
Differential Cryptanalysis of SipHash

Christoph Dobraunig, Florian Mendel, and Martin Schläffer

IAIK, Graz University of Technology, Austria
christoph.dobraunig@iaik.tugraz.at

Abstract. SipHash is an ARX based message authentication code de-
veloped by Aumasson and Bernstein. SipHash was designed to be fast
on short messages. Already, a lot of implementations and applications
for SipHash exist, whereas the cryptanalysis of SipHash lacks behind.
In this paper, we provide the first published third-party cryptanalysis
of SipHash regarding differential cryptanalysis. We use existing auto-
matic tools to find differential characteristics for SipHash. To improve
the quality of the results, we propose several extensions for these tools
to find differential characteristics. For instance, to get a good probabil-
ity estimation for differential characteristics in SipHash, we generalize
the concepts presented by Mouha et al. and Velichkov et al. to calcu-
late the probability of ARX functions. Our results are a characteristic
for SipHash-2-4 with a probability of 2−236.3 and a distinguisher for the
Finalization of SipHash-2-4 with practical complexity. Even though our
results do not pose any threat to the security of SipHash-2-4, they sig-
nificantly improve the results of the designers and give new insights in
the security of SipHash-2-4.

Keywords: message authentication code, MAC, cryptanalysis, differ-
ential cryptanalysis, SipHash, S-functions, cyclic S-functions

1 Introduction

A message authentication code (MAC) is a cryptographic primitive, which is
used to ensure the integrity and the origin of messages. Normally, a MAC takes
a secret key K and a message M as input and produces a fixed size tag T . A
receiver of such a message-tag-pair verifies the authenticity of the message by
simply recalculating the tag T for the message and compare it with the received
one. If the two tags are the same, the origin of the message and its integrity are
ensured.

SipHash [1] was proposed by Aumasson and Bernstein due to the lack of
MACs, which are fast on short inputs. Aumasson and Bernstein suggest two
main fields of application for SipHash. The first application is as replacement for
non-cryptographic hash functions used in hash-tables and the second application
is to authenticate network traffic. The need for a fast MAC used in hash-tables
arises from the existence of a denial-of-service attack called “hash flooding” [1].
This attack uses the fact, that is easy to find collisions for non-cryptographic
hash functions. With the help of these collision producing inputs, an attacker is

able to degenerate hash-tables to e.g. linked lists. Such a degeneration increases
the time to perform operations like searching and inserting elements drastically
and can lead to denial of service attacks.

So far, SipHash is already implemented in many applications. For example,
SipHash is used as hash() in Python on all major platforms, in the dnschache
instances of OpenDNS resolvers and in the hash-table implementation of Ruby.
Besides these mentioned applications, other applications and dozens of third-
party implementations of SipHash can be found on the SipHash website1.

In this paper, we provide the first external security analysis regarding dif-
ferential cryptanalysis. To find differential characteristics, we adapt techniques
originally developed for the analysis of hash functions to SipHash. Using differ-
ential cryptanalysis to find collisions for hash functions has become very popular
since the attacks on MD5 and SHA-1 by Wang et al. [14,15]. As a result, a num-
ber of automated tools have been developed to aid cryptographers in their search
for valid characteristics [5–7]. For hash functions, the probability of a character-
istic does not play an important role since message modification can be used to
improve the probability and create collisions. However, this is not possible for
keyed primitives like MACs. Therefore, we have to modify existing search tools
to take the probability of a characteristic into account. With the help of these
modified tools, we are able to improve the quality of the results for SipHash.

In cryptographic primitives consisting solely out of modular additions, ro-
tations and xors (like SipHash), only the modular addition might contribute to
the probability of a differential characteristic, if xor differences are considered for
representation. A method to calculate the exact differential probability of mod-
ular additions is presented by Mouha et al. [8]. In constructions like SipHash,
modular additions, rotations and xors interact together. Hence, the characteris-
tic uses many intermediate values of the single rounds and is therefore divided
into many small sections. To get a more exact prediction of the probability for
the characteristic, it would be nice to calculate the probability of subfunctions
combining modular additions, rotations and xors. Therefore, we introduce the
concept of cyclic S-functions. This concept is a generalization of the work done
by Mouha et al. [8] and Velichkov et al. [12] for generalized conditions [2]. Al-
though all the basic concepts needed to create cyclic S-functions are already
included in the work of Velichkov et al. [12], we do not think that the general-
ization to generalized conditions is trivial, since we have not seen a single use
of it. Cyclic S-functions will help analysts and designers of ARX based cryp-
tographic primitives to provide closer bounds for the probability of differential
characteristics.

With the help of the extended search strategies and the probability calcula-
tion, we are able to find the first published collision producing characteristics for
SipHash-1-x and SipHash-2-x (see Table 1). The characteristic for SipHash-2-x
is also the best known characteristic for SipHash-2-4. Moreover, we are able to
present a distinguisher for the Finalization (4 SipRounds) of SipHash-2-4.

1 https://131002.net/siphash/

2

Table 1. Best found characteristics.

Instance Type Probability Reference

SipHash-2-4 high probability 2−498 [1]
SipHash-2-4 high probability 2−236.3 Section 5.1
SipHash-2-x internal collision 2−236.3 Section 5.1
SipHash-1-x internal collision 2−167 Section 5.1

4 Round Finalization high probability 2−35 Section 5.2

The paper starts with a description of SipHash in Section 2. The follow-
ing Section 3 explains the basic concepts and strategies used by us to search
for differential characteristics. Section 4 deals with improvements of automatic
search techniques to find suitable characteristics for SipHash. Finally, the most
significant differential characteristics for SipHash found by us are presented in
Section 5. Further results on SipHash are given in Appendix A.

