
1

Fault Attack revealing Secret Keys of
Exponentiation Algorithms from Branch Prediction

Misses
Sarani Bhattacharya and Debdeep Mukhopadhyay

Abstract—Performance monitors are provided in modern day
computers for observing various features of the underlyingmicro-
architectures. However the combination of underlying micro-
architectural features and performance counters lead to side-
channels which can be exploited for attacking cipher imple-
mentations. In this paper, to the best of our knowledge we
study for the first time, the combination of branch-predictor
algorithms and performance counters to demonstrate a fault
attack on the popular square-and-multiply based exponentiation
algorithm, used in RSA. The attacks exploiting branching event
like branch taken can be foiled by Montgomery Ladder based
implementation of the exponentiation algorithm, while attacks
based on branch miss are more devastating. We demonstrate
the power of the attack exploiting branch misses from per-
formance monitors by formalizing a fault attack model, where
the adversary is capable of performing a bit flip at a desired
bit position of the secret exponent. The paper characterizes
the branch predictors using the popular two-bit predictor and
formulates the dependence on the number of branch misses on
the fault induced. This characterization is exploited to develop
an iterative attack algorithm where knowledge of the previously
determined key-bits and the difference of branch misses (asgath-
ered from the performance counters) are utilized to determine
the next bit. The attack has been validated on several standard
Intel platforms, and puts to threat several implementations of
exponentiation algorithms ranging from standard square-and-
multiply, Montgomery Ladder to RSA-CRT and which are often
used as side-channel counter measures. The attacks show that
using the fault attack targeting branch predictors one can attack
implementations of exponentiation: both square and multiply,
and Montgomery ladder, which forms the central algorithm for
several standard public key ciphers.

Keywords-Fault attacks, branch misses, performance counters,
Branch Prediction Unit, Square and Multiply Algorithm, Mon t-
gomery Ladder Algorithm, RSA-CRT.

I. I NTRODUCTION

Micro-architectural features leave footprints in the processor
which is often captured by side channels. Side-channel attacks
have emerged as a powerful threat to modern cryptographic
systems. These attacks allow malicious users to gain accessto
sensitive data by monitoringpower consumption, timing, or
electro-magnetic radiationof the microprocessor. In modern
microprocessors there are several new sources of side chan-
nels. The performance improvement measures which are being
introduced in recent microprocessors do leak a significant
amount of information. For example hardware prefetchers for

The authors are with the Department of Computer Science and Engi-
neering, Indian Institute of Technology Kharagpur, 721302, India, E-mail:
{sarani.bhattacharya,debdeep}@cse.iitkgp.ernet.in

cache memories are shown to increase leakage in cache-timing
attacks [2].Cache-timing attacks monitor the time taken to
perform the entire encryption, and relies on statistical means
to determine the secret key.

In the pioneering work in [10] it was first shown that
the time to process different inputs can be used as a side
channel information to find the exponent bits of the secret
keys for RSA, Diffie- Hellman, DSS etc. In [1] the penalty for
mispredicted branches in number of clock cycles is observed
as side channel to identify the data dependent operations ofthe
public key cryptosystem. On a standard RSA implementation,
four different types of attacks were performed exploiting the
Branch Prediction Unit (BPU) by using both synchronous and
asynchronous techniques. Using timing as the side channel
in [1], the misprediction information is modeled to identify
the secret key. while in the synchronous and asynchronous
attacks the Branch Target Buffer (BTB) is modified by the
attacker to surface the attack.

Hardware performance counters (HPCs) are a set of special-
purpose registers to store the counts of hardware-related
activities within the microprocessor. These counters contain
rich source of information of the internal activities of the
processor and hence can find usage for both attacks and their
countermeasures. In [13], these HPCs are exploited as side
channels for time based cache attacks. The paper shows that
amount of samples required for the attack have a great impact
on the different cache eviction strategies. On the other hand,
in [5] data from performance counters are used to develop
a malware detector in hardware using machine learning tech-
niques. While in [14], a new Virtual Machine Monitor (VMM)
named NumChecker is proposed, which exploits HPCs to
detect kernel root-kits in a guest Virtual Machine.

In this paper we evaluate the security of cryptographic
operations due to the branch events such asbranch misses
observed from the performance counters. The branch infor-
mation is obtained usingPerf profiling tool for the modular
exponentiation operation performed using both square and
multiply and Montgomery ladder algorithms.Perf is statistical
monitoring tool capable of profiling various events such as
branch prediction, branch misses, instruction and data cache
hits and misses, cpu cycles etc.

The motivation of this paper is to identify the threats behind
the benign information getting revealed while profiling the
performance counters. Performance counters can be used to
monitor the eventbranch-misseswhich arise due to branch
predictors present in the architecture. We show that if the

2

attacker is able to model the underlying predictor, one can
exploit it to determine the secret keys. In this work, we have
studied the behavior of the dynamic 2-bit branch predictor
as appears in [7] and assumed that the branch mispredictions
of a system can be modeled using this 2-bit predictor. From
the 2-bit predictor, we can observe the mispredictions for a
secret key, but this single piece of information is not enough
to identify the individual key bits for a secret key.

In order to have a unique classification of the key-space,
we introduce one bit fault at the target bit position of secret
exponent and observe the mispredictions for this faulty key
using the 2-bit predictor algorithm. This time on the basis of
two observations of the branch misses for the secret key and
its faulty counterpart, we provide a detailed analysis how the
difference of branch misses can be characterized and classified
to identify the subsequent key sequence patterns. On the basis
of this classification of difference of branch misses from 2-
bit predictor, we devise an iterative algorithm which identifies
the correct exponent key subsequently one bit after another.
Finally, we perform the proposed classification by statistically
analyzing the branch-misses from the hardware performance
counters and successfully modeled a distinguisher which is
capable of revealing secret exponent bits. This one bit fault
attack model demonstrates that by using branch misprediction
information, and with an assumption of underlying dynamic
2-bit predictor, we can correctly identify the secret key bits.
The results demonstrate theoretically, along with validations
on several Intel platforms, that by using the information
of difference of branch misses from hardware performance
counters we are able to retrieve the secret bits uniquely. Thus
this paper shows that the performance counter values which
are easily accessible to the users at the user privilege can be
a potent threat.

The organization of the paper is as follows:- The following
Section II provides preliminaries on modular exponentiation
algorithms, 2-bit predictor algorithm, fault attack and their
countermeasures. In Section III we demonstrate the vulner-
ability due to the event “branch-misses” as side channels and
the adversary fault model. The attack algorithm is described
in Section IV with the detailed analysis on the retrieval of
secret key bits and the reduction in key space. Classification
of the data from hardware performance counters is detailed in
Section V. Section VII provides the experimental validations
for the attack strategy and the final section contains conclusion
of the work we present here.

II. PRELIMINARIES

In this section we provide a brief introduction to the modular
exponentiation algorithms and 2-bit dynamic branch predictor
algorithm, timing attacks exploiting branch prediction, fault
attacks on RSA-CRT and their countermeasures.

A. Modular Exponentiation

In public key cryptography, messages(m) that are encrypted
with the public key e perform modular exponentiation as
c = me(modn) and can only be decrypted asm = cd(modn)
using the private keyd in reasonable time. The public key

algorithms like RSA and ECC use modular exponentiation
during encryption or decryption. The commonly used expo-
nentiation algorithms to implement encryption and decryption
for the public key cryptographic algorithms is the square
and multiply algorithm. The square and multiply algorithm
is described in Algorithm 1. The algorithm performs squaring
at each step, while multiplication operation is performed only
if the exponent bits are set.

Algorithm 1: Square and Multiply Algorithm
Input : y, x = (xw−1, xw−2, · · · , x0), n
Output : s = yx(mod n)
begin

Let s = 1
for i = w − 1 down to 0 do

Let s = s2 mod n.
if (xi = 1) then

Let s = (s ∗ y) mod n.
end

end
Returns.

end

But this algorithm performs unbalanced instruction execu-
tion because multiplication statements are conditioned onthe
exponent bit. Common side channels such as power, timing
are capable of identifying this conditional executions. Simple
power attacks (SPA) and timing attacks exploit this conditional
instruction execution retrieving the secret exponent.

This paper evaluates the security of implementations of
RSA-like ciphers on standard processors. This paper considers
a combination of fault attacks and uses the side channels of
branch misses leaked from the Performance counters. The
branch misses are caused due to branch predictors present
in the modern machines. One of the very popular branch
predictor algorithm is explained in the next subsection.

B. 2-bit Branch Predictor

This is one of the various predictor algorithms that is most
oftenly used in practice. The 2-bit dynamic branch predictor
state machine is a deterministic algorithm which predicts next
branch to be taken or not taken depending on the history of
the branches being taken. Based on the history, if the event
predicted by the predictor is not same as the event actually
occurring, then it results in abranch miss. In a 2-bit prediction
scheme the predictor must miss twice before the predicted
output changes. The state machine of the dynamic predictor is
shown in Figure 1. The state machine has four states, the states
either predict the branches to betaken or not taken depending
on thehistory of taken branches. The 2-bit dynamic branch
predictor as in Figure 1 has four statesS0, S1, S2, S3, each
having a predicted output. On a input, the state transitionsare
denoted with the arrows, and the labels denote the input bit.
The predicted output corresponding to each state is noted in
the diagram as stateS0, S1 predicts0 and stateS2, S3 predicts
1.

