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Abstract. The area of lattice-based cryptography is growing ever-more
prominent as a paradigm for quantum-resistant cryptography. One of
the most important hard problem underpinning the security of lattice-
based cryptosystems is the shortest vector problem (SVP). At present,
two approaches dominate methods for solving instances of this problem
in practice: enumeration and sieving. In 2010, Micciancio and Voulgaris
presented a heuristic member of the sieving family, known as GaussSieve,
demonstrating it to be comparable to enumeration methods in practice.
With contemporary lattice-based cryptographic proposals relying largely
on the hardness of solving the shortest and closest vector problems in
ideal lattices, examining possible improvements to sieving algorithms
becomes highly pertinent since, at present, only sieving algorithms have
been successfully adapted to solve such instances more efficiently than in
the random lattice case. In this paper, we propose a number of heuristic
improvements to GaussSieve, which can also be applied to other sieving
algorithms for SVP.

1 Introduction

Lattice-based cryptography is gaining increasing traction and popularity as a
basis for post-quantum cryptography, with the Shortest Vector Problem (SVP)
being one of the most important computational problems on lattices. Its difficulty
is closely related to the security of most lattice-based cryptographic constructions
to date. The SVP consists in finding a shortest (with respect to a particular,
usually Euclidean, norm) non-zero lattice point in a given lattice.

For solving SVP instances, we have a choice of algorithms available. In re-
cent works, heuristic variants of Kannan’s simple enumeration algorithm have
dominated. The original algorithm [11] solves SVP (deterministically) with time
complexity n

n
2 +o(n) (n being the lattice dimension). More recent works (such

as [7]) allow probabilistic SVP solution, sacrificing guaranteed solution for run-
time improvements.

A more recently-studied family of algorithms is known as lattice sieving al-
gorithms, introduced in the 2001 work of Ajtai et al. [4]. In 2008, Nguyen and
Vidick [20] presented a careful analysis of the algorithm of Ajtai et al., show-
ing it to possess time complexity of 25.90n+o(n) and space complexity 22.95n+o(n).



Heuristic variants of [20], which run significantly faster than proven lower bounds
are presented in [20,26,27]. In 2010, Micciancio and Voulgaris [18] proposed two
new algorithms: ListSieve and a heuristic derivation known as GaussSieve, with
GaussSieve being the most practical sieving algorithm known at present. While
no runtime bound is known for GaussSieve, the use of a simple heuristic stopping
condition, in practice, appears effective with no cases being known (to the best
of our knowledge) in which GaussSieve fails to return a shortest non-zero vector.

For purposes of enhanced communication, computation and memory com-
plexity, many recent lattice-based cryptographic proposals employ ideal lattices
rather than “random” lattices. Ideal lattices, in brief, possess significant ad-
ditional structure which allows much more attractive implementation of said
proposals. However, as with any introduction of structure, the question of any
simultaneously-introduced weakening of the underlying problems arises. In 2011,
Schneider [21] illustrated that (following a suggestion in the work of Micciancio
and Voulgaris [18]) one can take advantage of the additional structure present in
ideal lattices in a simple way to obtain substantial speedups for such cases. In-
terestingly, no such comparable techniques are known for other SVP algorithms,
with only sieving algorithms appearing to be capable of exploiting the additional
structure exposed in ideal lattices.

Another attractive feature of sieving algorithms is their relative amenability
to parallelization. Also in 2011, Milde and Schneider [19] proposed a parallel
implementation of GaussSieve, though the methodology used limited the number
of threads to about ten, before no substantial further speedups could be obtained.
In 2013, Ishiguro et al. [10] proposed a somewhat more natural parallelization of
GaussSieve, allowing a much larger number of threads. Using such an approach,
they report the solution of the 128-dimensional ideal lattice challenge [2] in
30,000 CPU hours. Currently, the most efficient GaussSieve implementation (of
which details have been published) is due to Mariano et al [16] who implemented
GaussSieve with a particular effort to avoid resource contention. In this work,
we exhibit several further speedups which can be obtained both in the random
and ideal lattice cases.

While the security of most lattice-based cryptographic constructions relies
on the difficulty of approximate versions of the related Closest Vector Problem
(CVP) and SVP, the importance of improving exact SVP solvers stems from
their use (following Schnorr’s hierarchy [22]) in the construction of approximate
CVP/SVP solvers. Thus, any improvements, both theoretically and experimen-
tally, in exact SVP solvers can lead to a need for re-appraisal of proposed pa-
rameterizations.