2 Description of SipHash

SipHash is a cryptographic MAC consisting solely of modular additions, rota-
tions and xors (ARX). SipHash has an internal state size of 256 bits, uses a
128-bit key and produces a 64-bit tag. The process of authenticating a single
message can be split into three stages: Initialization, Compression and Finaliza-
tion.

– Initialization. The internal state V of SipHash consists of the four 64-bit
words Va, Vb, Vc and Vd. The initial value consists of the ASCII represen-
tation of the string “somepseudorandomlygeneratedbytes’ and is written to
the internal state first. Then, the 128-bit key K = K1 ‖K0 is xored to the
state words Va ‖Vb ‖Vc ‖Vd = Va ‖Vb ‖Vc ‖Vd ⊕K0 ‖K1 ‖K0 ‖K1.

– Compression. The message M is padded with as many zeros as needed to
reach multiple block length minus 1 byte. Then, one byte, which encodes the
length of the message modulo 256 is added to get a multiple of the block
length. Afterwards, the message is split into t 8-byte blocks M1 to Mt. The
blocks Mi are in little-endian encoding. For each block Mi, starting with
block M1, the following is performed. The block Mi is xored to Vd. After
that the SipRound function is performed c times on the internal state. Then
the block Mi is xored to Va.

– Finalization. After all message blocks have been processed, the constant
ff16 is xored to Vc. Subsequently, d iterations of SipRound are performed.
Finally, Va⊕Vb⊕Vc⊕Vd is used as the MAC value hK = SipHash-c-d(K,M).

As shown above, SipHash is parameterizable using c SipRounds in the Com-
pression and d SipRounds in the Finalization. Such a specific instantiation of
SipHash is called SipHash-c-d. Aumasson and Bernstein propose two specific
versions for use, which are SipHash-2-4 and SipHash-4-8.

3

Next, we describe one SipRound. As SipHash is an ARX based MAC, the
SipRound network shown in Fig. 1 consists only of modular additions, xors and
rotations. Every operation is an operation on 64-bit.

≪ 13

≪ 16

≪ 32

≪ 17

≪ 21

≪ 32

Vb

Va

Vc

Vd
Ad

Vb

Va

Vc

Vd

Ac

Ab

Aa

Fig. 1. One SipRound [1].

Now, we will discuss our naming scheme for the different variables involved
in SipHash. In Fig. 1 one SipRound is shown. We will indicate a specific bit of
a word by Va,m,r[i], where i = {0, ..., 63} denotes the specific bit position of a
word, m denotes the message block index, and r denotes the specific SipRound.
Hence, to process the first message block, the input to the first SipRound is
denoted by Va,1,1, the intermediate variables by Aa,1,1, and the output by Va,1,2.
Words, which take part in the Finalization, are indicated with m = f .

3 Automatic Search for Differential Characteristics

For the search for differential characteristics, we have used an automatic search
tool. To make use of such a tool, several key aspects have to be considered.

– The representation of the differential characteristic (Section 3.1).
– The description of the cryptographic primitive to perform propagation (Sec-

tion 3.2).
– The used search strategy to search for characteristics (Section 3.3).

3.1 Generalized Conditions

We use generalized (one-bit) conditions introduced by De Cannière and Rech-
berger [2] to represent the differential characteristics within the automatic search
tool. With the help of the 16 generalized conditions, we are able to express every
possible condition on a pair of bits. For instance the generalized condition x

denotes unequal values, - denotes equal values and ? denotes that every value
for a pair of bits is possible.

4

In addition, we also use generalized two-bit conditions [5]. Using these con-
ditions, every possible combination of a pair of two bits |∆x,∆y| can be repre-
sented. In the most general form, these two bits can be any two bits of a char-
acteristic. In our case, such two-bit conditions are used to describe differential
information on carries, when computing the probability using cyclic S-functions.

3.2 Propagation of Conditions

Single conditions of a differential characteristic are connected via functions (ad-
ditions, rotations, xors). Thus, the concrete value of a single condition affects
other conditions. To be more precise, the information that certain values on a
condition are allowed may lead to the effect, that certain values on other con-
ditions are impossible. Therefore, we are able to remove impossible values on
those conditions to refine their values. We can say that information propagates.

Within the automatic search tool, we do this propagation in a bitsliced man-
ner like it is shown in [6]. This means, that we split the functions into single
bitslices and brute force them by trying all possible combinations allowed by the
generalized conditions. In this way, we are able to remove impossible combina-
tions.

For the performance of the whole search for characteristics, it is crucial to find
a suitable “size” of the subfunctions of a specific cryptographic primitive, which
are used to perform propagation. The “size” of such a subfunction determines
how many different conditions are involved during brute forcing a single bitslice.
On one hand, “big” functions (many conditions involved in one bitslice) make
the propagation slower. On the other hand, the amount of information that
propagates is usually enhanced by using a few “big” subfunctions instead of many
“small” ones. Generalized conditions are not able to represent every information
that is gathered during propagation(mainly due to effects regarding the carry of
the modular addition) [5]. So we loose information between single subfunctions.
Usually, less information is lost if the subfunctions are “bigger”. In fact, finding
a good trade-off between speed and quality of propagation is not trivial.

3.3 Basic Search Strategy

For analyzing unkeyed primitives, especially when trying to find collisions for
hash functions, the following search method, as used by Mendel et al. [6] has
turned out to be a viable strategy.

– Find a good starting point for the search.
– Search for a good characteristic.
– Use message modification to find a colliding message pair.