The branch mispredictions due to the underlying predictor
algorithm can be observed by using timing as side channel.
The attacks exploiting this side channel leakages are explained
in the next subsection.

3

1

0

0

1

0

1
0

1

S1/0

S3/1 S2/1

S0/0

Fig. 1. Dynamic 2-bit Predictor State Machine

C. Timing Attacks on Exponentiation Algorithms using branch
prediction

Timing Attacks on Branch Predictors exploit the conditional
statements execution in the square and multiply algorithm as
in Algorithm 1. The multiplication operation is conditioned
on key bits. So if the predicted output from the predictor does
not match the observed key bit, a new instruction has to be
fetched with a mispenalty. This mispenalty is observed from
timing as the side channel source. Thus if the observed timing
is more, there is assumed to be a mispenalty. There are various
attacks which exploit the branch predictor to correctly model
the mispenalties [1]. The countermeasures for these forms of
attacks are explained later in subsection II-E1

This paper considers a new kind of fault attacks which
determines the key from the difference in branch misses. Here
we provide an overview on classical fault analysis of RSA.

D. Fault Attacks on RSA Algorithms

Fault attacks on RSA [3] exploit the vulnerability of the
difference of a correct and an incorrect computation caused
due to unexpected environmental conditions to retrieve the
secret of cryptographic algorithms. Various attacks on public
key cipher RSA has been reported in literature which exploit
the output of a faulty computation to factor the ModulusN .
The difference of correct signature and the faulty signature
leaks one of the two large primes in modulusN . A faster effi-
cient implementation on RSA is by using Chinese-Remainder
Theorem (CRT) named as the RSA-CRT algorithm which
makes decryption four times faster is explained as follows:

Let p and q be two large primes andN = p · q be the
RSA modulus. The public encryption key for exponentiation
is denoted ase and the private decryption keyd is chosen
such thate · d = 1 mod(p − 1)(q − 1). To reduce the
expense of computation, CRT exponents are calculated as
dp = d mod (p− 1) anddq = d mod (q − 1). Signature
S of a messagem is computed as

1) Sp = mdp mod p
Sq = mdq mod q

2) S = CRT (Sp, Sq) = Sq + q ·((Sp−Sq)·q
−1 mod p).

In [3] a fault attack is demonstrated on RSA-CRT implemen-
tations which can easily factorize the modulus N. The idea for
the attack can be represented by the following steps:

• Sp = mdp mod p, Sq = mdq mod q and S =
CRT (Sp, Sq)

• A fault is introduced while computingSp or Sq but not
both.

• If S̃p is the faulty exponentiation,
S̃ = CRT (S̃p, Sq) = Sq + q ·((S̃p−Sq)·q

−1 mod p).
• Thus if we take the difference of the correct and the faulty

computation, we getS− S̃ = q · ((Sp− S̃p) · q
−1 mod p)

• Secret primeq = GCD(S − S̃, N) is thus revealed.

The countermeasures for timing and the fault attacks are
provided in the next subsection.

E. Countermeasures

1) Countermeasures for Timing Attacks on Exponentiation
Algorithm: A naı̈ve modification to protect the side channel
leakages of square and multiply exponentiation algorithm is
proposed in the Montgomery ladder algorithm [8] as explained
in Algorithm 2. This is a well known strategy for protection
against simple side channels like timing attacks.

Algorithm 2: Montgomery Ladder Algorithm
Input : y, x = (xw−1, xw−2, · · · , x0), n
Output : s = yx(mod n)
begin

Let s0 = 1, s1 = y.
for i = w − 1 down to 0 do

if (xi = 0) then
Let s1 = s0 ∗ s1, s0 = (s0)2.

end
else

Let s0 = s0 ∗ s1, s1 = (s1)2.
end

end
Returns0.

end

This algorithm performs the entire exponentiation by al-
ternatively modifying the values of two dummy variables
depending on the exponent bits. Algorithm 2 has both “if”
and “else” statements, and everytime one of the two possible
branches are getting executed. Unlike the square and multiply
algorithm, here number of branches taken will always be
constant and equal to the length of the key. The algorithm
executes same number of instructions independent of the
exponent, which inhibits simple power attacks and timing
attacks.

2) Fault Attack Countermeasures: There are several pos-
sible countermeasures to prevent the fault attacks on RSA-
CRT implementations proposed by Shamir, Ciet and Joye
and Giraud [9]. All of these countermeasures have similar
algorithms to prevent the fault attacks. The algorithms have
a fault detection logic which check that whether by applying
reverse mapping on the observed encrypted output we get back
the correct output. The steps to prevent fault attack are:

• Step 1: Computation of two exponentiation

– ComputeS̃p and S̃q

• Step 2: CRT combination

– ComputeS̃ ← CRT (S̃p, S̃q)

• Fault detection

4

–

Return

{

S ← f(S̃) if there is no error
⊥ otherwise

In these countermeasures whenever a fault is detected, the
algorithm outputs a random value instead of the correct expo-
nentiation result. Thus these countermeasures against standard
fault attacks are able to protect the vulnerability of systems
featuring the difference of a correct and its faulty computation.

III. PERFORMANCECOUNTERSAS SIDE CHANNEL

SOURCES

A. Using Branch-misses as Side-channel

In this work, hardware performance counters are exploited
to provide side channel information by thenumber of branch
misseson thesquare and multiply algorithm, using perfor-
mance monitoring tools which provide a simple user interface
to different event counts. As observed in Algorithm 1, the
code execution has two branch paths. Thus, there exists
a side channel information via the event“branch-misses”.
This side channel leakage is caused due to the presence of
underlying branch predictors in architecture. Branch misses
rely on the ability of the branch predictor to correctly predict
future branches to be taken. The branch predictors follow a
deterministic algorithm to speculate whether the next branch
instruction is to be fetched. If the prediction is false, the
instruction pipeline is flushed leading to a branch-miss. Thus
the branch predictors play a major role in correctly predicting
the next target instruction and reducing mispenalty.

On an event of branch miss, the instruction pipeline flushes
and a new target instruction is fetched. So in both square and
multiply and Montgomery ladder algorithms, the instruction
pipeline undergoes a mispenalty on the event branch miss
whenever there is a mismatch in the predicted and observed
key bit. This is because the instruction that is going to be
executed depends on the key bits. Thus the event branch miss
is a strong side channel information which exploits the secret
key dependence of the conditional instructions in both the
square and multiply and Montgomery ladder exponentiation
algorithms.

On the other hand, the fault attack countermeasures also
rely on the detection of the fault by a comparison of the
correct and incorrect signature. The countermeasure checks
for the correctness of the output and produces a random value
if it detects a fault. In the meanwhile, number of branch
misses for the faulty key sequence can be exploited by an
adversary. The performance counters leak benign information
of branch misses while exponentiation operation of the faulty
computation is performed. The vulnerability of information
from the performance counters in presence of a bit flip fault
model is modeled in the later section to reveal secret key bits
using the properties of the predictor algorithm.

State machine of the 2-bit dynamic predictor as explained
in Section II has been extensively used as an underlying
predictor in Intel family of microprocessors [6]. In order to
validate the behavior, we first installed Perf tool on Linux OS
Ubuntu 12.04.1 LTS to monitor the event “branch-misses”,

which indicates number of branch mispredictions suffered by
an executable. The followingcommand can be executed at
the user privilege.

$ perf stat -e branch-misses executable-name
We first performed a simple experiment by simulating the

2-bit predictor algorithm on a keystream11 bit exponent in
software on Intel i5 platform for performing exponentiation.

 3800

 3900

 4000

 4100

 4200

 4300

 4400

 4500

 4600

 4700

 0 1 2 3 4 5 6 7 8 9

O
b

se
rv

e
d

 b
ra

n
ch

 m
is

se
s

fr
o

m
 P

e
rf

Predicted branch misses from 2-bit dynamic predictor

Fig. 2. Variation of branch-misses from performance counters with increase
in branch miss from 2-bit predictor algorithm

An observation on the number of branch misses from the
predictor and their corresponding performance counter values
is illustrated in Figure 2. The number of branch misses
obtained from performance counters is found to be increasing
as the total number of predicted branch misses on a key-stream
increases. Thus, a direct correlation is observed on branch
misses from performance counters and branch misses from 2-
bit predictor. This confirms our assumption of an underlying
2-bit dynamic predictor having a strong effect on the observed
branch misses from the performance counters.

In the next subsection we introduce the concept of transient
faults on secret exponent, so that this leads to a exponentiation
operation on a transient faulty exponent. The next subsection
provides a brief description of the used fault attack model.

B. Adversary Fault Model

In our fault model, we assume that the adversary is capable
of introducing a fault in the key bits. Thistransient fault ,
flips the target bit of the key only for the current computation
in the system but, when the execution is repeated the fault
vanishes, and the execution proceeds with the original secret
key. If the adversary is capable of introducing a fault at the
ith bit position of the key, then theith bit of the key gets
complemented. The adversary is assumed to follow the“bit
flip model” . This means that if a key bit atith position is1
then it gets flipped to0 and likewise if0 then it becomes1.