Our Contribution. In this work, we highlight several practical improvements
that are applicable to other sieving algorithms. In particular, we propose the
following optimizations, which we incorporated into GaussSieve:

– We correct an error in the Gaussian sampler of the reference implementa-
tion of Voulgaris and propose an optimized Gaussian sampler in which we
dynamically adapt the Gaussian parameter used during the execution of the
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algorithm. Our experiments show that GaussSieve with our optimized Gaus-
sian sampler requires significantly fewer iterations to terminate and leads to
a speedup of up to 3.0× over the corrected reference implementation in ran-
dom lattices in dimension 60-70.

– The use of multiple randomized bases to seed the list before running the siev-
ing process offers substantial efficiency gains. Indeed, the speedup appears
to grow linearly in the dimension of the underlying lattice.

– We introduce a very efficient heuristic to compute a first approximation to the
angle between two vectors in order to test cheaply whether there is the need
to compute full inner products for the reduction process. This optimization
is possibly of independent interest beyond sieving algorithms.

We note that our improvements can be integrated into parallel versions of
GaussSieve without complication or restriction.

2 Background and Notation

A (full-rank) lattice Λ in Rn is a discrete additive subgroup. For a general intro-
duction, the reader is referred to [17]. We view a lattice as being generated by
a (non-unique) basis B = {b0, . . . ,bn−1} ⊂ Rn of linearly-independent vectors.
We assume that the vectors b0, . . . ,bn−1 form the rows of the n× n matrix B.
That is,

Λ = L(B) = Zn ·B =

{
n−1∑
i=0

xi · bi | x0, . . . , xn−1 ∈ Z

}
.

The rank of a lattice Λ is the dimension of the linear span span(Λ) of Λ. The
basis B is not unique, and thus we call two bases B and B′ equivalent if and
only if B′ = BU where U is a unimodular matrix, i.e., an integer matrix with
|det(U)| = 1. We note that such unimodular matrices form the general linear
group GLn(Z). Being a discrete subgroup, in any lattice there exists a subset of
vectors which possess minimal (non-zero) norm amongst all vectors. When asked
to solve the shortest vector problem, we are given a lattice basis and asked to
deliver a member of this subset. SVP is known to be NP-hard under randomized
reductions [3].

Random Lattices. Throughout this work, we rely on experiments with “random”
lattices. However, the question of what a “random” lattice is and how to generate
a random basis of one are non-trivial. In a mathematical sense, an answer to the
definition of a random lattice follows from a work in 1945 by Siegel [24], with
efficient methods for sampling such random lattices being proposed, for instance,
by Goldstein and Mayer [9]. In this work, all experiments were conducted with
Goldstein-Mayer lattices, as provided by the TU Darmstadt Lattice Challenge
project. For more details, the reader is directed to [8].

Definition 1. Given two vectors v,w in a lattice Λ, we say that v,w are Gauss-
reduced if

min(‖v ±w‖) ≥ max(‖v‖, ‖w‖) .
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Lattice Basis Reduction. A given lattice has an infinite number of bases. The
aim of lattice basis reduction is to transform a given lattice basis into one which
contains vectors which are both relatively short and relatively orthogonal. Such
bases, in some sense, allow easier and/or more accurate solutions of approxima-
tion variants of SVP or its related problem, the Closest Vector Problem (CVP).
In practice, the most effective arbitrary-dimension lattice basis reduction al-
gorithms are descendants of the LLL algorithm [14], with the Block-Korkine-
Zolotarev (BKZ) family [22,5] (or framework) of algorithms being the most ef-
fective in practice. The LLL and BKZ algorithms rely on successive exact SVP
solution in a number of projected lattices. These projected lattices are two-
dimensional in the case of LLL and of arbitrary dimension in the case of BKZ –
the (maximal) projected lattice dimension being termed the “blocksize” in BKZ.
For more details, the reader is referred to [6].

Balls and Spheres. We define the Euclidean n-sphere Sn(x, r) centered at x ∈
Rn+1 and of radius r by Sn(x, r) := {y ∈ Rn+1 : ‖ x − y ‖= r}. The (open)
Euclidean n-ball Bn(x, r) centered at x ∈ Rn and of radius r is defined to be
Bn(x, r) := {y ∈ Rn : ‖ x− y ‖< r}.

