences a branch miss. Since \(\overline{b_i} = 1 \neq P^F_i\) and due to this prediction \(\Delta_i = 1\).
- For the \(i + 1^{th}\) bit, if and only if \(b_{i+1} = 0\), \((i + 1^{th})\) predicted bit \(b_{i+1} = P^K_{i+1} = P^F_{i+1}\), and the further changes in branch miss would not get reflected in their difference.

Thus we conclude, for \(S_{t_i-1} = S_0\) and \(\Delta_i = 1\), then \((b_i, b_{i+1}) = (0, 0)\).

c) Case 3: \(\Delta_i = 2\)

In order to determine the subsequent bit in this case, we aim to minimize the number of branch miss of the secret key so that the difference in branch miss between the faulty and the secret key is a positive value.

- Since the state after \((i - 1)\) bits is \(S_0\), \(b_{i-1} = 0\) and \(P^K_i = P^F_i = 0\).
- \(b_i\) is uniquely identified as 0 as \(0\).
 - In order to observe a positive \(\Delta_i\), \(b_i\) must be 0 for which there is misprediction in the faulty key sequence as \(\overline{b_i} = 1 \neq P^F_i\), and difference up to \(i\) bits is 1.
 - \(b_{i+1}\) is also uniquely identified to be 1,
 - As explained in the case \(\Delta_i = 1\), if \(b_{i+1} = 0\) then \(\Delta_i\) will remain equal to 1. In order to increase \(\Delta_i\) to 2, \(b_{i+1}\) must be equal to 1. For \(b_{i+1} = 1\), there is a misprediction both for the secret as well as the faulty key, and thus the difference \(\Delta_i\) still remains as 1.
 - The \(i + 1^{th}\) bit being 1, for the faulty key there are to 2 subsequent mispredictions at \(i, i + 1^{th}\) bit, thus \(b_{i+1} = 1\) leads to mismatch in prediction value for the \((i + 2)^{th}\) bit, \(P^K_{i+2} = P^F_{i+2}\) = 1 \(\neq P^F_{i+2}\) = 0.
 - \(b_{i+2} = 0\) in order to increase \(\Delta_i\) to 2,
 - Again in order to increase \(\Delta_i\), \(b_{i+2} = 0\), resulting in no branch miss for secret key as \(P^K_i = 0\). But the faulty key having \(P^F_{i+2} = 1\) suffers a misprediction, increasing \(\Delta_i\) to 2.

Thus at this point, \(P^K_{i+2} = 0 \) and \(P^F_{i+2} = 1\).

- The pattern follows, like to maintain a difference \(\Delta_i\) of 2, an alternating sequence of \((1, 0)\) has to be maintained henceforth because, for a pair of \((1, 0)\) - secret key suffers a misprediction for 1, similarly faulty key suffers a misprediction for 0. Thus this alternating sequence has to be maintained to observe \(\Delta_i = 2\) for \(S_{t_i-1} = S_0\).

For this case, if \(S_{t_i-1} = S_0\) and \(\Delta_i = 2\), then the subsequent key sequence is \(0(10)^*\). Thus \((b_i, b_{i+1}, b_{i+2}) = (0, 1, 0)\) and if the number of bits yet to be retrieved \(n - (i + 2)\) is even, then it is an alternation of \((1, 0)\) bits.

d) Case 4: \(\Delta_i = 3\)

The analysis in this case is similar to the proof for the maximum difference that we provided in the previous subsection.

- From property 1, state is \(S_0\) after \(i - 1\) bits, \(b_{i-1} = 0 = P^K_i = P^F_i\).
- \(b_i\) is uniquely determined to be 0,
 - To minimize the number of misses for the secret key, \(b_i = 0 = P^K_i\), branch miss does not increase.
 - On the contrary, for the faulty key \(P^F_i \neq b_i\), branch miss increases by 1.
 - Predictor on getting bit \(b_i = P^K_i\), predicts \(P^K_i = b_i = P^F_i = P^F_{i+1}\).
- \(b_{i+1}\) has to be 1 in order to make \(\Delta_i \geq 1\),
 - Now, if \(b_{i+1} = 1\), then branch miss for both keys increases by 1, and for the two consecutive mispredictions of faulty key following property 2, \(b_i = b_{i+1} = P^F_i = P^F_{i+1}\), prediction bit for the secret and the faulty key for the \((i + 2)^{th}\) bit differs as \(P^F_{i+2} = P^F_{i+1} = 1 \neq P^F_{i+2}\).
- \(b_{i+2}\) is uniquely determined as 0 in order to make \(\Delta_i = 2\),
 - Again, if we assume \(b_{i+2} = 0 = P^K_{i+1} = P^F_{i+1}\), so there is no increase in branch misses for secret key.
 - But \(b_{i+2} \neq P^F_{i+2}\), increasing the branch miss of faulty key by 1 making the difference \(\Delta_i = 2\).
- \(b_{i+3}\) can either be 0/1,
 - If \(b_{i+3} = 0\), then straightaway \(\Delta_i\) becomes 3 and attains the maximum value.
 - Else if \(b_{i+3} = 1\), then \(\Delta_i\) becomes 1. For this case, again a pattern of \((0, 1)\)’s can be observed terminating with consecutive \((0, 0)\)’s making the \(\Delta_i = 3\).