The starting point describes the target problem to be solved and a good
starting point can greatly reduce the complexity of a search. In the start charac-
teristic, bits where no differences are allowed are represented by the condition -

and bits where the characteristic may contain differences are represented by ?.

5

The search algorithm refines the conditions represented by a ? to - and x to
get a valid differential characteristic in the end. An example of a search strategy
can be found in [6]. Here, the search algorithm is split in three main parts:

– Decision (Guessing). In the guessing phase, a bit is selected, which condi-
tion is refined. This bit can be selected randomly or according to a heuristic.

– Deduction (Propagation). In this stage, the effects of the previous guess
on other conditions is determined (see Section 3.2).

– Backtracking (Correction). If a contradiction is determined during the
deduction stage the contradiction is tried to be resolved in this stage. A way
to do this is to jump back to earlier stages of the search until the contradiction
can be resolved.

There exist several message modification techniques [4,11,13]. The one used
by us (in Appendix A) is refining a valid characteristic further until the colliding
message pair is fixed [6]. For keyed primitives like SipHash, message modification
to enhance the probability is usually out of reach, since the key is unknown.
Hence, we need to stop the search at the characteristic and need an adapted
search algorithm to find characteristics, which have a high probability.

4 Improvements in the Automatic Search for SipHash

We have used existing automatic search tools to analyze SipHash. Those tools
use the search strategy describe in Section 3.3. This strategy has been developed
to find collisions for hash functions. It turns out that this strategy is unsuitable
for keyed primitives like MACs. Therefore, we extend the search strategy to the
greedy strategy described in Section 4.1. This greedy strategy uses information
on the probability of characteristics, or on the impact of one guess during the
search for characteristics. We have created all the results of Section 5 with the
help of this greedy strategy. To get closer bounds on the probability of the
characteristic, we generalize the concepts presented by Mouha et al. [8] and
Velichkov et al. [12] to cyclic S-functions (Section 4.2).

Another important point in the automatic search for differential characteris-
tics is the representation of the cryptographic primitives within the search tool.
We have evaluated dozens of different descriptions and present the most suitable
in Section 4.3.

4.1 Extended Search Strategy

Our search strategy extends the strategy used in [6]. The search algorithm of
Section 3.3 is split in three main parts decision (guessing), deduction (propaga-
tion), and backtracking (correction). We have extended this strategy to perform
greedy searches using quality criteria like the probability. In short, we perform
the guessing and propagation phase several times on the same characteristic.
After that, we evaluate the resulting characteristics and take the characteristic

6

with the best probability. Then, the next iteration of the search starts. The up-
coming algorithm describes the search in more detail:

Let U be a set of bits with condition ? in the current characteristic A. In
H we store all characteristics, which have been visited during the search. L is a
set of candidate characteristics for A. n is the number of guesses. B- and Bx are
characteristics.
Preparation

1. Generate U from A. Clear L. Set i to 0.

Decision (Guessing)

2. Pick a bit from U .
3. Restrict this bit in A to - to get B- and to x to get Bx.

Deduction (Propagation)

4. Perform propagation on B- and Bx.
5. If B- and Bx are inconsistent, mark bit as critical and go to Step 13, else

continue.
6. If B- is not inconsistent and not in H, add it to L. Do the same for Bx.
7. Increment i.
8. If i equals n, continue with Evaluation. Else go to Step 2.

Evaluation

9. Set A to the characteristic with the highest probability in L.
10. Add A to H.
11. If there are no ? in A, output A. Then set A to a characteristic of H.
12. Continue with Step 1.

Backtracking (Correction)

13. Jump back until the critical bit can be resolved.
14. Continue with Step 1.

To generate the set U , we use the following variables of SipHash Aa, Ac, Va,
and Vc. Except for Va,m,1, Vc,m,1, Va,f,1, and Vc,f,1, since they are only connected
via an xor to their predecessors, or are even the same variable. We guess solely
on those variables, since a guess on them always affects the probability of the
differential characteristic. Experiments have shown that setting the number of
guesses n to 25 leads to the best results.

Due to performance reasons, we store hash values of characteristics in H.
In addition, we maintain a second list H∗. In this list, we store the next best
characteristics of L according to a certain heuristic. The characteristics of H∗

are also used for backtracking. If a characteristic is found and U is empty, we
take a characteristic out of H∗ instead of H in Step 11. After a while, we perform
a soft restart, where everything is set to the initial values (also H∗ is cleared)
except for H.

This search strategy turns out to be good if we search for high probability
characteristics, which do not lead to collisions. When searching for colliding
characteristics, we have to adapt the given algorithm and perform a best impact
strategy similar to Eichlseder et al. [3].

7

The best impact strategy differs in the following points from the strategy
described above. In the best impact strategy, we do not calculate the charac-
teristic Bx. Instead of taking the probability of B- as a quality criterion for the
selection, we use the variant of B- of the candidate list L, where the most in-
formation propagates. As a figure of merit for the amount of information that
propagates, we take the number of conditions with value ?, which have changed
their value due to the propagation.

This best impact strategy has several advantages. The first one lies in the fact
that mostly guesses will be made, which have a big impact on the characteristic.
This ensures that no guesses are made, where nothing propagates. Such guesses
often imply additional restrictions on the characteristic, which are not necessary.
In addition, the big impact criterion also leads to rather sparse characteristics,
which usually have a better probability than dense ones.

4.2 Calculating the Probability Using Cyclic S-Functions

In this section, we show a method to extend the use of S-functions [8] by in-
troducing state mapping functions mi and making the relationship between the
states cyclic. For instance such cyclic states occur if rotations work together
with modular additions. Velichkov et al. showed in [12] how to calculate the
additive differential probability of ARX based functions. The method of cyclic
S-functions is closely related to the methods shown in [12].