Gaussians. The discrete Gaussian distribution with parameter s over a lattice
Λ is defined to be the probability distribution with support Λ which, for each
x ∈ Λ, assigns probability proportional to exp(−π‖x‖2/s2).

Miscellany. We use ⊕ to denote the bitwise XOR operation and use a∠b to
denote the angle between vectors a and b. Given a binary vector a, we use w(a)
to denote the Hamming weight of a.

3 The GaussSieve Algorithm

In 2010, Micciancio and Voulgaris [18] introduced the GaussSieve algorithm.
GaussSieve is a heuristic efficient variant of the ListSieve algorithm. In contrast
to GaussSieve, for ListSieve there exist provable bounds on the running time
and space requirements. Algorithm 1 depicts the GaussSieve algorithm in more
detail.

GaussSieve operates upon a supplied lattice basis B. It utilizes a dynamic list
L of lattice points. At each iteration, GaussSieve samples a new lattice point –
typically with Klein’s algorithm [12] – and attempts to reduce that vector against
vectors in the list L. By “reducing” we mean adding an integer multiple of a list
vector such that the norm of the resulting vector is reduced. Once the vector
cannot be reduced further by list members, the resulting vector is incorporated
in the list. Afterwards, all the vectors in the list L are tested to determine if they
can be reduced against this new vector. If so, those vectors are removed to a stack
S, with the stack playing the role of Klein’s algorithm in subsequent iterations
till it is depleted. This ensures that all vectors in the list L remain pairwise
Gauss-reduced at any point during the execution of the algorithm. Eventually,
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Algorithm 1: GaussSieve

1 Input : Basis B, collision limit c
Output: v : v ∈ Λ(B) ∧ ‖v‖ = λ1(B)

2 L← {}, S← {}, col← 0
3 while col < c do
4 if S is not empty then
5 v ← S.pop()
6 else
7 v ← SampleKlein(B)
8 j ← GaussReduce(v,L,S)
9 if j = true then

10 col← col + 1

11 return v ∈ L s.t. ‖v‖ = minx∈L ‖x‖

function GaussReduce(p,L,S)
was reduced← true
while was reduced = true do

was reduced← false
for all vi ∈ L do

if ∃t ∈ Z : ‖p+ tvi‖ < ‖p‖ then
p← p + tvi

was reduced← true

if ‖p‖ = 0 then
return true

for all vi ∈ L do
if ∃u ∈ Z : ‖vi + up‖ < ‖vi‖ then

L← L\{vi}
vi ← vi + up
S.push(vi)

L← L ∪ {p}
return false
end function

by this iterative process, the shortest vector in the lattice is found (with high
probability). In the following, we detail the GaussSieve algorithm in several
aspects.

Sampling. In order to populate the list with reasonably short vectors, GaussSieve
samples lattice points via Klein’s randomized algorithm [12], following the sug-
gestion in [20]. Klein’s algorithm, upon input a lattice basis B outputs a lattice
point distributed according to a zero-centered Gaussian of parameter s over the
lattice Λ(B). Since the vectors so derived are small integer combinations of the
supplied basis vectors, the norms of these vectors are strongly dependent on the
“quality” of the supplied basis. Hence, reducing the input basis with “stronger”
lattice-reduction algorithms yields shorter vectors output and thus, intuitively
and in practice, GaussSieve terminates earlier than when given a “less-reduced”
basis from which to sample vectors. However, while the cost of enumeration al-
gorithms is strongly affected by the strength of the lattice-reduction employed,
such a strong correspondence does not appear to hold for the case of GaussSieve
- such issues are discussed further in Section 5.

Reduction. We attempt to reduce the given vector p (obtained either from
Klein’s algorithm or from the stack) against all list vectors, i.e., we try to find
a list vector v and integer t such that ‖p + tv‖ < ‖p‖, in which case we reduce
p using v. Once no such v exists in the list, we attempt to reduce the extant
list vectors against p. All list vectors which can be reduced using p are duly re-
duced, removed from the list and inserted to the stack S. As a result, GaussSieve
maintains its list L in a pairwise reduced state at the close of every iteration.
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In the following iteration, if the stack contains at least one element, we pop a
vector from the stack in lieu of employing Klein’s algorithm.

Stopping criteria. Given that one cannot prove (at present) that GaussSieve
terminates, stopping conditions for GaussSieve must be chosen in a heuristic
way, chosen such that any further reduction in the norm of the shortest vector
found is unlikely to occur. In [18], it is suggested to terminate the algorithm
after a certain number of successively-sampled vectors are all reduced to zero
using the extant list, with 500 such consecutive zero reductions being mentioned
as a possible choice in practice. In Voulgaris’ implementation, a stopping con-
dition is employed which depends on the maximal list size encountered. In our
experiments we follow the suggestions of [18] in this regard.