Thus \(b_{i+3}\) can either be 0/1 and cannot be uniquely determined when \(\Delta_i = 3\).

Thus for \(S_{t_i-1} = S_0\) if and only if \((b_i, b_{i+1}, b_{i+2}) = (0, 1, 0)\) then \(\Delta_i = 3\). The number of bits correctly retrieved in this case is the highest.

In the analysis of retrieving the unknown bits, we are able to correctly determine the target bit \(b_i\) for some cases but not for all of the cases. As in our previous discussion in Case IV-A1 we were able to determine \((i + 1)^{th}\) bit but not the \(i^{th}\) bit. In order to correctly identify the \(i^{th}\) bit, we introduce 2 bit faults. In the next subsection, we provide the modeling for two bit fault model.

B. Limitations of One bit fault model

By using one bit fault model, we are able to retrieve 20 out of 28 cells in the Table I. Our aim is to correctly identify the \(i^{th}\) bit of the secret exponent. So for this we introduce a 2-bit fault model where we observe the difference in branch miss between the \((i + 1)^{th}\) bit faulty key \(F_{i+1}\) and another
faulty key \(F_{i,i+1} \) with a 2 bit fault at positions \(i, i + 1 \). The difference of branch misses as observed from this two faulty keys are denoted as \(\Delta_{i,i+1} \). We classify the key sequences for this two bit fault model observed for \(S_{i-1} = S_0/S_2 \) having \(\Delta_i = 0 \) in the following Table II.

<table>
<thead>
<tr>
<th>(S_{i-1})</th>
<th>(\Delta_{i,i+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_0)</td>
<td>(-1)</td>
</tr>
<tr>
<td>(S_2)</td>
<td>(01)</td>
</tr>
</tbody>
</table>

In the subsection IV-A1, using a single bit fault model we failed to determine \(b_i \). The following analysis reveals the \(i^{th} \) bit with a 2-bit fault.

- In the previous analysis in subsection IV-A1, it was stated that if \(b_{i+1} = 0 \) instead of 1, then the overall difference of branch misses would have been 1 or \(-1\).
- This information can be exploited to identify \(b_i \).
- If a fault is injected at \(i + 1^{th} \) position, \(b_{i+1} \) becomes 0 and the number of branch misses are observed.
- Secondly, two bit faults are injected at \(b_i, b_{i+1} \) and the difference \(\Delta_{i,i+1} \) is observed.
- As analyzed previously, if observed difference
 - \(\Delta_{i,i+1} = 1 \) then \(b_i, b_{i+1} = (0, 1) \),
 - \(\Delta_{i,i+1} = -1 \) then \(b_i, b_{i+1} = (1, 1) \).

The complete characterization for two bit fault model is shown in Table II. Thus, in the next subsection we demonstrate either with a 1 bit or 2 bit fault we are able to perform a complete characterization of next bit \(b_i \) as well as \(b_{i+1} \), given a partial key sequence. This form a sequential algorithm which gradually identifies the entire key sequence by correct characterization of the immediate next bits. For each cell for Table I, we can form a similar analysis to retrieve the subsequent key sequences. Some of the cells will retrieve more key bit as the cells for row \(S_0/S_2 \), some very less as \(S_1/S_3 \). Using this information we are going to devise an adversary attack model which deterministically retrieves key bits sequentially one after another.

C. Adversary Attack Algorithm

The adversary attack model as illustrated with the following Algorithm 3 observes the difference of branch misses from the secret key and its corresponding faulty key. The difference of branch misses can be successfully used to retrieve the unknown key bits. The algorithm starts with an assumption that the length of the secret key is known to the adversary and the most significant bit is always 1. This algorithm gradually retrieves one unknown key bit at a time from the most significant bit (left) to the least significant bit (right). To determine the \(i^{th} \) bit value from the left, the adversary already has the knowledge of the previous \(i-1 \) bits. Following the 2 bit predictor algorithm, \(i-1 \) transitions over the states \(S_0, S_1, S_2, S_3 \) can be traced by the adversary.