1) Fault Algorithm: The adversary is assumed to observe
the differences of branch miss between the secret key and its
faulty counterpart to efficiently identify the key bits in the
following manner:

• Initially the adversary observes the number of branch
misses for exponentiation operation using the secret ex-
ponent.

• Secondly, he injects the fault at the target bit of secret key,
simultaneously observing the number of branch misses
for exponentiation using the faulty exponent.

5

• The information of differences of branch misses of ex-
ponentiation operation using exponentiation algorithms is
vulnerable to reveal the target bit of secret key.

This information leads to a classification of the key space into
several classes based on the observed difference and eventually
reveals the key sequence patterns for the respective differences.
The key sequences are combinatorially derived with a detailed
analysis provided in the next section.

IV. EFFECT ON BRANCH MISSES DUE TO FAULTY

COMPUTATION

In this section we show the classification of the key space
of key lengthn bits on the basis of the following assumptions:

1) The length of the keyn bit is known to the Adversary.
2) The adversary starts from the Most Significant Bit(always

1), recovering the subsequent bits one bit at a time.
3) The Adversary introduces a fault at theith position of

the key sequence which eventually flips theith bit of the
key.

4) The Adversary computes the difference in branch
misses(∆i) for the secret key(K) and the faulty key(Fi).

In the following analysis we will provide a detailed key se-
quence characterization using the difference of branch misses
from the secret and the faulty key. Various parameters used
during the analysis are defined as follows: The secret key is
denoted byK and the faulty key asFi each havingn bits
such that there is one bit fault at theith position of faulty
key. The state of the 2 bit predictor after recovery ofj bits
for the secret key isStKj and for the faulty key isStFi

j . The

2-bit predictor predicts for the(j + 1)th bit on the basis ofj
recovered bits for the secret key asPK

j+1 and for the faulty
key asPFi

j+1.
The number of branch misses for the secret key and the

faulty key may or may not be same. The difference in branch
misses(∆i) between the correct keyK and faulty keyFi using
a 2-bit predictor algorithm can be atleast−3 and atmost3.
The difference for any key sequence will take any value in
the range[−3, 3] and this leads to a partitioning of the key
space. We elaborate the above statement with an analysis on
maximum difference in branch misses between secret and the
faulty key. But before that we state some properties of the
predictor states and their relation with the misprediction.

It may be emphasized that the secret key(b0, b1, · · · , bn−1)
and the faulty key differs only in theith bit. We state4 prop-
erties using the state transition of the2 bit dynamic predictor.

Property 1: If StKi−1 = S0 or StKi−1 = S2, then
PK
i = PF

i = bi−1.

• This follows from the fact that the fault is only in theith

bit. Also from Figure 1, in statesS0 & S2, the last input
bit i.e, the(i− 1)th bit is same as theith predicted bit.

Property 2: If StKi−1 = S0 or StKi−1 = S2, then there is
guaranteed mispredictions at theith bit for eitherK or Fi. If
the (i+1)th bit is not same as the predictedPK

i , then there is

a mismatch in the predictor’s output for the(i+2)th position
PK
i+2 6= PFi

i+2.

• Eitherbi or bi results in a misprediction for theith bit of
the secret or the faulty key. Sincebi−1 = PK

i , atleast two
misprediction are required ati, (i+1)th position to make
PK
i+2 6= PFi

i+2. Thus ifbi+1 6= PK
i+1, then there will be two

consecutive mispredictions ati, (i + 1)th position either
for the secret or the faulty key resulting inPK

i+2 6= PFi

i+2.

Property 3: If StKi−1 = S1 or StKi−1 = S3 then
bi−1 6= PK

i = PFi

i

• Since (i − 1) bits are identical,PK
i = PF

i and from
Figure 1 it clearly follows that the last input bit to the
predictor algorithm does not match the predicted output
if the state isS1/S3.

Property 4: If StKi−1 = S1 or StKi−1 = S3, a single
misprediction atith bit is sufficient to makePK

i+1 6= PFi

i+1.

• Sincebi−1 6= PK
i = PF

i , both the secret and faulty key
suffers from a misprediction atbi−1. At the ith position,
eitherbi or bi results in a misprediction. So either for the
secret key or the faulty key, there are two consecutive
mispredictions at the(i− 1), ith bits. Thus the predicted
output for the(i+1)th bit changes. So a single guaranteed
misprediction at the(i)th bit changes results inPK

i+1 6=

PFi

i+1.

Without loss of generality, we aim to prove the bounds for
the difference in branch misses by maximizing the branch
misses from the faulty key and minimizing the branch miss
from the secret key.

In order to maximize the difference of branch misses,
effectively we minimize the branch misses for the secret key
as well as maximize the branch misses for the faulty key. In
the following discussion we are going to analyse the difference
of branch misses for two different scenarios.

a) Case 1: If StKi−1 = S1 or StKi−1 = S3

Before going into the formal analysis, we explain this with
a simple example. Let us assume a small secret key as
1001000100 and a fault is introduced at5th position from
the MSB, thus the faulty key is1001100100. The 5th

position of faulty key (from the left) differs from the secret
key and lets assume that we already know 4 bits as1001.
After the initial 4 bits the predictor state is atS1, and
predicts a0.

• As the immediate next bit i.e, the5th is 0 for the
secret key there is no change in branch miss, but for
the faulty key there is a bit flip at the5th position. So
the faulty key suffers from a branch miss increasing
the difference by1.

• At this stage, the predicted value for secret key is0
but for the faulty key it is1 as it suffered from two
mispredictions from two consecutive1’s.

• So if the next two bits are again zero then for secret
key there is no increase in branch miss.

6

• But for faulty key, there are two mispredictions due to
the mismatch of the predicted value as1 and the bit
values at6, 7th position as0.

• Thus the difference of branch misses between the
secret and the faulty key is3.

• This is the maximum difference because, after get-
ting two consecutive zeros at the6, 7th position the
predictor’s output for the secret and the faulty key
becomes same. Thus further increase in branch misses
gets canceled as they occur in both secret and its faulty
counterpart and do not add up to the difference.

Now, we formalize the above example with a generalized
structure using the Figure 3.

i−1 bits

0 00i−1 bits

1 1 1

bi+1 bi+2 bi+3

bi+1 bi+2 bi+3

PK
i+3

P F
i+3P F

i+2P F
i+1

PK
i+2

P F
i−1

bi−1 bi

P F
i

PK
i

bi−1 b̄i

∆ = 3

Sti−1 = S1/S3

PK
i−1 PK

i+1

Fig. 3. Maximum difference in branch misses between the secret andith

faulty key

• PK
i = PFi

i . Every predicted bits from 2-bit branch
predictor for0th to ith bit are same for both keys.

• By Property 3,bi−1 6= PK
i the last input bit is not

same as the predicted value.
• Case 1(a): Minimum number of branch misses for the

secret key,

– This occurs whenbi = PK
i , current bit matches

with the predicted bit of the secret key.
– Further, as in Figure 1, after the state transition of

i bits the states move toS0/S2, having the same
predicted output bitPK

i+1 = PK
i .

• Case 1(b): On the contrary for the faulty key

– bi 6= PK
i = PF

i ⇒ bi 6= PF
i , thus branch miss

increases by1.
– and by property 4 due to two mispredictions at(i−

1), ith positions of the faulty key, the output of the
predictor for the secret and faulty key differs as⇒
PF
i+1 6= PF

i = PK
i = PK

i+1. This is due tobi−1 =
bi 6= PF

i and predicted bit of(i + 1)th position
differs.

Thus afteri bits the differences in branch miss is1 and
predicted outputPK

i+1 6= PF
i+1 resulting in mismatch.

• Case 1(c): To minimize the number of misses of secret
key, if bi+1, bi+2 is chosen such that,bi+1 = bi+2 =
PK
i , there will be no increase in branch miss of secret

key. The predicted outputs also remain the same as
PK
i+1 = PK

i , PK
i+2 = PK

i+1 andPK
i+3 = PK

i+2.

• Case 1(d): While for the faulty key,bi+1 = bi+2 6=
PF
i+1 as we already stated thatPF

i+1 6= PK
i+1, this

results in two mispredictions adding up the difference
in branch misses to3.