Concept of Cyclic S-Functions. According to Mouha et al. [8], a state func-
tion (S-function) is a function, where the output s[i] can be computed using only
the input bits a1[i], a2[i],... ak[i] and the finite state S[i− 1]. This computation
also leads to a next state S[i]. An example of such an S-function is the modular
addition a + b = s. In ARX systems, we can discover the same behavior as for
additions, except that the first state S[0] depends on the outcome of the last op-
eration and is therefore related to S[n]. We picture this relation by introducing
so called state mapping functions mi and making the state cyclic as it is shown
in Fig. 2. The state mapping function mi is a function, which maps distinct state
values of So[i] to Si[i]. It is possible and often the case that more values of So[i]
map to the same value of Si[i]. If mi is the identity function, then the states
So[i] and Si[i] are the same state and we only write S[i] in this case.

f
Si[0]

ak[1]a1[1]

So[1]
f

ak[2]a1[2]

So[2]
f

Si[n− 1]

ak[n]a1[n]

So[n]

s[1]s[2]s[n]

m1

Si[1]
m2mn

Si[n]

Fig. 2. Concept of cyclic S-functions.

8

Note that every classic S-function can be transformed into a cyclic S-function
by defining every mi as the identity function except for mn. The function mn

maps every value of So[n] to the state Si[0] = 0.
To give an example, we describe the function ((a + b) ≪ 1) + c = sb with

the help of S-functions. In this example, we use 4-bit words. We picture the
system as it is shown in Fig. 3. The carry ca and cb serve as state S together.
They can be considered as a two-bit condition |ca, cb|. The black vertical lines in
Fig. 3 mark transitions, where the state mapping function mi is not the identity
function. As ca[0] and cb[0] can only be 0, the state mapping functions perform
the following mapping for any value va of ca and vb of cb:

– So[1]⇒ Si[1] : |va, vb| ⇒ |0, vb|
– So[4]⇒ Si[0] : |va, vb| ⇒ |va, 0|.

So the states in case of the system in Fig. 3 are:

– Si[0] = |ca[3], 0|
– So[1] = |ca[4], cb[1]|

– Si[1] = |0, cb[1]|
– S[2] = |ca[1], cb[2]|

– S[3] = |ca[2], cb[3]|
– So[4] = |ca[3], cb[4]|

a[4]a[3] a[2] a[1]

b[4]b[3] b[2] b[1]

ca[4]ca[3] ca[2] ca[1] ca[0]

sb[4] sb[3] sb[2] sb[1]

c[4] c[3] c[2] c[1]

cb[4] cb[3] cb[2] cb[1] cb[0]

ca[3]

Si[0]S[2]S[3]So[4] So[1]Si[1]

Fig. 3. Rewritten system to do ((a + b) ≪ 1) + c = sb in one step.

For a word length of n and a general rotation to the left by r, the state is
S[i] = |ca[(i− r) mod n], cb[i]|, except for states, where mi is not the identity
function. These are the states So[r] = |ca[n], cb[r]|, Si[r] = |ca[0], cb[r]|, So[n] =
|ca[n− r], cb[n]| and Si[0] = |ca[n− r], cb[0]|. The realization of additions with
multiple rotations in between leads to more mapping functions mi, which are not
the identity function. Using additions with more inputs leads to bigger carries
and bigger states.

Using Graphs for Description. Similar to S-functions [8], we can build a
graph representing the respective cyclic S-function. The vertices in the graph
stand for the single distinct states and the circles in the graph represent valid
solutions. Such a graph can be used to either propagate conditions, or to calcu-
late the differential probability. An illustrative example for propagation and the
probability calculation can be found in Appendix B.

9

The whole cyclic graph consists of subgraphs i. Each subgraph i consists of
vertices representing Si[i − 1], and So[i] and single edges connecting them. So
each subgraph represents a single bitslice of the whole function. For the system
in Fig. 3, the edges of each subgraph are calculated by trying every possible pair
of input bits for a[((i − r − 1) mod n) + 1], b[((i − r − 1) mod n) + 1] and c[i],
which is given by their generalized conditions and using every possible carry of
the set of Si[i − 1] to get an output sb[i] and a carry which belongs to So[i]. If
the output is valid (with respect to the generalized conditions, which describe
the possible values for sb), an edge can be drawn from the respective value of the
input vertex of Si[i−1] to the output vertex belonging to So[i]. Such a subgraph
can be created for every bitslice.

Now, we have to form a graph out of these subraphs. Subgraphs connected
over a state mapping function mi, which is the identity, stay the same. There
exist two ways for connecting subgraphs i and i + 1, which are separated by
a state mapping function. Either the edges of graph i can be redrawn, so that
they follow the mapping from So[i] to Si[i], or the edges of graph i + 1 can be
redrawn so that they follow the inverse mapping from Si[i] to So[i]. We call
the so gathered set of subgraphs “transformed subgraphs”. After all subraphs
are connected, we can read out the valid input output combinations. These
combinations are minimal circles in the directed graph. Since we are aware of
the size of the minimal circles and of the shape of the graph, we can transform
the search for those circle in a search for paths.

Probability Calculation using Matrix Multiplication. To calculate the
differential probability, we only need to divide the number of valid minimal
circles of the graph by the number of total possible combinations of the input.
The number of valid minimal circles can be calculated with the help of matrix
multiplications. Similar to S-functions [8], we have to calculate the biadjacency
matrix A[i] = [xkj] for each “transformed subgraph”. xkj stands for the number
of edges, which connect vertex j of the group Si[i−1] with vertex k of the group
Si[i]. We define the 1×N matrices Li and the N × 1 matrices Ci.