The attack is modeled as follows: the adversary starts from the most significant bit (always 1), observes the difference of the branch misses for the unknown secret key and the faulty key. The difference of branch misses for \(i^{th} \) bit faulty key and the secret key can be classified uniquely with the prior knowledge of the state of the 2-bit predictor after \(i-1 \) transitions.

The observations related to the nature of the key bit sequences and their relation with the difference of branch misses are listed below for two different scenarios:

1) Case 1: If \(S_{i-1} = S_0/S_2 \)
 - If the difference of branch misses is \((-3, -2, -1, 1, 2, 3)\), then the \(i^{th} \) bit can be uniquely identified with a single bit fault at \(i^{th} \) position.
 - As in Table I, if the difference of branch misses is 0, then the \(i^{th} \) bit cannot be uniquely determined, but \((i + 1)^{th}\) bit can be uniquely identified.
 - In order to identify the \(i^{th} \) bit, difference of branch misses are observed for the secret key with \((i + 1)^{th}\) bit flipped and with secret key having both \(i, (i + 1)^{th} \) bits flipped. In this case the difference classes uniquely retrieve the \(i^{th} \) bit.

Thus any key sequence with \(S_{i-1} = S_0 \) or \(S_2 \) can be uniquely retrieved with one bit flip, if not then with 2 bit flips.

2) Case 2: If \(S_{i-1} = S_1/S_3 \)
 - If the difference of branch misses is \((-3, -2, 2, 3)\), then the \(i^{th} \) bit can be uniquely identified with a single bit fault at \(i^{th} \) position.
 - If the difference of branch misses is \((-1, 0, 1)\), then the \(i^{th} \) bit cannot be determined with a single bit fault.

Thus for states \(S_1 \) and \(S_3 \) if we flip the \((i - 1)^{th}\) bit, the state upto \((i - 1)^{th}\) bit changes to \(S_0 \) or \(S_2 \). Now, following the classification as described for \(S_0 \) and \(S_2 \) the difference can uniquely reveal the \(i^{th} \) secret bit.

The entire classification is explained below with Algorithm 3 and two Tables I and II

In order to check the correctness of the algorithm, we developed a software simulation of the fault attack setup, where the 2-bit branch prediction state machine is simulated to provide the branch misprediction information. The software simulation of a fault is implemented by complementing the target position of the secret exponent and the difference of branch misprediction information is required to reveal the secret key bits one after another. The software simulation successfully retrieved individual key bits by using the algorithm. The simulation runs as an iterative algorithm retrieving one bit after another.

In the next section, we will demonstrate the classification observing the data from hardware performance counters and its limitations. The data from the performance counters in differences of branch misses follows a pattern. The next section provides a brief introduction as to how data from performance counters are profiled and classified.
Algorithm 3: Attack Algorithm

Input: Unknown key k of n bit ($k_0, k_1, \cdots, k_{n-1}$)
Output: Retrieved key bits ($k_0, k_1, \cdots, k_{n-1}$)

begin

Assume $k_0 = 1$;
for $i = 1$ to $n - 1$ do

Set $Flag = 0$;
$St_{i-1} =$ state of branch predictor for known $i - 1$ bit;
$bm_0 =$ number of branch misses for secret key;
$bm_1 =$ branch misses for the secret key with fault at i^{th} bit;
$\Delta_0 = bm_0 - bm_1$;
if ($St_{i-1} = S_1$ or $St_{i-1} = S_3$) then
 if ($\Delta_0 = -1$ or $\Delta_0 = 0$ or $\Delta_0 = 1$) then
 $bm_0 =$ branch misses with fault at $(i - 1)^{th}$ bit;
 $bm_1 =$ branch misses with fault at $(i - 1)^{th}$ bit;
 $\Delta_{-1,1} = bm_1 - bm_0$;
 else
 $St_{i-1} = S_0$;
if ($\Delta_0 = 0$) then
 if ($Flag = 1$) then
 $bm_0 =$ branch misses with fault at $(i - 1)^{th}$ bit;
 $bm_1 =$ branch misses with fault at $(i + 1)^{th}$ bit;
 $\Delta_{i-1,i+1} = bm_1 - bm_0$;
 else
 Access Table I corresponding to S_1 or S_3 at location Δ_i;
else
 Access Table I corresponding to S_1 or S_3 at location Δ_i;
if ($St_{i-1} = S_0$ or $St_{i-1} = S_2$) then
 if ($\Delta_0 = 0$) then
 if ($Flag = 1$) then
 $bm_0 =$ branch misses with fault at $(i - 1)^{th}$ bit;
 $bm_1 =$ branch misses with fault at $(i + 1)^{th}$ bit;
 $\Delta_{i-1,i+1} = bm_1 - bm_0$;
 else
 Access Table II corresponding to S_0 or S_2 at respective difference location;
 end
 else
 Access Table II corresponding to S_0 or S_2 at respective difference location;
 end
end
end
Update the partial known key to (k_0, k_1, \cdots, k_i).