• Case 1(e): For the(i+ 3)rd bit,
– in the faulty key, due to two consecutive mispre-

dictions at(i + 1), (i + 2)th position the predicted
bit for faulty key flips asPF

i+3 6= PF
i+1. Thus

PF
i+3 = PF

i = PK
i = PK

i+3.
– Both for the secret key and the faulty key,PK

i+3 =
PF
i+3, and the next bits are identical for both the

keys.
• So the further increase in branch misses being same in

both keys does not add up to the difference.
Thus the maximum difference of branch misses between
the secret key andith bit faulty key sequence can be atmost
3 when (i− 1)th bit is either atS1 or S3.
Next we analyze the maximum difference in branch misses
in the scenario whereStKi−1 = S0 or S2.

i−1 bits

0 001i−1 bits

1 1 1 1

bi+1 bi+2 bi+3

bi+1 bi+2 bi+3

PK
i+3

P F
i+3P F

i+2P F
i+1

PK
i+2

P F
i−1

bi−1 bi

P F
i

PK
i

bi−1 b̄i

∆ = 3

Sti−1 = S0/S2

PK
i−1 PK

i+1

Fig. 4. Maximum difference in branch misses between the secret andith

bit faulty key

b) Case 2: If StKi−1 = S0 or StKi−1 = S2

When the predictor stateStKi−1 is atS0 or S2 the analysis
is similar to the previous one, but here the mismatch of
predicted output of the faulty and the secret key is observed
at the(i+ 2)th bit instead of(i+ 1)th bit. The mismatch
of predicted bit of the partial secret and the faulty key
is essential to maximize the difference, because otherwise
the difference would not be exceeding1. Thus to maximize
the difference, by Property 2 there must be two subsequent
mispredictions to change the predicted output ifStKi−1 =
S0 or S2. The formal analysis is provided as follows along
with the Figure 4:

• PK
i = PF

i , since every predicted bits from 2-bit
branch predictor for0th to ith bit are same for both
keys.

• By Property 1, since the state is eitherS0/S2 the (i−
1)th input bit is same as the predicted value for the
ith bit, bi−1 = PK

i = PF
i .

• Case 2(a): Choosing theith bit such that there is
minimum number of branch misses for the secret key,

– To minimize the number of misses for the secret key,
ith bit is chosen same as the predicted bitbi = PK

i ,

7

and branch miss does not increase.
– Again for the secret key, predictor on getting bit

bi = PK
i , predictsPK

i+1 = PK
i = bi same as the

previous predicted value.

• Case 2(b): On the contrary, forith bit of the faulty
key

– bi 6= PF
i , and branch miss increases by1.

– Again sincebi−1 6= bi and bi 6= PFi

i , there is a
single misprediction for theith bit. A single mis-
prediction is not enough to cause the mismatch in
the predicted output of the secret and the faulty key
bits. Thus the predicted output for thei+1th bit for
the faulty key does not change asPF

i+1 = PF
i = bi.

• Case 2(c): In order to maximize the difference in
branch misses,(i + 1)th bit for secret and faulty key
is chosen to bebi because,

– if bi+1 = bi, then branch miss for both keys
increases by1, and does not add up to the difference.

– but by Property 2, for the two consecutive mis-
predictions of faulty key at thei, i + 1th position,
(bi = bi+1 6= PF

i+1 = PK
i+1,) prediction bit for the

secret and the faulty key for the(i+2)th bit differs
asPF

i+2 6= PF
i+1 = PK

i+2.

• Case 2(d): Again, to minimize the number of misses
of secret key, we assumebi+2 = bi+3 = PK

i+1 = PK
i ,

so there is no increase in branch misses for secret key.
• Case 2(e): While PF

i+2 6= bi+2 = bi+3, increasing the
branch miss of faulty key by2.

• Case 2(f): For the (i + 4)th bit for secret and faulty
key,

– Finally, for the(i+4)th bit the predicted value for
faulty key flips,PF

i+4 6= PF
i+2

– Thus for both for the secret key and the faulty key,
after i+4 bits the predicted value becomes equal as
PK
i+4 = PF

i+4, the next bits being identical for both
the keys, has no effect in changing the difference
value.

Thus maximum difference of branch misses between the
secret key andith bit faulty key sequence can be atmost
3 when (i − 1)th bit is either atS0 or S2. A similar
analysis can be equivalently adapted for all specific states
(S0, S1, S2, S3) and difference values in the range [-3,3].

The extent of correctly retrieving the key bits may vary with
the states of the previous key bits as well as the observed
∆i’s. In the next subsection we use the similar analysis in
specific scenario likeStKi−1 = S0 to retrieve the subsequent
key sequence patterns for different values of∆i.

A. Reduction in Key Space

As explained in the previous subsection, the difference of
branch misses simulated through 2-bit predictor algorithmcan
belong to any class from[−3, 3] for any key sequence of
arbitrary length. Similar analysis of differences in branch miss
leads to a classification for each value in the range[−3, 3].
Using this classification, we devise an adversary algorithm,
which retrieves consecutive key bits one after another starting

from the Most Significant Bit (always 1). Thus at any point
of time, while determining any intermediateith secret bit,
assumption follows that

• Previous(i− 1) bits are known. This enables the adver-
sary to precalculate the state of the predictor for(i − 1)
bits.

• Given the stateSti−1 after(i−1) bits, the difference(∆i)
of branch misses from secret andith bit faulty key for
exponentiation operation, leads to a unique identification
of the ith bit as well as the subsequent bits as shown in
Tables I.

TABLE I
KEY SEQUENCEPATTERN OFbi, bi+1, · · · , bn−1 FOR ONE BIT FAULT

Sti−1 ∆i

−3 −2 −1 0 1 2 3

S0 110 1(10)∗ 10 1 00 0(10)∗ 010

S1 10 1 0 00

S2 001 0(01)∗ 01 0 11 1(01)∗ 101

S3 01 0 1 11

In the following subsection we describe the characterization
of key sequence patterns by observing the differences of
branch misses, when the previous key bits are already known
to the adversary.

1) When Sti−1 = S0: The key sequence characterization
for Sti−1 = S0 is explained for differences observed as∆i =
0, 1, 2, 3. In the following 4 cases we show the analysis behind
the unique classification and identification of subsequent key
bits as in Table I.

a) Case 1: When∆i = 0
By introducing a single bit fault at theith position, the dif-
ference cannot characterize theith bit but can successfully
do for the(i+1)th bit. The initial analysis is provided for
the correct identification of the(i + 1)th bit.

• The predictor state machine on encountering(i − 1)
bits is at stateS0.

• Thus, from Property 1,bi−1 = 0 = PK
i = PF

i .
• The ith bit bi can either be0 or 1.

– If bi = 0, thenbi = PK
i but bi 6= PF

i and∆i = 1.
– On the other hand, ifbi = 1, then bi 6= PK

i but
bi = PF

i and∆i = −1.

Difference of branch misses from one bit fault cannot
determine theith bit uniquely.

• To ensure∆i = 0, bi+1 is uniquely identified as1.

– For the(i+ 1)th bit PK
i+1 = PF

i+1 = P k
i .

– Now, if bi+1 = 0, ⇒ bi+1 = PK
i+1 = PF

i+1, this
implies thatPK

i+2 = PF
i+2 and subsequent bits for

secret and faulty key being identical, no change
in ∆i. Thus∆i for the entire key either becomes
1(whenbi = 0), or −1(whenbi = 1) and can never
be 0. So bi+1 = 0 is impossible when∆i = 0.

– So if and only ifbi+1 is certainly1, state after(i+
1)th bit for the secret and the faulty key will change,
so as to observe the mismatch in predicted value for

8

the i + 2th bit, PK
i+2 6= PF

i+2. This is essential to
make the difference∆i = 0.

Thus from this analysis, we say ifSti−1 = S0 and observed
difference∆i = 0, then theith bit bi can either be0 or 1,
but bi+1 is uniquely identified as 1.

b) Case 2:∆i = 1
The key sequence for this case can be identified uniquely
with a single bit fault model as,

• The predictor state machine on encountering(i − 1)
bits is at stateS0.

• Again from Property 1,bi−1 = 0 = PK
i = PF

i .
• If bi = 0, thenbi = PK

i . Thus there is no branch miss
for the secret key, but the faulty key observesbi and
experiences a branch miss. Sincebi = 1 6= PF

i and
due to this prediction∆i = 1.

• For thei+ 1th bit, if and only if bi+1 = 0, (i + 1)th

predicted bitbi+1 = PK
i+1 = PF

i+1, and the further
changes in branch miss would not get reflected in their
difference.

Thus we conclude, forSti−1 = S0 and ∆i = 1, then
(bi, bi+1) = (0, 0).

c) Case 3:∆i = 2
In order to determine the subsequent bit in this case, we
aim to minimize the number of branch miss of the secret
key so that the difference in branch miss between the faulty
and the secret key is a positive value.

• Since the state after(i − 1) bits is S0, bi−1 = 0 and
PK
i = PF

i = 0.
• bi is uniquely identified as0 as

– In order to observe a positive∆i, bi must be0
for which there is misprediction in the faulty key
sequence asbi = 1 6= PF

i , and difference up toi
bits is 1.

• bi+1 is also uniquely identified to be1,
– As explained in the case∆i = 1, if bi+1 = 0 then

∆i will remain equal to1. In order to increase∆i

to 2, bi+1 must be equal to1. For bi+1 = 1, there
is a misprediction both for the secret as well as the
faulty key, and thus the difference∆i still remains
as1.
The i+1th bit being1, for the faulty key there are
to 2 subsequent mispredictions ati, i+1th bit, thus
bi+1 = 1 leads to mismatch in prediction value for
the (i+ 2)th bit, PF

i+2 = PF
i+1 = 1 6= PK

i+2 = 0.
• bi+2 = 0 in order to increase∆i to 2,

– Again in order to increase∆i, bi+2 = 0, resulting in
no branch miss for secret key asPK

i+2 = 0. But the
faulty key havingPF

i+2 = 1 suffers a misprediction,
increasing∆i to 2.