Complexity. As with all sieving algorithms, the complexity of GaussSieve is
largely determined by arguments related to sphere packing and the Kissing
Number - the maximum number of equivalent hyperspheres in n dimensions
which are permitted to touch another equivalent hypersphere yet not intersect.
With practical variants of GaussSieve, as dealt with here, no complexity bound
is known due to the possibility of perpetual reductions of vectors to zero without
a shortest vector being found. For further details, we direct the reader to [18].

4 Approximate Gauss Reduction

(0, 1)

(0, 0) (1.5, 0)

Fig. 1. Example Gauss-Reduced Region (shaded), Dimension 2.

The motivation for our first contribution stems from the observation that, at
least in moderate dimension, the overwhelming majority of vector pairs we con-
sider are already Gauss-reduced, yet we expend the vast majority of effort in the
algorithm in verifying that they are indeed Gauss-reduced. Thus, by “detecting”
relatively cheaply whether such a pair is almost-certainly Gauss-reduced, we can
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obtain substantial (polynomial) speedups at the cost of possibly erring (almost
inconsequentially) with respect to a few pairs.

We now make an idealizing assumption, namely the random ball assump-
tion (as appears in [25]) that we can gain insights into the behavior of lattice
algorithms by assuming that lattice vectors are sampled uniformly at random
from the surface of an Euclidean ball of a given radius. As in [25], we term this
the “random ball model”. For intuition, Figure 1 shows the region (shaded) of
vectors in the ball B2(0, 1.5) which are Gauss-reduced with respect to the vector
(0, 1).

Lemma 1. Given a vector v ∈ Rn of (Euclidean) norm r sampled from at
random from Sn−1(0, r) and a second vector w sampled independently at random
from Sn−1(0, r′) (where r′ is a second radius), the probability that w is Gauss-
reduced with respect to v is

1− I1−(r/2r′)2
(
n− 1

2
,

1

2

)
where hh := r′−r/2 and Ix(a, b) denotes the regularized incomplete beta function.

Proof. We assume, without loss of generality, that r′ ≥ r, otherwise, we swap v
and w. The surface area of the n-sphere of radius r′ (denoted Sn−1(0, r′)) is

Sn−1(0, r′) =
nπn/2r′n−1

Γ (1 + n
2 )

.

Then, the points from this sphere which are Gauss-reduced with respect to v are
determined by the relative complement of Sn−1(0, r′) with the hyper-cylinder of
radius

√
r′2 − r2/4 , of which both the origin and v lie on the center-line. We can

calculate the surface area of this relative complement by subtracting the surface
area of a certain hyperspherical cap from the surface area of a hemisphere of
the hypersphere of radius r′. Specifically, let us consider only one hemisphere
of Sn−1(0, r′). Considering the hyperspherical cap of height hh := r′ − r/2, this
cap has surface area

1

2
Sn−1(0, r′)I1−(r/2r′)2

(
n− 1

2
,

1

2

)
,

where Ix(a, b) denotes the regularized incomplete beta function:

Ix(a, b) :=

∞∑
i=a

(
a+ b− 1

i

)
xi(1− x)a+b−1−i .

Thus, the relative complement has surface area

1

2
Sn−1(0, r′)

(
1− I1−(r/2r′)2

(
n− 1

2
,

1

2

))
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and hence, the probability of obtaining a Gauss-reduced vector is

1− I1−(r/2r′)2
(
n− 1

2
,

1

2

)
) .

ut

For instance, Figure 2 gives the probability of two vectors being a priori Gauss-
reduced with increasing dimension in the case of r = 1000 and r′ = 1100. By
a priori Gauss-reduced, we mean that two vectors, sampled at random from
zero-centered spheres of respective radii, are Gauss-reduced with respect to each
other. These illustrative values are chosen to be representative of the similar-
norm pairs of vectors which comprise the vast majority of attempted reductions
in GaussSieve.
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Fig. 2. Example probabilities of a priori Gauss-reduction, r = 1000, r′ = 1100.