V. CLASSIFICATION WITH DATA FROM HARDWARE PERFORMANCE COUNTERS

The algorithm as explained in the previous section is modeled with absolute values of branch misses as obtained by calculating mispredictions from 2-bit predictor algorithm. In this section, we will demonstrate how we profile event “branch misses” obtained through the hardware performance counters for random keys, and then eventually perform a classification using the difference of branch mispredictions such that we can efficiently determine the subsequent key sequences.

In order to perform an efficient classification, we initially perform a profiling with a set of key generated at random. This can be viewed as a learning phase for correctly identifying the classes to perform a classification using hardware performance counters. In the second phase, we wish to classify a branch misprediction profile of an observed key to its respective difference class leaking the next key sequences.

1) Learning Phase: In the learning phase, we aim to learn a correlation between the theoretical difference of branch misses from the 2-bit branch predictor and the differences obtained from actual hardware performance counters in real processors.

A set of random keys are generated. These keys are classified on the basis of the difference of branch mispredictions (Δ_i) from 2-bit predictor algorithm (between original key and its faulty counterpart) into respective classes of difference in the range $[-3, 3]$. Thus we have multiple keys and their respective faulty key sequences classified according to observed Δ_i from 2-bit predictor algorithm.

Next by using information of branch mispredictions obtained from hardware performance counters, we construct the distributions of branch misses by varying plaintexts for each of the random keys as well as for their faulty counterparts. Thus for all pair of secret and its fault keys belonging to a particular difference class Δ_i, we perform the following:

- The difference of branch misses are observed from hardware performance counters over a set of 1000 plaintexts and the mean value of the distribution is calculated.
- The mean values from this difference distribution for a set of keys (belonging to a specific Δ_i class) forms another distribution of mean differences (over a set of keys having same Δ_i).

One such distribution of difference of branch mispredictions for all possible Δ_i’s (from 2-bit prediction) for a set of random keys of length $n = 21$ bits, averaged over a set of 1000 random plaintexts is shown in Figure 5. The mean values for the distributions are tabulated in the first row of Table III for respective Δ_i’s.

![Distribution of Difference in branch misses between the secret and i-th bit faulty key from performance counters on Intel Core i5](image)

Fig. 5. Distribution of Difference in branch misses between the secret and i^{th} bit faulty key from performance counters on Intel Core i5

As from the Figure 5 it is clear that all the distributions are overlapping, and it is hard to correlate the distributions with...
VI. COMBINING ONE AND TWO BIT FAULT MODEL

Combination of one and two bit fault retrieves the bit positions in the keystream more efficiently. We will eventually devise an efficient attack algorithm which works successfully using the branch misprediction information from hardware performance counters. The scenarios are not same for all the states in Table I. We initially provide a detailed analysis for St^K_{i-1} = S_0/S_2. Let ∆_{i,i+1} be the difference of branch misses from a 2 bit and 1 bit fault.

a) If St^K_{i-1} = S_0

The following analysis shows that by combining Tables I and II we can classify bits (b_i, b_{i+1}) on the basis of differences of branch misses from a one bit fault and a two bit fault.

- From Table I, we observe that if St^K_{i-1} = S_0, ∆_i = 1, then (b_i, b_{i+1}) = (0, 1).
- For, ∆_i = -1, then (b_i, b_{i+1}) = (1, 0).
- If ∆_i = 0, then
 - (b_i, b_{i+1}) = (-1) from Table I.
 - To identify b_i, we observed difference between a 1 bit and 2 bit fault as ∆_{i,i+1}.
 - From Table II if b_i = 0, then ∆_{i,i+1} = 1, else if b_i = 1, then ∆_{i,i+1} = -1.
 - So, if St^K_{i-1} = S_0, ∆_i = 0 and ∆_{i,i+1} = 1 then (b_i, b_{i+1}) = (0, 1).
 - Again, if St^K_{i-1} = S_0, ∆_i = 0 and ∆_{i,i+1} = -1 then (b_i, b_{i+1}) = (1, 1).
 - On the other hand if ∆_i = 2/3, from Table I we observe that (b_i, b_{i+1}) = (1, 0), and in this case ∆_{i,i+1} is also 1.
 - Similarly if ∆_i = -2/3, from Table I we observe that (b_i, b_{i+1}) = (1, 1), and in this case ∆_{i,i+1} is -1.