Thus at this point,PK
i+2 = 0 andPF

i+2 = 1.
• The pattern follows, like to maintain a difference∆i

of 2, an alternating sequence of(1, 0) has to be
maintained henceforth because, for a pair of(1, 0) -
secret key suffers a misprediction for1, similarly faulty
key suffers a misprediction for0. Thus this alternating
sequence has to be maintained to observe∆i = 2 for
StKi−1 = S0.

For this case, ifSti−1 = S0 and ∆i = 2, then the
subsequent key sequence is0(10)∗. Thus(bi, bi+1, bi+2) =
(0, 1, 0) and if the number of bits yet to be retrieved
n− (i+ 2) is even, then it is an alternation of(1, 0) bits.

d) Case 4:∆i = 3 The analysis in this case is similar to the
proof for the maximum difference that we provided in the
previous subsection.

• From property 1, state isS0 after i − 1 bits, bi−1 =
0 = PK

i = PF
i

• bi is uniquely determined to be0,

– To minimize the number of misses for the secret
key, bi = 0 = PK

i , branch miss does not increase.
– On the contrary, for the faulty keyPF

i 6= bi, branch
miss increases by1.

– Predictor on getting bitbi = PK
i , predictsPK

i+1 =
PK
i = bi = PF

i = PF
i+1.

• bi+1 has to be1 in order to make∆i > 1,

– Now, if bi+1 = 1, then branch miss for both
keys increases by1, and for the two consecutive
mispredictions of faulty key following property 2,
bi = bi+1 6= PF

i+1 = PK
i+1, prediction bit for the

secret and the faulty key for the(i+2)th bit differs
asPF

i+2 = PF
i+1 = 1 6= PK

i+2.

• bi+2 is uniquely determined as0 in order to make
∆i = 2,

– Again, if we assumebi+2 = 0 = PK
i+1 = PK

i , so
there is no increase in branch misses for secret key.

– But bi+2 6= PF
i+2, increasing the branch miss of

faulty key by1 making the difference∆i = 2.

• bi+3 can either be0/1,

– If bi+3 = 0, then straightaway∆i becomes3 and
attains the maximum value.

– Else if bi+3 = 1, then ∆i becomes1. For this
case, again a pattern of(0, 1)’s can be observed
terminating with consecutive(0, 0)’s making the
∆i = 3.

Thus bi+3 can either be0/1 and cannot be uniquely
determined when∆i = 3.

Thus for Sti−1 = S0 if and only if (bi, bi+1, bi+2) =
(0, 1, 0) then ∆i = 3. The number of bits correctly
retrieved in this case is the highest.

In the analysis of retrieving the unknown bits, we are able to
correctly determine the target bitbi for some cases but not for
all of the cases. As in our previous discussion in Case IV-A1
we were able to determine(i+1)th bit but not theith bit. In
order to correctly identify theith bit, we introduce 2 bit faults.
In the next subsection, we provide the modeling for two bit
fault model.

B. Limitations of One bit fault model

By using one bit fault model, we are able to retrieve20
out of 28 cells in the Table I. Our aim is to correctly identify
the ith bit of the secret exponent. So for this we introduce a
2-bit fault model where we observe the difference in branch
miss between the(i + 1)th bit faulty key Fi+1 and another

9

faulty key Fi,i+1 with a 2 bit fault at positionsi, i + 1. The
difference of branch misses as observed from this two faulty
keys are denoted as∆i,i+1. We classify the key sequences for
this two bit fault model observed forSti−1 = S0/S2 having
∆i = 0 in the following Table II.

TABLE II
KEY SEQUENCEPATTERN OFbi, bi+1 FOR TWO BIT FAULT

❛
❛
❛
❛
❛
❛
❛
❛
❛❛

StKi−1

∆i,i+1

−1 1

S0 11 01

S2 00 10

In the subsection IV-A1, using a single bit fault model we
failed to determinebi. The following analysis reveals theith

bit with a 2-bit fault.

• In the previous analysis in subsection IV-A1, it was stated
that if bi+1 = 0 instead of1, then the overall difference
of branch misses would have been1 or −1.

• This information can be exploited to identifybi.
• If a fault is injected ati+ 1th position,bi+1 becomes0

and the number of branch misses are observed.
• Secondly, two bit faults are injected atbi, bi+1 and the

difference∆i,i+1 is observed.
• As analyzed previously, if observed difference

– ∆i,i+1 = 1 thenbi, bi+1 = (0, 1),
– ∆i,i+1 = −1 thenbi, bi+1 = (1, 1).

The complete characterization for two bit fault model is shown
in Table II. Thus, in the next subsection we demonstrate
either with a 1 bit or 2 bit fault we are able to perform
a complete characterization of next bitbi as well asbi+1,
given a partial key sequence. This form a sequential algorithm
which gradually identifies the entire key sequence by correct
characterization of the immediate next bits. For each cell
for Table I, we can form a similar analysis to retrieve the
subsequent key sequences. Some of the cells will retrieve
more key bit as the cells for rowS0/S2, some very less
asS1/S3. Using this information we are going to devise an
adversary attack model which deterministically retrieveskey
bits sequentially one after another.

C. Adversary Attack Algorithm

The adversary attack model as illustrated with the following
Algorithm 3 observes the difference of branch misses from the
secret key and its corresponding faulty key. The difference
of branch misses can be successfully used to retrieve the
unknown key bits. The algorithm starts with an assumption
that the length of the secret key is known to the adversary
and the most significant bit is always1. This algorithm
gradually retrieves one unknown key bit at a time from the
most significant bit (left) to the least significant bit (right).
To determine theith bit value from the left, the adversary
already has the knowledge of the previousi−1 bits. Following
the 2 bit predictor algorithm,i − 1 transitions over the states
S0, S1, S2, S3 can be traced by the adversary.

The attack is modeled as follows: the adversary starts from
the most significant bit (always1), observes the difference
of the branch misses for the unknown secret key and the
faulty key. The difference of branch misses forith bit faulty
key and the secret key can be classified uniquely with the
prior knowledge of the state of the 2-bit predictor afteri− 1
transitions.

The observations related to the nature of the key bit se-
quences and their relation with the difference of branch misses
are listed below for two different scenarios:

1) Case 1: IfSti−1 = S0/S2

• If the difference of branch misses is
(−3,−2,−1, 1, 2, 3), then the ith bit can be
uniquely identified with a single bit fault atith

position.
• As in Table I, if the difference of branch misses is0,

then theith bit cannot be uniquely determined, but
(i+ 1)th bit can be uniquely identified.

• In order to identify theith bit, difference of branch
misses are observed for the secret key with(i+1)th

bit flipped and with secret key having bothi, (i +
1)th bits flipped. In this case the difference classes
uniquely retrieve theith bit.

Thus any key sequence withSti−1 = S0 or S2 can be
uniquely retrieved with one bit flip, if not then with 2 bit
flips.

2) Case 2: IfSti−1 = S1/S3

• If the difference of branch misses is(−3,−2, 2, 3),
then theith bit can be uniquely identified with a
single bit fault atith position.

• If the difference of branch misses is(−1, 0, 1), then
the ith bit cannot be determined with a single bit
fault.

Thus for statesS1 and S3 if we flip the (i − 1)th bit,
the state upto(i − 1)th bit changes toS0 or S2. Now,
following the classification as described forS0 and S2

the difference can uniquely reveal theith secret bit.

The entire classification is explained below with Algo-
rithm 3 and two Tables I and II

In order to check the correctness of the algorithm, we
developed a software simulation of the fault attack setup,
where the 2-bit branch prediction state machine is simulated
to provide the branch misprediction information. The software
simulation of a fault is implemented by complementing the
target position of the secret exponent and the difference of
branch misprediction information is required to reveal the
secret key bits one after another. The software simulation suc-
cessfully retrieved individual key bits by using the algorithm.
The simulation runs as an iterative algorithm retrieving one
bit after another.

In the next section, we will demonstrate the classification
observing the data from hardware performance counters and
its limitations. The data from the performance counters in
differences of branch misses follows a pattern. The next
section provides a brief introduction as to how data from
performance counters are profiled and classified.