If we are given two such vectors, we can easily determine whether they are
Gauss-reduced by considering the angle θ between them. It follows simply from
elementary Euclidean geometry that if the following condition is satisfied, they
are Gauss-reduced:

|π
2
− θ| ≤ arcsin(r/2r′)

Thus, if we can “cheaply” determine an approximate angle, we can tell with good
confidence whether they are indeed Gauss-reduced or not. We note that, while
we do not believe one can prove similar arguments to the above in the context of
lattices, the behavior appears indistinguishable for random lattices in practice.
Indeed, we also experimented with vector pairs sampled from random lattice
bases using Klein’s algorithm and obtained identical behavior to that illustrated
in Figures 2 and 3. For determining such approximate angles, we investigated two
approaches: a) computing the angle between restrictions of vectors to subspaces
and b) exploiting correlations between the XOR + population count of the sign
bits of a pair of vectors and the angle between them. We only report the latter
approach, which appears to offer superior results in practice.
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Using XOR and Population Count as a First Approximation to the
Angle. Given a vector a ∈ Zn we define ã ∈ Zn

2 such that ãi = sgn(ai). Here,
we define

sgn(a) : R→ {0, 1} by sgn(a) =

{
0 if a < 0

1 otherwise

and define the normalized XOR followed by population count of a and b to be

sip(a,b) : Rn × Rn → R+ by sip(a,b) = w(ã⊕ b̃)/n

Based on Assumption 1, we can use the XOR + population count of a and b as a
first approximation to the angle between a and b when their norms are relatively
similar. The attraction of using sip(a,b) as a first approximation to a∠b is the
need to only compute an XOR of two binary vectors followed by a population
count, operations which can be implemented efficiently. For intuition, consider
the first components a1, b1 of vectors a and b, respectively. If sgn(a1)⊕sgn(b1) =
1 then the signs of these components are different and are the same otherwise.
Clearly, in higher dimensions, when sampling uniformly at random from a zero-
centered sphere, the expected number of such individual XORs would be n/2,
hence E[sip(a,b)] = 1/2. If sip(a,b) = 1, then all components of both vectors lie
in the same intersection of the sphere with a given orthant and thus we might
expect that the angle between these two vectors has a good chance of being
relatively small. The analogous case of sip(a,b) = 0 corresponds to taking the
negative of one of the vectors. Conversely, since the expected value of sip(a,b) is
1/2, we expect this to coincide with the heuristic that, in higher dimensions, most
vectors sampled uniformly at random from a zero-centered sphere are almost
orthogonal. Again, we stress that these arguments are given purely for intuition
and appear to work well in practice, as posited in Assumption 1:

Assumption 1 [Informal] Let n� 2. Then, given a random (full-rank) lattice
Λ of dimension n and two vectors a,b ∈ Λ of “similar” norms sampled uni-
formly at random from the set of all such lattice vectors, the distribution of the
normalized sign XOR + population count of these vectors sip(a,b) and the angle
between them can be approximated by a bivariate Gaussian distribution.

Note 1. We note that, in our experiments, we took “similar” norm to mean that
max{‖a‖/‖b‖, ‖b‖/‖a‖} ≤ 1.2, with a failure to satisfy this condition leading
to full inner product calculation.

Application of Mardia’s test [15] for multivariate normalcy yields confirmative
results. As an example, the covariance matrix below provides a good approxi-
mation of this distribution, in dimension 96 as shown by our experiments.[

0.01200 −0.00307
−0.00307 0.00290

]
For example, Figure 3 shows the result of 100,000 pairs of vectors sampled ac-
cording to a discrete Gaussian from a 96-dimensional random lattice, with the
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region lying between the horizontal lines containing the cases in which we as-
sume that the pair of vectors is Gauss-reduced and hence do not expend effort in
computing the full inner-product to confirm this. More specifically, we choose an
integer parameter k and, when we wish to compute the angle between vectors a
and b, we firstly compute c = sip(a,b). If (bn/2c−k)/n ≤ c ≤ (dn/2e+k)/n we
assume that a and b are already Gauss-reduced. Otherwise, we compute 〈a,b〉.

Choosing k, i.e. determining the distance of the horizontal lines from n/2 to
n was done heuristically, with values of 6 or 7 appearing to work best for the lat-
tice dimensions with which we experimented. If k is too small, the heuristic loses
value, while if it is too large we will commit too many false negatives (missed re-
ductions) which will lead to a decreased speedup. In the case of Figure 3, k = 6.
The occurrence of a few false negatives arising from this approach appears to
have little consequence for the algorithm - this assumption appears to be borne
out by the experiments reported in Section 7. We also note that false positives
cannot occur.