Using this observation, we build a simple classification for consecutive two bits (b_i, b_{i+1}) as below:

- If (∆_i = 1), then (b_i, b_{i+1}) = (0, 0).
- If (∆_i = -1), then (b_i, b_{i+1}) = (1, 0).
- If (∆_i ≠ 1/ -1) & (∆_{i,i+1} = 1), then (b_i, b_{i+1}) = (0, 1).
- If (∆_i ≠ 1/ -1) & (∆_{i,i+1} = -1), then (b_i, b_{i+1}) = (1, 1).

b) If St^K_{i-1} = S_2

This case can be analyzed in the exactly same way as the previous case St^K_{i-1} = S_0. The classification for consecutive two bits (b_i, b_{i+1}) for St^K_{i-1} = S_2 is as follows:

- If (∆_i = 1), then (b_i, b_{i+1}) = (1, 1).
- If (∆_i = -1), then (b_i, b_{i+1}) = (0, 1).
- If (∆_i ≠ 1/ -1) & (∆_{i,i+1} = 1), then (b_i, b_{i+1}) = (1, 0).
- If (∆_i ≠ 1/ -1) & (∆_{i,i+1} = -1), then (b_i, b_{i+1}) = (0, 0).

3) When St^K_{i-1} = S_1/S_3: While modelling the adversary attack Algorithm 3 we observed that, while retrieving the i^{th} bit, if St_{i-1} = S_1/S_3 then for an observed ∆_i = (-1/0/1), for these cases the table entries as in Table I are empty, and we cannot decide upon the subsequent bit. So a solution which already appears in Algorithm 3 can be adopted for St_{i-1} = S_1/S_3 since it will make the attack algorithm easier. Since we cannot decide upon the subsequent bit when St_{i-1} = S_1/S_3.

The characteristic property for St_{i-1} = S_1/S_3 as in Property 1 is b_{i-2} = P_{i-1} = P_i ≠ b_{i-1}. Thus if we inject a fault at (i - 1)^{th} position then b_{i-1} gets complemented. Effectively, if St^K_{i-1} = S_1 previously then after fault St^F_{i-1} becomes S_0. Similarly, if St^K_{i-1} = S_3 previously then after fault St^F_{i-1} becomes S_2.

- Thus if St_{i-1} = S_1/S_3, and we denote the number of branch mispredictions for secret exponent with fault at (i − 1), (i + 1)^{th} position as bm_0.
- And bm_1 = number of branch mispredictions for secret exponent with fault at (i − 1), (i + 1)^{th} position.
- Again, if (b_{i-1} ≠ S_1/S_3), then we observed difference between a 3-bit and a 2-bit faulty key.
- Following the analysis in the previous subsection we can intuitively write:

a) If St^K_{i-1} = S_1

In this case the difference of branch miss of the three bit fault will have a similar classification as the two bit in the previous subsection as,

- ∆_{i-1,i,i+1} = bm_1 - bm_0 will behave equivalently to ∆_{i,i+1} (for St^K_{i-1} = S_0)
 - If (∆_{i-1,i,i+1} = 1), then (b_i, b_{i+1}) = (0, 0).
 - If (∆_{i-1,i,i+1} ≠ 1), then (b_i, b_{i+1}) = (1, 0).
 - If (∆_{i-1,i,i+1} ≠ 1/ -1) & (∆_{i,i+1} = 1), then (b_i, b_{i+1}) = (0, 1).
 - If (∆_{i-1,i,i+1} ≠ 1/ -1) & (∆_{i,i+1} = -1), then (b_i, b_{i+1}) = (1, 1).

b) If St^K_{i-1} = S_3 Similarly,

- ∆_{i-1,i,i+1} = bm_1 - bm_0 will behave equivalently to ∆_{i,i+1} (for St^K_{i-1} = S_2)
 - If (∆_{i-1,i,i+1} = 1), then (b_i, b_{i+1}) = (1, 1).
 - If (∆_{i-1,i,i+1} ≠ 1), then (b_i, b_{i+1}) = (0, 0).
 - If (∆_{i-1,i,i+1} ≠ 1/ -1) & (∆_{i,i+1} = 1), then (b_i, b_{i+1}) = (1, 0).
 - If (∆_{i-1,i,i+1} ≠ 1/ -1) & (∆_{i,i+1} = -1), then (b_i, b_{i+1}) = (0, 0).

This reduction is performed with two step measurement. Before observing the difference in branch misses, the state of the recovered bits are identified. Then by performing a single
or two bit fault (when in state S_0/S_2) or performing a two and three bit fault (when in state S_1/S_3) the entire identification of the key can be performed. The Algorithm 4 provides an iterative algorithm using the combination of one and two bit faults.