10

Algorithm 3: Attack Algorithm
Input : Unknown key(k) of n bit (k0, k1, · · · , kn−1)
Output : Retrieved key bits(k0, k1, · · · , kn−1)
begin

Assumek0 = 1;
for i = 1 to n− 1 do

SetF lag = 0;
Sti−1 = state of branch predictor for knowni− 1 bits;
bm0 = number of branch misses for secret key;
bm1 = branch misses for the secret key with fault atith bit;
∆i = bm1 − bm0 ;
if (Sti−1 = S1 or Sti−1 = S3) then

if (∆i = −1 or ∆i = 0 or ∆i = 1) then
bm0 = branch misses with fault at(i− 1)th bit;
bm1 = branch misses with fault at(i− 1), ith bit;
∆i−1,i = bm1 − bm0;
if (∆i−1,i = 0) then

SetF lag = 1;
end
if (Sti−1 = S1) then

SetSti−1 = S0;
else

SetSti−1 = S2;
end

else
Access Table I corresponding toS1 or S3 at
location∆i;

end
end
if (Sti−1 = S0 or Sti−1 = S2) then

if (∆i = 0) then
if (F lag = 1) then

bm0 = branch misses with fault at
(i− 1),(i+ 1)th bit;
bm1 = branch misses with fault at(i − 1),i,
(i+ 1)th bit;
∆i−1,i,i+1 = bm1 − bm0;

else
bm0 = branch misses with fault at(i + 1)th

bit;
bm1 = branch misses with fault ati, (i+ 1)th

bit;
∆i,i+1 = bm1 − bm0;

end
if (∆i−1,i,i+1 = −1 or ∆i,i+1 = −1) then

Access Table II corresponding toS0/S2 at
respective difference location;

end
if (∆i−1,i,i+1 = 1 or ∆i,i+1 = 1) then

Access Table II corresponding toS1/S3 at
respective difference location;

end
else

Access Table I corresponding toS0 or S2 at
location∆i;

end
end

end
Update the partial known key to(k0, k1, · · · , ki).

end

V. CLASSIFICATION WITH DATA FROM HARDWARE

PERFORMANCE COUNTERS

The algorithm as explained in the previous section is
modeled with absolute values of branch misses as obtained by
calculating mispredictions from 2-bit predictor algorithm. In
this section, we will demonstrate how we profile event “branch
misses” obtained through the hardware performance counters
for random keys, and then eventually perform a classification
using the difference of branch mispredictions such that we can

efficiently determine the subsequent key sequences.
In order to perform an efficient classification, we initially

perform a profiling with a set of key generated at random. This
can be viewed as alearning phasefor correctly identifying the
classes to perform a classification using hardware performance
counters. In the second phase, we wish to classify a branch
misprediction profile of an observed key to its respective
difference class leaking the next key sequences.

1) Learning Phase: In the learning phase, we aim to learn a
correlation between the theoretical difference of branch misses
from the 2-bit branch predictor and the differences obtained
from actual hardware performance counters in real processors.

A set of random keys are generated. These keys are clas-
sified on the basis of the difference of branch mispredictions
(∆i) from 2-bit predictor algorithm (between original key and
its faulty counterpart) into respective classes of difference in
the range[−3, 3]. Thus we have multiple keys and their re-
spective faulty key sequences classified according to observed
∆i from 2-bit predictor algorithm.

Next by using information of branch mispredictions ob-
tained from hardware performance counters, we construct the
distributions of branch misses by varying plaintexts for each
of the random keys as well as for their faulty counterparts.
Thus for all pair of secret and its fault keys belonging to a
particular difference class∆i, we perform the following:

• The difference of branch misses are observed from hard-
ware performance counters over a set of1000 plaintexts
and the mean value of the distribution is calculated.

• The mean values from this difference distribution for a set
of keys (belonging to a specific∆i class) forms another
distribution of mean differences (over a set of keys having
same∆i).

One such distribution of difference of branch mispredictions
for all possible∆i’s (from 2-bit prediction) for a set of random
keys of lengthn = 21 bits, averaged over a set of1000
random plaintexts is showed in Figure 5. The mean values
for the distributions are tabulated in the first row of Table III
for respective∆i’s.

 0

 50

 100

 150

 200

 250

 300

-15 -10 -5 0 5 10 15

F
re

q
u

e
n

c
y
 o

f
o

c
c
u

ra
n

c
e

s

Differences in branch miss values from Performance counters

Delta = -3
Delta = -2
Delta = -1
Delta = 0
Delta = 1
Delta = 2
Delta = 3

Fig. 5. Distribution of Difference in branch misses betweenthe secret and
ith bit faulty key from performance counters on Intel Core i5

As from the Figure 5 it is clear that all the distributions are
overlapping, and it is hard to correlate the distributions with

11

respect to the theoretical differences from branch prediction
algorithm(∆i). In case of the theoretical branch predictors,
this classification into difference classes from−3 to 3 was
easier since they were obtained as discrete values. But the
classification becomes difficult when the data is observed from
actual performance counters on real processors.

To overcome this limitation, in the next section we combine
one and two bit faults such that the posed classification
problem becomes easier. The theoretical analysis for this
combination is described in the next section followed by
results using data from hardware performance counters.

VI. COMBINING ONE AND TWO BIT FAULT MODEL

Combination of one and two bit fault retrieves the bit
positions in the keystream more efficiently. We will eventually
devise an efficient attack algorithm which works successfully
using the branch misprediction information from hardware
performance counters. The scenarios are not same for all the
states in Table I. We initially provide a detailed analysis for
StKi−1 = S0/S2. Let∆i,i+1 be the difference of branch misses
from a 2 bit and1 bit fault.

2) When StKi−1 = S0/S2: The analysis of combining fault
models is explained with the following observations:

a) If StKi−1 = S0

The following analysis shows that by combining Tables I
and II we can classify bits(bi, bi+1) on the basis of
differences of branch misses from a one bit fault and a
two bit fault.

• From Table I, we observe that ifStKi−1 = S0, ∆i = 1,
then (bi, bi+1) = (0, 0).

• For,∆i = −1, then(bi, bi+1) = (1, 0).
• If ∆i = 0,

– then (bi, bi+1) = (−, 1) from table I.
– To identify bi, we observed difference between a1

bit and2 bit fault as∆i,i+1.
– From Table II if bi = 0, then∆i,i+1 = 1, else if

bi = 1, then∆i,i+1 = −1.
– So, if StKi−1 = S0, ∆i = 0 and∆i,i+1 = 1 then

(bi, bi+1) = (0, 1).
– Again, if StKi−1 = S0, ∆i = 0 and∆i,i+1 = −1

then (bi, bi+1) = (1, 1).

• On the other hand if∆i = 2/3, from Table I we
observe that(bi, bi+1) = (0, 1), and in this case∆i,i+1

is also1.
• Similarly if ∆i = −2/ − 3, from Table I we observe

that (bi, bi+1) = (1, 1), and in this case∆i,i+1 is −1.

Using this observation, we build a simple classification for
consecutive two bits(bi, bi+1) as below:

• If (∆i = 1) , then(bi, bi+1) = (0, 0).
• If (∆i = −1), then(bi, bi+1) = (1, 0).
• If (∆i 6= 1/ − 1) & (∆i,i+1 = 1), then (bi, bi+1) =

(0, 1).
• If (∆i 6= 1/− 1) & (∆i,i+1 = −1), then(bi, bi+1) =

(1, 1).

b) If StKi−1 = S2

This case can be analyzed in the exactly same way as
the previous caseStKi−1 = S0. The classification for
consecutive two bits(bi, bi+1) for StKi−1 = S2 is as below:

• If (∆i = 1) , then(bi, bi+1) = (1, 1).
• If (∆i = −1), then(bi, bi+1) = (0, 1).
• If (∆i 6= 1/ − 1) & (∆i,i+1 = 1), then (bi, bi+1) =

(1, 0).
• If (∆i 6= 1/− 1) & (∆i,i+1 = −1), then(bi, bi+1) =

(0, 0).

3) When StKi−1 = S1/S3: While modelling the adversary
attack Algorithm 3 we observed that, while retrieving theith

bit, if Sti−1 = S1/S3 then for an observed∆i = (−1/0/1),
for these cases the table entries as in Table I are empty, and
we cannot decide upon the subsequent bit. So a solution which
already appears in Algorithm 3 can be adopted forSti−1 =
S1/S3 since it will make the attack algorithm easier. Since we
cannot decide upon the subsequent bit whenSti−1 = S1/S3.

• The characteristic property forSti−1 = S1/S3 as in
Property 1 isbi−2 = Pi−1 = Pi 6= bi−1.

Thus if we inject a fault at(i − 1)th position thenbi−1 gets
complemented. Effectively, ifStKi−1 = S1 previously then
after fault StFi−1

i−1 becomesS0. Similarly, if StKi−1 = S3

previously then after faultStFi−1

i−1 becomesS2.
• Thus if Sti−1 = S1/S3, and we denote the number of

branch mispredictions for secret exponent with fault at
(i− 1), (i+ 1)th position asbm0.

• And bm1 = number of branch mispredictions for secret
exponent with fault at(i− 1), i, (i+ 1)th position.

• we define,∆i−1,i,i+1 = bm1 − bm0 as the difference in
branch misses between a 3-bit and a 2-bit faulty key.

• Following the analysis in the previous subsection we can
intuitively write,

a) If StKi−1 = S1

In this case the difference of branch miss of the three
bit fault will have a similar classification as the two
bit in the previous subsection as,

• ∆i−1,i,i+1 = bm1 − bm0 will behave equivalently to
∆i,i+1(for StKi−1 = S0)
– If (∆i−1,i = 1) , then(bi, bi+1) = (0, 0).
– If (∆i−1,i = −1), then(bi, bi+1) = (1, 0).
– If (∆i−1,i 6= 1/ − 1) & (∆i−1,i,i+1 = 1), then

(bi, bi+1) = (0, 1).
– If (∆i−1,i 6= 1/ − 1) & (∆i−1,i,i+1 = −1), then

(bi, bi+1) = (1, 1).

b) If StKi−1 = S3 Similarly,
• ∆i−1,i,i+1 = bm1 − bm0 will behave equivalently to

∆i,i+1(for StKi−1 = S2)
– If (∆i−1,i = 1) , then(bi, bi+1) = (1, 1).
– If (∆i−1,i = −1), then(bi, bi+1) = (0, 1).
– If (∆i−1,i 6= 1/ − 1) & (∆i−1,i,i+1 = 1), then

(bi, bi+1) = (1, 0).
– If (∆i−1,i 6= 1/ − 1) & (∆i−1,i,i+1 = −1), then

(bi, bi+1) = (0, 0).