L1 =
[
1 0 0 ... 0

]
L2 =

[
0 1 0 ... 0

]
...

Ln =
[
0 0 0 ... 1

]
C1 =

[
1 0 0 ... 0

]T
C2 =

[
0 1 0 ... 0

]T
...

Cn =
[
0 0 0 ... 1

]T
Here, N is the number of distinct states of S[i]. As Si[n] (this is So[n] after
applying the mapping) and Si[0] are in fact the same states, we can calculate
the number of circles by summing up all paths which lead from a vertex in Si[0]
to the same vertex in Si[n]:

#Circles =

n∑
i=1

(Li ·A[n] · · ·A[2] ·A[1] · Ci) (1)

10

The formula shown above basically sums the numbers in the diagonal of the
resulting matrix when all A[i] are multiplied together. This sum divided by all
possible input combinations gives us the exact differential probability of one
step.

We consider the presented method based on cyclic S-functions to be equiv-
alent to brute force and therefore to be optimal. The equivalence is only given
if the words of the input and the output are independent of each other. For
example, if the same input is used twice in the same function f , we do not have
the required independence. Such a case is the calculation of s = a+ (a≪ 10).

Probability Calculation of SipHash. To calculate the probability of SipHash
we group two subsequent additions together, considering also the intermediate
outputs. In contrast to the propagation (Section 4.3), we do not do this overlap-
ping, since we would calculate the probability twice. So we get two subfunctions
per SipRound to calculate the probability (2). In the case of SipHash, we also
consider the intermediate values of the additions, but they are omitted in the
formulas.

Va,m,r+1 = ((Va,m,r + Vb,m,r) ≪ 32) +Ad,m,r

Vc,m,r+1 = (Vc,m,r + Vd,m,r +Ab,m,r) ≪ 32
(2)

In addition, we also consider the differential probability introduced by xors.
Since we use generalized conditions, xors might contribute to the probability
as well. To calculate the differential probability connected with xors, a simple
bitsliced approach is used.

4.3 Bitsliced Description of SipHash

For SipHash, we have evaluated dozens of different descriptions. Because of sev-
eral searches and other evaluations, we have chosen the following description.
We combine every two subsequent two input modular additions to one subfunc-
tion, regardless if they are separated by a rotation. The resulting subfunctions
overlap each other. This means, that every two input addition as shown in Fig. 1
takes part in two subfunctions. This results in the following subfunctions (the
intermediate output is also considered, but not given in the formulas):

Va,m,r+1 = ((Va,m,r + Vb,m,r) ≪ 32) +Ad,m,r

Vc,m,r+1 = (Vc,m,r + Vd,m,r +Ab,m,r) ≪ 32

Aa,m,r+1 = (Aa,m,r ≪ 32) +Ad,m,r + Vb,m,r+1

Ac,m,r+1 = ((Ac,m,r +Ab,m,r) ≪ 32) + Vd,m,r+1

The xor operations are represented using only three variables (two inputs).
We do this, since there is no information loss due to the representation capability
of the generalized conditions.

11

5 Results

In this section, we give some results using the presented search strategies and
the new probability calculation. At first, we start with characteristics, which
lead to internal collisions. This type of characteristic can be used to create forg-
eries as described in [9, 10]. To improve this attack, characteristics are needed,
which have a probability higher than 2−128 (in the case of SipHash). Other-
wise, a birthday attack should be preferred to find collisions. We are able to
present characteristics that lead to an internal collision for SipHash-1-x (2−167)
and SipHash-2-x (2−236.3). The characteristic for SipHash-2-x is also the best
published characteristic for full SipHash-2-4.

The last part of this section deals with a characteristic for the Finalization
of SipHash-2-4. This characteristic has a considerable high probability of 2−35.
Due to this high probability, this characteristic can be used as a distinguisher
for the Finalization.

5.1 Colliding Characteristics for SipHash-1-x and SipHash-2-x

First, we want to start with an internal collision producing characteristic for
SipHash-1-x. We have achieved the best result with the biggest impact strategy
by using a starting point consisting of 7 message blocks. The bits of the first
message block, the key, and the last state values are set to -. The rest of the
characteristic is set to ?. We introduce one difference in a random way by picking
a bit out of all Aa, Ac, Va, and Vc. This strategy results in a characteristic with
an estimated probability of 2−169. The characteristic leads to an internal collision
within 3 message blocks.

In the second stage of the search, we fix the values of the 3 message blocks
to the values found before and set the internal state variables to ?. By using
the so gotten starting point, we perform a high probability greedy search. This
high probability greedy search results in the characteristic given in Table 2. This
characteristic has an estimated probability of 2−167.

Table 2. Characteristic for SipHash-1-x, which leads to an internal collision (proba-
bility 2−167).