Now if the adversary aims to reveal secret key bits using data from performance counters, he has to correctly classify and identify only the distributions corresponding to 1 and −1. If we observe the individual distributions in Figure 5 more closely, the distributions for $\Delta_i = 1, -1$ are distinct as shown in Figure 6, and the mean values of difference in branch miss obtained from hardware performance counters for the respective distributions are 1.5848, −1.7827. The maximum and minimum mean values are observed for $\Delta_i = 1$ and −1 respectively. Thus we observe that the distributions corresponding to $\Delta_i = 1$ and −1 are the distributions which are most separated among the other distributions.

Fig. 6. Distribution of Difference in branch misses between the secret and i^{th} bit faulty key from performance counters on Intel Core i5 for $\Delta_i = 1/−1$

On the basis of this observation, in the next section we provide the detailed results on the classification of differences of branch misses as obtained from hardware performance counters.

VII. VALIDATION OF ATTACK ALGORITHM USING DATA FROM PERFORMANCE COUNTERS

In this section we provide the classification of the key sequences on the basis of the performance counter values. The same experiment as in Section V-1 is performed in this time with the knowledge of the states in the predictor algorithm. This time the distribution of differences are separately constructed for the states S_0, S_1, S_2, S_3. The keys for a state S_j, $0 \leq j \leq 3$ are chosen such that for a pair of secret and its faulty key differing at their i^{th} bit, the state of the 2-bit predictor upto $(i-1)$ bits is in S_j. Table III, IV shows the respective mean values from the distribution of differences in branch misses as obtained from the hardware performance counters on Intel Core i5 and Intel Core 2 Duo platforms.

The entries in Table III for $\Delta_i = 1, -1$ for states S_0, S_2 are highlighted in order to show that the mean values obtained from distribution of differences in branch misses from hardware performance counters have a strong correlation with the theoretical Δ_i values. The means for $\Delta_i = 1, -1$ are having the maximum and minimum value in both the cases. But (for states S_0, S_2) if $\Delta_i = -3, -2, 0, 2, 3$ the distributions overlap to a great extent and we are unable to clearly distinguish the classes from the observed means (as well as their dis-

Algorithm 4: Attack Algorithm Combining One and two bit faults

Input: Unknown key(k) of n bit ($k_0, k_1, \ldots, k_{n-1}$)

Output: Retrieved key bits ($k_0, k_1, \ldots, k_{n-1}$)

begin

Assume $k_0 = 1$;

for $i = 1$ to $n - 1$ do

$S_{i-1} = \text{state of branch predictor for known } i - 1 \text{ bits}$;

if ($S_i = S_0$ or $S_i = S_2$) then

$bm_0 = \text{branch misses for secret key}$;

$bm_1 = \text{branch misses for secret key with fault at } i^{th}$ bit;

$\Delta_i = bm_0 - bm_1$;

if ($\Delta_i = 1$ or $\Delta_i = -1$) then

Access Table I at corresponding difference location Δ_i for S_0/S_2;

else

$bm_0 = \text{branch misses with fault at } (i + 1)^{th}$ bit;

$bm_1 = \text{branch misses with fault at } i^{th}$ bit;

$\Delta_{i+1} = bm_0 - bm_1$;

Access Table II at corresponding difference location Δ_{i+1} for S_0/S_2;

end

if ($S_i = S_1$ or $S_i = S_3$) then

$bm_0 = \text{branch misses for secret key with fault at } (i - 1)^{th}$ location;

$bm_1 = \text{branch misses for secret key with fault at } (i - 1), i^{th}$ bit;

$\Delta_{i-1} = bm_0 - bm_1$;

if ($\Delta_{i-1} = 1$ or $\Delta_{i-1} = -1$) then

Access Table I corresponding to S_0 or S_2 at location Δ_{i-1};

else

Set $S_{i-1} = S_2$;

end

if ($\Delta_{i-1} = 1$ or $\Delta_{i-1} = -1$) then

Access Table II corresponding to S_0 or S_2 at location Δ_{i-1};

end

end

end

end Update the partial known key to (k_0, k_1, \ldots, k_i).