This reduction is performed with two step measurement.
Before observing the difference in branch misses, the stateof
the recovered bits are identified. Then by performing a single

12

or two bit fault (when in stateS0/S2) or performing a two and
three bit fault (when in stateS1/S3) the entire identification
of the key can be performed. The Algorithm 4 provides an
iterative algorithm using the combination of one and two bit
faults.

Now if the adversary aims to reveal secret key bits using
data from performance counters, he has to correctly classify
and identify only the distributions corresponding to1 and
−1. If we observe the individual distributions in Figure 5
more closely, the distributions for∆i = 1,−1 are distinct
as shown in Figure 6, and the mean values of difference in
branch miss obtained from hardware performance counters for
the respective distributions are1.5848,−1.7827. The maxi-
mum and minimum mean values are observed for∆i = 1
and−1 respectively. Thus we observe that the distributions
corresponding to∆i = 1 and−1 are the distributions which
are most separated among the other distributions.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

-15 -10 -5 0 5 10 15

F
re

q
u

e
n

cy
 o

f
o

cc
u

ra
n

ce
s

Differences in branch miss values from Performance counters

Delta = -1
Delta = 1

Fig. 6. Distribution of Difference in branch misses betweenthe secret and
ith bit faulty key from performance counters on Intel Core i5 for∆i = 1/−1

On the basis of this observation, in the next section we
provide the detailed results on the classification of differences
of branch misses as obtained from hardware performance
counters.

VII. VALIDATION OF ATTACK ALGORITHM USING DATA

FROM PERFORMANCECOUNTERS

In this section we provide the classification of the key
sequences on the basis of the performance counter values. The
same experiment as in Section V-1 is performed in this time
with the knowledge of the states in the predictor algorithm.
This time the distribution of differences are separately con-
structed for the statesS0, S1, S2, S3. The keys for a stateSj,
0 ≤ j ≤ 3 are chosen such that for a pair of secret and
its faulty key differing at theirith bit, the state of the 2-bit
predictor upto(i − 1) bits is in Sj . Table III, IV shows the
respective mean values from the distribution of differences
in branch misses as obtained from the hardware performance
counters on Intel Core i5 and Intel Core 2 Duo platforms.

The entries in Table III for∆i = 1,−1 for statesS0, S2 are
highlighted in order to show that the mean values obtained
from distribution of differences in branch misses from hard-
ware performance counters have a strong correlation with the
theoretical∆i values. The means for∆i = 1,−1 are having

Algorithm 4: Attack Algorithm Combining One and two
bit faults

Input : Unknown key(k) of n bit (k0, k1, · · · , kn−1)
Output : Retrieved key bits(k0, k1, · · · , kn−1)
begin

Assumek0 = 1;
for i = 1 to n− 1 do

Sti−1 = state of branch predictor for knowni− 1 bits;
if (Sti−1 = S0 or Sti−1 = S2) then

bm0 = number of branch misses for secret key;
bm1 = branch misses for the secret key with fault atith

bit;
∆i = bm1 − bm0;
if (∆i = 1 or ∆i = −1) then

Access Table I at corresponding difference location
∆i for S0/S2;

else
bm0 = branch misses with fault at(i + 1)th bit;
bm1 = branch misses with fault ati, (i+ 1)th bit;
∆i,i+1 = bm1 − bm0;
Access Table II at corresponding difference location
∆i,i+1 for S0/S2;

end
end
if (Sti−1 = S1 or Sti−1 = S3) then

bm0 = branch misses for secret key with fault at
(i − 1)th location;
bm1 = branch misses for the secret key with fault at
(i − 1), ith bit;
∆i−1,i = bm1 − bm0;
if (Sti−1 = S1) then

SetSti−1 = S0;
else

SetSti−1 = S2;
end
if (∆i−1,i = −1 or ∆i−1,i = 1) then

Access Table I corresponding toS0 or S2 at
location∆i−1,i;

else
bm0 = number of branch misses for secret key at
(i− 1), (i+ 1)th location;
bm1 = branch misses for the secret key with fault
at (i − 1), i, (i+ 1)th bit;
∆i−1,i,i+1 = bm1 − bm0;
Access Table II corresponding toS0 or S2 at
location∆i−1,i,i+1;

end
end

end
Update the partial known key to(k0, k1, · · · , ki).

end

TABLE III
TABULATING MEANS FROM HARDWARE PERFORMANCE COUNTERS ON

Intel Core i5 FOR SPECIFICSti−1 = Sj WITH RESPECTIVE∆i ’ S FOR KEY
LENGTH n = 21 BIT AND i = 10, j = 0, 1, 2, 3

Sti−1 ∆i

−3 −2 −1 0 1 2 3

All
states

−0.3199 1.3183 −1.7827 0.0004 1.5848 −1.1061 0.3104

S0 −0.4968 0.1888 −1.6513 0.1138 1.6331 −0.2215 0.2891

S1 −0.4304 1.8109 −1.7846 −0.1286 1.2348 −1.4589 0.6358

S2 −0.3091 0.1053 −1.5883 0.1650 1.6752 0.2152 0.2686

S3 −0.3942 1.8828 −1.7604 −0.0113 1.0932 −1.8714 0.2834

the maximum and minimum value in both the cases. But (for
statesS0, S2) if ∆i = −3,−2, 0, 2, 3 the distributions overlap
to a great extent and we are unable to clearly distinguish
the classes from the observed means (as well as their dis-

13

TABLE IV
TABULATING MEANS FROM HARDWARE PERFORMANCE COUNTERS ON

Intel Core 2 Duo FOR SPECIFICSti−1 = Sj WITH RESPECTIVE∆i ’ S FOR
KEY LENGTH n = 21 BIT AND i = 10, j = 0, 1, 2, 3

Sti−1 ∆i

−3 −2 −1 0 1 2 3

S0 0.2201 1.4601 −1.6699 0.0846 1.7751 −1.0907 −0.3539

S1 −0.085 1.3891 −1.6401 −0.0608 1.3577 −1.4847 0.2337

S2 0.1584 0.9915 −1.5393 0.3494 1.7987 −0.9951 −0.0741

S3 0.145 1.9085 −1.5018 0.145 0.9813 −2.4997 0.0741

tributions). Thus we conclude that we can clearly distinguish
the distributions with∆i = 1/ − 1 from the remaining in
their learning phase. The remaining∆i’s cannot be uniquely
identified only by observing the difference distribution from
one-bit fault model. For this reason we perform a similar
profiling with the two bit fault model where∆i,i+1 can assume
only two values1,−1. This classification is easier since there
exists only two classes.

On the contrary whenSti−1 = S1/S3, the means corre-
sponding to all possible∆i values (for a set of random keys
and theirith bit faulty counterparts) in Tables III, IV shows
that in this case it is even hard to distinguish cases∆i = 1,−1
from the remaining. Thus from this, we conclude that only if
Sti−1 = S0/S2 and if ∆i = 1,−1 for a secret key and its
ith bit faulty counterpart from 2-bit predictor algorithm, then
adversary will succeed to determine the subsequent bits by
observing the distribution of differences in branch misses. If
∆i 6= 1,−1 then the classification can be uniquely performed
with ∆i,i+1 values.

In the next subsection we explain the classification of
distribution of branch misses for a non-classified secret key
using template building and template matching techniques.
The mean and variances observed in the learning phase, from
the set of known keys for known previous states are used as
templates for the template building phase of template attacks.

A. Template Attacks

The template attack [4], [12] is a statistical attack strategy
exploiting the inherent properties of observed sample distribu-
tions. The attack is performed in two phases: template building
and template matching. In the template building procedure,
samples (differences of branch misses) are collected usingper-
formance counters for a specific key and its faulty counterpart
and a distribution is constructed out of the observed samples.
Distributions of a set of keys belonging to a specific class is
observed and the statistics like mean and variance are learnt
in this phase to constitute a template for the corresponding
distribution. In the next phase, unknown template such as
distribution of correct key is obtained and is compared with
each of the learnt templates. The unknown key is supposed to
exhibit the maximum probability of matching with its actual
correct class. Thus we perform the template matching phase
on the template learnt as in Table III. We demonstrate the
results for a simple example on3 different keys where the
secret key is of sizen = 21 bits, the target bit was the

11th bit and the state of the previous10 bits is taken as
S0. We provide a tabular representation as in Table V of the
cumulative probabilities over observed samples for matching a
distribution of branch misses for the unknown exponent (from
hardware performance counters) belonging to the templates
built at the learning phase onIntel Core i5 with ∆i = 1,−1
for key lengthn = 21 bit. From the Table V it is clear that

TABLE V
TABULATING SUM OF PROBABILITIES OBSERVED FOR MATCHING A

DISTRIBUTION OF BRANCH MISSES FOR AN UNKNOWN EXPONENT

∆i

of K
Templates for∆i

−3 −2 −1 0 1 2 3

1 38.991 43.638 27.827 40.15 51.053 31.869 46.138

1 53.079 61.159 38.112 52.848 64.368 46.443 58.542

−1 58.228 44.542 65.853 54.432 33.155 62.212 47.392

the ∆i values as observed from the 2-bit predictor algorithm
is showing the maximum probability in each of the cases
correctly. Thus if a classification can be done successfully, then
it is capable of retrieving the immediate next bits. Thus the
iterative algorithm eventually reveals the entire secret exponent
following this classification. Thus using the differences of
branch misses from the hardware performance counters we
can also be retrieve the subsequent key bits successfully.