M1 -- K0 --

M2 -------------------------------------x-------------------------- K1 --

M3 -xx-xxxx--------x----xxxx-------xxxxx-----x--x-x----------------

M4 xxx-------------xxx-------------------xxxxx----------------xxxxx

Va,1,1 -- Vb,1,1 --

Vc,1,1 -- Vd,1,1 --

Va,1,2 -- Vb,1,2 --

Vc,1,2 -- Vd,1,2 --

Va,2,1 -- Vd,2,1 -------------------------------------x--------------------------

Va,2,2 ---------------------x---------------x-------------------------- Vb,2,2 -------------------------------------x--------------------------

Vc,2,2 -----x-- Vd,2,2 x---------------x----x---------------x--------------------------

Va,3,1 ---------------------x-- Vd,3,1 xxx-xxxx--------------xxx-------xxxxxx----x--x-x----------------

Va,3,2 -x-x-x--x-xxxxxx-xx--x--x-xxxx-x---xxx--xxxxx-x----x-xxx-------- Vb,3,2 -x-xx--------------xxx-x-------1------xxxxx--x-x----------------

Vc,3,2 ------xxxxx--x-x-----------------x-x---x-------------x-x-------- Vd,3,2 xxx--------xxxxxxxx-------------xxxxxx--xxx----------xxx---xxxxx

Va,4,1 --xxx-xxx-xxxxxxxxx---xx--xxxx-xxxx--x--xx-xxxxx---x-xxx-------- Vd,4,1 -----------xxxxx----------------xxxxxxxx-------------xxx--------

Va,4,2 xxx-------------xxx-------------------xxxxx----------------xxxxx Vb,4,2 --

Vc,4,2 -- Vd,4,2 --

Va,f,1 -- Vc,f,1 --

hK --

12

Next, we handle the search for a characteristic, which results in an internal
collision for SipHash-2-x. The collision with the best probability has been found
by setting only the bits of one Compression iteration (including the correspond-
ing message block) to ? and everything else to -. The difference is introduced
in the most significant bit of the message block. The best characteristic we have
found using this starting point and the best impact strategy has an estimated
probability of 2−238.9. In a second stage, we use the value for the message block
of this found characteristic to perform a high probability greedy search. With
this method, we are able to get the characteristic of Table 3. This characteristic
has an estimated probability of 2−236.3.

Table 3. Characteristic for SipHash-2-x, which leads to an internal collision (proba-
bility of 2−236.3). This is also the best characteristic for SipHash-2-4.

M1 x--xxx--x--xxx---xxxxxxx---xx-xxx-x--xx-xx-xxxx---xx----x---xx-- K0 --

K1 --

Va,1,1 -- Vb,1,1 --

Vc,1,1 -- Vd,1,1 x--xxx--x--xxx---xxxxxxx---xx-xxx-x--xx-xx-xxxx---xx----x---xx--

Va,1,2 xxx--xxxx----x-x-x---xx--x-x-x-xxxx--xx-xxxxxxxxx---xx-----x---- Vb,1,2 x-x--x--x-x--x---xx--xxx----x---xxx--x-x-x-x-xx----x----x----x--

Vc,1,2 xxx--x-x-x-x-xx----x----x----x--x-x--x--x-x--x---xx--xxx----x--- Vd,1,2 xx-xxx-x--xx-xx-xxxx---xx----x---xx--x--xxx--x--xxx---xxxxxxx---

Va,1,3 x--xxx--x--xxx---xxxxxxx---xx-xxx-x--xx-xx-xxxx---xx----x---xx-- Vb,1,3 --

Vc,1,3 -- Vd,1,3 --

Va,f,1 -- Vc,f,1 --

hK --

Although both characteristics do not have a probability higher than 2−128,
they are the best collision producing characteristics published for SipHash so far.
Especially the characteristic for SipHash-1-x (Table 2) is not far away from the
bound of 2−128, where it gets useful in an attack. Moreover, the characteristic
for SipHash-2-x (Table 3) is the best published characteristic for full SipHash-
2-4, with a probability of 2−236.3. The previous best published characteristic for
SipHash-2-4 has a probability of 2−498 [1]. Nevertheless, SipHash-2-4 still has a
huge security margin.

5.2 Characteristic for Finalization of SipHash-2-4

Now, we want to present a distinguisher for the full four SipRound Finalization of
SipHash-2-4. For this result, we have used the greedy search algorithm presented
in Section 4 considering solely the probability. With the help of this algorithm, we
have found the distinguisher shown in Table 4. By using this characteristic, four
rounds of the Finalization can be distinguished from a pseudo-random function
with a complexity of 235.

Considering this new result, we are able to distinguish both building blocks
of SipHash-2-4, the Compression and the Finalization from idealized versions (It
is already shown in [1] that two rounds of the Compression are distinguishable).
However, these two results do not endanger the full SipHash-2-4 function, which
is still indistinguishable from a pseudo-random function.

13

Table 4. Distinguisher for 4 finalization rounds (probability 2−35).

Va,f,1 x----------x---------x----x--------------------x---------------- Vb,f,1 -----------x-x------------x-------x------------x----------------

Vc,f,1 -----x--------x---x---x- Vd,f,1 -----x--------x---x---

Va,f,2 --------------------------------x------------x------------------ Vb,f,2 ---x------------------

Vc,f,2 -- Vd,f,2 --

Va,f,3 x--- Vb,f,3 --

Vc,f,3 -- Vd,f,3 x---

Va,f,4 x-------------------------------x---------------x--------------- Vb,f,4 ---x----------------

Vc,f,4 -- Vd,f,4 x--------------------------x----x----------x----x---------------

Va,f,5 -----------x--------------------x----------x-------------------- Vb,f,5 ---------------x-x---------x---x--x--------x---x----------------

Vc,f,5 --x--------x---x---- Vd,f,5 -----------x----------x---------x---------------------x----x----

6 Conclusion

This work deals with the differential cryptanalysis of SipHash. To be able to find
good results, we had to introduce new search strategies. Those search strategies
extend previously published strategies, which have solely been used in the search
for collisions for hash functions. With the new presented concepts, also attacks on
other primitives like MACs, block-ciphers and stream-ciphers are within reach.

Furthermore, we generalized the concept of S-functions to the concept of
cyclic S-functions. With the help of cyclic S-functions, cryptanalysts will be able
to get more exact results regarding the probability of differential characteristics
for ARX based primitives.