Table III

<table>
<thead>
<tr>
<th>St_{i-1}</th>
<th>−3</th>
<th>−2</th>
<th>−1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>All states</td>
<td>0.3195</td>
<td>1.3183</td>
<td>−1.7827</td>
<td>0.0004</td>
<td>1.5848</td>
<td>−1.1064</td>
<td>0.3104</td>
</tr>
<tr>
<td>S_0</td>
<td>−0.4968</td>
<td>0.1888</td>
<td>−1.6513</td>
<td>0.1138</td>
<td>1.6331</td>
<td>−0.2215</td>
<td>0.2891</td>
</tr>
<tr>
<td>S_1</td>
<td>−0.4304</td>
<td>1.8109</td>
<td>−1.7846</td>
<td>0.1286</td>
<td>1.2348</td>
<td>−1.4589</td>
<td>0.6358</td>
</tr>
<tr>
<td>S_2</td>
<td>−0.3091</td>
<td>0.1053</td>
<td>−1.5883</td>
<td>0.1650</td>
<td>1.6752</td>
<td>0.2152</td>
<td>0.2686</td>
</tr>
<tr>
<td>S_3</td>
<td>−0.3942</td>
<td>1.8828</td>
<td>−1.7664</td>
<td>0.0115</td>
<td>1.6932</td>
<td>−1.8714</td>
<td>0.2834</td>
</tr>
</tbody>
</table>
distributions). Thus we conclude that we can clearly distinguish the distributions with $\Delta_i = 1/ -1$ from the remaining in their learning phase. The remaining Δ_i's cannot be uniquely identified only by observing the difference distribution from one-bit fault model. For this reason we perform a similar profiling with the two bit fault model where $\Delta_{i,i+1}$ can assume only two values 1, -1. This classification is easier since there exists only two classes.

On the contrary when $St_{i-1} = S_1/S_3$, the means corresponding to all possible Δ_i values (for a set of random keys and their i^{th} bit faulty counterparts) in Tables III, IV shows that in this case it is even hard to distinguish cases $\Delta_i = 1, -1$ from the remaining. Thus from this, we conclude that only if $St_{i-1} = S_0/S_2$ and if $\Delta_i = 1, -1$ for a secret key and its i^{th} bit faulty counterpart from 2-bit predictor algorithm, then adversary will succeed to determine the subsequent bits by observing the distribution of differences in branch misses. If $\Delta_i \neq 1, -1$ then the classification can be uniquely performed with $\Delta_{i,i+1}$ values.

In the next subsection we explain the classification of distribution of branch misses for a non-classified secret key using template building and template matching techniques. The mean and variances observed in the learning phase, from the set of known keys for known previous states are used as templates for the template building phase of template attacks.

A. Template Attacks

The template attack [4], [12] is a statistical attack strategy exploiting the inherent properties of observed sample distributions. The attack is performed in two phases; template building and template matching. In the template building procedure, samples (differences of branch misses) are collected using performance counters for a specific key and its faulty counterpart and a distribution is constructed out of the observed samples. Distributions of a set of keys belonging to a specific class is observed and the statistics like mean and variance are learnt in this phase to constitute a template for the corresponding distribution. In the next phase, unknown template such as distribution of correct key is obtained and is compared with each of the learnt templates. The unknown key is supposed to exhibit the maximum probability of matching with its actual correct class. Thus we perform the template matching phase on the template learnt as in Table III. We demonstrate the results for a simple example on 3 different keys where the secret key is of size $n = 21$ bits, the target bit was the 11^{th} bit and the state of the previous 10 bits is taken as S_0. We provide a tabular representation as in Table V of the cumulative probabilities over observed samples for matching a distribution of branch misses for the unknown exponent (from hardware performance counters) belonging to the templates built at the learning phase on Intel Core i5 with $\Delta_i = 1, -1$ for key length $n = 21$ bit. From the Table V it is clear that the Δ_i values as observed from the 2-bit predictor algorithm is showing the maximum probability in each of the cases correctly. Thus if a classification can be done successfully, then it is capable of retrieving the immediate next bits. Thus the iterative algorithm eventually reveals the entire secret exponent following this classification. Thus using the differences of branch misses from the hardware performance counters we can also retrieve the subsequent key bits successfully.

1) Attacks on Montgomery Ladder & CRT-RSA: A popular countermeasure of simple side channel leakages from the unbalanced instruction execution of square and multiply algorithm is the Montgomery ladder implementation as in Algorithm 2. This algorithm is having balanced instructions conditioned on the secret key bits. Since both “if” and “else” statements are executed depending on the key bits, timing measurements and power leakages cannot be exploited by the adversary to reveal the secret exponent. But the information of branch misses is a stronger side channel and depends on the ability of the branch predictor in correctly predicting the key bits. By modeling the 2-bit predictor we can exploit the information of branch misses to correctly identify the key bits. By modeling the 2-bit predictor we can exploit the information of branch misses to correctly identify the key bits for the square and multiply exponentiation algorithm. The similar analysis holds for Montgomery ladder implementation Thus in our experiments, by using data from performance counters and using Montgomery ladder exponentiation as the underlying exponentiation algorithm, we observe the following Table VI.

