This work focuses on another natural complexity measure: {\em the time required to encode}. We construct {\em succinct randomized encodings} where a computation given by a (Turing or random-access) machine $M$, and input $x$, requiring time $t$ and space $s$, can be encoded roughly in time $\poly(|x|,\log t,s)$, thus inducing significant savings in time when $s \ll t$. The scheme guarantees computational input-privacy and is based on indistinguishability obfuscation for a relatively simple circuit class, which can in turn be based on a polynomial version of the subgroup elimination assumption on multilinear graded encodings.
We then invoke succinct randomized encodings to obtain several strong applications, including: \begin{itemize} \item Indistinguishability obfuscation for uniform (Turing or random-access) machines, where the obfuscated machine $\iO(M)$ computes the same function as $M$ for inputs $x$ of apriori-fixed maximal size $n$, and is computed in time $\poly(n,\log t,s)$. \item Functional encryption for uniform machines, where a functional decryption key corresponding to $M$ allows decrypting $M(x)$ from encryptions of $x$. As in the previous case, inputs $x$ are of apriori-fixed maximal size $n$, and key derivation time is roughly $\poly(n,\log t,s)$. \item Publicly-verifiable 2-message delegation where verification time is roughly $\poly(n,\log t,s)$. We also show how to transform any 2-message delegation scheme to an essentially non-interactive system where the verifier message is reusable. \end{itemize} For the first application, we also require subexponentially-secure indistinguishability obfuscation for circuits, and for the second polynomial indistinguishability obfuscation, which can be replaced by more concrete polynomial hardness assumptions on multilinear graded-encodings. Previously, both applications were only known based on various non-standard knowledge assumptions.
Category / Keywords: foundations / Obfuscation, Randomized-Encoding,Garbled-Circuit,Functional-Encryption, SNARG,delegation Date: received 30 Sep 2014, last revised 23 Apr 2015 Contact author: nirbitan at csail mit edu Available format(s): PDF | BibTeX Citation Version: 20150423:191617 (All versions of this report) Short URL: ia.cr/2014/771 Discussion forum: Show discussion | Start new discussion