Fig. 3. Example distribution of sip(a,b) and angle between random unit vectors
in dimension 96.

5 Using Multiple Randomized Bases

When examining the performance of enumeration-type algorithms in solving
SVP instances, the level of preprocessing carried out on the basis is of prime
importance, with the norms of the Gram-Schmidt vectors of the reduced basis
being the main determinant of the running time. With sieving algorithms, how-
ever, this does not appear to hold - the level of preprocessing carried out on the
basis has a far smaller impact on the running time of the sieving algorithms than
might be expected at first.
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We posit that a much more natural consideration is the number of random-
ized lattice bases which are reduced and used to “seed” the list. That is, instead
of adding the input basis to the list before starting the sieving procedure, we
randomize and reduce the given basis several times, appending all so-obtained
lattice vectors to the list L by running GaussReduce(bi, L,S) for all obtained
vectors bi (cf. Algorithm 1).

The idea of rerandomizing and reducing a given lattice basis for algorith-
mic improvements is not new. Indeed, Gama et al. [7] show, with respect to
enumeration-based SVP algorithms, a theoretical exponential speedup if the in-
put basis is rerandomized, reduced and the enumeration search tree for each
reduced basis is pruned extremely. Experiments confirm this huge speedup in
practice [13]. While in enumeration rerandomizing and reducing provides al-
most independent instances of (pruned) enumeration, in this modification to
GaussSieve we instead concurrently exploit all the information gathered through
all generated bases in a single instance of GaussSieve rather than running mul-
tiple instances of GaussSieve.

However, a natural concern that arises in this setting is that of the number of
unique lattice vectors we can hope to obtain by way of multiple randomization
and reduction - we wish for this number to be as large as possible to maximize
the size of our starting list. Our experiments indicate that, given a large enough
lattice dimension, the number of duplicate vectors obtained by this approach
is negligible even when performing a few thousand such randomizations and
reductions. Figure 4 illustrates the number of distinct vectors obtained through
this approach in dimensions 40 and 70, highlighting that, beyond toy dimensions,
obtaining distinct vectors through this approach is not problematic. We also
observe that such a “seeding” of the list is only slightly more costly in practice
as this approach makes the first stage of the algorithm embarrassingly parallel,
i.e. each thread can carry out an independent basis randomization and reduction,
with a relatively fast merging of the resulting collection of vectors into a pairwise
Gauss-reduced list.

After seeding the list using the vectors from the reduced bases, we addition-
ally store these bases and, rather than sampling all vectors from a single basis,
sample from our multiple bases in turn. We note that our optimizations have
some similarities with the random sampling algorithm of Schnorr [23]. Here, short
lattice vectors are sampled to update a given basis, thereby performing multiple
lattice reductions. However, we add new vectors into the list while Schnorr’s
algorithm uses a fixed number of vectors throughout the execution.

In practice, this modification appears to give linear speedups based on our
experimental timing results given in Section 7.

Given that parallel adaptations of GaussSieve are highly practical, especially
for ideal lattices, we expect the approach of randomizing and reducing the basis
to seed the list to be very effective in practice. For instance, the implementation
of Ishiguro et al. employed more than 2,688 threads to solve the Ideal-SVP
128-dimensional challenge, with the number of thread-hours totaling 479,904.
However, only a single basis was used, having been reduced with BKZ with a
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Fig. 4. Number of distinct vectors obtained under repeated (up to 1000) random-
izations and BKZ reductions with blocksize 20 for random lattice in dimension
40 (left) and dimension 70 (right). In dimension 70 the two lines coincide almost
exactly.

blocksize of 30. If each thread additionally performed, say three randomizations
and reductions, over one million unique lattice vectors would be easily obtained.
In comparison, in dimension 128, we would expect our final list to contain roughly
4.2 million vectors in the ideal lattice case.

6 Reducing the Gaussian Parameter

Recall that Klein’s algorithm samples from a discrete Gaussian over the given
lattice by taking (integer) linear combinations of the basis vectors, with each co-
efficient being sampled from a discrete Gaussian of parameter s over Z. The pa-
rameter s is proportional to the norm of the Gram-Schmidt vector corresponding
to that dimension. Unfortunately, in the implementation of Voulgaris [1], Klein’s
algorithm is implemented incorrectly, with the result that one either samples in-
tegers which are non-Gaussian, or one does sample from a Gaussian but very
slowly.