<table>
<thead>
<tr>
<th>Δ_i of K</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.991</td>
<td>43.638</td>
<td>27.827</td>
<td>40.15</td>
<td>51.055</td>
<td>31.869</td>
<td>46.138</td>
</tr>
<tr>
<td>0</td>
<td>83.079</td>
<td>61.170</td>
<td>58.112</td>
<td>62.848</td>
<td>64.368</td>
<td>46.443</td>
<td>68.342</td>
</tr>
<tr>
<td>-1</td>
<td>58.228</td>
<td>44.542</td>
<td>65.855</td>
<td>54.432</td>
<td>33.155</td>
<td>62.212</td>
<td>47.392</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>St_{i-1}</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>1.506</td>
<td>-1.4738</td>
<td>-1.712</td>
<td>0.102</td>
<td>1.2559</td>
<td>1.285</td>
<td>1.607</td>
</tr>
<tr>
<td>S_1</td>
<td>1.331</td>
<td>-0.1449</td>
<td>-0.4524</td>
<td>0.0509</td>
<td>0.6751</td>
<td>0.494</td>
<td>1.3582</td>
</tr>
<tr>
<td>S_2</td>
<td>1.375</td>
<td>-1.8125</td>
<td>-1.0874</td>
<td>0.2708</td>
<td>1.3763</td>
<td>1.1986</td>
<td>2.0006</td>
</tr>
<tr>
<td>S_3</td>
<td>1.617</td>
<td>-0.083</td>
<td>-0.4986</td>
<td>-0.4243</td>
<td>0.8616</td>
<td>-0.208</td>
<td>2.4197</td>
</tr>
</tbody>
</table>
From the table it follows that $\Delta_i = 1, 2, 3$ can classified together, and similarly $\Delta_i = -1, -2, -3$ can be classified together for states S_0/S_2. These classification uniquely retrieves the i^{th} bit as b_i's for these two classes are same. From Table I, if $\Delta_i = 1, 2, 3$ and $S_{t-1} = S_0$, then $b_i = 0$ and for $\Delta_i = -1, -2, -3$ and $S_{t-1} = S_1$ then $b_i = 1$. For the case where $\Delta_i = 0$, the differences from the two bit fault can uniquely retrieve the bits subsequently. Thus like square and multiply algorithm, the Montgomery Ladder implementation can also be foiled using data from performance counters and thus leaking the secret key bits.

B. Attacks on RSA-CRT countermeasures using data from Hardware Performance Counters

The RSA-CRT algorithm as explained in Section II-D is implemented by calculating the CRT exponents as $d_p = d \mod (p - 1)$ and $d_q = d \mod (q - 1)$ and the Chinese Remainder Theorem (CRT) combines the output of the computation after the exponentiations are performed using this exponents d_p and d_q. The exponentiation operation being performed in RSA-CRT algorithm uses the standard underlying exponentiation algorithms such as square and multiply and Montgomery ladder implementations. A probabilistic $\text{poly}(\log N)$ time Algorithm to factorize Modulus N [11] on the basis of the knowledge of N, e, d_p, d_q already exists which can factorize N in probabilistic $\text{poly}(\log N)$ time.

The popular fault attack countermeasures of the RSA-CRT algorithm performs a comparison of the correct computation with a faulty computation. In most of the fault attack countermeasures the output of the faulty computation is fuzzied to some extent so that the difference of the correct and the incorrect computation cannot be utilized by an adversary to factorize the large primes p, q. But in all of these countermeasures, the correctness check is done after the exponentiation on the faulty exponent. So in all of the countermeasures while the exponentiation operation is being performed on the secret as well as the faulty exponent, the side channel leakage through branch miss event can be utilized to reveal secret exponents d_p and d_q with the analysis and the algorithm provided in the paper. Thus the fault attack featuring differences of branch misses by modelling the 2-bit predictor algorithm can be utilized to a great extent to attack the square and multiply Montgomery ladder and RSA-CRT Algorithms.

VIII. CONCLUSION

This paper demonstrates a fault attack on exponentiation algorithms featuring the branch misses obtained through the hardware performance counters by modeling the underlying branch predictor unit. The paper demonstrates that the differences of branch misses between a faulty and a correct computation is enough to retrieve the subsequent secret exponent bits. A detailed analysis on the key space reduction by modeling 2-bit dynamic predictor has been provided in the paper. An iterative algorithm retrieving subsequent key bits is developed using the observations. Finally, the attack is demonstrated on various Intel platforms such as Core 2 Duo, Core Intel i3 and Core Intel i5 with the differences of branch misses as observed from the hardware performance counters on actual systems. The classification is performed through a template building and template matching. Templates of differences in branch misses are constructed for some randomly generated keys, and in the attack phase, a secret key distribution is observed to classify correctly with maximum probability leading to the retrieval of subsequent key bits. The attack shows that using the fault attack model featuring branch predictors one can attack implementations of exponentiation: both square and multiply, and Montgomery ladder, and the countermeasures for RSA-CRT implementations which forms the central algorithm for several standard public key ciphers. The work raises the open question on implementation of ciphers on systems with such side channel sources.

REFERENCES