With these new methods, we were able to improve upon the existing results
on SipHash. Our results include the first published characteristics resulting in in-
ternal collisions, the first published distinguisher for the Finalization of SipHash
and the best published characteristic for full SipHash-2-4.

Future work includes to apply the greedy search strategies to other ARX
based primitives. Such cryptographic primitives may be for instance block ci-
phers or authenticated encryption schemes. Also, the further improvement of
the used automatic search tools is part of future work.

Acknowledgments. The work has been supported by the Austrian Govern-
ment through the research program FIT-IT Trust in IT Systems (Project SePAG,
Project Number 835919).

References

1. J.-P. Aumasson and D. J. Bernstein. SipHash: A Fast Short-Input PRF. In S. D.
Galbraith and M. Nandi, editors, INDOCRYPT, volume 7668 of LNCS, pages
489–508. Springer, 2012.

2. C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General Re-
sults and Applications. In X. Lai and K. Chen, editors, ASIACRYPT, volume 4284
of LNCS, pages 1–20. Springer, 2006.

3. M. Eichlseder, F. Mendel, and M. Schläffer. Branching Heuristics in Differential
Collision Search with Applications to SHA-512. IACR Cryptology ePrint Archive,
2014:302, 2014.

4. V. Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute. IACR
Cryptology ePrint Archive, 2006:105, 2006.

14

5. G. Leurent. Construction of Differential Characteristics in ARX Designs Applica-
tion to Skein. In R. Canetti and J. A. Garay, editors, CRYPTO (1), volume 8042
of LNCS, pages 241–258. Springer, 2013.

6. F. Mendel, T. Nad, and M. Schläffer. Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In D. H. Lee and X. Wang, editors, ASI-
ACRYPT, volume 7073 of LNCS, pages 288–307. Springer, 2011.

7. F. Mendel, T. Nad, and M. Schläffer. Improving Local Collisions: New Attacks on
Reduced SHA-256. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT,
volume 7881 of LNCS, pages 262–278. Springer, 2013.

8. N. Mouha, V. Velichkov, C. De Cannière, and B. Preneel. The Differential Analysis
of S-Functions. In A. Biryukov, G. Gong, and D. R. Stinson, editors, Selected Areas
in Cryptography, volume 6544 of LNCS, pages 36–56. Springer, 2010.

9. B. Preneel and P. C. van Oorschot. MDx-MAC and Building Fast MACs from Hash
Functions. In D. Coppersmith, editor, CRYPTO, volume 963 of LNCS, pages 1–14.
Springer, 1995.

10. B. Preneel and P. C. van Oorschot. On the Security of Iterated Message Authen-
tication Codes. IEEE Transactions on Information Theory, 45(1):188–199, 1999.

11. M. Sugita, M. Kawazoe, L. Perret, and H. Imai. Algebraic Cryptanalysis of 58-
Round SHA-1. In A. Biryukov, editor, FSE, volume 4593 of LNCS, pages 349–365.
Springer, 2007.

12. V. Velichkov, N. Mouha, C. De Cannière, and B. Preneel. The Additive Differential
Probability of ARX. In A. Joux, editor, FSE, volume 6733 of LNCS, pages 342–358.
Springer, 2011.

13. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In R. Cramer, editor, EUROCRYPT, volume 3494 of LNCS,
pages 1–18. Springer, 2005.

14. X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup,
editor, CRYPTO, volume 3621 of LNCS, pages 17–36. Springer, 2005.

15. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In R. Cramer,
editor, EUROCRYPT, volume 3494 of LNCS, pages 19–35. Springer, 2005.

A Results Without Secret Key

In this section, we present results for SipHash without considering the secret
key. This allows us to create semi-free-start collisions for the Compression as
well as an internal collision using chosen related keys. Despite the fact that
these attacks do not lie within the specified use of SipHash, the following results
give at least some insight in the strength of the MAC. In addition, the existence
of the semi-free-start collisions are a strong indicator that the characteristics
given in Table 2 and Table 3 are valid and that the estimated probability is at
least somewhat realistic.

With the help of the characteristic of Table 2, we can produce a semi-free-
start collision. Furthermore, we are able to fix the value of Va,i,1 and Vb,i,1 to 0

in advance of the search. The values for the semi-free-start collision are given in
Table 5. The message pair can be created out of the characteristic in seconds.
However, we cannot state a time it takes to create the characteristic, since the
best characteristic out of many searches has been selected.

15

Table 5. Message pair and state values for semi-free-start collision for SipHash-1-x
using three message blocks.

Va,i,1: 0000000000000000 Vb,i,1: 0000000000000000 Vc,i,1: 0C42F127F5B7A160 Vd,i-1,2: 8D8FA9B18E275ED4

Va,i+3,1: 00747ADAB4A268A8 Vb,i+2,2: CD49C9A065B1F2AE Vc,i+2,2: 6045CA3667F1A304 Vd,i+2,2: 94ED96D23F686622

Mi: CAE3C8DF846F8D00 Mi+1: 18701B50E5EABA01 Mi+2: 21027F74580E0EE8

M ′i : CAE3C8DF806F8D00 M ′i+1: 77709CD01DCFBA01 M ′i+2: C1029F745BEE0EF7

The same can be done for SipHash-2-x by using the characteristic of Table 3.
Here, we are able to produce the semi-free-start collision for SipHash-2-x shown
in Table 6 within 10 seconds. Due to the rather low probability of 2−236.3 of the
characteristic given in Table 3, we are not able to fix any values in advance of a
search for a semi-free-start collision.

Table 6. Message pair and state values for semi-free-start collision for SipHash-2-x
using one message block.