In the original implementation of Voulgaris, an arbitrary Gaussian sampling
parameter is chosen, while Ishiguro et al. choose an arbitrary though smaller
parameter. We choose the Gaussian parameter dynamically in our experiments,
i.e., by starting with an unfeasibly small (for example 500) parameter (which is
guaranteed to return only the zero vector) and then incrementing this by one
each time Klein’s algorithm returns a zero vector. The intuition for this strategy
is that, if the Gaussian parameter is too large, Klein’s algorithm will generate
unnecessarily long vectors, while if the Gaussian parameter is too small, the only
vectors delivered by Klein’s algorithm will be the zero vector and (occasionally)
single vectors from the basis. Hence we need to choose a Gaussian parameter
which is large enough that the number of lattice vectors obtainable is large
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Fig. 5. Progressive list sizes in a 56-dimensional random lattice.

enough to generate a list which satisfies the termination condition, but which is
small enough that the vectors generated are not too long as to impose an addi-
tional unnecessary number of iterations on the algorithm. While it is probably
possible to prove an optimal value for the Gaussian parameter (i.e. to provide
a lower-bound on the Gaussian parameter which leads to enough entropy in
Klein’s algorithm to deliver a terminating list), we do not deal with this here as,
in practice, our approach of dynamically increasing the parameter upon seeing
zero vectors appears to work very well.

Upon choosing the parameter in this way, a substantial change in behavior
occurs, as illustrated in Figure 5, with far fewer iterations (less than half as many
in this case) being necessary to satisfy the termination condition. In contrast to
the suggestions in Ishiguro et al. (in which it was suggested that a fixed Gaussian
parameter should be used throughout the execution of the algorithm but that
the optimal Gaussian parameter increases with lattice dimension), our experi-
ments indicate that decreasing the Gaussian sampling parameter with increasing
dimension delivers superior results1.

7 Implementation and Experimental Results

To test the modifications outlined, we adapted the single-threaded implemen-
tation of Voulgaris [1], comparing minimally-modified versions to the reference

1 We note that the speedups gained from dynamic choice of the Gaussian parameter
are independent of the bug in the reference implementation, said bug leading to only
a minor slowdown in most cases. See Table 1 further for details.
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implementation. While several obvious optimizations are possible, we did not im-
plement these, for consistency. We stress, however, that the timings given here
are purely for comparative purposes and in addition to our algorithmic optimiza-
tions further optimizations at the implementation level can significantly enhance
the performance of the algorithm, for instance using 16-bit integers for vector
entries rather than the 64-bit integers used in the reference implementation.

All experiments were carried out using a single core of an AMD FX-8350
4.0GHz CPU, 32GB RAM, with all software (C++) compiled using the Gnu
Compiler Collection, version 4.7.2-5. Throughout, we only experiment with the
Goldstein-Mayer quasi-random lattices as provided by the TU Darmstadt SVP
challenge [2].

7.1 Our Timings

In order to better assess the impact of our modifications to GaussSieve, we com-
pare our implementations both to the original implementation of Voulgaris and
a “corrected” version where we embed a correct implementation of a discrete
Gaussian sampler2. We denote the original implementation by “Reference Im-
plementation” and the original implementation + corrected Gaussian sampler
by “Reference Implementation-β”.

Table 1 shows timings for the original (unoptimized) implementation of Voul-
garis [1], of Reference Implementation-β, and of our proposed optimizations ex-
plicitly. We also provide timings for an implementation which incorporates all the
discussed optimizations for which the pseudocode can be found in Appendix A.
For the multiple-bases optimization we display the timing with best efficiency,
i.e., with the optimal (in terms of our limited experiments) number of bases.
All timings exclude the cost of lattice reduction but we include the additional
necessary lattice reduction via BKZ when considering multiple bases.

We observe that our optimized Gaussian sampler gives a speedup of up to
3.0x. However, with increasing dimension the speedup decreases slightly. Our in-
tegration of approximate inner-product computations increases performance by
a factor of up to 2.7x, as compared to the original implementation of GaussSieve.

Similar speedups are obtained by considering multiple randomized bases;
however, the speedup increases for larger dimensions. Indeed, if we ignore dimen-
sion 70, for which we did not consider an optimal number of bases due to time
constraints, the speedup is approximated closely by the function 0.1838n−9.471.
Figure 6 illustrates the speedups for several dimensions when increasing the num-
ber of bases considered.