1) Attacks on Montgomery Ladder & CRT-RSA: A pop-
ular countermeasure of simple side channel leakages from
the unbalanced instruction execution of square and multiply
algorithm is the Montgomery ladder implementation as in
Algorithm 2. This algorithm is having balanced instructions
conditioned on the secret key bits. Since both “if” and “else”
statements are executed depending on the key bits, timing
measurements and power leakages cannot be exploited by the
adversary to reveal the secret exponent. But the information
of branch misses is a stronger side channel and depends on
the ability of the branch predictor in correctly predictingthe
key bits. By modeling the 2-bit predictor we can exploit the
information of branch misses to correctly identify the key
bits for the square and multiply exponentiation algorithm.The
similar analysis holds for Montgomery ladder implementation
Thus in our experiments, by using data from performance
counters and using Montgomery ladder exponentiation as the
underlying exponentiation algorithm, we observe the following
Table VI.

TABLE VI
TABULATING MEANS FROM HARDWARE PERFORMANCE COUNTERS FOR

MONTGOMERYLADDER IMPLEMENTATION ON Intel Core i5 FOR
SPECIFICSti−1 = Sj WITH RESPECTIVE∆i ’ S FOR KEY LENGTHn = 21

BIT AND i = 10, j = 0, 1, 2, 3

Sti−1 ∆i

−3 −2 −1 0 1 2 3

S0 −1.506 −1.4738 −1.712 0.102 1.2559 1.285 1.607

S1 −1.331 −0.1449 −0.4524 0.0589 0.6751 0.494 1.3582

S2 −1.375 −1.8125 −1.0874 0.2708 1.3763 1.1986 2.0006

S3 −1.617 −0.083 −0.4980 −0.4243 0.8616 −0.208 2.4197

14

From the table it follows that∆i = 1, 2, 3 can classified
together, and similarly∆i = −1,−2,−3 can be classified
together for statesS0/S2. These classification uniquely re-
trieves theith bit asbi’s for these two classes are same. From
Table I, if ∆i = 1, 2, 3 and Sti−1 = S0, then bi = 0 and
for ∆i = −1,−2,−3 andSti−1 = S1 then bi = 1. For the
case where∆i = 0, the differences from the two bit fault can
uniquely retrieve the bits subsequently. Thus like square and
multiply algorithm, the Montgomery Ladder implementation
can also be foiled using data from performance counters and
thus leaking the secret key bits.

B. Attacks on RSA-CRT countermeasures using data from
Hardware Performance Counters

The RSA-CRT algorithm as explained in Section II-D is
implemented by calculating the CRT exponents asdp =
d mod (p − 1) and dq = d mod (q − 1) and the
Chinese Remainder Theorem (CRT) combines the output
of the computation after the exponentiations are performed
using this exponentsdp anddq. The exponentiation operation
being performed in RSA-CRT algorithm uses the standard
underlying exponentiation algorithms such as square and mul-
tiply and Montgomery ladder implementations. A probabilistic
poly(logN) time Algorithm to factorize ModulusN [11] on
the basis of the knowledge ofN, e, dp, dq already exists which
can factorizeN in probabilisticpoly(logN) time.

The popular fault attack countermeasures of the RSA-CRT
algorithm performs a comparison of the correct computation
with a faulty computation. In most of the fault attack coun-
termeasures the output of the faulty computation is fuzzied
to some extent so that the difference of the correct and the
incorrect computation cannot be utilized by an adversary to
factorize the large primesp, q. But in all of these countermea-
sures, the correctness check is done after the exponentiation on
the faulty exponent. So in all of the countermeasures while the
exponentiation operation is being performed on the secret as
well as the faulty exponent, the side channel leakage through
branch miss event can be utilized to reveal secret exponents
dp anddq with the analysis and the algorithm provided in the
paper. Thus the fault attack featuring differences of branch
misses by modelling the 2-bit predictor algorithm can be
utilized to a great extent to attack the square and multiply,
Montgomery ladder and RSA-CRT Algorithms.

VIII. C ONCLUSION

This paper demonstrates a fault attack on exponentiation
algorithms featuring the branch misses obtained through the
hardware performance counters by modeling the underlying
branch predictor unit. The paper demonstrates that the differ-
ences of branch misses between a faulty and a correct compu-
tation is enough to retrieve the subsequent secret exponentbits.
A detailed analysis on the key space reduction by modeling
2-bit dynamic predictor has been provided in the paper. An
iterative algorithm retrieving subsequent key bits is developed
using the observations. Finally, the attack is demonstrated on
various Intel platforms such as Core 2 Duo, Core Intel i3 and
Core Intel i5 with the differences of branch misses as observed

from the hardware performance counters on actual systems.
The classification is performed through a template building
and template matching. Templates of differences in branch
misses are constructed for some randomly generated keys,
and in the attack phase, a secret key distribution is observed
to classify correctly with maximum probability leading to
the retrieval of subsequent key bits. The attack shows that
using the fault attack model featuring branch predictors one
can attack implementations of exponentiation: both squareand
multiply, and Montgomery ladder, and the countermeasures for
RSA-CRT implementations which forms the central algorithm
for several standard public key ciphers. The work raises the
open question on implementation of ciphers on systems with
such side channel sources.

REFERENCES

[1] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In Masayuki Abe, editor,CT-RSA,
volume 4377 ofLecture Notes in Computer Science, pages 225–242.
Springer, 2007.

[2] Sarani Bhattacharya, Chester Rebeiro, and Debdeep Mukhopadhyay.
Hardware prefetchers leak: A revisit of svf for cache-timing attacks.
In MICRO Workshops, pages 17–23. IEEE Computer Society, 2012.

[3] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the
importance of checking cryptographic protocols for faults(extended
abstract). In Walter Fumy, editor,EUROCRYPT, volume 1233 ofLecture
Notes in Computer Science, pages 37–51. Springer, 1997.

[4] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks.
In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
CHES, volume 2523 ofLecture Notes in Computer Science, pages 13–
28. Springer, 2002.

[5] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam
Waksman, Simha Sethumadhavan, and Salvatore J. Stolfo. On the
feasibility of online malware detection with performance counters. In
Avi Mendelson, editor,ISCA, pages 559–570. ACM, 2013.

[6] Agner Fog. The Microarchitecture of Intel and AMD CPU’s,An
Optimization Guide for Assembly Programmers and Compiler Makers,
2009.

[7] John L. Hennessy and David A. Patterson.Computer Architecture: A
Quantitative Approach, 4th Edition. Morgan Kaufmann, 2006.

[8] Marc Joye and Sung-Ming Yen. The montgomery powering ladder. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,CHES,
volume 2523 ofLecture Notes in Computer Science, pages 291–302.
Springer, 2002.

[9] Chong Hee Kim and Jean-Jacques Quisquater. Fault attacks for crt based
rsa: New attacks, new results, and new countermeasures. In Damien
Sauveron, Constantinos Markantonakis, Angelos Bilas, andJean-Jacques
Quisquater, editors,WISTP, volume 4462 ofLecture Notes in Computer
Science, pages 215–228. Springer, 2007.

[10] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Neal Koblitz, editor,CRYPTO ’96:
Proceedings of the 16th Annual International Cryptology Conference
on Advances in Cryptology, volume 1109 ofLecture Notes in Computer
Science, pages 104–113, London, UK, 1996. Springer-Verlag.

[11] Subhamoy Maitra and Santanu Sarkar. On deterministic polynomial-time
equivalence of computing the crt-rsa secret keys and factoring. IACR
Cryptology ePrint Archive, 2009:62, 2009.

[12] Stefan Mangard, Elisabeth Oswald, and Thomas Popp.Power Analysis
Attacks - Revealing the Secrets of Smart Cards. Springer, 2007.

[13] Leif Uhsadel, Andy Georges, and Ingrid Verbauwhede. Exploiting
hardware performance counters. In Luca Breveglieri, Shay Gueron,
Israel Koren, David Naccache, and Jean-Pierre Seifert, editors, FDTC,
pages 59–67. IEEE Computer Society, 2008.

[14] Xueyang Wang and Ramesh Karri. Numchecker: detecting kernel
control-flow modifying rootkits by using hardware performance coun-
ters. InDAC, page 79. ACM, 2013.