Va,i,1: 992E9AA7D76CEF0E Vb,i,1: A17197FCAADF73D4 Vc,i,1: 33E9CBC3EB8E4E32 Vd,i-1,3: 3B5E30192818D15C

Va,i+1,1: 8255CD3D3A2B4213 Vb,i,3: 783B1ADCD7BC413C Vc,i,3: FA5B40A895829C5B Vd,i,3: 230701332727C050

Mi: C7DCDE77723E8AD8

M ′i : 5B40A16CD4E0BA54

Now, we want to present internal collision using chosen related keys for Sip-
Hash-2-4. For the creation of the best found characteristic for a Compression
consisting of 2 SipRounds per iteration, we use a starting point, where we place
the difference in the most significant bit of the first message. The rest of the
message, as well as the key can be chosen completely free. The best characteristic
we have found by using the impact oriented strategy has an estimated probability
of 2−169. By using this characteristic, we are able to create the pairs in Table 7.
To be easier to verify, we have included the MAC value for SipHash-2-4. In
addition, we give the state after the collision happens in the first message block.
Again, we cannot state the time it takes to create the characteristic, because it
is the best characteristic out of many searches. The collision producing message
and key pair can be created within seconds out of the characteristic.

Table 7. Message pair, key, state values after internal collision, and MAC value (Sip-
Hash-2-4) for internal collision of SipHash-2-x using chosen related keys and a fixed
IV.

Key 1: 7F166B32181D1FE4041FA4A0DBCD3927

Key 2: 7D1EEB2218055CEE041724415BA73CA7

Message 1: 0C40E5F8510C351DBA045A72064A83

Message 2: 0C40E5F8510CF198BA045A72064A83

MAC value: 20A26EAD9B9855BE

Va: 6B2FCACBF912BB2B

Vb: 4CB34F2A06657837

Vc: 6260226FF75DCB88

Vd: 45F20251CF5EC6CD

16

B An Example for Cyclic S-Functions

In this section, we want to clarify the use of cyclic S-functions with the help
of an example. We use ((a + b) ≪ 1) + c = sb (Fig. 3) as cyclic S-function.
Throughout this example, we use the following values for inputs and outputs.

a = 1x11 b = AEn5 c = 15nx sb = 11Ax (3)

Before we start an explanation how to calculate the probability, we first show
how the propagation is done by using the graph shown in Fig. 4. To represent
the graph in Fig. 4 clearly, we use information, which can be gathered using a
bitslice propagation to narrow the value for the carries and therefore decrease
the amount of edges and vertices in the graph. This precomputation is only
done to produce a graph with few edges. The concept also works if this bitslice
precomputation is omitted.

Now, we want to describe the concept of propagation by looking at first at
the state mapping. Performing a state mapping function for doing addition with
rotations in between is in principle merging a set of vertices together. After this
merging, some edges, which have led to separated vertices, may lead to the same
vertex. In case of the example in Fig. 4 this means that the vertices |u, n| and
|1, n| of So[1] are mapped both on vertex |0, n| of Si[1]. Vertex |1, 0| of So[1] is
mapped on vertex |0, 0| of Si[1]. The vertex |u, n| of So[4] is mapped on vertex
|u, 0| of Si[0], vertex |1, 0| of So[4] is mapped on vertex |1, 0| of Si[0] and vertex
|n, n| of So[4] is mapped on vertex |n, 0| of Si[0]. The vertices of Si[0] and So[4]
are in fact the same. Therefore, we can reduce the problem of finding circles
to the problem of finding paths from a vertex |v, 0| of state Si[0] to the in fact
same vertex |v, 0| of state Si[4] (this is So[4] after applying the mapping), where
v stands for any value of a state. Edges, which do not belong to a path can be
deleted. These are the dashed edges in Fig. 4. So we get following values after
propagation:

a = 1u11 b = AAn5 c = 15nn sb = 11Au (4)

Note that that this result is optimal with respect to the limited representation
capability of generalized conditions (The graph of Fig. 4 shows that in fact only
two valid solutions exist).

Now we show, how the probability calculation is done. Because of space
constraints, we only give the biadjacency matrix A[1] (5) out of the set of
transformed subgraphs. The matrix A[1] corresponds to the rightmost subgraph
shown in Fig. 4.

17

|u,0|

|1,0|

|n,0|

|u,n|

|1,n|

|1,0|

1,u,n,u

1,1,n,u

1,u,u,u

1,u,n,n

|0,n|

|n,0|

|n,n|

1,0,n,u |0,0|
1,0,n,1

1,
n,
n,
1

1,
n,
n,
u

|n,0|

|n,n|

|u,n|

|n,n|

1,n,0,1

1,n,0,1

1,n,n,1n,
n,
1,
1

u,
1,
1,
1

u,u,1,1

So[4] S[3] S[2] Si[1] So[1] Si[0]

|0,n||1,0|

Fig. 4. Graph for ((a + b) ≪ 1) + c = sb. States of the same color can be considered
as equivalent (except for the black ones). The values on the edges represent a[i], b[i],
c[i] and sb[i].

A[1] =

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(5)

After doing matrix multiplication and adding the elements of the diagonal
together, we get two valid circles in the graph (1). This result can also be verified
by looking at the graph of Fig. 4. The number of valid solutions divided by all
possible input combinations gives us the exact differential probability of this
subfunction. Here, we have to distinguish if we consider the input values given
before (3) or after propagation (4). In the case of (3), we have 96 possible input
pairs resulting in a probability of 2−5.58. For (4), we only have 16 possible input
pairs and get a probability of 2−3. Both results are exact.

18

	Differential Cryptanalysis of SipHash