When employing multiple randomized bases it is almost always the case that
with increasing dimension employing more bases is preferable. Table 2 shows the

2 In the implementation of Voulgaris, no lookup table is employed for Gaussian carry-
ing out rejection sampling over a subset of the integers. Hence, the sampled integers
are much closer to uniform than to the intended truncated Gaussian. In our cor-
rected comparative implementation we employ the same Gaussian parameter from
the Voulgaris implementation but ensure that the sampled vectors adhere to the
prescribed Gaussian.
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Dimension 60 62 64 66 68 70

Reference Implementation [1] 464 1087 2526 5302 12052 23933

Reference Implementation-β 455 1059 2497 5370 12047 24055

XOR + Pop. Count (Sec. 4) 203 459 1042 2004 4965 11161

Mult. Rand. Bases (Sec. 5) 210 555 1103 2023 3949 7917

Opt. Gaussian Sampling (Sec. 6) 158 376 1023 2222 5389 10207

Combined (s) 79 146 397 868 2082 4500

Shortest Norm ≈ 1943 2092 2103 2099 2141 2143

Table 1. Execution time (in seconds) of Voulgaris’ implementation [1] and our
optimized variants.

runtime of our implementation when employing various numbers of randomized
bases. It also depicts the amount of time necessary to reduce all the generated
bases.

Dim.
Number of Additional Bases

0 10 20 40 80 160 320

60 (453, 0) (274, 2) (238, 4) (210, 8) (195, 15) (185, 29) (164, 59)

62 (1075, 0) (810, 1) (686, 3) (612, 12) (570, 12) (533, 22) (530, 43)

64 (2507, 0) (1389, 17) (1209, 36) (1025, 75) (877, 153) (723, 322) (461, 748)

66 (5302, 0) (3193, 19) (2716, 41) (2328, 83) (1961, 171) (1659, 364) (1233, 835)

68 (12052, 0) (6842, 23) (5852, 48) (5071, 99) (4360, 200) (3652, 415) (3015, 934)

70 (23933, 0) (14933, 24) (12641, 53) (10933, 111) (9561, 225) (8139, 464) (6871, 1046)

Table 2. Time for (sieving, initialization) in seconds.
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A Pseudocode of our Optimized GaussSieve

The below pseudocode displays our proposed modifications to GaussSieve. In
lines (3)-(9) we incorporate our multiple-randomized-bases optimization, and in
the function GaussReduce(p,L,S, k) we embed the cheap test SIP implementing
our XOR + population count computation for the approximation of the angle
between two vectors. The optimized Gaussian sampler modifies the function
SampleKlein.

In the pseudocode, the parameter k ∈ Z+ defines the bounds on the XOR
+ population count, within which we assume that a pair of vectors is Gauss-
reduced, i.e. if n/2 − k ≤ 〈ã, b̃〉 ≤ n/2 + k, we assume the pair a,b are Gauss-
reduced.
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Algorithm 2: Optimized GaussSieve

1 Input : Basis B, k ∈ Z+, r ∈ Z+,
a′ ∈ R+, δ ∈ R+

Output: v : v ∈ Λ(B) ∧ ‖v‖ = λ1(B)
2 L← {}, S← {}, col← 0, a← a′

3 repeat
4 B′ ← RandomizeBasis(B)
5 for v ∈ B′ do
6 v’ ← GaussReduce(v,L, S, k)
7 if ‖v′‖ 6= 0 then
8 L← L ∪ {v}
9 until r times

10 while col < c do
11 if S is not empty then
12 v ← S.pop()
13 else
14 v ← SampleKlein(B’, a)
15 while v = 0 do
16 a← a+ δ
17 v ← SampleKlein(B’, a)

18 j ← GaussReduce(v,L,S, k)
19 if j = true then
20 col← col + 1

21 return v ∈ L s.t. ‖v‖ = minx∈L ‖x‖

function GaussReduce(p,L, S, k)
was reduced← true
while was reduced = true do

was reduced← false
for all vi ∈ L do

if SIP(vi,p, k) = 1 then
if ∃t ∈ Z : ‖p + tvi‖ < ‖p‖
then

p← p + tvi

was reduced← true

if ‖p‖ = 0 then
return true

for all vi ∈ L do
if SIP(vi,p, k) = 1 then

if ∃u ∈ Z : ‖vi + up‖ < ‖vi‖
then

L← L\{vi}
vi ← vi + up
S.push(vi)

L← L ∪ {p}
return false
end function
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